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ABSTRACT

In Ethiopia, malaria transmission is seasonal and epidemic-prone, with both Plasmodium
falciparum and Plasmodium vivax being endemic. Such spatial and temporal clustering of
malaria only serves to underscore the importance of regularly collecting up-to-date malaria
surveillance data to inform decision-making in malaria control and improve responsiveness to

potential epidemics.

This thesis compares indicators and strategies used for the monitoring and surveillance of
malaria in Ethiopia. Cross-sectional school-based surveys were conducted throughout Oromia
Regional State, generating data on malaria prevalence by microscopy, risk factors for
infection and intervention use. Filter paper blood samples collected during these school
surveys were subsequently tested to determine exposure to malaria based on presence of
anti-Plasmodium antibodies, and Bayesian geostatistical modelling was employed to predict
P. falciparum and P. vivax seroprevalence across Oromia. In southern Ethiopia, a school-
based syndromic surveillance system was piloted, exploring the utility of school absenteeism
as a complementary indicator of malaria epidemics at community level. Finally, findings from
the school surveys, measured and modelled seroprevalence, as well as data from the national
Malaria Indicator Survey in 2011 were compared with spatially congruent estimates of
malaria incidence collected from health facilities and to modelled parasite rate from the

Malaria Atlas Project.

Findings from this thesis demonstrate the limitations of microscopy as a primary indicator of
malaria infection in cross-sectional surveys in areas of very low transmission. The work
highlights the potential of serological indicators of Plasmodium exposure for inclusion in
periodic large-scale malaria monitoring activities and develops a first ever geostatistical risk
map based on serological indictors. This was supported by comparative analysis of a range of

survey and modelling indicators against estimates of incidence from passive surveillance,



indicating the inadequacy of cross-sectional surveys estimating population parasitaemia to
reflect the spatial extent and temporal variability of transmission. The piloted syndromic
surveillance system indicates that monitoring school absenteeism has potential as a
complementary epidemic alert system, operating alongside the existing system at health

posts, but is limited by low school enrolment in the piloted setting.

The findings of this thesis indicate that existing periodic monitoring strategies and tools are
insufficient to fully describe the extent of malaria in settings where Plasmodium transmission
is spatially and temporally variable. Modifications to monitoring strategies are

recommended, including incorporation of serological indicators and spatial modelling.
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CHAPTER 1. INTRODUCTION

1.1 BACKGROUND AND CONTEXT

Investment in malaria prevention and control in Africa has increased dramatically since the
Abuja declaration of 2000, in recognition of the ongoing detrimental effect of Plasmodium
infection on public health [1]. Scale up in coverage of insecticide-treated mosquito nets,
renewed interest in indoor residual spraying using alternative insecticides, as well as the
availability of effective treatment for Plasmodium falciparum malaria using artemisinin
combination treatments are all contributing to reductions in malaria morbidity and mortality

in Africa [2-5].

Both the increased investments and documented reduction in malaria morbidity and
mortality have prompted recognition of the need to invest in surveillance, monitoring and
evaluation to track changes in malaria burden and progress towards key targets [6].
Monitoring and surveillance needs are particularly high in the 34 countries targeting malaria
elimination [7] since the aim is to break transmission, therefore, there is a need to identify
Plasmodium infections rather than just clinical cases, and indicators should have fine spatial
and temporal resolution [6]. As the 64 countries [7] currently in the ‘controlling malaria’
phase successfully transition from high to low malaria endemicity, the need for evidence-
based and appropriate monitoring and surveillance tools for low and unstable transmission

settings will only increase.

Malaria epidemiology in areas of both recently reduced and historically low transmission is
diverse and complex, presenting unique challenges in targeting interventions to locations or
populations at greatest risk, diagnosing Plasmodium infections, monitoring malaria control
programme impact and developing effective surveillance systems for timely epidemic

detection.
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Periodic surveys such as the Demographic and Health Surveys (DHS), as well as Multiple
Cluster Indicator Surveys (MICS) and Malaria Indicator Surveys (MIS) are valuable in
monitoring access to and use of key malaria interventions, as well as the reported burden of
malaria and number of malaria-attributable deaths. These tools were developed at a time
when many malaria-endemic countries did not routinely generate nationally representative
indicators, and there was a desire to develop standardised but adaptable tools for monitoring
and evaluation across countries to track performance of malaria control programmes [8].
Suggested approaches to data collection in the Roll Back Malaria framework included the
routine health information system, demographic surveillance systems, community surveys,
health facility surveys and review of existing documents. While large-scale household surveys
are useful to gather data from the community on knowledge of malaria, access to diagnosis
and treatment as well as ownership and use of mosquito nets, the justification for inclusion
of malariometric indicators, particularly focussing on children less than five years of age and

pregnant women, is equivocal for low transmission settings [9].

Epidemiological surveillance, particularly in areas of low transmission, requires survey
methodologies sufficiently powered to measure the extent of malaria transmission and
parasitaemia within the population. Sampling strategies used in DHS, MICS and MIS are able
to generate nationally-representative estimates of parasite prevalence, but are severely
limited in low transmission settings by the use of light microscopy or rapid diagnostic test
(RDT), due to poor sensitivity in detection of low density Plasmodium infections [10] and
difficulties in capturing the temporally dynamic nature of malaria using cross-sectional survey
methods. Use of molecular diagnostics may offer benefits to malariometric surveys due to
their higher sensitivity in detection of Plasmodium parasites [10], as may the use of
serological tools to describe population exposure to Plasmodium as opposed to current

infection [11].
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An effective health information system, which reports timely and accurate data to a central
level and generates feedback to those collecting the data, is also crucial to malaria monitoring
and surveillance. Spatial and temporal heterogeneity, presence of multiple Plasmodium
species, presence of low density infections, as well as the potential for devastating epidemics
to occur are all additional considerations to be addressed in development of effective malaria

surveillance systems in low transmission areas.

School-based surveys were used during historical malaria reconnaissance activities [12-15],
and their use as an alternative platform for large-scale periodic monitoring surveys has been
demonstrated successfully more recently in Kenya, a moderate to low transmission setting
[16]. School surveys offer practical advantages over household surveys, yet there are limited
data to describe whether school surveys are a reliable alternative to standard household
surveys in low and unstable transmission settings, and whether this approach may offer
improved value for money. Schools have also been explored as a complementary infectious
disease early warning system in high income countries, particularly for pandemic influenza
[17-19], however this approach of school-based surveillance and epidemic detection has not
been adapted for resource-constrained settings where routine health facility-based systems

commonly underperform.

A major development in infectious disease monitoring has been the application of
geostatistical methods to model associations between available malaria data and
environmental predictors in order to predict these malaria indicators together with estimates
of precision in areas lacking data. To date, geostatistical modelling and prediction have not
used estimates of exposure to malaria to explore malaria endemicity in settings with

temporally unstable transmission.

Considering the continued popularity of household surveys and availability of new tools such

as model-predicted endemicity maps, and alternative platforms for monitoring and
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surveillance, there is a need to compare the data generated by each tool to allow countries to
make informed and evidence-based decisions of the strategies that they should prioritise in

an environment of limited resources.

This chapter provides further information of the biology of Plasmodium and the pathology,
transmission dynamics and epidemiology of infection with this parasite. Information is
presented on various strategies for malaria surveillance, including routine passive
surveillance at health facilities, periodic cross-sectional surveys, epidemic detection methods
and the potential of syndromic surveillance. Next, an overview is given of the indicators that
may be of use for malaria surveillance in low and unstable transmission settings. Finally, |
provide a summary of the epidemiology and control of malaria in Ethiopia, where data used

in this thesis are collected.

1.2 BIOLOGY, EPIDEMIOLOGY AND CONTROL OF MALARIA

1.2.1 Parasite lifecycle

Malaria is caused by infection with protozoan parasites of the Plasmodium genus. Human
malaria is caused by five species of Plasmodium: P. falciparum, P. vivax, P. malariae, P. ovale
and P. knowlesi. Plasmodium falciparum has been generally regarded to have the greatest
public health impact of all the Plasmodium species, particularly in sub-Saharan Africa. While
P. falciparum, P. vivax, P. malariae and P. ovale are all found in sub-Saharan Africa [20-22],

this thesis will focus on P. falciparum and P. vivax.

Malaria is a vector-borne disease, transmitted by female Anopheles mosquitoes. Different
combinations of Anopheles species are responsible for Plasmodium transmission across the

diverse environments of the globe where malaria is present [23]. The lifecycle of Plasmodium
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has developmental stages in both the vector and human hosts, with sexual reproduction

taking place in the vector and asexual reproduction in humans.

Male and female Plasmodium gametocytes ingested by female Anopheles during a blood
meal fuse in the mosquito stomach to form a zygote, which develops into a motile ookinete.
The ookinete moves through the mosquito stomach wall, forming an oocyst on the outer
surface of the stomach wall. Up to one thousand sporozoites develop inside a single oocyst
over a period of eight to 35 days. Sporozoite development time is dependent on both
parasite species and external temperature. When mature, the sporozoites penetrate the wall
of the oocyst and migrate to the mosquito salivary glands, where they are injected to a new

host when the mosquito takes a blood meal (Figure 1.1).

Figure 1.1 - Lifecycle of Plasmodium spp. Adapted from Ménard et al. [24]
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In the human host, sporozoites enter hepatocytes and develop into exo-erythrocytic
schizonts. When mature, over 10,000 merozoites will be released into the bloodstream upon
rupture of the infected hepatocyte. Merozoites invade erythrocytes and undergo cyclical
asexual replication. Inside the erythrocyte over a period of 48-72 hours, the parasite develops
into a trophozoite and then mature schizont, at which point the erythrocyte ruptures and

releases between eight and 30 erythrocytic merozoites to invade further erythrocytes.

A fraction of merozoites released from erythrocytes will develop into gametocytes, the
transmissible parasite form ingested by female Anopheles mosquitoes when taking a blood
meal. The time for appearance of gametocytes varies between species: they can usually be
found approximately three days after first identification of asexual P. vivax parasites, and
after approximately ten days for P. falciparum. Immature gametocytes are sequestered in the
bone marrow or spleen, and released to the circulation once mature. Gametocytes are found
in both low- and high-density infections, symptomatic and asymptomatic. Gametocytes
typically circulate at very low densities, but submicroscopic gametocytaemia is known to be

infectious to mosquitoes [25,26].

Plasmodium vivax and P. ovale differ from P. falciparum in the ability to form hypnozoites, a
parasite stage which develops from sporozoites but persists in hepatocytes for months or
years. During this time, hypnozoites may develop further; generating merozoites and

commencing asexual replication cycles in erythrocytes, leading to relapse in malaria.

1.2.2 Malaria pathology

Classic uncomplicated malaria is described as a cycle of chills, then fever, headache and
vomiting, and finally sweating. However, the majority of Plasmodium infections have more
variable symptoms, including some combination of fever, muscle and joint pain, headache,
sweating, chills and anorexia. Historical controlled human malaria infection studies indicated

that symptoms cycle, with attacks occurring every two days for P. falciparum, P. vivax and P.
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ovale, while attacks due to P. malariae occur every three days [27]. In practice, however,
most naturally acquired infections are not so clearly cyclical in presentation of symptoms.
Symptoms of uncomplicated malaria are associated with rupture of erythrocytic schizonts
and the immune response to release of toxic contents of the lysed cells [28]. After several

cycles of P. falciparum asexual reproduction, anaemia and splenomegaly may develop [29].

The case fatality rate for non-immune adults and young children infected by P. falciparum can
reach 10-40% [30]. Patients who progress to severe malaria are more likely to die than those
with uncomplicated infection. Severe malaria is the result of organ failure or abnormalities in
the patient’s blood or metabolism as a result of P. falciparum infection and parasite
sequestration. Symptoms of severe malaria include acute encephalopathy, respiratory
distress, renal failure, hypoglycaemia, lactic acidosis, severe anaemia, coagulation defects

and jaundice [31].

While P. vivax had long been considered a relatively benign infection compared to P.
falciparum, an increasing body of evidence describes instances of severe malaria caused by P.
vivax, indicating that the public health burden of P. vivax malaria may have been
underestimated [32-34]. Mechanisms contributing to severe disease in P. vivax infection
include destruction of uninfected erythrocytes leading to severe anaemia and cytokine-

related changes in alveolar permeability causing respiratory distress [35].

1.2.3 Transmission dynamics of malaria

Historical categorisation of malaria endemicity into holoendemic, hyperendemic,
mesoendemic and hypoendemic was defined according to the proportion of a population
with a palpably enlarged spleen. However this classification was challenged by some who
believed that defining malaria transmission as either stable or unstable was more appropriate

in consideration of transmission dynamics of this vector-borne parasite [9].
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The Ross-Macdonald model of malaria transmission defines the reproductive number (Ry) of
malaria as the number of new infections arising from a single infected person in the absence

of immunity and malaria control, after one generation of the parasite:

B ma’bcp”
" r(-lnp)

The components of the Rq calculation are the ratio of anopheline mosquitoes to humans (m),
human biting rate of anophelines (a), transmission efficiency of anophelines to humans (b)
and humans to anophelines (c), number of days for recovery by humans from infection (r),
proportion of mosquitoes surviving one day (p) and the number of days required for

sporogeny (n) [36].

A major assumption of the Ross-Macdonald model is that of homogeneous transmission in a
well-mixed population. In practice, the Ross-Macdonald model is violated by presence of
immunity in a population, biasing infectivity of humans to mosquitoes and vice versa [36]. In
addition, vector biting is often heterogeneous with 80% of infectious bites received by 20% of
people, introducing a sampling bias between selection of humans by vectors and selection for
inclusion in a study [37]. Contemporary malaria transmission models have attempted to
incorporate heterogeneity at different scales, from small scale where human and mosquito
behaviour result in heterogeneous biting, to larger scale where vector composition and
dynamics are influenced by ecological factors [38]. A further key innovation was
incorporation of host-parasite interactions and immuno-epidemiology into transmission

models [38].

The basic reproductive number is generally interpreted to be Ry>1 in situations of increasing
transmission, and Ro<1 to mean declining transmission since each infection leads to less than

one subsequent infection on average. Estimating R, can be valuable in malaria control
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planning, assist in setting achievable targets and identifying priorities, however it is rarely

estimated using data from the field. Indicators such as parasite rate and entomological

inoculation rate are more commonly generated metrics, but can be combined with other

parameter estimates to approximate R, for local settings [36].

While Ry describes interactions between the human, vector and parasite populations, the

vectorial capacity describes the number of subsequent infectious bites arising from a single

person-day of exposure. Vectorial capacity also describes those components of transmission

which are temperature dependent (Figure 1.2).

Figure 1.2 - Diagrammatic representation of vectorial capacity model used as an early warning system

for malaria epidemics. The model demonstrates how temperature and rainfall (red and blue connector

lines, respectively) can trigger epidemics by increasing vectorial capacity [39]
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The various species of Anopheles involved in malaria transmission across the world have

preferences in their breeding sites, resting locations, as well as in favoured biting species,
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time and location [23,40]. These preferences show some plasticity [41], often in response to
changes in human behaviour or activity. Examples include changes in peak biting time as a
result of use of insecticide-treated mosquito nets while sleeping [42], as well as shifting from

indoor to outdoor biting and resting locations following indoor-residual spraying [43].

Minimum temperature, rainfall levels and humidity are among factors that determine the
suitability of an environment for mosquito breeding and survival [39,44]. The suitability of a
habitat for mosquitoes determines the probability that a mosquito will survive sufficiently
long for ingested Plasmodium gametocytes to develop to the infective sporozoite stages and
be transmitted to another human host. Altitude is commonly used as a proxy for suitability
for transmission, since the fall in minimum temperature with increasing altitude is often the
limiting factor in vector survival and malaria transmission in highland areas. Numerous
studies in the highlands of East Africa have demonstrated this inverse relationship between
altitude and indices of malaria transmission or burden [45-48]. Sporogeny for both P.
falciparum and P. vivax takes eight to ten days at 28°C, but increases to 16 days when the
temperature falls to 20°C. The minimum temperature at which P. falciparum sporogeny will
take place is 16°C, but P. vivax can generate sporozoites at a minimum temperature of 14.5°C
[49]. The ability of P. vivax to generate sporozoites at a lower temperature than P. falciparum
results in potential for P. vivax transmission at higher altitudes, and therefore likely different

spatial extents of transmission for the two species [50].

While much of sub-Saharan Africa has environmental and climatic conditions that support
perennial malaria transmission, arid areas and highlands typically experience seasonal
transmission since low temperature or rainfall limits mosquito survival and transmission
potential [51,52]. In these settings, malaria transmission tends to peak following seasonal

rainfall, then declines during the dry season [53-56].
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In unstable transmission settings, epidemics may occur when environmental conditions
become favourable for increased transmission, or when infection is introduced into
susceptible populations [52,57-60]. Malaria epidemics are broadly defined as unusual
increases in the burden of malaria illness, that are “clearly in excess of normal expectancy”
[61]. Therefore, in areas which are largely malaria-free, a single locally-acquired case may be
considered as a potential epidemic. While in low-endemic or seasonal settings, an epidemic
may have a more subjective or programmatic definition, such as being more cases than can
be managed by routine health service capacity [62]. Malaria epidemics may be due to P.
falciparum or P. vivax, but generally occur in populations without protective immunity

against Plasmodium [63].

1.2.4 Epidemiology and burden of malaria

The World Health Organization (WHO) has estimated that 207 million cases of malaria
occurred worldwide in 2012 and 627,000 malaria deaths, incorporating both recorded cases
and those which area estimated to occur but are not captured by health information systems
[64]. Geostatistical modelling estimated that 2.57 billion people were at risk of P. falciparum
worldwide in 2010 [20], and 3.5 billion at risk of P. vivax. Africa was estimated to contribute
31% of the global population at risk of P. falciparum, but only 3.5% for P. vivax due to the
widespread Duffy negative phenotype in sub-Saharan Africa [21]. Of these total populations
at risk for each species, 44% occupy areas of unstable P. falciparum and 61% of population at

risk of P. vivax reside in areas of unstable transmission.

Malaria transmission intensity influences age-specific risks of infection, clinical disease, and
mortality. In areas of intense malaria transmission, individuals acquire protective immunity as
a result of exposure, but with reducing transmission intensity and therefore exposure,
functional protective immunity develops at older ages, until low transmission settings where

the population generally do not have protective immunity against Plasmodium.
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The focus of many malaria programme evaluation indicators has been to explore morbidity
and mortality in children under five years of age, however modelling using data from a range
of malaria transmission intensities indicates that age patterns of clinical malaria, malaria-
diagnosed deaths and hospital admissions with malaria are less biased toward younger ages

in areas of seasonality and low transmission [65].

Figure 1.3 demonstrates the relationship between age and parasite rate across high to low
transmission intensities. Where transmission is most intense, parasite rate increases rapidly
up to age two, remaining high until age ten and then declining in adulthood, attributable to
protective acquired immunity. However even in areas of low transmission intensity,
moderately higher parasite rates can be seen in children compared to adults [66]. The
association between age-specific parasite rate and transmission intensity has been
demonstrated in settings where transmission has reduced due to control interventions,

where a right shift occurred in Plasmodium prevalence by age [67].

Figure 1.3 - The relationship between age and P. falciparum parasite rate (PfPR) across various
transmission intensities, from very low in Somalia to high in Tanzania. The grey box indicates the usual

age of primary school children in Africa, 5-14 years. Adapted from Brooker et al. [68]
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Identification of individuals with Plasmodium infection is also complicated by presence of
asymptomatic and low density infections. Increasing evidence demonstrates that
asymptomatic and low density infections are common even in low transmission settings
[10,69,70], contradicting previous assumptions that a non-immune population would
experience symptomatic and high-density infections due to their lack of acquired immune
response. ldentification of low density Plasmodium infections is crucial when countries are
moving towards pre-elimination and transmission control, where it is estimated that
submicroscopic carriers are the source of 20-50% of all transmission from humans to

mosquitoes [71].

1.2.5 Malaria control strategies

The current recommended first-line treatment for uncomplicated P. falciparum malaria is
artemisinin combination therapy (ACT), following development of resistance to previously
used drugs including quinine, chloroquine and sulphadoxine-pyrimethamine (SP). While ACT
is effective in the majority of settings in clearing asexual parasite forms and alleviating
symptomes, it does not kill all gametocytes. Plasmodium falciparum resistance to artemisinin
has been identified in several foci in the greater Mekong sub-region, and containment of
artemisinin resistance has been designated a global priority [72]. ACTs are being increasingly
used in areas where both P. falciparum and P. vivax are endemic [73], but the majority of
countries where P. vivax transmission takes place continue to use chloroquine to treat P.

vivax mono-infection.

Use of primaquine is being considered in some countries due to its gametocytocidal action,
although there is no conclusive evidence that addition of primaquine is effective in reducing
of P. falciparum transmission [74]. Primaquine is also of interest as a radical cure for P. vivax

due to its action in clearing hypnozoites [75], but has not been widely adopted due to
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haemolytic effects in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency

[76-80].

The development of long lasting insecticide-treated mosquito nets (LLINs), which do not
require re-treatment with insecticide, led to a global drive for increased access to vector
control. Early studies in the Gambia indicated that the use of insecticide-treated mosquito
nets was associated with a 60% reduction in mortality among children aged one to four years
[81]. LLINs are impregnated with pyrethroid insecticides, and expected to remain effective for
up to five years. However the useful life of LLINs may be reduced due to physical damage,
with households preferring not to use old nets that have become severely torn [82,83].
Consistent use of LLINs within households has also proven challenging, with a wide range of
contextual factors contributing to the likelihood of net use every night, as well as the decision
of which household members use the available nets [84,85]. In addition to providing personal
protection for the individuals sleeping under the mosquito net, insecticide-treated nets also

have a community effect as a result of reduction in the mosquito population [86-88].

Indoor residual spraying (IRS) has been demonstrated to be effective in reducing malaria
prevalence within a community [89,90], by killing or reducing the lifespan of mosquitoes
resting on indoor walls of the household prior to or after taking a blood meal. IRS may also
elicit a repellent effect on mosquitoes seeking a blood meal, reducing the number of

mosquitoes entering households to feed.

The evidence for additionality of both IRS and high coverage of ITNs in the same area is
conflicting. A meta-analysis indicates that there is no additional effect of implementing both
IRS and ITNs [91]. However, a subsequent cluster randomised trial in Tanzania found that
implementing both interventions resulted in a decrease in mean PfPR among children [92].

This result may be partly attributable to only moderate (36 to 50%) use of ITNs in this
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population, although ITN users were found to be additionally protected if their houses

received IRS.

1.3 PLATFORMS FOR MONITORING, EVALUATION AND SURVEILLANCE

Collection of data to describe the implementation, outputs and impact of malaria control
programmes is essential to ensure that the programme remains relevant, effective and
responsive to needs of the population and context. Both monitoring and surveillance are
included in this section and generally referred to as surveillance, although is it acknowledged
that the formal definitions may differ: surveillance generally understood to be continuous
and ongoing, while monitoring is interpreted to be intermittent or episodic collection of data

[61].

1.3.1 Routine surveillance

Routine recording, reporting and analysis of clinical data from health facilities is a core
component of an effective health system. Routine data are reported in a number of different
formats, the primary and original system being the Health Management Information System
(HMIS). HMIS is usually a paper-based system whereby reports on mortality, morbidity,
health resource and preventative indicators are generated quarterly from public hospitals
and health centres. HMIS also includes reporting of the level of completeness of available
data. Due to the widespread adoption of HMIS, these data are often available to describe

longer time periods than other surveillance data.

The Integrated Disease Surveillance and Response (IDSR) system was launched to improve
timeliness of reporting on major endemic diseases of public health importance, diseases
targeted for elimination or epidemic-prone diseases [93]. The IDSR aims to strengthen the

capacity of countries to conduct effective surveillance activities, integrate multiple
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surveillance systems to improve efficiency of surveillance resources, and to improve the flow
of surveillance information between and within levels of the health system. The principle of
community participation in detection and response to public health problems, along with

increasing involvement of clinicians are also key components of IDSR.

There are limitations to the utility of routine data from health facilities to estimate the impact
of disease control programme efforts on population health [94]. Population access to health
services is one potential bias in routine data from health facilities; inequities may exist as a
result of distance to health facilities, socio-economic status and ability to pay for transport to
facilities, or cultural norms which limit the ability of sub-populations to access health services.
Validity and representativeness of data may also be restricted, and should be acknowledged
when interpreting results from analysis of routine health facility data. Use of sentinel sites,
can provide an interim solution to enable timely epidemic detection and response as well as

programmatic evaluation in settings where routine surveillance system are inadequate [95].

Quality of routinely collected data from health facilities may be limited by lack of feedback on
submitted data, as health workers lose the motivation to invest sufficient time in completing
data accurately. Duplication and redundancy in data reporting as a result of multiple
recording systems can also impact on quality of routine data. For example, health centres
collect data in outpatient registers, integrated management of childhood illness (IMCI)
registers for children under five years of age, and laboratory registers of diagnostic tests
conducted. Resolving differences between these data sources can be challenging and time

consuming for staff compiling data.

One systematic approach to evaluate performance of a surveillance system is to determine
the completeness of data submitted, or spot-checks may be conducted during supervisory
visits to compare facility records with information submitted to the central surveillance

system. To improve performance of health workers, some countries have adopted strategies
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whereby money or goods are transferred to the health worker, conditional on achieving
defined targets or taking measurable action. While this strategy of performance-related pay
has been shown to improve maternal and child health services in Rwanda [96], evidence of

the impact of this strategy in other countries is inconclusive [97].

Statistical analysis methods which take into account the spatial and temporal heterogeneity
in malaria cases have been presented which estimate the likely values of missing routine data
from health facilities, allowing generation of more reliable estimates of malaria burden from
routine data [98]. While this is likely too complex a strategy to be widely used at national
level to overcome limitations in the routine data, this method may have value in periodic
retrospective analysis of health facility data with specialist statistical support. In Zimbabwe,
clinical data from health facilities were used to model malaria risk, generating smoothed
maps of seasonal trends in malaria burden [53]. Alternative strategies have been proposed
whereby routine data are combined with cross-sectional prevalence data to estimate the

force of infections in a low transmission setting using a reversible catalytic model [99].

In elimination settings, reactive case detection strategies have been trialled whereby routine
surveillance data from health facilities is used as a trigger to conduct reactive screening and
treatment around the index case in the community [100]. In elimination settings using a
reactive case detection strategy, investments must be made in quality of malaria diagnostic
services to ensure that symptomatic Plasmodium infections are captured by the surveillance
system, and reactive screening quickly implemented. The spatial and temporal clustering of
malaria cases in very low transmission settings indicates that foci of transmission could be
identified by tracing the residence of passively identified cases. Reactive screening and
treatment is intended to prevent onward transmission, but due to the high proportion of
infections in these elimination or pre-elimination settings which will be low density and
asymptomatic, it is advantageous to use diagnostic tools with high sensitivity to detect low

density infections, as well as provide treatment with gametocytocidal drugs to block onward
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transmission. This strategy has been piloted in Swaziland and Senegal, where individuals
living in the same or neighbouring household to an index case diagnosed at the health facility
were screened by RDT, but both pilots found the strategy to be operationally demanding,

resource intensive, and identified few additional infections [101,102].

1.3.2 Periodic monitoring surveys

Large-scale cross-sectional surveys are used in most malaria transmission settings to gather
information on population health, including access to services and preventative measures.
Malaria is no exception, with a range of cross-sectional survey strategies for use across all
transmission settings, designed to measure parasitaemia, reported malaria morbidity and
mortality, as well as access to and use of key malaria interventions. Key considerations of
cross-sectional surveys in low transmission settings are the indicator to which the survey is
powered to measure, whether temporal and spatial heterogeneity are captured, the target

population, frequency of data collection and cost.

Demographic and Health Surveys are nationally-representative household surveys which
collect monitoring and impact evaluation indicators for a range of population, health and
nutrition factors [103]. DHS are usually conducted every five years, and countries choose
appropriate modules to include in the DHS, such as anaemia, child health, education, family
planning, malaria, maternal health, nutrition and wealth. The sample size for DHS is usually
between 5,000 and 30,000 households, in order to generate nationally representative
indicators, with the whole survey process requiring on average 18-20 months to complete.
DHS usually includes a household questionnaire, as well as a separate questionnaire for
women of reproductive age. Biomarkers such as blood samples for haemoglobin
measurement and identification of Plasmodium infection by microscopy may be included in

the DHS, but are not a core component. Key data collected from DHS relevant to malaria
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control programme monitoring are household ownership and individual reported use of

mosquito nets.

Malaria Indicator Surveys are a tool developed by the Roll Back Malaria Partnership (RBM) to
allow national malaria control programmes to generate standard indicators for monitoring
coverage of malaria control interventions [104]. MIS are nationally-representative household
surveys, designed to gather information on core household indicators defined by Roll Back
Malaria [105]. The key themes that MIS are designed to collect data on include coverage of
LLINs and IRS, use of mosquito nets by pregnant women and children under five years of age,
intermittent preventative treatment during pregnancy, diagnosis and treatment of malaria
among children under five, all cause under five mortality, and morbidity indicators from
children under five years (anaemia and parasitaemia). The RBM guidance on design and
implementation of MIS suggests that parasitological testing of children aged six to 59 months

should take place in areas of stable malaria transmission [104].

An alternative to DHS and MIS is UNICEF's multiple indicator cluster survey (MICS) [106].
Similar to DHS and MIS, MICS are nationally representative household surveys, but use an
alternative sampling strategy to select households for inclusion in the survey. MICS generates
indicators related to health, education, child protection and HIV/AIDS, harmonising indicators
with DHS and MIS where possible. Countries can choose the modules that are most relevant
for inclusion in their questionnaire, but the aim is to monitor progress toward national and
global commitments on the situation of children and women, such as the Millennium

Development Goals.

While the DHS, MICS and MIS do provide a nationally-representative estimation of key
indicators at the time of the survey, a major limitation to the use of these monitoring surveys
is their periodic implementation; as a result of the significant investments that must be made

in implementing these activities, they are usually conducted at intervals of three to five years.
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An alternative strategy termed "rolling MIS" has been proposed, but not widely adopted. The
rolling MIS generates data at a much finer temporal scale, by adapting a cross-sectional
evaluation tool into a continuous monitoring tool, to more closely monitor changes in malaria

burden as a result of rapid scale up in coverage of malaria interventions [107].

A further strategy for periodic monitoring surveys is sampling individuals within schools,
rather than conducting household surveys [16]. School malaria surveys have been used
historically for malaria reconnaissance in sub-Saharan Africa [12,13] and the Americas
[14,15,108,109]. School surveys are logistically attractive since all eligible individuals for
random selection are gathered in a single location. Furthermore, in areas of high school
enrolment and attendance the school-attending population should be representative of the
wider community. This allows school surveys to be completed more quickly and at lower cost
than standard household surveys: school surveys usually require only one day to sample 100
children at each site, while household surveys require census, randomisation, and sampling
stages and often require two or three days to complete one site. There are however,
potential biases in the use of school-attending children for health surveys, since children
attending school may differ from non-attending children by wealth, health status, or area of

residence within a community.

School surveys have been demonstrated to generate reliable estimates of community
coverage of insecticide-treated mosquito nets in Uganda [110]. In Kenya, a study found that
estimates of parasitaemia from testing using RDTs correlate between school and community
surveys conducted at the same locations. However, although the estimates correlate, they
were statistically discordant, and school survey parasite rate was consistently higher than
parasite rate in community surveys [111]. A review of the potential uses of schools for
malaria surveillance and programme evaluation highlighted use of school surveys for
estimating coverage of interventions and parasite prevalence, as well as epidemic alert

systems and active case finding [68].
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1.3.3 Epidemic detection

Malaria epidemics are usually defined by assessment of the number of cases of malaria
identified at a health facility compared to the expected burden at that time. Definitions of

IM

“normal” burden of malaria vary, but the upper and lower limits of normality are often
defined as being two standard deviations around the mean number of cases for a facility in a
defined time period, after excluding previous epidemic periods [62]. In order to successfully
identify and respond to malaria epidemics, the temporal resolution of indicators becomes

critically important, as it is the ongoing collection, analysis and feedback of data that enables

responses to be mounted sufficiently early to prevent large-scale morbidity.

Epidemic detection systems collect similar indicators to HMIS, a passive surveillance system,
but the number of indicators is reduced and frequency of collation and reporting is increased.
The definition of an epidemic requires a threshold for the expected or normal number of
cases of malaria to be defined. Where malaria case data are available from previous years, it
is recommended that these data are used to define the threshold. A common technique for
epidemic definition is the quartile method [62], where the threshold is the third highest
weekly total confirmed malaria cases for the current calendar week, taken from the previous
five years' data for that health facility. Another method using historical data from the facility
to define the epidemic threshold is the cumulative sum, or c-sum approach [112]. The c-sum
method generates a “base year” describing the expected number of cases using the mean
value for that month from the previous five years’ data, but also incorporates the mean of
the preceding and following month. In practice, health facilities may not have five years'
complete data to be able to define the epidemic threshold using this method. Alternative
strategies to define epidemic thresholds include doubling the previous year’s number of
cases for the same week at the facility, or the Cullen method, whereby the threshold is the

annual mean number of cases plus the standard deviation multiplied by two [113,114].
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Incidence thresholds, usually the weekly total number of cases by district which have been
identified through the routine health facility surveillance system, expressed per 1000 people
resident in the district, are used for other epidemic-prone infectious diseases such as
meningococcal meningitis [115], but it is important that such incidence thresholds are locally-
defined and appropriate, to improve responsiveness to potential epidemic years at a district

level [116].

While literature exists comparing the sensitivity of various surveillance algorithms for rare
and notifiable diseases in high-income countries [117-119], few examples exist for resource-
poor settings comparing different strategies to define epidemic thresholds. A study in Kenya
compared the use of the Cullen, c-sum and quartile methods to define epidemic thresholds
for malaria data from health facilities [120]. While the lack of gold standard definition for an
epidemic limits the ability to formally compare the methods, use of the Cullen threshold
correctly identified the highest burden years at more facilities than the other thresholds. A
similar comparative study in Ethiopia found a simple percentile cut-off value to be as useful in

defining epidemics as more complicated algorithms [121].

In settings where the limiting factor in epidemic identification is timeliness of data
submission, analysis and response, temporal resolution can be improved by use of mobile
phones to report weekly or even daily number of cases of key infectious diseases including
malaria. In Madagascar, a pilot network of sentinel general practitioners submitted at least
daily text messages by mobile telephone to a central management team, reporting fever
cases, RDT-confirmed malaria, influenza, arboviral syndromes and diarrhoeal diseases. The
system identified ten clusters of febrile illness which were not identified by the traditional
surveillance system [122]. In Zambia, health centres piloted a weekly short-message service
(SMS) reporting system for malaria, submitting the number of individuals tested and total
confirmed malaria cases, with the aim to identify foci of infection or even index cases in areas

of low malaria transmission [123].
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A complementary strategy to identification of epidemics by analysis of passive case detection
data from health facilities, is through use of a climate-based early warning system [124,125].
Climate-based early warning systems provide earlier alerts than are generally possible using
malaria case data, enabling targeting of resources to at-risk areas and control interventions to
be implemented earlier than may be otherwise possible [126]. An internet-based Malaria
Early Warning System is available, which identifies rainfall anomalies across malaria
epidemic-prone areas, with a 10-day resolution [127,128]. Lack of internet access by district
health staff in resource-constrained countries limits the utility of this alert system, however it
may still be possible for the system to be accessed at national level and alerts disseminated
to local staff through a cascade system when necessary. Various studies in areas of unstable
malaria transmission have developed statistical models which demonstrate associations
between remotely-sensed climatic data and temporal changes in malaria burden reported at

health facilities, including epidemics [129-131].

While use of mobile telephones to report confirmed malaria cases from health facilities has
the potential to improve surveillance system timeliness, there remain challenges in
identification of Plasmodium infections in the community, either as a result of limitations in
diagnostic tool performance, lack of availability of diagnostics or poor access to health
services by the population. The use of pre-diagnostic indicators or even surrogate data may

offer an alternative surveillance indicator for malaria.

1.3.4 Syndromic surveillance

Classical epidemic detection systems including those described in the previous section can be
limited in effectiveness due to delays in reporting, incomplete data recording or use of
inaccurate data, all of which can contribute to delays in identifying and responding to malaria
epidemics [132-134]. A complementary system for surveillance is the use of pre-diagnostic

indicators of clinical disease, whereby daily or weekly data are reported from health facilities
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without the need to wait for confirmatory tests. This surveillance strategy can also be
expanded to incorporate the use of surrogate non-clinical data indicating early illness,
particularly exploiting data sources and indicators that are already routinely recorded or

easily accessible. These approaches are often described as syndromic surveillance [135].

While there are differing interpretations of syndromic surveillance, the Centers for Disease
Control's definition appears to be the most widely accepted: “an investigational approach
where health department staff, assisted by automated data acquisition and generation of
statistical alerts, monitor disease indicators in real-time or near real-time to detect outbreaks
of disease earlier than would otherwise be possible by traditional public health methods”
[136]. The key aspect of syndromic surveillance is, therefore, to improve temporal resolution
and responsiveness, allowing faster responses to potential epidemics. These systems are
generally intended to run in parallel to the more sensitive and specific surveillance systems
reporting indicators of confirmed disease, since syndromic surveillance systems have low

specificity and therefore may generate false positive alerts.

A syndromic surveillance system was developed for use in the Pacific islands and territories,
acknowledging the challenges that geographically isolated communities with limited
diagnostic capacity have when attempting to implement traditional data-intensive
surveillance systems requiring confirmatory results for notifiable diseases. The syndromic
surveillance system implemented generated a set of syndromic case definitions relating to
the epidemic-prone diseases of interest (Table 1.1), thereby negating the need for laboratory

confirmation before reporting and limiting the number of indicators on which to report [137].
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Table 1.1 — Example case definitions in a syndromic surveillance system in the Pacific islands and
territories [137]. Note that fever is defined as 38°C of higher, or fever or chills reported by caregiver or

patient if no thermometer is available.

Syndrome Case definition Potential causative disease

Sudden onset of fever, with acute  Measles, dengue, rubella, meningitis,

Acute fever and rash . L
non-bleeding rash leptospirosis

Viral and bacterial gastroenteritis
including cholera, food poisoning,
ciguatera fish poisoning

Three or more loose or watery

Diarrhoea .
stools in 24 hours

Sudden onset of fever, with cough Influenza, other viral or bacterial

Influenza-like illness . . .
and/or sore throat respiratory infections

Malaria, typhoid fever, dengue,
leptospirosis, other communicable
diseases

Any fever lasting three or more

Prol d f
rolonged fever days

Reporting based on a defined set of syndromes reflecting key reportable (e.g. acute flaccid
paralysis, haemorrhagic fever) or epidemic-prone infectious diseases (acute watery
diarrhoea, bloody diarrhoea, prolonged fever, acute fever and rash) has also been used in
India, Papua New Guinea and South Africa [138-140]. In Madagascar a syndromic reporting
system was piloted with a focus on diarrhoeal disease and febrile illness, but also included
the reporting of RDT-confirmed Plasmodium infections [122]. An alternative syndromic
reporting system was used in French Guiana, developing an index of febrile patients who are

confirmed to not have malaria as a proxy for possible dengue outbreaks [141].

Expanding access to and use of technology, particularly expanding coverage of mobile
telephone networks, is facilitating an increased interest in syndromic surveillance in resource-
poor settings [142]. In Papua New Guinea, mobile reporting of syndromic case definitions was
found to be more sensitive than monthly hospital-based surveillance in detecting a measles
epidemic, but had potentially reduced sensitivity for malaria compared to the standard
paper-based national surveillance system [139]. In Zambia, mobile reporting of data was
combined with global positioning system coordinates to incorporate a spatial component in

the data generated by the surveillance system [123].
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In high-income countries that have robust health information systems, syndromic
surveillance is applied to improve timeliness of epidemic alerts through the use of pre-clinical
data to identify changes in population health prior to any increase in access to health services
for diagnosis and treatment. This method has proven particularly popular for the
identification of influenza epidemics [143]. Mining of existing data is the basis for this type of
syndromic surveillance systems favoured by high-income countries, either by tracking
pharmacy sales of non-prescription drugs, internet search engine terms, social media posts or
school attendance [17-19,144-151]. However, this type of surveillance using surrogate
indicators may also be appropriate in resource poor-settings, should appropriate surrogate
indicators be available which are routinely recorded yet reflect health events occurring within

the community.

1.4 INDICATORS FOR MALARIA SURVEILLANCE

The choice of indicator used for a surveillance system is influenced by the transmission
intensity, quality of routine health services and reporting, as well as the temporal scale at
which data are required. A key concept relevant to all indicators that are reported according
to a defined schedule is that of zero reporting, where reports are generated and submitted

even if no cases are identified during the reporting period [152].

1.4.1 Pre-diagnostic and surrogate indicators

The potential of syndromic surveillance platforms in resource-poor settings has been
discussed in section 1.3.4. Surrogate and pre-diagnostic indicators are presented in the
context of syndromic surveillance systems. Case definitions for pre-diagnostic syndromes are
used primarily in resource-poor settings, and focus on epidemic-prone infectious diseases, or

those pathogens which are targeted for elimination and therefore notifiable, and may require
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confirmatory diagnosis at a specialist laboratory. Diseases considered within syndromic case
definitions in these settings include cholera, meningococcal disease, poliomyelitis, measles,

dengue, plague, viral haemorrhagic fevers and malaria, among others [122,137,138,140,141].

In moderate- and high-income countries, syndromic surveillance has been used to exploit
non-clinical surrogate data that indicate changing health status of the population. A data
source used by syndromic surveillance systems in countries including France, Sweden and the
United States of America is records of non-prescription drug sales from pharmacies, and
prescription drug reimbursement requests from health insurance records [150,153,154].
Particularly for diseases such as influenza in higher income countries, not all individuals
affected will seek diagnosis from health facilities and may instead choose to self-treat with
non-prescription medication. Increase in cold and influenza medications can therefore
indicate a potential increase in influenza cases within the population. Records of access to
and information sought from telephone triage systems used in some countries can also

indicate changing burden of diseases such as influenza within the population [143,150].

Some individuals who are experiencing symptoms of illness in high income countries may
choose to use the internet to search for information on possible diagnoses and treatment
based upon their symptoms [155]. Google has developed tools which provide updated
estimates of dengue and influenza activity worldwide based upon influenza and dengue-
related internet search queries [156,157]. One study from Thailand has reported models
developed to identify likely internet searches related to malaria [158]. Social media posts by
individuals are a further indicator of interest for monitoring diseases such as influenza and

cholera [159-161].

School absenteeism is an indicator that has been used in syndromic surveillance, since
schools routinely record daily attendance of students, and absenteeism is hypothesised to

increase when outbreaks of infectious disease occur within a community. The application of
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school absenteeism as an indicator for syndromic surveillance has primarily been for
detection of influenza epidemics in high-income countries [17-19,144]. These countries have
high levels of school enrolment and attendance, therefore the school-attending population
are expected to be representative of the wider population. School enrolment is, however,
showing significant increases across lower income countries [162], and as a result, school
absenteeism is a potential indicator for syndromic surveillance in resource-poor settings for a
broad range of infectious diseases. Examples of school absenteeism as an indicator of
infectious disease outbreaks in resource-poor settings are few, but include pilots in rural
China and Cambodia [146,148]. While school absenteeism has not been formally explored as
an indicator of malaria epidemics, absenteeism is acknowledged to increase during malaria

epidemics [163].

All pre-diagnostic and surrogate indicators explored here are low specificity and prone to
bias, but the use of these indicators offers improved temporal sensitivity of surveillance
systems for epidemic-prone infectious diseases. These syndromic surveillance systems are
designed as an adjunct to traditional surveillance using confirmed diagnosis, whereby an alert
from the syndromic surveillance system should prompt examination of confirmatory
diagnosis data from the same geographical location or population, or if these data are not
available, a supervisory visit by district health staff to the location of the syndromic alert to

conduct a situation assessment.

1.4.2 Clinical indicators

Indicators of clinical disease for malaria have long been included in passive surveillance
systems at health facilities, but are becoming less common as access to parasitological
diagnosis increases. Health facilities continue to routinely record the number of suspected
malaria cases; those who have clinical indicators of malaria. However the exact constellation

of symptoms resulting from Plasmodium infection is highly variable between individuals, and
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clinicians may have different interpretations of when a patient exhibits signs and symptoms
of malaria. A study in Tanzania investigated the causes of fever among children under ten
years reporting to two outpatient clinics in an area of low malaria transmission [164]. Acute
respiratory infection was the most common case of fever, and viral infection was more

common among children with fever than bacterial or parasitic infection.

Reported and measured fever are also frequently included in cross-sectional surveys of
malaria. Axilliary temperature measurement is a simple and non-invasive method to gather
non-subjective indicators of current fever. Measurement of tympanic temperature using
digital devices is an alternative which may be prove more reliable then axilliary temperature,
if field staff taking axilliary temperature struggle to correctly position the thermometer.
Asymptomatic infections are common across the range of Plasmodium transmission settings,
and further reduce the sensitivity of clinical indicators of malaria [10]. Clinical indicators may,
however, be valuable in identifying potential epidemics if unusual and sudden increases in

febrile ilness in the population are identified.

1.4.3 Parasitological indicators

Detection of parasites in blood is the most widely used malaria surveillance indicator. Passive
surveillance systems at health facilities involve reporting of the total number of microscopy-
or slide-confirmed malaria cases over a defined time period, often classified by age; either
under five years or five years and older. Cross-sectional surveys, however, report the parasite
rate (PR) calculated as the proportion of all surveyed individuals found to have Plasmodium
parasites by a defined examination method. In settings of moderate and high transmission,
PR varies by age as a result of protective acquired immunity against Plasmodium infection. As
a result, age-standardised PR is often reported by studies, with the age range two to 10 years
being the most commonly used for P. falciparum [9,66]. The relationship between PfPR;.1o

and other indicators of malaria transmission, such as entomological inoculation rate (EIR) and
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Ro, has been shown by modelling and field studies [37,66,165,166]. Parasite rate has been
used in development of global predictive maps of malaria [20,21], as well as in redefining
classifications of malaria endemicity and progress to elimination according to age-

standardised parasite rate [66,166].

Parasite rate can be determined by microscopy, rapid diagnostic test or by nucleic-acid
detection. Microscopy is considered the “gold standard” for identifying parasitaemia, but has
practical and technical limitations. In a healthcare setting, microscopy can be limited by the
ability of the microscopist, quality of slide staining, need for electricity, as well as high patient
burden. From a technical perspective, the sensitivity of blood film microscopy is limited by
the number fields routinely scanned by a microscopist, as well as the volume of blood which
is used to prepare a blood film. If 100 high-power fields are screened during microscopy slide-
reading, 0.1-0.25ul of blood will be examined [71]. As a result, microscopy has poor sensitivity
to detect low density Plasmodium infections. A systematic review estimated the sensitivity of
microscopy (against a gold standard of polymerase chain reaction, PCR) to be 53%, with 95%
confidence interval 40% to 66% [10]. The limit of detection for routine microscopy is
generally assumed to be 50 parasites per microlitre of blood (p/ul), while expert

microscopists may be able to identify infections at 20 p/ul density.

Rapid diagnostic tests RDTs have great value as a simple tool that can identify Plasmodium
infection without the need for specialist equipment or extensive training, however, they also
have reduced sensitivity for low density infections [167-169]. RDTs are generally able to
reliably detect infections at a minimum parasite density of 100 p/ul, but estimates of
sensitivity vary between RDT type and endemicity setting [167]. A range of antigen
combinations are available in RDTs, allowing Plasmodium species identification, but
quantification of parasitaemia is not possible using this tool. RDTs are also prone to give false
positive results for individuals who are still harbouring parasite antigen soon after treatment

[170,171]. RDTs detecting P. falciparum histidine-rich protein 2 (HRP2) are also known to give
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false negative results in some patients with very high parasite densities, due to the prozone

effect [172].

A number of molecular methods to detect nucleic acid from parasites are available, which
offer improved limits of detection compared to microscopy and RDT. Nested polymerase
chain reaction (PCR) amplifies parasite DNA from a blood sample, therefore is able to detect
very low parasitaemia [173]. Species-specific PCR methods are available through use of
different amplification targets and primers [174]. Pooling of blood samples can improve the
efficiency of sample screening in very low transmission settings, by combining samples for a
first round of PCR, then conducting a second round of PCR on the positive pools only [175].
Where quantification of Plasmodium infection is important, real-time quantitative PCR
methods have been developed which are highly sensitive, genus-specific and have very low
limits of detection [176]. The loop-mediated isothermal amplification method (LAMP) does
not require thermocycler equipment [177], and has allowed highly sensitive nucleic acid
amplification methods to be conducted outside a national or international reference

laboratory setting [178,179].

1.4.4 Indicators of prior exposure to Plasmodium

In settings of seasonal malaria transmission, it is challenging to coordinate cross-sectional
surveys to ensure that the peak of transmission is captured. Indicators of Plasmodium
infection taken from cross-sectional surveys in such settings of temporal and spatial
heterogeneity may, therefore, not be fully representative of the true extent of transmission
over a longer period of time. In these contexts, determining population exposure to malaria
through detection of anti-Plasmodium antigens offers an alternative surveillance indicator for

cross-sectional surveys.

Serological surveys are not a new concept, and detection of anti-Plasmodium antibodies by

various methods including complement fixation test, indirect haemagglutination assay and
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immunofluorescent antibody tests have been used since the eradication era of the 1960s
[11]. Epidemiological applications of antibody detection from this period included
demonstrating the assumed altitudinal limits of malaria transmission in Ethiopia [180], and
evidence for local elimination of transmission in Mauritius by sampling children under five
years to demonstrate lack of recent malaria transmission following an intensive campaign of

indoor residual spraying with DDT (1,1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene) [181].

The duration of antibody persistence continuous to be contentious. Antibodies have been
shown to persist for years in an individual who is not subject to re-exposure [182], and
reappear rapidly in individuals who are re-exposed as a result of epidemics [183]. One
approach to overcome uncertainties of the duration of seroconversion and reversion, and
individual differences in immunological responses, is to use serological indicators to describe
exposure to Plasmodium among a representative sampled population, rather than individual
exposure. The persistence of antibodies means that by measuring seroprevalence of
population, it is possible to infer the exposure that a population has been exposed to over
time, offering improved sensitivity compared to parasite detection in areas of low

transmission.

Development of an indirect enzyme-linked immunosorbent assay (ELISA), and the successful
elution of antibodies from finger-prick blood samples stored on filter paper has led to a
resurgence of interest in seroepidemiology [184]. Furthermore, the assay can be adapted to
different transmission settings by use of different antigens, including for different

Plasmodium species [185].

Seroconversion rates measured in Tanzania were demonstrated to be representative of
entomological inoculation rates, and are therefore considered to be representative of malaria
transmission intensity [186]. Producing age-seroprevalence curves can also provide

information about changes in transmission intensity as a result of intervention scale-up [187],
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or differences in force of infection between adults and children, as a result of behavioural

changes in exposure [188].

A further application of seroepidemiology is in spatial mapping of serological responses.
Studies comparing seroprevalence between different locations have been conducted at a
range of spatial scales from approximately 1 to 100 km, to provide information about spatial
heterogeneity in exposure to malaria and therefore transmission intensity [189-194].
Serology may also have value in settings approaching elimination, whereby selectively testing
of young children (but excluding children under 12 months who may have maternal anti-
Plasmodium antibodies) can provide information about recent malaria transmission. These
data could be collected through cross-sectional surveys, or using a passive approach,
whereby sample collection takes place at health facilities when children provide blood for
other diagnostic investigations, provided full parental informed consent is granted for the
additional blood testing. Follow-up investigations could be conducted for any seropositive

child to explore the source of their exposure to Plasmodium infection.

Crucial for selection of the most appropriate indicators for use in malaria monitoring and
surveillance is an understanding of the epidemiology of Plasmodium in the location of

interest.

1.5 MALARIAIN ETHIOPIA

Malaria epidemiology in Ethiopia is diverse as a result of the varied topography and ecology
across the country. However, a large proportion of the Ethiopian population lives in areas
which are generally understood to be at the fringes of the malaria map; characterised by
strongly seasonal and epidemic-prone malaria, and at risk of both P. falciparum and P. vivax.

The Ethiopian setting presents complex challenges to malaria surveillance as well as to
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periodic monitoring and evaluation of the malaria control programme, and is further
constrained by the limited resources available in this low-income country. This section
presents an overview of malaria epidemiology in Ethiopia and highlights some malaria

surveillance approaches specific to Ethiopia.

1.5.1 Transmission patterns across Ethiopia

Plasmodium falciparum has generally been presumed to be the most common Plasmodium
species causing malaria in Ethiopia, with the ratio of P. falciparum to P. vivax ratio usually
reported as 60:40 and cross-sectional surveys identifying more P. falciparum than P. vivax
infections [195,196]. However Ethiopia reports more P. vivax infections than any other
country globally [64]. Instances of both P. malariae and P. ovale have been indicated in
Ethiopia, but they are generally understood to result in clinically mild symptoms and can be
easily treated by chloroquine [197-199]. A shift in the relative importance of P. falciparum
and P. vivax has been hypothesised, with some evidence indicating that a higher proportion
of outpatient malaria cases reported since 2005 have been due to P. vivax. This transition
from P. falciparum to P. vivax dominance has been demonstrated in other settings, and is
thought to be a result of effective malaria control interventions reducing P. falciparum

transmission [200,201].

Malaria transmission is seasonal in most areas of Ethiopia, with the exception of the far
western lowlands bordering South Sudan. Transmission peaks following seasonal rains from
February to March and from June to August, although with some variation in the peak and
duration of malaria transmission across the country. Variations in altitude, mean annual
temperature and rainfall have led to the classification of Ethiopia into estimated
epidemiological strata according to these three variables (Figure 1.4). The seven strata
include areas that are expected to be malaria-free, areas affected by occasional epidemics,

settings with seasonal transmission and settings with intense transmission.
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Clinical records of symptomatic Plasmodium infections indicate that P. falciparum shows
stronger seasonality than P. vivax transmission [202]. Plasmodium vivax infections tend to be
maintained at lower densities than P. falciparum due to the P. vivax parasite's host-cell
preference for reticulocytes [203]. Lower density P. vivax infections may result in less overt
morbidity and lower probability of the affected individual seeking diagnosis and treatment
than for a high-density P. falciparum infection. Other potential contributing factors to the less
seasonal nature of P. vivax include the wider spatial range, as sporogeny is able to take place
at lower temperatures than for P. falciparum, generation of hypnozoites by P. vivax and
consequent potential for relapsing infections [204], and the ability of P. vivax to generate
gametocytes soon after initial infection and at relatively high proportions in low density

infections [203].

In Ethiopia, the major vector of Plasmodium is Anopheles arabiensis, with secondary vectors
including An. funestus and An. nili. Their primary environment, preferred source of blood
meals, biting and resting locations, and biting times are reported in Table 1.2. In addition to
these three Anopheles species, An. pharoensis has also been reported as a secondary vector
in some settings in Ethiopia [205,206], but limited data are available regarding its habitat and

feeding preferences.

Malaria is generally assumed not to be present at altitudes above 2500m [207], and the
Federal Ministry of Health in Ethiopia considers highlands over 2500m to be malaria-free
[208]. In addition to temperature and altitude influencing probability of mosquito survival
and development of sporozoites, the local environment also influences malaria transmission.
Small-scale variation in transmission intensity has been described within communities, where
increased malaria risk is associated with residence close to local water bodies, including

irrigation systems and dams [209-211].

56



Chapter 1. Introduction

Figure 1.4 - Epidemiological strata defined by the Federal Ministry of Health and World Health

Organization, according to altitude, rainfall and temperature.
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Table 1.2 - Key characteristics of major malaria vectors in Ethiopia, including their primary habitat,

preferred blood meal source and biting locations, biting time, and resting location [40,212]

Preferred
Primary Preferred blood Preferred resting
Species environment meal biting location location Biting time
An. Dry savannah, Both zoophilic & Exophagic, but - Both . Eyenlng,
L - may be endophilic & nightand
arabiensis  sparse woodland  anthropophilic . s
endophagic exophilic dawn
Swampsf lake Anthrophophilic, Endophagic, Both Evening,
An. edges with - .
but may be but may be endophilic & night and
funestus emergent I . s
. zoophilic exophagic exophilic dawn
vegetation
Edges of fast-
flowing streams Anthrophophilic, Both Mainly .
- . . . A Evening and
An. nili and rivers, in but may be endophagic exophilic in night
degraded forest zoophilic and exophagic  Ethiopia &

and savannah
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1.5.2 Ethiopia's burden of malaria

It has been widely quoted that 68% of the Ethiopian population are at risk of Plasmodium
infection, this being the proportion of the population who live in areas less than 2000 metres
elevation [213]. Before the scale up in malaria interventions, Ethiopia is reported to have
experienced up to 10 million cases of clinically suspected malaria a year [213]. A previous
retrospective analysis of malaria cases presenting to hospitals and health centres from 2001
to 2006 has reported 900,000 clinical and 560,000 confirmed malaria cases during the five-
year period, 60% of which were identified as P. falciparum [214]. While Ethiopia is a low
transmission setting, and numbers of cases and malaria-attributable deaths are lower than in
other countries of sub-Saharan Africa, the burden of disease during epidemics in Ethiopia can

be devastating.

Ethiopia was affected by a major epidemic in 1958, which had an attack rate of 30% of those
at risk nationally, and case fatality rate estimated at 5-10%, increasing to 20% in areas
affected by food insecurity [215]. The 1958 epidemic was attributed to an unusually extended
rainy season, with rainfall levels exceeding previous records, along with uncommonly high
temperatures. Subsequent major malaria epidemics in East Africa have also been attributed
to unusual climatic conditions, and their severity exacerbated by nutritional crises and
reduced efficacy of first-line malaria treatment [133,134,216-219], with the most recent
major epidemic in Ethiopia occurring in 2003 [220,221]. In Ethiopia, epidemics have
historically occurred on a cyclical basis every five to eight years, potentially a result of global
climatic fluctuations such as El Nifio events [222], parasite resistance to first-line drug

treatment or population movements [133,134,216].

1.5.3 Malaria control in Ethiopia

Parasitological diagnosis of all suspected malaria cases is targeted by the Ministry of Health

[213]. Expansion of microscopy services at mid-level health facilities and availability of RDTs
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at community-level health facilities are enabling this transition from clinical to parasitological
diagnosis. From 2009, RDTs able to detect only HRP2 began to be phased out, replaced with
combination HRP2 and pan-Plasmodium lactate dehydrogenase (panLDH) tests, allowing

identification of both P. falciparum and non-falciparum Plasmodium infections by RDT.

The current first-line treatment for P. falciparum is artemether-lumefantrine, an ACT, which
replaced SP in 2004. In 2012, the treatment guidelines were once again updated to improve
case management of severe malaria by recommending intravenous or rectal artesunate at
health posts as pre-referral treatment, as well as promoting the use of parasitological
diagnosis rather than presumptive treatment of fever with antimalarials [213]. The first line
treatment for P. vivax remains chloroquine, but mixed infections (including RDT HRP2 and
panLDH positive cases) should receive ACT. There are some indications of developing
resistance of P. vivax to chloroquine in Ethiopia [223-226]. The national treatment guidelines
recommend radical cure with primaquine for patients with P. vivax infection residing in non-
endemic areas who are being treated at health centres or hospitals, but primaquine is not
recommended for use at the health post level due to the risk of haemolysis and lack data on

prevalence of G6PD deficiency.

Ethiopia has no historical culture of use of mosquito nets while sleeping. Vector control for
malaria in Ethiopia has long been focussed on indoor residual spraying, targeted to areas
defined by expert opinion and local health authorities as those at highest risk. Other vector

control strategies such as larval source control have not been widely used in Ethiopia.

Ethiopia first introduced insecticide-treated mosquito nets in 1997, and drastically increased
coverage with mosquito nets from 2004 with support from the Global Fund to Fight AIDS,
Tuberculosis and Malaria. From 2005 to 2011 more than 47 million LLINs were imported to
Ethiopia and distributed free. Malaria Indicator Surveys reported an increase in the

proportion of households with access to an LLIN from 5% in 2004 to 55% in 2011.
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Indoor residual spraying has been a component of malaria control in Ethiopia since the
Malaria Eradication Service was established in 1959. For many years DDT was the primary
insecticide used for IRS. The Malaria Eradication Service successfully reduced the burden of
malaria in many locations in Ethiopia, although epidemics still occurred periodically. Due to
emergence of resistance to DDT among the vector population, malathion was introduced as
an alternative to DDT for IRS in the 1990s. Due to documented vector resistance to both DDT
and malathion, alternative insecticides have been used for IRS since 2009; initially
deltamethrin, but expanded to include propoxur, bendiocarb and fenithrion. The newer
insecticides used for IRS have a shorter protective duration (two to three months) than DDT,
and are more expensive, limiting coverage. An integrated vector control strategy has since
been developed, to coordinate insecticides used in LLINs and for IRS to minimise
development of resistance to additional insecticides among the vector population. Coverage
of IRS has increased from protecting less than 4.2 million people annually in 2005 to more

than 20 million people protected in 2011.

The application of malaria intervention tools to the epidemiological strata (defined by rainfall
and altitude) is described in Table 1.3, together with the estimated population in 2012

resident within each stratum.
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Table 1.3 - Characteristics of the Federal Ministry of Health defined malaria epidemiological strata, the
interventions targeted to each strata, and parasite rate (all ages) measured in each strata during

Malaria Indicator Survey 2011.

Interventions

applied
Population Mean Mean
Epidemiological 2012 Altitude annual temperatur
strata (% national) range (m) rainfall (SD) e (SD) CM IRS LLIN
Highly endemic: 2,272,763 372-1000 935 (298) 2501 Y Y Y
stable lowland region (3)
Moderate risk:
unstable epldgmlc 3,450,561 <1000 296 (114) 27 (2) v oy v
prone semi-arid (4)
regions
Moderate risk:
unstable epidemic 23,131,634
orone midland 27 1001-1750 1173 (375) 21(1) Y Z Y
regions
Highly epidemic
prone: low risk 18,071,725
unstable highland (21) 1751-2000 1225 (350) 19 (1) Y Y S
fringe regions
Epidemic prone,
periodic malaria 13'2&2’)382 2001-2500 1222 (356) 17 (0.7) Y Z N
transmission
Malaria-free 24'2(;;’)644 2501-4522 1197 (258) 15 (2) Y N N
Total malaria risk 60’1(;1?')065 -214-2250 1168 (382) 20 (2.5) - - -
Grand total 84,366,709 -214-4522 1176 (353) 18 (3) - - -

CM = case management; IRS = indoor residual spraying; LLIN — long-lasting insecticidal mosquito net
Y = intervention is provided
N = intervention is not provided routinely

S = LLINs applied in high malaria risk urban areas and where there is vector resistance to IRS
insecticides

Z = IRS only in emergencies or epidemics

1.5.4 Malaria surveillance in Ethiopia

Malaria surveillance activities in Ethiopia include both periodic monitoring surveys and

surveillance through generation and analysis of data from health facilities.
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A DHS was conducted in 2011 in Ethiopia, including both household and women's
guestionnaires, haemoglobin measurement, and collecting blood samples for HIV testing at
central level [227]. No specific malariometric components were included in the DHS, but
questions were included to capture information on coverage of key malaria interventions and
treatment seeking behaviours for children less than five years with fever. It is also possible to

calculate all-cause child mortality from information generated during DHS.

The 2011 Malaria Indicator Survey sampling frame was designed to generate an estimate of
levels of indoor residual spraying that was representative nationally and within the
administrative Regions with highest population (Oromia, Tigray, Amhara and Southern
Nations, Nationalities and People’s Regional State). Blood sampling for haemoglobin
measurement, RDT and microscopy examination was included in the survey [228].
Households were also interviewed to determine mosquito net ownership and use by
household members, and information collected on treatment seeking behaviour by

caregivers of febrile children under five years.

The HMIS system in Ethiopia is a paper-based system incorporating a wide range of health
indicators collected from individuals presenting at government hospitals and health centres.
While HMIS generates rich data, the lag between data recording and analysis as well as
feedback means that HMIS is more useful as a tool to monitor the burden of disease over
time, rather than as a more responsive epidemic-detection tool. To meet those needs of
improved timeliness, the IDSR system was adopted in Ethiopia. IDSR reports are generated
monthly from public hospitals and health centres and are submitted on paper to the
supervising local health office, where they are entered into a database for use at higher levels

[229].

In 2009, further adaptations were made to IDSR, enabling incorporation of data from health

posts in a new Public Health Emergency System for surveillance. The policy change was partly
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made in recognition of the high levels of population coverage that the health extension
system has achieved, and utility of health posts’ data for epidemic detection. Two strategies

for epidemic detection are recommended by the Federal Ministry of Health in Ethiopia [230].

The first epidemic detection strategy involves comparison of weekly total malaria cases at a
health facility against a defined threshold, based on historical morbidity data for the same
calendar week [213]. This is referred to as the epidemic monitoring chart method in Ethiopia.
Where five years’ data are available, the threshold is the third highest weekly total cases for
the specific calendar week over the previous five years (the quartile method). In practice,
health posts often do not have five years’ complete data and are permitted to use their own
judgement to determine when “unusual” levels of malaria are presenting at the health post
(a subjective threshold). The epidemic monitoring chart method is therefore limited by the
need for complete weekly data from the previous five years at each health facility, or is
dependent on subjective decision of the health extension worker as to whether the current
burden is abnormal. The epidemic monitoring chart is also limited by an assumption that
transmission peaks occur in the same weeks each year, while in practice the annual peak of
transmission will likely fluctuate, and therefore week-on-week comparisons over multiple
years are less informative if the epidemic monitoring chart is strictly applied. The standard

epidemic monitoring chart system is designed for settings with relatively higher transmission.

An alternative method undergoing gradual introduction in areas of very low transmission in
Ethiopia is a cluster mapping strategy [213]. Cluster mapping is not anticipated to involve any
active case detection, but involves health extension workers noting the household location of
passively detected malaria cases on a kebele map. If more than three confirmed malaria
cases presenting at the health post are found to reside within a 1km radius of each other, and
all are diagnosed within 28 days, then this is assumed to indicate local transmission and
termed a “micro cluster”. Information on the rate of case accumulation within micro clusters,

as well as changes in the spatial extent of micro clusters over time can provide information to
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the health extension workers on the changing malaria burden and whether additional

resources are likely to be needed to reduce onward transmission.

1.6 AIMS AND OBIJECTIVES

The primary aim of this thesis is to evaluate the operational feasibility and agreement
between existing and alternative strategies and indicators used for malaria monitoring and
surveillance in Ethiopia, with a view to generating recommendations of the most informative
and appropriate tools to meet future surveillance needs in areas of low and unstable malaria
transmission. My research is conducted in Oromia Regional State and in Southern Nations,
Nationalities and Peoples’ Regional State as part of operational research conducted by

Malaria Consortium with funding by the President’s Malaria Initiative.

The specific objectives include:

e To describe the epidemiology of malaria in Oromia Regional State, Ethiopia, by use of

school-based surveys.

e To evaluate the utility of serological indicators of malaria exposure measured among
school children to describe and predict the spatial heterogeneity of malaria transmission

across Oromia Regional State.

e To investigate the potential of syndromic and surrogate data for malaria epidemic

detection in schools in Southern Nations, Nationalities and Peoples’ Regional State.

e To examine correlation between malaria indicators collected through a range of
commonly used surveillance strategies, including routine health facility data, cross-

sectional survey estimates, and modelling predictions.

64



Chapter 1. Introduction

1.6.1 Thesis outline

Chapter 2 describes the design and implementation of large-scale cross-sectional school-
based surveys in Oromia Regional State, Ethiopia. Findings reported include anaemia levels,
parasite rate according to microscopy, risk factors for Plasmodium infection, and
geographical distribution of Plasmodium parasitaemia. Estimates of infection prevalence
reported in Chapter 2 were too low to capture the expected diversity in malaria transmission
across Oromia, therefore Chapter 3 presents findings of serological analysis of samples
collected during school surveys and generation of predictive risk maps based upon modelled
seroprevalence, using Bayesian geostatistical modelling. In Chapter 4, the potential use of
schools for syndromic surveillance and epidemic detection was investigated in southern
Ethiopia, focussing on the use of school absenteeism as a supplementary indicator of
potential malaria epidemics, alongside existing epidemic monitoring systems at community
health facilities. Chapter 5 draws upon a range of data collected through multiple surveillance
platforms, including routinely recorded data at government health facilities, cross-sectional
data from school surveys and community surveys, as well as modelling predictions of parasite
rate. These data are compared across a several dimensions including correlation between
indicator values in spatially matched locations, temporal resolution, and endemicity
classification. Chapter 6 discusses the primary findings and future implications of the work

presented in this thesis.
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CHAPTER 2. SCHOOL-BASED SURVEYS OF MALARIA IN

OROMIA REGIONAL STATE, ETHIOPIA: A RAPID SURVEY

METHOD FOR MALARIA IN LOW TRANSMISSION

SETTINGS

2.1 OVERVIEW

There is a need to regularly collect up-to-date malaria data to inform decision-making in
malaria control. Cross-sectional surveys are one monitoring tool that has been widely used,
and this chapter presents findings from a large-scale school-based cross sectional
malariometric survey, using the standard diagnostic indicator of microscopy. This chapter
aims to describe the spatial extent of malaria in Oromia Regional State, and to identify risk

factors for Plasmodium parasitaemia.

This chapter has been peer reviewed and published in the Malaria Journal: Ashton RA,
Kefyalew T, Tesfaye G, Pullan RL, Yadeta D, Reithinger R, Kolaczinski JH, Brooker S, 2011.
School based surveys of malaria in Oromia Regional State, Ethiopia: a rapid survey method for
malaria in low transmission settings 10:25. | contributed to the study design, which was
conceived by Simon Brooker, Jan Kolaczinski and Richard Reithinger. | planned and led all field
implementation, and conducted all frequentist data analysis. Rachel Pullan conducted

Bayesian analysis of these data.
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2.2 BACKGROUND

Following the recent achievements in global malaria control [231], there is increased
emphasis on monitoring these achievements and on refining the epidemiological landscape in
order to determine intervention needs and guide implementation [207]. Household surveys,
including Malaria Indicator Surveys (MIS) [195], Demographic Health Surveys [227] and
Multiple Indicator Cluster Surveys [106] are commonly used to achieve these surveillance and
monitoring goals, but they are expensive, time-consuming and technically complicated to
undertake. A complementary, inexpensive framework for malaria surveillance may be
provided by school malaria surveys [68], which were an important component of early,
particularly colonial, malaria reconnaissance, and more recently have contributed towards a

nationwide assessment of malaria in Kenya [16].

Building on the Kenyan experience, this chapter presents results from a large-scale school
survey of malaria in Ethiopia. Malaria transmission in Ethiopia is temporally and spatially
dynamic [9], with transmission unstable, seasonal, and linked to environmental variables such
as altitude and rainfall [202]. In recent years, there has been a marked scale-up of the
distribution of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) in
Ethiopia [232]. To track this progress and to capture the inherent heterogeneities of malaria
transmission in the country, various community-based malaria surveys have been carried out
at national and sub-national levels [195,196,233]. The aim of the present work was to
generate data for Oromia Regional State to assist in targeting malaria control interventions
across this heterogeneous transmission setting. Specifically, the objectives were to
investigate risk factors for Plasmodium infection, and to generate parasitological data for use
in geostatistical modelling to generate a risk map predicting Plasmodium prevalence in

Oromia.
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2.3 METHODS

2.3.1 Study setting

This study was undertaken throughout Oromia Regional State, the largest of Ethiopia’s 11
regional states. Oromia covers approximately one third of the country’s landmass (Figure 2.1)
and has a population of 27 million [234], an estimated 17 million of whom are at risk of
malaria [235]. It is divided into 17 administrative zones, as defined in Central Statistics Agency
(CSA) 2007 census data [234], with each zone divided further into woredas (i.e. districts)

followed by kebeles (i.e. municipalities).

Oromia is geographically diverse, encompassing arid lowlands, fertile and well-vegetated
areas with high rainfall, and cool mountainous regions. The study was conducted in two
phases in order to coincide with the historical peak of the malaria transmission season one-
two months after the main rainy season: schools in the southern zones of Borena, Guji and
Bale were surveyed in May 2009, while schools in all other zones of Oromia were surveyed

between October and December 2009 (Figure 2.1).

2.3.2 Sample size and school selection

Oromia was divided into ecological strata defined according to elevation and rainfall ranges
estimated to confer differences in suitability for Anopheles breeding and survival, and
therefore endemicity of Plasmodium. These classifications are used by the Federal Ministry of
Health and the World Health Organization (WHO) Ethiopia (Table 2.1) to assign malaria
prevention and control interventions. Malaria transmission is assumed not to occur in arid
areas (<500mm annual rainfall) and highlands (>2,500 metres) [207] and so these strata were

not sampled.

69



Chapter 2. School-based malariometric surveys in Oromia Regional State

Figure 2.1 - Location of Oromia Regional State within Ethiopia (inset) and administrative zones
surveyed in May 2009 (blue) and October to December 2009 (green). North Shoa (grey) was not

surveyed as no schools in this zone were randomly selected for inclusion

=

i, 4 ] Horu x‘.,/\” “:

= ;West .-.,k b ~ Gudm Bl Nurlh wrsy o
=~ ™y - - - o)

" Wollega .| Woffega ﬁWem i o N Lo 5

Ly v N ol Pt \
"L‘"rﬁ\\\ \i East ./ Shoa Cﬁ"‘ . a y East

Wollega 5 2 | .
Qeleme {_f‘t-g.\ a Q Al »mr Hararghe \.
- Wollega £ It‘ ol ‘\-\/"J '{L\ /ﬁlg: 53EhﬂEt Nl Hararghe ' 5
p . ;" llu Aba Bora 1L Ny 'S 8s 9‘3 }u.{aa’;/ ‘»k L
= r‘ i ¢ N
s . J Asi Y
oy L{ Jlrnrna E‘ }j:\;— 7 \\f{_/\\l’/\ I\
- k # 43 - 3 !
= ’ A
e ;___j J‘)J\z LH‘“ J{‘:V_-\/ :
T \_;‘g L—’()\'AI WES_T N {
(B‘ITBEA o\ e | -
IS e c\q_“. 3
SUDAN / ' \\i . oF s 5
o g » j J’_: @ M o »
-‘ ETHIOPIA \

,\ DIBOUTI a4 " g P
> 1 et
M ) }
{jiijf | g )

< " SOMALIA & . 1
KENYA y A

“""hé ~ U
!
3
\L
o)
. 7

The aim of the sample size calculation was to estimate the prevalence of Plasmodium
infection in each ecological zone, and to have sufficient power to detect changes in infection
prevalence due to the interventions provided by the national control programme. A two-
stage sampling design was employed, whereby schools (primary sampling unit) were selected
using probability proportional to size, then within schools a fixed number of children
(secondary sampling units) were randomly selected. Therefore, the number of schools
sampled from each ecological zone was proportional to the number of schools in each zone,
with the exception of the ‘highland occasional epidemic’ zone (2,000 — 2,500 metres), which
was under-sampled as a result of low expected prevalence and a need to maximize the power
of the survey in more stable transmission areas. These criteria excluded one administrative
zone from the sampling frame (North Shoa, positioned at >2,500 metres), while the

remaining 16 administrative zones in Oromia were included in the survey. The fixed number
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of children sampled per school (100 plus ten reserves) was the maximum number of children

feasible to sample in a single day, based on experience in similar surveys in Kenya [16].

The sample size was determined using 95% confidence limits, 80% power and assuming
design effect of 2, aiming to detect a prevalence of 1% with 0.5% precision. It was
consequently estimated that the sample size for each ecological zone should be 3,925
children from 40 schools. . Sampling 40 schools from each of five ecological zones would give
a final sample size of 20,000 children from 200 schools. It was decided to select schools from
ecological zones using probability proportional to population size, due to the uneven
distribution of primary schools in Oromia between ecological zones (Table 2.1 and Figure 2.2).
During the survey, two schools were found to be inaccessible, and one school director
refused consent for the survey. No replacement schools could readily be found within time

and, thus, 197 schools were included in the final sample.

Table 2.1 - Sampling stratification used to select schools in Oromia Regional State, Ethiopia, based on
ecological zones defined according to epidemiologically significant differences in elevation and rainfall,

based on classifications used by the Ministry of Health and WHO Ethiopia office [208]

L. Elevation Total schools in Proportion of Schools

Stratum description 1 Stratum
(m asl) stratum sample sampled

Highland, occasional 2,000-2,500 1 1651 0.1 20
epidemic
Highland fringe, low 1,750-2,000 2 1209 0.409 73
unstable transmission
Highland fringe, high 1,500-1,750 3 1163 0.393 71

unstable transmission

Lowland with seasonal
transmission (annual <1,500 4 389 0.132 24
rainfall 500-1000 mm)

Lowland with intense
transmission (annual <1,500 5 196 0.066 12
rainfall >1000 mm)

Highland >2,500 6 592 Not included in survey

Arid lowland (annual

rainfall <500 mm) <1,500 7 4 Not included in survey

1
Metres above sea level
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Figure 2.2 - Distribution of selected schools in relation to ecological zones in Oromia Regional State,

Ethiopia.
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2.3.3 Participants

Community sensitization was conducted using a cascade approach. Oromia Regional Health
and Education Bureaus gave approval for the study, and official letters were sent to the
Bureaus’ zonal offices, then to woreda offices and to individual school directors. Information
about study procedures and schedule were provided and school directors advised to hold a
meeting with the school committee and parents in advance of the designated survey day.
Parents who did not want their children to participate in the study were free to refuse
participation. Children who were unwilling to participate were excluded from random

selection, with written (or thumbprint) assent obtained from selected children before
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samples were collected. In each school, 10 boys and 10 girls (plus one reserve boy and one
reserve girl) aged between five and 18 years were selected from each of grades two to six
using computer-generated random number tables. In practice, this was achieved by
requesting all children in each grade to form one line for girls and one for boys, standing in
any order. Random number tables were used to count down the line of children and identify
those for inclusion. If fewer than 110 children were enrolled in the school or present on the
survey day, all children aged five to 18 present in the school were included in the survey; this,
in some instances, resulted in a small school sample size. Detailed logistical and ethical

considerations for this style of school survey have been presented elsewhere [16].

2.3.4 School survey procedures

Finger-prick blood samples were used to prepare thick and thin blood films for microscopy,
and haemoglobin concentration was estimated to an accuracy of 1 g/L using a portable
haemoglobinometer (Hemocue Ltd, Angelhdlm, Sweden). In addition, blood spots were
collected on filter paper for serological analysis at a later date [184,186]. Children were asked
a simple set of standardized, pre-tested questions on recent fever, mosquito net use,
whether IRS had been conducted in their households, key household socio-economic
variables, household construction and education of the child’s guardian. Children reporting
fever or found to be anaemic (Hb <80 g/L) were tested with a multi-species malaria rapid
diagnostic test (RDT) (CareStart® Pf-HRP2 Pan-pLDH, Access Bio, USA) to allow immediate
diagnosis and treatment. This test was shown to have 85.6% sensitivity and 92.4% specificity
for Plasmodium falciparum, and 85.0% sensitivity and 97.2% specificity for Plasmodium vivax
in Ethiopia [168]. The location of each school was measured in decimal degrees using a hand-

held global positioning device (eTREX, Garmin International, Kansas, USA).
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2.3.5 Microscopy quality control

Blood films were fixed and stained at a local health centre after the survey following standard
operating procedures [236], and examined after completion of field work by experienced
laboratory technicians in Addis Ababa. Plasmodium species was recorded, but quantification
of parasite density was not conducted. A second reading was carried out for a proportion of
blood films, by highly experienced microscopists at the malaria reference laboratory for
Oromia Regional State in Adama. Criteria for a second microscopy reading were: slides
positive for Plasmodium spp. at first microscopy reading; individuals with discrepant
microscopy and RDT results; severely anaemic individuals (<80 g/L); and a randomly selected
5% of negative slides. Slides with discrepant results between first and second readings were
settled by a third, expert microscopist from the Ethiopian Health and Nutrition Research

Institute, the national reference laboratory in Addis Ababa (Figure 2.3).

2.3.6 Satellite-derived environmental data

Elevation was extracted from the shuttle radar topography mission (SRTM) digital elevation
model at 1km? resolution. Population density was extracted from gridded population of the
world in 2000 (GRUMP) at 5km? resolution [237,238]. Land cover type was extracted from the
qualitative global land cover map 2005 (defined within the UN Land Cover Classification
System) using environmental satellite (ENVISAT) mission’s Medium Resolution Imaging
Spectrometer (MERIS) sensor at 5km? resolution. The distance to permanent water bodies
was extracted from the World Wildlife Fund (WWF) Global 200 Ecoregions database at 5km?
resolution [239]. Estimates of enhanced vegetation index (EVI; a proxy for vegetation
coverage) and land surface temperature (LST) at 5km? resolution were extracted from data
provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument
aboard the Terra (EOS AM) and Aqua (EOS PM) satellites [240], for the years 2001-2008. Data
were processed by a temporal Fourier algorithm, which transforms a series of observations
taken over a period of time into a set of uncorrelated harmonics that sum to the original time
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series. The process filters noisy data, but preserves harmonics corresponding to biologically-

relevant annual, bi-annual and tri-annual cycles of seasonal changes [241,242].
Environmental variables were linked by location to school-level parasitological data using
ArcGIS 9.3 (Environmental Systems Research Institute Inc., Redlands, CA, USA). Since the
resolution of most environmental data was 5km?, it was not deemed necessary to extract

environmental data from a defined buffer zone around the school location.

Figure 2.3 — Microscopy results quality control flowchart
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2.3.7 Data analysis

Microscopy results were entered into a Microsoft Excel 2007 spreadsheet (Microsoft
Corporation, Seattle, USA). Questionnaire data from school surveys, including RDT results and
haemoglobin measurements, were entered into a customized Microsoft Access 2007
database that had been developed to automatically conduct range and consistency checks.
Any errors or inconsistencies were corrected with reference to the original paper forms.
Survey data were exported from Access and Excel into a combined dataset in STATA 9.0
(Stata Corporation, College Station, TX, USA) for cleaning. Point prevalence maps were

developed in ArcGIS 9.3.

Individuals aged over 18 years (n=260) or with missing parasitological data (n=270) were
excluded from the school survey analysis. Anaemia was defined according to WHO
classifications, adjusted by age and elevation [243]. The number, gender ratio and age
distribution of children included was described, with breakdown by ecological stratum and
survey period. Child age in years was classified into groups: five to nine years, ten to 14 years,
and 15 to 18 years. Main outcomes, i.e. any Plasmodium infection, P. falciparum and P. vivax
infection individually and anaemia, were presented with binomial 95% confidence intervals
(CI) by sex, age group, ecological stratum and survey period. Use of malaria prevention
measures, specifically LLINs and IRS, were presented by sex, age group, ecological stratum

and survey period with binomial 95% Cl, with associations tested using Chi squared test.

Crude univariate associations between outcomes (i.e. P. falciparum or P. vivax infection) and
individual covariates were assessed by random effects logistic regression to control for
clustering of infection by school. Full multivariable models to describe association between
LLIN use or IRS with Plasmodium infection were developed, using zero-inflated Poisson (ZIP)
models to account for the large proportion of schools with zero prevalence. ZIP models were

favoured over standard Poisson models on the basis of the Vuong test [244].
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Tests for associations between school-level prevalence and environmental covariates were
performed using grouped logistic regression models taking into account clustering within
schools. All significant covariates (p<0.1) were subsequently included in full multivariable
models, and non-significant (Wald test p<0.5) covariates excluded sequentially in order of
least significance to generate minimal adequate models. Excluded covariates were retested in
the minimal model using likelihood ratio test to confirm lack of significance. Bayesian spatial
multivariate models were then developed in WinBUGs version 1.4 (MRC Biostatistics Unit,
Cambridge and Imperial College London, UK) to explicitly model spatial correlation between
schools. The number of examined and slide-positive individuals for each species at each
survey location were modelled as binomial outcomes, including covariates as described
above and a geostatistical random effect that modelled spatial correlation using an isotropic,

stationary exponential decay function [245].

To further investigate the distribution of P. falciparum and P. vivax in Oromia, the existence
of spatial clusters of high malaria prevalence were investigated using Kulldorff’s spatial scan
statistic (version 7.0.2; SaTScan software [246]). A Poisson model was used, under the null
hypothesis that the expected number of cases for each area was proportional to its
population size. The rate ratio was defined as the observed to expected cases; significance of
identified clusters was tested by likelihood ratio, based on 9,999 Monte Carlo simulations. A

circular scanning window was used, but no maximum radius was set for the cluster.

2.3.8 Ethical considerations

This study received ethical approval from the national health research ethics review
committee of the Ethiopian Science and Technology Ministry (RDHE/2-89/2009). Approval for
the study was given by the Oromia Regional Health Bureau and the Oromia Regional

Education Bureau.
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Written consent for the survey was provided by each school director, but parents maintained
the right to withdraw their child from the survey. Each child selected for inclusion was
required to provide written assent (or thumbprint) after having the procedures explained.
Schools where the director refused consent were not included in the school survey, and
pupils refusing assent were excluded. Individuals with a positive malaria RDT were treated
according to Ethiopian national guidelines [247]. Individuals with haemoglobin <80g/L were
provided with a two-week dose of ferrous sulphate tablets and instructions on how to take

this medication, and advised to attend the health centre for follow-up.

2.4 RESULTS

2.4.1 School survey participants

A total of 21,166 children, age five to 18 years (median 11, inter-quartile range 9-12 years),
from 197 rural primary schools in Oromia took part in the survey, with a similar number of
boys and girls included (53.2% male). A mean of 106 children were enrolled from each school
(range 43-112). Blood films from 267 children were missing or unreadable. Consequently,

these individuals were excluded from analysis, leaving 20,899 children (98.7%).

2.4.2 Reported use of malaria interventions

Overall, 46.0% (95% Cl: 45.3-46.7%) of school children reported using a LLIN the previous
night. In locations where the school elevation exceeded 2,000m, 42.0% (95% Cl: 39.7-43.6) of
children reported using a LLIN; however, this may be in part attributable to kebeles with large
altitude ranges still falling within the National Malaria Control Programme (NMCP) objectives
to target areas under 2,000m with LLIN distribution [232]. Reported LLIN use was lower

amongst males than females (43.4% vs. 49.0%, p<0.001) and amongst children aged 15-18
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years than other age groups (39.4% vs. 46.4% for five to nine years and 46.6% for 10-14

years, p<0.001).

2.4.3 Malaria and anaemia

The overall prevalence of Plasmodium infection was 0.56% (95% Cl: 0.46-0.67%). Of children
with Plasmodium infection identified by quality assured microscopy, 52.1% were infected
with P. falciparum, 47.0% with P. vivax and 0.9% with mixed infections. Mixed infections were
not analysed separately but included with each of the single species infections. The overall
prevalence of P. falciparum was 0.30% (95% Cl: 0.23-0.38%) and P. vivax 0.27% (95% Cl: 0.20-
0.35%). There was no evidence for a difference in Plasmodium prevalence between phases
one and two of data collection (p=0.513), but proportion of children who were anaemic was

higher in administrative zones sampled in phase one than in phase two (p=0.002).

Only 18% of children with P. falciparum reported fever on the day of the survey; however,
72% had had fever in the past month. A greater proportion of P. vivax infections were
asymptomatic, with only 7% of children reporting fever on the survey day, but 56% reporting
to have felt fever in the past month. In total, 17.6% of children were anaemic, and the mean

haemoglobin concentration was found to be 132.8 g/L (95% Cl: 132.6-133.0).

Figure 2.4 shows the geographical distribution of P. falciparum and P. vivax prevalence by
school. Thirty schools (15%) were found to have at least one child with Plasmodium spp.
infection on the day of the survey (17 P. falciparum and 24 P. vivax), and prevalence by
school ranged between 0 and 14.5%. However the survey sampling frame was designed to
estimate the prevalence of infection by ecological zone, not within individual schools. All
schools with detectable infection were located at an elevation between 1,183 and 2,187
metres above sea level. The median time taken to walk to school, an indicator of distance the

child lives from school, was 30 minutes (range 0-240 minutes). The schools with highest
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prevalence of infection were found in Jimma and South West Shoa administrative zones

(Figure 2.4).

Plasmodium infections were found in all five ecological strata, with highest prevalence found
in the stratum defined as highland fringes with low transmission (Table 2.2). The proportion
of infections due to P. falciparum was variable between strata: from 10% in highland
epidemic to 86% in lowland seasonal (p=0.001). There was strong evidence that the P.
falciparum and P. vivax rates differed by ecological zone (both p<0.001). Prevalence of
anaemia varied markedly between schools (Figure 2.5), ranging between 0.9% and 51.4%.
Guji administrative zone was seen to have consistently high levels of anaemia at all schools
sampled, while the highest prevalence of anaemia was found in the ecological stratum

defined as lowland with seasonal malaria (Table 2.2).
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Figure 2.4 - Prevalence of (A) Plasmodium falciparum and (B) P. vivax infection by school, Oromia

Regional State, Ethiopia, 2009.
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Table 2.2 - Prevalence of P. falciparum, P. vivax and anaemia among primary school children in 197

schools in Oromia Regional State, Ethiopia in 2009, by sex, age group, survey phase and malaria

transmission zone.

\ I:)I::\Z:;cgggj % dl..xe to Species prevalence, Anaemia,
% (95% CI] P. falciparum % (95% Cl) % (95% Cl)
P. falciparum  P. vivax
Total 197/20,899 (0_213,7) 0->3 (o.(z)lg.4) (o.gig.s) (17.1<)7-i68.1)
Male 11,038 (0_218_7) 0->7 (0.2:3.4) (o.%.a) (18.14?‘129.9)
Female’ 9,731 (0_?;:8.7) 0.48 (0.2:3.4) (0.2:3.4) (15.1()5-i76.5)
5-9yrs 5,471 (0_223_6) 0.7 (o,g:g_s) (o.o%-lo.z) (17.18%‘189.9)
10-14 yrs 1382 200 044 0208 (0204 (157470
15-18 yrs’ 1,400 (0,213,9) 0.50 (o.ocﬁ.zo.s, (0.0(:-20.6) (22.22%;16.7)
Phase 1 36/3,779 (0_;):3'6) 086 (o.gig.s) (0.86?3.2) (21.212-'243.8)
Phase 2 161 /17,120 (0.(5):8_7) 0.48 (o_cz):(a).4) (0_2:3_4) (15_19(3:i57_1)
z;gigéamni 22/2,358 (o_gf,_g) 0-10 (0.86?3.2) (0.223.7) (132‘176.1)
Highland
fringes, low 697,246 (0.;:1_3) 0-25 (o.gig.s) (0.2:3.7) (15?5%1.2)
Highland
fringes, high - 66./7,018 (0_0%_10_2) 0-26 (o.gg.z) (o.gi()-g.l) (16.1417-i28.1)
22:2'325 2R (0.2:3.9) 0.86 (o.cz)f).s) (o.gﬁgs) (22.241{'205.7)
.L:tvg:ir;d 16/1,737 (o.gig.z;) 0.14 (o.gbqg.a) (0.(1);?).8) (16.198-.270.6)

! Number of schools surveyed / children tested

? Sex data missing from 130 records

3 Age data missing from 138 records
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Figure 2.5 - Prevalence of anaemia by school, Oromia Regional State, Ethiopia, 2009.
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2.4.4 Risk factors for malaria and anaemia

There were no statistical differences in Plasmodium infection by sex or by age (Table 2.3),
whereas anaemia was more common among males than females (19.2% vs. 15.7%, p<0.001),
and in children aged 15-18 years (p<0.001). From crude univariate analysis (Table 2.3),
anaemia was found to be strongly associated with P. falciparum infection. History of fever in
the previous month was associated with both P. falciparum and P. vivax infection, as well as
with anaemia. IRS and LLIN use were found to be associated with increased odds of infection.
Odds of P. falciparum and P. vivax infection were associated with forested areas rather than
cultivated land. Some associations with vegetation (EVI) and temperature (LST) were seen,
but the effect was small. In multivariate ZIP models, LLIN use was no longer found to be
associated with either P. falciparum or P. vivax infection. The association between IRS in the
household and increased risk of infection, however, remained in multivariate models:
incidence rate ratio (IRR: transformed model coefficient estimate) of 2.91 for P. falciparum

(95% Cl: 1.36-6.21, p=0.006) and IRR of 3.92 for P. vivax (95% Cl: 1.82-8.45, p<0.001).
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Table 2.3 — Univariate analysis for associations between P. falciparum and P. vivax and potential risk

factors among sampled school children, adjusting for clustering within schools

P. falciparum P. vivax
OR' 95% CI Waldp OR 95% Cl Wald p
Sex (female) 0.88 0.57-1.35 0.5 1.27 0.75-2.14 0.4
Age (linear, increasing) 0.89 0.74-1.07 0.2 1.05 0.96-1.16 0.3
Socio-economic status:
Poorest 1 - - 1 - -
2" 0.92 0.49-1.73 0.8 1.45 0.67-3.11 0.3
3™ 0.60 0.19-1.90 0.4 0.93 0.36-2.38 0.8
4™ 1.14 0.49-2.66 0.8 1.10 0.58-2.06 0.8
Least poor 0.69 0.23-2.04 0.5 0.74 0.30-1.78 0.5
Anaemia 6.89 4.02-11.82 <0.001 1.36 0.73-2.54 0.3
Fever 7.89 4.26-14.62 <0.001 4.97 2.71-9.14 <0.001
LLIN use 2.01 1.11-3.64 0.02 1.21 0.67-2.18 0.5
IRS in home 2.69 1.34-5.42 0.005 2.83 1.28-6.23 0.01
Ecozone:
Highland epidemic 1.00 - - 1.00 - -
::f:!:}gg:gel low 12.8 12211341 003 157  0.49-5.01 0.4
:'r'ag:slfn”i‘:sfg':ge’ high 164 013-2071 07 020  0.04-096  0.05
Lowland seasonal 8.59 0.75-99.05 0.09 0.24 0.30-1.92 0.18
Lowland intense 1.39 0.05-38.10 0.8 0.88 0.16-4.87 0.8
Enhanced vegetation index (EVI)2
Annual amplitude 1.00 0.996-1.01 0.8 1.00 0.99-1.00 0.5
Bi-annual amplitude 1.00 0.99-1.01 0.6 1.01 1.00-1.02 0.01
Tri-annual amplitude 0.99 0.98-1.01 0.5 0.99 0.99-1.01 0.9
Bi-annual phase 0.99 0.99-0.99 0.05 1.01 0.99-1.01 0.2
Quarterly phase 0.99 0.99-1.00 0.8 0.99 0.99-0.99 0.007
Land surface temperature (LST)
Annual amplitude 1.00 0.99-1.00 0.3 1.00 0.99-1.00 0.7
Bi-annual amplitude 0.99 0.99-1.00 0.9 1.01 1.00-1.01 0.009
Tri-annual amplitude 0.99 0.98-1.01 0.23 0.99 0.98-1.00 0.1
Bi-annual phase 1.00 1.00-1.00 0.003 1.00 0.99-1.00 0.7
Quarterly phase 0.99 0.99-1.01 0.9 1.01 1.00-1.01 0.002
Distance to water (increasing) 0.67 0.41-1.10 0.1 0.58 0.39-0.86 0.007
Population density (increasing) 0.99 0.99-1.00 0.9 1.00 0.99-1.00 0.2
Land-cover type:
Cultivated land 1 - - 1 - -
Forest 3.81 1.03-14.08 0.05 3.58 1.26-10.24 0.02
Shrubland 2.65 0.32-21.92 0.4 1.39 0.19-10.32 0.8
Bare / sparse predicts perfectly - predicts perfectly -

'OR = odds ratio; 95% Cl = 95% confidence intervals

? Variables for EVI and LST describe the phase and amplitude of annual, bi-annual, tri-annual and
quarterly cycles after processing data by a Fourier algorithm.
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2.4.5 Spatial analysis

Bayesian multi-variable modelling suggested there were no significant associations between
P. falciparum or P. vivax prevalence by school and population density, elevation or land cover
class, once residual spatial correlation was accounted for. Parameters associated with the
magnitude and timing of seasonal changes in LST and EVI did show statistically significant
association with P. falciparum and P. vivax infection; although these covariates did not
improve model fit (Table 2.4). The variance of the school-level random effect (6%school; Which
indicates a propensity for clustering) was large for both species. Similarly, for both species the
distance at which spatial correlation dropped to below 5% was very large (in excess of 200
km) when compared with other spatial models of malaria infection [238]. This suggests a slow
decline of spatial correlation with distance at larger scales, and is likely to be a consequence

of large areas of zero prevalence across Oromia Regional State.

SaTScan analysis identified two clusters of high prevalence of P. falciparum and P. vivax
infection (Figure 2.6). A small cluster was found for P. falciparum infection, with a radius of
23.3 km. The cluster contained 872 children from eight schools, with 40 P. falciparum
infections found compared to an expected number of 2.6; the relative risk of infection in the
cluster being 41.9 times higher than outside of the cluster (p=0.001). A significant cluster was
seen for P. vivax infection, which with a radius of 169.0 km, was larger than the P. falciparum
infection cluster. This cluster included 4,782 children from 44 schools, with 49 P. vivax
infections found compared to an expected number of 12.5. The relative risk of infection in
this cluster was 55.1 times higher than outside of the cluster (p=0.001). Parameters for
seasonal changes in EVI and LST showed some association with presence inside the P.
falciparum and P. vivax infection clusters, while proximity to water was associated with

location inside the P. vivax cluster (OR=0.13, p=0.001).
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Table 2.4 - Fitted parameters in Bayesian multivariate models for P. falciparum and P. vivax among

school children in Oromia Regional State, Ethiopia in 2009, with and without spatial components.

Non-spatial model

Spatial model

Parameter 95% BCI Parameter 95% BCI
P. falciparum
Without covariates
& school 13.09 5.78-25.4 10.0 2.27-25.0
Range of spatial correlation (km) - - 271 132-794
DIC (model fit) 120.1 - 113.0 -
With covariates
LST: bi-annual phase OR:2.11 1.17-4.19 OR: 2.03 0.96-4.00
6 school 11.21 5.32-22.4 8.43 2.89-23.9
Range of spatial correlation (km) - - 244 119-758
DIC (model fit) 121.4 - 113.4 -
P. vivax
Without covariates
& school 6.31 2.96-13.17 7.03 2.30-19.95
Range of spatial correlation (km) - - 321 154-927
DIC (model fit) 162.3 - 145.5 -
With covariates
EVI: bi-annual amplitude OR:1.93 0.91-4.25 OR: 2.06 0.74-4.92
LST: tri-annual phase OR: 2.02 0.86-4.26 OR:1.34 0.44-3.36
G school 6.09 2.98-11.7 8.10 2.32-29.9
Range (km) - - 355 162-1,589
DIC (model fit) 159.8 - 146.3 -

OR, odds ratio; 95% BClI, Bayesian credible interval; stchoo| is the variance of RE; range is the estimated

distance at which spatial correlation between sites <5%; DIC is deviance information criterion, a

measure of model fit where lower values indicate better fit
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Figure 2.6 - Spatial clusters of high Plasmodium falciparum (top) and P. vivax (bottom) infection,

Oromia Regional State, Ethiopia, 2009.
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2.5 DISCUSSION

This first application of school-based surveys to inform targeting of malaria interventions in
Ethiopia has revealed a comparable prevalence of Plasmodium to that found in the 2007
national MIS survey [195], but lower than that reported in a 2006 survey conducted by the
Carter Center (prevalence 4.1%) [196]. The study presented here highlights the marked
spatial heterogeneity in infection observed in Oromia, with a small cluster of higher P.
falciparum risk identified around Jimma administrative zone, and a larger area of elevated P.
vivax risk across west-central Oromia. Furthermore, the results are consistent with other
cross-sectional study findings [196], with malaria cases found above 2,000m, i.e. the current
NMCP boundary for classification of an area as malarious and determining inclusion in control
activities such as IRS and LLIN distribution [232]. While the prevalence of P. falciparum and P.
vivax were found to be similar, the survey was not powered to define differences in

endemicity or prevalence of the two major Plasmodium species in Oromia.

Reported recent fever was found to be a risk factor for both P. falciparum and P. vivax
infection, but fever was not directly assessed in the surveys, and there is a risk of reporting
bias in children’s recall and likelihood of reporting a recent febrile episode. However, a high
proportion of identified infections were asymptomatic. Cross-sectional surveys from a range
of transmission settings have shown that a strong association exists between P. falciparum
and reported fever [248]. In low transmission settings, it is often assumed that lack of
acquired immunity in the population will cause all Plasmodium infections to elicit clinical
symptoms, but the current findings dispute this. Since parasite density was not calculated in
this study, it is not possible to determine if asymptomatic infections were due to very low
parasite density. Asymptomatic infections will contribute to ongoing transmission in a
community, but are unlikely to be detected or treated in a context where only individuals

feeling unwell access diagnostic services. If Ethiopia is to achieve focal malaria elimination in
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areas of current low, unstable transmission, alternative strategies may be required to identify
and clear asymptomatic infections and halt transmission. In S3o Tomé and Principe, for
example, mass screening by means of cross-sectional countrywide surveys, wherein all
residents were screened with a RDT and RDT-positive individuals were treated with
artemisinin combination therapy (ACT), has contributed to recent dramatic reductions in
malaria transmission [249]. However, screening with RDT may not be sufficiently sensitive to

identify all asymptomatic infections within a community.

Absence of age-dependency for infection in the current findings is consistent with lack of
acquired immunity among individuals living in low malaria transmission settings [66], and
findings from other surveys in Ethiopia [196]. Prevalence of anaemia was found to be higher
in the present instance than in the 2005 national school health survey [250], but lower than
in the 2005 Demographic Health Survey [251]. Increased odds of anaemia in males, however,
was a common finding in the 2005 national school survey, and has been reported from other
countries [252]. Males were also less likely to sleep under a LLIN, which may result in more
frequent exposure to Plasmodium infection and resultant anaemia. Overall, these findings
indicate that iron supplementation should be considered as a possible school health strategy,

targeting boys and girls.

While documented scale-up in LLIN distribution and coverage in Ethiopia has been very
successful [253], the present study shows that use of LLINs remains less than optimal among
school-age children. Ownership of LLINs was not directly assessed in this study, but
schoolchildren’s reporting of household net ownership has been demonstrated to provide a
good approximation of true household ownership in Uganda [110], therefore we do not
expect that LLIN ownership in this survey was subject to reporting bias. This is consistent with
other studies indicating that children of school-age are often the least likely to have access to
mosquito nets owned by the household [254], as well as other data from Ethiopia indicating

that net use does not directly correspond with net ownership [255]. While possession of
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LLINs in a household will exhibit some indirect protective effect for individuals not sleeping
under the net, Ethiopia’s policy of universal coverage with LLINs in malaria risk areas [208]
must be fully implemented in order to fully contribute to transmission control. There is also a
need for additional behaviour-change activities linked to LLIN distribution campaigns and the

routine health extension programme, to ensure consistent use of LLINs [256,257].

Somewhat surprisingly, LLIN use was associated with increased odds of malaria in crude
univariate analysis. However, multivariate models did not find such association. The
directionality of this crude association is likely a result of confounding from the strategy of
priority LLIN distribution to highest risk areas of the Region, however this survey included
areas perceived as high and low risk. Previous cross-sectional studies have found that net use
is protective against malaria among school-aged children [258,259], and other surveys found
that a protective effect against malaria was linked with the number of nets per household
[196]. IRS, as reported by children to have been conducted in their house, was found to be
associated with increased risk of both P. falciparum and P. vivax infection in multivariate
models. The lack of protective effect of IRS in these findings may be a result of near-universal
resistance to DDT (1,1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene) in Ethiopian anopheline
mosquitoes (Reithinger et al., unpublished). The most likely explanation for this association
between IRS and increased malaria risk is that the NMCP targets IRS to locations of known
malaria endemicity; therefore living in a location where IRS is conducted is predictive of being

in a malarious area.

The current surveys found a greater proportion of Plasmodium infections due to P. vivax than
previously described in Ethiopia [195,196], with P. falciparum and P. vivax in equal proportion
overall but P. vivax dominating in the highland epidemic ecological stratum (90%). The
variation in species distribution may be a result of increased use of artemisinin-based
combination therapy and P. falciparum-detecting RDTs at peripheral health facilities,

impacting on transmission of P. falciparum and changing the epidemiology of this parasite in
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Ethiopia. Alternatively, the findings may simply be due to the highly variable and unstable
transmission setting, where increased P. vivax cases may be a result of focal epidemics in
highland areas at the time of the survey, or a result of the tendency for P. vivax to cause long-
term chronic infections and show less seasonality in transmission than P. falciparum [202].
The recent adoption of multi-species RDTs at health posts across Ethiopia will greatly improve
the diagnosis and treatment of P. vivax infections. These infections are known to cause
morbidity, including anaemia, malnutrition and respiratory distress [260,261], but are likely
to have been under-diagnosed in the past due to use of P. falciparum-detecting RDTs.
Challenges remaining in control of P. vivax include examination of drug-efficacy and potential
adjustment of national policy, in light of identified foci of chloroquine resistance [223-226], as
well as strategies for diagnosing and clearing asymptomatic P. vivax infections. Furthermore,
similar to other settings, it is likely that as prevalence of P. falciparum in Ethiopia is reduced
by effective control interventions, the burden of malaria attributable to P. vivax will increase

[200,201].

It is the commonly held belief that in low transmission settings, a high proportion of children
with malaria would be symptomatic and therefore absent from school. The present findings,
however, indicate that although self-reported fever during the previous month is predictive
of Plasmodium infection, only a minority of parasitaemic individuals identified in schools
reported any fever on the day of the survey. Similar high proportions of asymptomatic
Plasmodium infections have been found in other low transmission settings [262]. Attempts
were made to ensure that all eligible children enrolled at each school were included in
random sampling, but we expect a proportion of enrolled students were absent on the survey
day. If there is a correlation between prevalence of infection determined from school surveys
and the true prevalence of infection in the community, a correction factor could be applied to
estimate prevalence of Plasmodium infection in the population using school surveys.

Therefore the methodology presented in this study can still be applied to collect valid
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epidemiological data from schools. Further investigation of the contribution of malaria to
school absenteeism should be conducted to evaluate the population representativeness of

parasite rates from school-based surveys.

The poor sensitivity of microscopy to detect low-density Plasmodium infections [263] may
have affected the outcome of this study. The difficulties in correctly identifying low-density
infection may have contributed to the discrepancy in microscopy results between standard
and expert examination of blood films. Furthermore, these discrepancies indicate a need to
implement a rigorous quality assurance system within the routine laboratory diagnostics
system for malaria in Ethiopia, or alternatively, to expand the use of RDTs beyond
community-level health care. However since microscopy reading of slides collected during
cross-sectional surveys is usually conducted by a central team of microscopists after survey
completion, and this microscopy reading is subject to quality assurance, the low sensitivity of
microscopy data from this survey is expected to be spatially homogenous. The sensitivity of
routine microscopy data from health facilities may not be so spatially homogenous,
introducing bias to any large-scale evaluation of routine diagnostic data from health facilities
Molecular techniques, such as polymerase chain reaction (PCR), have a lower detection
threshold for Plasmodium than microscopy [10,262], and may be a more sensitive diagnostic
tool in a population where low-density infections are expected. Unfortunately, PCR remains

suitable only in a research context, and not as a routine diagnostic tool for malaria.

The current study was unable to create a valid model, based on environmental covariates, to
predict malaria endemicity across Oromia, because strong environmental predictors for
location of transmission foci were lacking. Risk mapping using similar strategies had
previously been successful in Afghanistan, with a comparable prevalence of infection (0.49%)
[264]. This inability to develop a risk map based on environmental correlates only indicates
that there are additional factors contributing to transmission that were not captured in

modelled data, and alternative covariates may have been required to test for inclusion in the
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model, for example the use of climatic data relating more closely to the survey period, rather
than summarising long-term trends. Modelling may also have been improved by using the
average environmental covariate value for the whole school catchment area, rather than
point values for the school location. The failure to develop a risk map may also be a result of
the spatial and temporal variability of transmission, which was not adequately captured by a
cross-sectional survey approach with microscopy diagnosis of the primary indicator. Use of a
more sensitive indicator of current Plasmodium infection, such as polymerase chain reaction,
may have improved model fit. Although it was not possible to determine the exact altitude at
which infection was acquired, data indicate that most children live close to the school
(median 30 minutes’ walk). Therefore, it was assumed that children’s homes, the site where
infection is likely to have occurred, is at a similar altitude to the school. Based on this
assumption it was possible to identify two clusters of infection in Oromia, using a method
that has successfully described hotspots of malaria at small spatial scale in Kenya and Sudan

[265,266].

Identification of all areas where malaria transmission is ongoing may be possible using an
alternative diagnostic method where IgG antibodies to Plasmodium are detected using an
enzyme-linked immunosorbent assay, reflecting exposure to infection over a longer time
period. This method has been used successfully in other low and unstable transmission
settings [187,191,263]. Alternatively, routinely reported malaria case data from health
facilities has been used to model malaria transmission [53], but these data are subject to bias
including incomplete recording and reporting, inconsistent quality of diagnostic services and
variable access to health facilities across populations and localities. It may be possible to
marry parasitological survey data and routine facility data to capture a reliable estimation of
malaria transmission levels, and use these combined data to develop a risk map. This
approach requires further investigation to ensure comparability between locations, and

representativeness of the underlying population. Other information such as locations of food
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insecurity can contribute to interpretation of anaemia data, and could be incorporated into

mapping activities to inform programmatic decision making.

While the current cross-sectional surveys have provided data regarding the Plasmodium
parasite rates among children attending school, there is a need to conduct a rigorous
comparison to indicators determined from standard community surveys, such as MIS. This
will determine if findings from school-based surveys are representative of all school-aged
children in a community or, indeed, the whole community; if representative, school-based
surveys could become an alternative survey method to the more costly and labour-intensive
community surveys. While it is not expected that there are differences in risk of infection by
age in Ethiopia, there is a need to further explore what proportion of school-absenteeism is
due to malaria, as well as whether there are differences in malaria risk between enrolled and
non-enrolled children. These findings will define the potential role of schools in malaria
surveillance, monitoring and control in Ethiopia and other low transmission settings.
Envisaged roles of schools in malaria surveillance could be to provide data on coverage of
major interventions and parasite prevalence during routine school surveys, and to alert
service providers of epidemics using information on school-absenteeism and from active case

finding [68].

2.6 CONCLUSIONS

Results of cross-sectional school surveys in Oromia demonstrated marked spatial
heterogeneity in malaria. Although several foci of infection were identified, large areas
appear to be non-endemic for malaria. While these findings allow malaria control
interventions to be targeted to identified endemic areas, this likely does not reflect the true
extent of malaria in Oromia. Research is ongoing to further validate the use of school surveys

in identifying transmission foci, as well as to investigate other potential uses of schools in
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malaria surveillance including monitoring and evaluation of control programme

implementation.
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CHAPTER 3. GEOSTATISTICAL MODELLING OF MALARIA

ENDEMICITY USING SEROLOGICAL INDICATORS OF

EXPOSURE COLLECTED THROUGH SCHOOL SURVEYS

3.1 OVERVIEW

Findings from school-based cross-sectional surveys were presented in Chapter 2, with
parasitaemia diagnosed by microscopy as the primary outcome. Very few Plasmodium
infections were identified by microscopy, limiting the ability to explore spatial associations
and develop predictive models. During the surveys presented in Chapter 2, blood samples
were collected on filter paper and stored. These dried blood spots were analysed for
presence of anti-Plasmodium antibodies to describe the seroprevalence at each site as a
proxy for recent transmission intensity. Spatially explicit binomial models of seroprevalence

were created and used to predict seroprevalence across the Region.

This chapter has been prepared for The Journal of Infectious Diseases, but at the date of
thesis submission has not been submitted to the journal or subject to peer review. |
participated in serological analysis of samples, was responsible for all processing of raw
laboratory data, including decisions on samples requiring exclusion or repeat analysis. Jorge
Cano extracted and processed environmental data used in this chapter. | conducted all data

analysis presented.

3.2 INTRODUCTION

With the rekindling of malaria elimination goals [267,268], there is an increased need to

quantify patterns of and changes in malaria risk to support evidence-based targeting of
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interventions, implement surveillance strategies to monitor changes in transmission intensity,

and assess feasibility of local elimination [7,269].

Low transmission settings present specific challenges to implementation of cross-sectional
surveys: (i) highly seasonal transmission can result in underestimates of population parasite
rates if sampling does not occur during the peak transmission period; (ii) low-density
infections are frequent, and the common diagnostic tools of microscopy and rapid diagnostic
tests (RDTs) demonstrate reduced sensitivity to detect these low-density infections [71,270];
and (iii) where diagnostic data are used to develop spatial prediction models, there is a risk
that the true extent of transmission will be underestimated since recently cleared and low-
density infections will not be included. While new strategies such as reactive case detection
[101,102,271] and “rolling” cross-sectional surveys [107] have been trialled, there remains a

need to develop strategies to track changes in low and unstable transmission settings.

Serum antibodies are stable when collected on filter paper, desiccated and stored below 4°C,
and a methodology to detect anti-Plasmodium antibodies eluted from dried blood spots has
been published [184,185], yielding estimates of seroprevalence and seroconversion rates that
are representative of malaria transmission intensity within a community [186,272]. Since
antibodies persist after infection clearance, they offer the opportunity to examine exposure
to malaria over a wider time period than is typically possible through detection of
parasitaemia during a cross-sectional surveys survey by means of microscopy, RDTs or

polymerase chain reaction (PCR)-based methods.

Serological indicators are increasingly being used in community-based malaria
epidemiological studies to assess small- and large-scale spatial heterogeneities of and
changes in transmission [190,191,193,194,263,272]. Schools provide a useful alternative
platform for collection and monitoring of malariometric indicators, offering logistical

advantages (e.g. simplified selection of participants, high compliance and reduced survey
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costs) over standard community-based cross-sectional surveys [16,68,273]. Although schools
consistently yield higher estimates, school survey seroprevalence estimates have repeatedly

been shown to strongly correlated with community-survey seroprevalence [111].

This study explored the use of serological indicators collected from a large-scale school-based
survey to describe differences in P. falciparum and P. vivax endemicity in a low transmission
setting. Spatially explicit Bayesian modelling techniques were used to explore relationships
between serological indicators at population level and explanatory environmental variables,

to predict estimated endemicity levels at sub-national scale.

3.3 METHODS

3.3.1 Study setting

Ethiopia has a diverse ecology and malaria transmission is known to be spatially
heterogeneous, related to variables such as altitude, temperature, rainfall and presence of
local water bodies or dams [130,196,202,209,210]. Malaria transmission is temporally
variable due to seasonal rainfall, with a major transmission season from September to
December and a minor transmission season from April to May. Cases are due to both P.
falciparum and P. vivax. The Malaria Indicator Survey in 2011 demonstrated a low parasite
prevalence within the population living in malaria-risk areas, estimated at 1.3% by

microscopy and 4.5% by RDT in areas <2000m [228].

3.3.2 Survey data

Data presented in this paper are drawn from a large cross-sectional survey conducted in 197
government primary schools in Oromia Regional State, Ethiopia, in 2009, described in Chapter

2. Full details of school and child selection as well as sample collection are presented in
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Chapter 2. Briefly, at each school 55 girls and 55 boys were randomly selected. They provided
finger-prick blood samples for preparation of thick and thin blood film, haemoglobin
measurement (HemoCue Ltd, Angelh6lm, Sweden), and collection of blood spots on filter
paper (Whatman 3MM, Whatman, Maidstone, UK). School location was measured using a

global positioning satellite receiver (eTREX, Garmin International, KS, USA).

For serological analysis, samples were selected purposively from: (i) 20 schools with highest
prevalence of Plasmodium infection detected by microscopy (range 0.9 to 14.5%); (ii) 20
schools with highest proportion of anaemic (classified according to WHO [243], including
adjustment by altitude) children (range 34.2 to 51.4%); and (iii) and a random selection of
remaining schools surveyed (Table 3.1). Purposive selection was conducted to capture a
range of transmission settings, and since resources were not available to complete ELISA on

all blood spots collected during surveys.
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Table 3.1 - Number of schools and children tested by enzyme-linked immunoassay (ELISA) against each
antigen, stratified by school selection criteria: high microscopy prevalence, high anaemia prevalence,

randomly selected.

Any P. falciparum antigen Any P. vivax antigen

Schools Children Schools Children
Total tested 62 5913 71 6609

PfMSP-1 PfGLURP PvMISP-1 PvAMA
School
selection Schools Children Schools Children Schools Children Schools Children
criteria
High
microscopy 20 2088 20 2093 20 2080 20 2074
prevalence
High anaemia 2118 20 2092 20 2080 20 2104
prevalence
Random 22 1614 10 1037 31 2327 10 1024
selection
Total tested 62 5820 50 5222 71 6487 50 5202

3.3.3 Enzyme-linked immunosorbent assay (ELISA)

Blood spots from 50 schools were analysed in London against P. falciparum merozoite surface
protein-1,9 (PfMSP-1), P. falciparum glutamate-rich protein-R2 (PfGLURP), P. vivax merozoite
surface protein 1,5 (PvMSP-1) and P. vivax apical membrane antigen-1 (PvAMA). In Addis
Ababa, blood spots from a further 12 schools were analysed against PAMSP-1 and 21 schools

against PvMSP-1.

Antibodies were eluted from dried blood spots, and samples tested for IgG against P.
falciparum and P. vivax antigens according to methods described elsewhere [184]. Duplicate
optical density (OD) values with >20% variation were excluded. Raw ODs were corrected by
blank OD and normalised between plates by fitting to the mid-point of a standard curve
produced by serial dilution of hyperimmune serum (i.e. pooled hyperimmune serum from
Tanzania for P. falciparum and NIBSC 72/096 for P. vivax). Normalised ODs and identification
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numbers were exported into Stata 12.0 (Stata Corporation, College Station, Texas USA).
Individual samples were classified as seropositive or seronegative against each antigen using
a mixture model, whereby the mean of the seronegative distribution plus three standard
deviations was defined as the seropositive cut-off [184,272]. Binary variables were generated
to describe summary seropositivity by species: for example, P. falciparum seropositive
samples were defined as seropositive against either PAMSP-1 and/or PfGLURP. In the absence
of a gold standard for anti-Plasmodium antibody detection, it is not possible to determine the
sensitivity or specificity of the ELISA, but the mixture model approach is commonly used in
low transmission settings [187,191,274,275], where the population is expected to include

true seronegatives and true seropositive individuals.

3.3.4 Remote sensing environmental data

Elevation data was extracted from the shuttle radar topography mission (SRTM) digital
elevation model at 90m resolution [276], resampled to 250m and further processed to
estimate slope in degrees. Precipitation and temperature data at 1km resolution were
extracted from pre-processed data available on WorldClim [277,278]. Euclidean distance to
water bodies was calculated using SRTM Water Bodies data files at 250m resolution [279],
and distance to rivers and roads calculated using data from Digital Chart of the World at
250m resolution [280]. Land cover type was extracted from the qualitative global land cover
map, defined within the UN land cover classification system using environmental satellite
(ENVISAT) mission’s Medium Resolution Imaging Spectrometer (MERIS) sensor at 300m
resolution. Normalised difference vegetation index (NDVI) indicators at 1km resolution were
extracted from the SPOT 5 vegetation project [281]. Population density was extracted from
the AfriPop project at 100m resolution [282], and rural-urban classification at 1km from the
Global Rural-Urban Mapping project (GRUMP) [283]. Input grids were either extended or

clipped to match the geographic extent of a land mask template, and eventually aligned to it.
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Finally, environmental data were extracted to school locations using ArcMap 12.0

(Environmental Systems Research Institute Inc., Redlands CA, USA).

3.3.5 Model development and testing

Environmental and serology data were merged and analysed using Stata 12.0. Continuous
environmental variables were standardised to facilitate later model convergence. Models

were developed separately to describe P. falciparum or P. vivax seroprevalence.

Univariate associations between school seroprevalence and environmental variables were
explored, and colinearity (correlation coefficient >0.9) between variables tested. A school-
level minimal adequate logistic regression model was developed by the backward stepwise
method, whereby variables with p>0.05 were removed in the order of least significance; all
excluded variables were subsequently re-tested in the final model. Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC) are indicators of model fit and
parsimony, but BIC has more severe penalisation for model complexity. Both AIC and BIC

were used to inform model selection [284,285].

Four multivariate Bayesian binomial regression models were developed using WinBUGS 14
(Medical Research Council Biostatistics Unit and Imperial College London, London, U.K.) for P.
falciparum and for P. vivax. The most complex model included the retained school-level
environmental variables, school-level random effect and school-level geostatistical random
effect (using an isotropic, stationary exponential decay function) [245]. Additional models

excluded the environmental variables, the spatial random effect, or both.

Semi-informative priors were set for the rate of decay of spatial correlation, ®@, informed by
the maximum and minimum distance between schools, and non-informative priors used for
other coefficients. Models were burned-in for 10,000 iterations to achieve convergence, then

nodes sampled for 10,000 iterations, thinning each ten iterations. Final model selection was
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informed by examining the variance of school and spatial random effects and Deviance

Information Criterion (DIC) [286].

3.3.6 Model validation

Models were internally validated by training the model on an N-5 school dataset, then
predicting probability that seroprevalence thresholds (2%, 5% and 40%) are exceeded for the
five excluded schools. These thresholds were estimated to describe the lowest and highest
areas of seroprevalence, and hence endemicity, in order to support specific intervention
targeting. The process was repeated until predictions for all schools were available. Model
performance was assessed by examining the area under the curve (AUC) of the receiver
operator characteristic (ROC) at each threshold [287]. AUC >0.7 indicates a reasonable

discriminative capacity, and AUC >0.9 very good discriminative capacity [288,289].

3.3.7 Generating a predictive seroprevalence map

A grid of 12,048 locations at 5km spacing was generated across Oromia and environmental
variables included in final models extracted to these locations. The selected Bayesian models
were trained on actual school seroprevalence data, then predicted at each location by
calculating the sum of the products of the covariate coefficients and the values of the
covariates at each grid node, plus the interpolated geostatistical random effect, and back

transforming from the logit to the prevalence scale.

3.3.8 Ethical considerations

The school surveys received ethical clearance from the Ethiopian Science and Technology
Agency (RDHE/2-89/2009), with additional clearance subsequently given for serological
analysis of blood spots (3.10/53/2003). Consent for participation used a passive, opt-out
procedure, with school director providing written consent for the survey to proceed. Schools

were requested to hold meetings in advance with parents to inform them of the survey and
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allow withdrawal of children if necessary. Participating children gave written assent and were
informed of their right to withdraw at any time. Children reporting fever during surveys were
tested with a multi-species HRP2-panLDH RDT (CareStart, AccessBio, NJ), and any child with a

positive RDT was treated according to the national guidelines [213].

3.4 RESULTS

3.4.1 Serology findings

Serology results were available for P. falciparum from 5,914 children from 62 schools, with a
mean 95 (range 10-111) samples per school. P. vivax results were available from 6,609
children from 71 schools, with mean 93 (range 5-111) samples per school. Data were from

children aged five to 18 years (mean 11 years).

Of all children tested, 11.6% (688/5913) were P. falciparum seropositive and 11.1%
(735/6609) P. vivax seropositive; 1.0% and 0.5% of the children were microscopy-positive for
P. falciparum and P. vivax parasites, respectively. Cross-tabulation of microscopy and antigen-
specific serology results are presented in Table 3.2. Where data were available for both
species, 4.7% of 5,420 children were seropositive against both species. When restricting our
analyses to schools with more than 50 children tested (56 schools for P. falciparum, 62 for P.
vivax), P. falciparum and P. vivax school seroprevalence ranged from 0 to 50% and O to

53.7%, respectively.

Among 50 schools tested against four antigens, correlation was seen between school
seroprevalence determined for PAMSP-1 and PfGLURP (R?=0.84), and for PYMSP-1 and PvAMA
(R?=0.80). For both species, coating plates with MSP-1 resulted in higher sensitivity than
PfGLURP or PVvAMA. A strong correlation (R?=0.84) was seen between school P. falciparum

and P. vivax seroprevalence.
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Table 3.2 - Description of frequency of diagnostic test (microscopy and serology) results at individual

level. Combinations of microscopy and seropositivity by antigen are presented for P. falciparum and P.

vivax separately. Data are only presented for individuals with results recorded for P. falciparum

microscopy, PfGLURP and PfMSP-1 (N=5102), and individuals with complete results for P. vivax

microscopy, PvAMA and PvMSP-1 (N=5053). Individuals tested against only one antigen for a species

are excluded from the P. falciparum (N=783) or P. vivax (N=1522) sections of the table.

P. falciparum diagnostic tool combinations

PfGLURP + PfGLURP -
Microscopy Pf + PfMSP-1 + 38 5
Microscopy Pf + PfMSP-1 - 3 6
Microscopy Pf - PfMSP-1 + 217 246
Microscopy Pf - PfMSP-1 - 106 4481

P. vivax diagnostic tool combinations

PVAMA + PVAMA -
Microscopy Pv + PVMSP-1 + 4 10
Microscopy Pv + PVMSP-1 - 2 14
Microscopy Pv - PVMSP-1 + 141 381
Microscopy Pv - PvMSP-1 - 78 4423
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Figure 3.1 - School-level seroprevalence and prevalence of infection by microscopy for P. falciparum
(A) and P. vivax (B). Scatter plots are presented for 56 schools with P. falciparum data, and 62 schools
with P. vivax data, restricted to those with serology results from 250 children. Non-linear regression

identified a Gompertz function as best fit to P. falciparum (R?=0.810), and to P. vivax data (R’=0.657)
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Table 3.3 - Univariate frequentist associations of key environmental variables with school

seroprevalence of P. falciparum and P. vivax

P. falciparum P. vivax
OR 95% Cl p OR 95% ClI p
Precipitation:
Annual accumulative 0.978 0.695, 1.374 0.869 1.409 1.047, 1.898 0.024
Annual mean  0.971 0.693, 1.361 0.865 1.400 1.043, 1.880 0.025
Wettest quarter  0.991 0.723,1.359 0.956 1.479 1.061, 2.062 0.021
Mean at peak transmission 0.781 0.588, 1.039 0.090 0.923 0.711, 1.199 0.549
Annual standard deviation  0.902 0.676, 1.203 0.483 1.336 0.928,1.924 0.119
Land temperature:
Annual mean 1.272 0.915, 1.767 0.152 0.866 0.657,1.140 0.305
Mean at peak transmission 1.243 0.892, 1.734 0.199 0.890 0.659, 1.201 0.445
Altitude 0.785 0.590, 1.044 0.096 1.041 0.784,1.381 0.782
Land gradient 0.565 0.402, 0.796 0.001 0.531 0.336,0.838 0.007
Distance to:
Any waterbody  0.808 0.644,1.014 0.065 0.585 0.422,0.811 0.001
Permanent waterbody 0.768 0.609, 0.969 0.026 0.570 0.456, 0.712 <0.001
Permanent river  0.402 0.172, 0.940 0.036 0.154 0.047, 0.506 0.002
Road 0.983 0.191, 5.057 0.984 1.059 0.206, 5.460 0.945
Land cover type:
Shrubland 1 - - 1 - -
Cultivated land 5.320 2.419,11.70 <0.001 | 6.782 2.907, 15.82 <0.001
Forest 9.5e-7 2.9e-7,3.1e-6 <0.001 | 0.185 0.066, 0.522 0.001
Bare/sparse 4.338 1.979, 9.507 <0.001 | 2.236 0.848, 5.900 0.104
Normalised difference
vegetation index:
Maximum 2005-2009  0.810 0.658, 0.997 0.047 1.074 0.736, 1.569 0.711
Mean 2005-2009  0.785 0.628, 0.982 0.034 0.903 0.699, 1.166 0.434
Standard deviation 22000055; 0.824  0647,1.049 0116 | 1126 0.770,1.647  0.541
Maximum 2009  0.846 0.625, 1.146 0.280 1.269 0.831, 1.937 0.271
Mean 2009  0.739 0.571, 0.955 0.021 0.868 0.680, 1.108 0.255
Standard deviation 2009  0.928 0.695, 1.238 0.611 1.398 0.949, 2.060 0.090
Population density:
Allages 0.994 0.720, 1.372 0.970 0.958 0.690, 1.329 0.796
Children under five years  0.981 0.696, 1.381 0.912 0.966 0.690, 1.353 0.840
Type of area:
Rural 1 - - 1 - -
Peri-urban  0.468 0.182,1.202 0.115 0.361 0.123, 1.066 0.065
Urban  0.200 0.026, 0.880 0.033 0.065 0.015, 0.283 <0.001
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3.4.2 Comparing serology to microscopy

Schools with 0% positive samples by microscopy were found to have from 0 to 30%
seroprevalence. While the proportion of microscopy positive and seropositive children in a
school are not directly comparable, it is plausible to expect some association between the
two measures. The relationship between serology and microscopy data was postulated to be
a saturation growth curve, but it was not possible to fit this curve to the existing data, likely
due to the small number of site with microscopy prevalence >0%. A variety of nonlinear
regression functions were fitted using least squares methods to P. falciparum and P. vivax
data. For both species, a Gompertz curve was found to have best fit to the data, and is

presented in Figure 3.1.

3.4.3 Environmental risk factors

Colinearity was found among the precipitation, temperature and NDVI variables, and
between distance to both permanent and any type of water body. Distance to water bodies
and rivers, land gradient and urban areas showed univariate associations with both P.

falciparum and P. vivax seroprevalence (Table 3.3).

The minimal adequate multivariate P. falciparum frequentist model includes elevation and
angle of land slope, distance to permanent river, bare or sparse land cover, population
density and urban areas. The minimal adequate P. vivax frequentist model includes distance
to permanent river and water body, precipitation during the wettest quarter of the year
(projection from 1950-2000 to allow for high spatial resolution), and mean NDVI over the

preceding five years.

3.4.4 Bayesian modelling of P. falciparum

When comparing output from non-spatial and spatial models of P. falciparum, incorporating

spatial structure in models was found to explain much of the variation between schools,
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indicated by a reduction of 6% chool When spatial random effects were included in models. A
lower DIC in models including spatial structure justified retention in the final P. falciparum

Bayesian model.

Inclusion of environmental variables in the spatial model was shown to reduce stpatial and the
DIC, as well as increase the rate of decay of spatial correlation (&), indicating that much of the
first order spatial variation can be explained adequately by the included environmental data.
Therefore, the final model to describe P. falciparum seroprevalence in Oromia incorporates
environmental covariates to explain first order deterministic spatial variation, with the spatial
random effect adequately capturing second order structure (Table 3.4). Internal validation
demonstrates a good discriminatory ability of the final model for 2% and 5% seroprevalence
thresholds, with an AUC of 0.83 and 0.84, respectively. The model performs very well in
identifying areas of over 40% seroprevalence (AUC=0.96). Actual and predicted school
seroprevalence were found to be correlated (Pearson r=0.62, p<0.001). The final model was
used to predict P. falciparum seroprevalence at 5km resolution across Oromia. The posterior
mean prediction for this model is shown in Figure 3.2, with estimated probability of 2%, 5%

and 40% thresholds being exceeded shown in Figure 3.3.

3.4.5 Bayesian modelling of P. vivax

Similar to the P. falciparum models, incorporating spatial structure in P. vivax models was
found to explain much of the variation between schools, indicated by a reduction of 6% chool
and lower DIC. Inclusion of environmental variables in the spatial P. vivax model did not
substantially reduce the stpatia| and little difference was seen in ¢ and DIC between the
models with and without environmental variables. The final model for P. vivax is, therefore,
the spatial model with no environmental covariates (Table 3.4). Internal validation of this
model indicates good performance at the 2% seroprevalence threshold (AUC=0.81), and very

good performance at 5% and 40% thresholds (AUC=0.91 for both). Actual and predicted
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seroprevalence were correlated (Pearson r=0.68, p<0.001). Predictions of the final model at
5km resolution are displayed in Figure 3.4 as the posterior mean seroprevalence, and in

Figure 3.5 as the probability of seroprevalence thresholds being exceeded.

Table 3.4 - Final Bayesian P. falciparum model developed using data from 62 schools, and P. vivax
model developed from 71 schools’ data. Both models retained school-level and spatial random effects.
School and spatial variance (stchool and czspatia|), rate of decay of spatial correlation (), range in km at
which correlation between schools falls to 5% are presented with 95% Bayesian credible intervals. The
P. falciparum model includes parameter values and 95% BCl for standardised environmental fixed

effects. No environmental fixed effects were retained in the final P. vivax model.

P. falciparum model P. vivax model
Parameter value (95% BClI) Parameter value (95% BCl)
. -0.568
AL (-1.035, -0.087) -
Slope -0.595 i
P (-0.996, -0.234)
Distance to permanent river 0411 -
b (-0.774, -0.036)
Population density in 2010 -0 18'74108911) -
. 1.026
Bare or sparse land (binary) (-0.392, 2.298) -
. -3.13
Urban area (binary) (-6.279, -0.028) -
2 0.254 0.288
sl (0.006, 1.250) (0.013, 0.939)
2 1.183 3.631
O spatial (0.177, 2.311 (1.31, 10.85)
9.763 0.866
¢ (2.631, 19.03) (0.211, 2.093)
Range in km 45.57 548.3
g (17.54, 127) (160.5, 1592)
DIC 308.8 330.8
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Figure 3.2 - Map of predictive P. falciparum seropositivity using spatial model with environmental fixed
effects. Measured P. falciparum seroprevalence from the 62 schools used to train the model are shown

by circles with size proportional to seroprevalence.
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Figure 3.3 - Probability P. falciparum seroprevalence exceeds defined thresholds of 2% (A), 5% (B) and
40% (C) according final predictive model for P. falciparum. Red areas are those very likely to exceed the
threshold, blue areas very unlikely to exceed the threshold, and pale yellow areas have high

uncertainty
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Figure 3.4 - Map of predictive P. vivax seropositivity, using spatial model without environmental fixed
effects. Measured P. vivax seroprevalence from the 71 schools used to train the model are shown by

circles with size proportional to seroprevalence

Raw seroprevalence
0%

0.1-49%
50-99%
10.0 - 19.9%
=20%

OJONONOI

Predicted seroprevalence

- High : 50

- Low -0 0 40 80 160 240 320

T s — Kilometers

114



Chapter 3. Serological modelling of malaria in Oromia

Figure 3.5 - Probability P. vivax seroprevalence exceeds defined thresholds of 2% (A), 5% (B) and 40%
(C) according final predictive model for P. falciparum. Red areas are those very likely to exceed the
threshold, blue areas very unlikely to exceed the threshold, and pale yellow areas have high

uncertainty
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3.5 DISCUSSION

This study demonstrates the capability of serological markers to detect large-scale
heterogeneity in malaria transmission using samples collected during cross-sectional school
surveys, in a setting with seasonal and low transmission. Seroprevalence was found to be
associated with environmental variables; this relationship was used to predict seroprevalence
at unsampled locations using Bayesian geostatistical modelling methods incorporating fixed

and random effects.

School seroprevalence determined by different antigens showed strong correlation for each
species, with MSP showing higher sensitivity for both P. falciparum and P. vivax than P.
falciparum GLURP and P. vivax AMA, respectively. However, previous studies have shown
AMA-1 to have higher immunogenicity than MSP-1 [185]. As transmission declines, individual
antibody responses become more disparate, and therefore it is recommended that future

serological analysis be conducted using multiple antigens or a whole parasite lysate.

The range of seroprevalence found across schools where no children were microscopy-
positive during the cross-sectional survey demonstrates the value of serological indicators,
i.e. in differentiating schools where transmission occurs but the peak transmission period was
missed by surveys, from those with very low malaria risk. Differences may also be apparent if
transmission has ceased in the area in recent years, before the age of the youngest school

child. This is difficult to demonstrate without clinical data.

Both species' final models incorporated a spatial random effect to describe spatial
autocorrelation, whereby schools located closely together are more similar than schools at
greater distance. All models included a non-spatial school-level random effect. The P.
falciparum model indicated that spatial autocorrelation was present to a distance of
approximately 46km, while the P. vivax model showed a range of over 500km. The P.

falciparum range is a distance at which similarities in climatic factors and ecology would be
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expected, and therefore it is feasible that these areas experience similar transmission
intensity. However, the very large spatial range of P. vivax suggests that the spatial random
effect is capturing other large-scale variations not tested for inclusion in the Bayesian spatial
model. A similar finding was reported in spatial modelling of malaria in Bangladesh, where
environmental variables described a large proportion of spatial variation in P. falciparum, but

little of the P. vivax distribution [290].

Frequentist models developed for P. vivax suggested biologically plausible environmental risk
factors of distance to rivers and water bodies, vegetation cover and precipitation;
nonetheless, these did not adequately explain the large-scale trends in P. vivax seropositivity
after accounting for spatial dependency. The final P. vivax map presented here therefore
simply uses spatial interpolation to predict seroprevalence at unsampled locations. The larger
spatial scale of P. vivax may be due in part to the production of hypnozoites, since the
reactivation of parasites and subsequent antibody production may occur in a different
location to site of parasite acquisition, or in the absence of ongoing transmission. However, it
is unlikely that recrudescent infections would have had a major confounding effect on school
seroprevalence, unless large-scale population movements would have occurred.
Furthermore, the wider P. vivax range may be due to the parasite’s ability to generate
sporozoites at lower temperatures and the potential to be transmitted at higher altitudes
[291]. Indicators of temperature and altitude, considered to define vector survival and
sporogeny, were not found to be associated with P. vivax seroprevalence, and not retained in

the final multivariate model.

The key environmental variables identified for inclusion in the P. falciparum map indicate that
higher risk exists in low altitude and low gradient areas close to rivers. We postulate that
seasonal flooding in flatlands where floodwaters may pool and act as vector breeding sites

could be the driver of this relationship.
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A further extension to the current models in the future could be incorporation of intervention
coverage, such as districts targeted by indoor residual spraying of households with
insecticide, and estimations of long-lasting mosquito net coverage and use alongside

environmental covariates.

Despite the difficulties in modelling P. vivax seroprevalence, our maps of both P. falciparum
and P. vivax seroprevalence do show broad concordance with predictive maps developed by
the Malaria Atlas Project to describe age-standardised parasite rates using model-based
geostatistical prediction methods [20,21,292], with similar areas of Oromia identified as areas
of highest and lowest risk for malaria. Survey locations with microscopy-positive samples in
the most recent Ethiopian Malaria Indicator Survey in 2011 also correlate with our predictive

map, with infections identified along the Rift Valley as well as in the far west of Oromia [228].

This study was designed to evaluate large-scale spatial heterogeneity of P. falciparum and P.
vivax malaria. While logistical constraints limited the number of samples analysed, the
original surveys were powered to microscopy-based parasite rate — therefore, seroprevalence
rates being higher than microscopy should mean that adequate samples were examined to
be able to evaluate associations with environmental variables and build the statistical model.
The study was not designed to assess micro-heterogeneity in transmission within
communities, which has been demonstrated in other settings with similarly low transmission
levels (e.g. Somalia, The Gambia, Guinea Bissau) [191,263]. The randomisation process and
use of school-attending children as a sampling frame should result in a sampled population
representative of the whole school catchment area and wider community. We acknowledge
that there is potential for school catchment areas in Ethiopia to have diversity in transmission
intensity as a result of steep gradients and presence of local water bodies, dams and
irrigation systems [209,210]. Individual differences in immune status and antibody production
in response to Plasmodium antigen exposure are expected, and may be moderated by other

parasitic infections, including helminths [293]; yet, infection risks for these are likely to be
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broadly similar across all sites, and individual differences in immune response likely randomly

dispersed among the population.

The Bayesian spatially explicit models developed in this study could be refined by inclusion of
serology data from additional sites, both within Oromia to assist in categorising areas of high
model uncertainty, as well as from other regional states to assist in developing a nationally-
representative risk map. Serological analysis of filter paper blood spots included in periodic
national surveys such as Malaria Indicator Surveys or Demographic and Health Surveys would

be a simple strategy to collect additional seroprevalence data nationally.

Should serology become a primary indicator for malaria surveillance, it may be worthwhile to
review the recommended sampling strategy for serological indicators, to ensure a cost-
efficient, timely and appropriately powered survey. Further developments to this work and
exploration of the utility of serological indicators as part of a package of surveillance tools in
Ethiopia could be validation of measured seroprevalence and model predictions against other
available data, including clinical burden recorded routinely at health facilities, and cluster-

level Malaria Indicator Survey data.

These data represent the spatial integration of simple survey design with a relatively basic
laboratory assay which can subsequently guide malaria control and surveillance. The
approach has particular utility in low transmission settings and, therefore, has important

applications for malaria elimination.
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CHAPTER 4. CHARACTERISING SCHOOL ABSENTEEISM

AND ITS UTILITY FOR SYNDROMIC SURVEILLANCE

SYSTEMS IN LOW INCOME COUNTRIES

4.1 OVERVIEW

Temporal resolution is a critical component of surveillance systems operating in areas at risk
of infectious disease epidemics. Syndromic surveillance uses pre-diagnostic and non-clinical
surrogate data to increase the responsiveness of surveillance for particular epidemic-prone
diseases. While a syndromic approach is not likely to replace routine surveillance strategies
using confirmed disease data, due to it’s improved temporal resolution, it may be a useful
additional strategy in some settings. This chapter presents the first application of a school-

based syndromic surveillance system for malaria in a resource poor setting.

This chapter has been prepared for submission to PLoS One, but at the date of thesis
submission has not been submitted to the journal or subject to peer review. | led the study
design, tool development and field data collection. | conducted all data analysis presented in

this chapter.

4.2 BACKGROUND

A number of infectious diseases exhibit marked spatial and temporal trends [202,294-296],
which can manifest as epidemics. Epidemics are defined as “occurrence in a community or
region of cases of an illness [...] clearly in excess of normal expectancy. Epidemicity is thus
relative to usual frequency of the disease in the same area, among the specified population,

at the same season of the year” [61]. Epidemics often result from spread of an infectious
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disease to a non-immune population, and effective surveillance systems are required to
identify these unexpected increases in disease burden; to minimise the onward spread of the
pathogen through diagnosis and treatment of existing infections, and ensure use of
preventative interventions in affected communities. In the highlands of East Africa, malaria
transmission is characterised by epidemics, which occur periodically in this environment of
spatially and temporally heterogeneous transmission. In Ethiopia, historical malaria
epidemics have resulted in very high case fatality rates [215], While recent epidemics have
been localised and associated with low mortality (PMI Ethiopia impact evaluation), reliable
tools for malaria epidemic detection and response are needed. The current detection method
in Ethiopia consists of plotting weekly confirmed malaria cases at health facilities against a
threshold calculated using historical data [230]. However, this approach is limited by a need
for five years’ retrospective data, the requirement for consistent recording of weekly data
against the threshold, and failure to account for year-to-year variations in the weeks of peak
malaria transmission [229]. Delays in data reporting and incomplete or inaccurate data limit
application of the health facility-based epidemic detection system [132-134]. While these
limitations persist, alternative tools or strategies that can bridge these gaps and facilitate

early identification of epidemics are needed.

Syndromic surveillance refers to the use of pre-diagnostic health indicators to allow timely
detection and investigation of potential infectious disease outbreaks [135] as a
supplementary approach to routine public health surveillance, by allowing early identification
of clusters of illness before confirmatory data are available. In addition to use of clinical
(syndrome) data, syndromic surveillance can be expanded to include surrogate non-clinical
data indicating early illness, by mining available data to track possible changes in infectious
diseases in the population. Surrogate data sources include prescription and over-the-counter
drug sales, Internet search terms, social media [149,150,153,154,159-161] and school

absenteeism [17-19,144,145]. The latter is an alternative indicator of population health that
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has been applied to monitor influenza outbreaks in high-income countries, but yet to be fully
explored as an approach for infectious disease surveillance in resource poor settings.
Syndromic surveillance systems piloted in resource poor settings have to date used clinical
signs among patients attending health facilities as their indicators [122,137,138,140,141], but
two examples of school absenteeism being used as early warning of outbreaks of respiratory
and gastrointestinal diseases are available from Cambodia and rural China [146-148]. The key
surveillance studies using school absenteeism for outbreak detection, as well as classic
applications of syndromic surveillance utilising data on clinical morbidities are presented in
Table 4.1, to demonstrate the various settings, indicators, temporal resolution and

complexity of these syndromic surveillance systems.

School absenteeism data may prove valuable for detecting malaria epidemics since primary
school enrolment has increased dramatically in recent years in Ethiopia and other African
settings [162], and school absenteeism is known to increase during malaria epidemics [163].
Febrile illness is an additional syndromic indicator that may be useful for identification of
malaria epidemics. While a large proportion of infections in low transmission settings such as
Ethiopia are of low parasite density and asymptomatic [69-71], it is expected that during an
epidemic symptomatic illness would increase. School absenteeism during a malaria epidemic
may also increase due to children taking over household chores or directly caring for a family

member who has malaria.

The current study was designed to explore the usefulness of a syndromic surveillance system
for detection of unusual increases in malaria at community-level in southern Ethiopia, with a
particular focus on the use of school absenteeism. Absenteeism data were collected through
school and community level systems. In addition, two school-based epidemic detection
systems were developed and piloted at schools during the major malaria transmission

season.
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Table 4.1 - Selected syndromic surveillance systems reported in the literature: the setting, target diseases, indicators, system complexity and outcomes of their application.

Reported studies are those which use school absenteeism as a key indicator, or systems applied in resource-limited settings for epidemic prone diseases including malaria

Setting .Target Indicators Reporting Complexity of Surveillance system findings Ref
disease(s) frequency system
Canada H1N1 influenza Elementary and high Daily analysis Low — schools Absenteeism was well correlated with hospitalisation rates for school [17]
school absenteeism due  of report data when  age children and PCR positive tests for influenza. Peak absenteeism
to influenza-like illness absenteeism, indicator exceeds  preceded peaks in hospitalisations by one week. Sensitivity high since
exceeding the defined reporting if the threshold majority of children with influenza expected to becomeill, and
threshold of 10% of total  threshold absence due to ILI rather than all-cause absenteeism is indicator.
enrolment exceeded Moderate specificity since not all ILI will be due to HIN1 infection.
United HIN1 influenza School absenteeism in Weekly mean  Low —collation of  Weekly school absenteeism peaked concomitantly with existing [18]
Kingdom primary and secondary percentage school % influenza alert systems, and would not have identified pandemic
schools, comparing absenteeism absenteeism data  influenza earlier than other systems. Daily attendance data may have
against telephone health improved timeliness. Sensitivity system high since uses data from
hotline, general multiple sources, includes data from school children as well as general
practitioner sentinel population, syndromic and confirmed indicators. Specificity moderate
network & confirmed to high since includes confirmed influenza data rather than simply
influenza data influenza-like illness.
Japan Influenza School influenza-related  Daily school Low — daily School influenza-related illness can be used to predict outbreaks and [19]
absenteeism, where child influenza- attendance determine when a school should close to limit ongoing spread.
absent with confirmed related routinely recorded Thresholds for influenza-related absenteeism proposed. High
diagnosis from physician  absenteeism and absent sensitivity and specificity due to requirement for physician
rate children require confirmation of reason for absence, and target disease of influenza
doctor’s note rather than HIN1 influenza
China (rural) Respiratory Symptoms reported at Daily input to High — collation Labour-intensive data entry to electronic system. Presentation of six [147,
infections, health clinics, over-the- web-based and analysis of months’ pilot data, no validation of data from surveillance system 148]
gastroenteritis counter drug sales at system data at central against other sources, therefore difficult to determine sensitivity and
pharmacies and primary level specificity. Should have high sensitivity and specificity based upon
school absenteeism combination of specific and non-specific indicators from school-aged

and general population.




Setting _Target Indicators Reporting Complexity of Surveillance system findings Ref
disease(s) frequency system
Madagascar Malaria, Health facility malaria Daily report by Moderate — SMS Ten cases of fever clusters occurred which weren’t detected by the [122]
influenza, case confirmed by RDT, encrypted reports entered to traditional surveillance system. Five outbreaks identified: two dengue,
dengue, fever & respiratory SMS. Weekly database. two influenza and one malaria, indicating high sensitivity of the
diarrhoeal symptoms, fever & two summary Temporal & system. However the comment of authors that increases in self-
disease possible dengue paper report. spatial analysis by  limiting (and low priority) fever may trigger an epidemic alerts
symptoms, diarrhoea syndrome indicates that specificity of the system is low to moderate.
French Dengue Dengue index: Weekly Low — plotting of ~ Dengue index was specific — increasing during what was confirmed to [141]
Guiana percentage of patients generation of  simple indicators  be a dengue epidemic, but showing no strong increase during two
attending the emergency indicators on weekly basis, respiratory infection epidemics. Total emergency department
department who had minimal analysis attendance with thrombocytopenia but malaria negative was also a
thrombocytopenia but specific indicator. System appears both sensitive and specific, correctly
were negative for identifying an epidemic of targeted disease, but correctly
Plasmodium infection differentiating a respiratory infection epidemic.
Pacificisland Measles, Hospitals report total Weekly Moderate — data The system successfully identified an outbreak of diarrhoeal disease [137]
countries dengue, cases for four syndromes: reporting of reported from linked to breakdown of water disinfection, and two outbreaks of
and rubella, acute fever & rash, data to national to WHO influenza. The system alert was timely and allowed fast
territories meningitis, diarrhoea, influenza-like  national level  regional level for  implementation of control measures. Good sensitivity according to the
leptospirosis, illness, prolonged fever analysis syndromic case definitions, but limited to patients attending hospital.
gastroenteritis, Moderate specificity to identify the priority infectious diseases using
influenza, each of the syndromic case definitions.
typhoid,
malaria
India Cholera, Suspected cases (clinical  As clinical Low — doctors Several outbreaks were detected early and interventions applied, the [138]
dysentery, diagnosis) of target cases report cases on most notable was cholera. Leptospirosis and acute dysentery also
malaria, diseases from public and identified simple form to commonly reported. Monthly summary of reported diseases
measles, private health facilities, (daily), using central level. distributed to participating facilities for feedback and updates on the
meningitis, except malaria, where prepared post  Minimal analysis.  surveillance system. Good sensitivity to identify priority diseases using
typhoid fever, slide-confirmation cards clinical case definitions.

and 8 others

required for reporting




Setting _Target Indicators Reporting Complexity of Surveillance system findings Ref
disease(s) frequency system
Cambodia Respiratory School absenteeism Daily SMS Low - daily data Iliness-specific absenteeism identified two peaks in incidence of illness.  [146]
and diarrhoeal (aggregated daily by report of reported by Absenteeism data preceded peaks in health centre attendance by 0.5
diseases schools), compared school schools to central  weeks on average. Cross correlation analysis indicated moderate
against overall health absenteeism level, compared correlations between illness specific absenteeism and reference data.
facility attendance due toillness,  against all cause Sensitivity of illness-specific absenteeism was good, and had moderate
collated at health centre specificity.
weekly level attendance
for analysis
Papua New Influenza, Syndromes relating to Weekly report  Low — health System was more sensitive than the reference system for measles, but  [139]
Guinea cholera, target diseases identified by mobile facilities submit low sensitivity for malaria, due to poor case definition. Data were
typhoid, in patients presentingto  phone, data for analysis more timely than the reference system (mean 2.4 weeks compared to
malaria, health facilities. transcription at provincial or 12 weeks lag). The system had very good sensitivity for indicators of
poliomyelitis, to database national level, and measles, but low sensitivity for indicators of malaria. Specificity of the
meningitis, automatic system was moderate, due to the broad syndromic case definitions.
measles, generation of

dengue

feedback reports
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4.3 METHODS

4.3.1 Study design

The study was conducted in Southern Nations, Nationalities and People’s Regional State
(SNNPRS), Ethiopia and divided into two phases. Phase 1 comprised repeated cross-sectional
school- and household-based surveys at six sites, conducted during the minor transmission
season of 2012, as well as collection of routinely recorded school attendance data from all six
sites and weekly summary of clinical and confirmed malaria cases identified at health
facilities serving the study sites. Phase 2 involved piloting two simple school-based malaria
epidemic detection systems at 20 sites in SNNPRS during the peak transmission season of

2012. A diagram of study design is presented in Figure 4.1.

Figure 4.1 - Study design diagram indicating activities conducted during Phase 1 (school- and
community-based surveys) and Phase 2 (piloting of two school-based syndromic surveillance system).

Health facility and school attendance data were collected throughout Phases 1 and 2
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4.3.2 Phase 1: cross-sectional surveys at school and community

Six “hotspot” woredas (administrative level 3, districts) were chosen purposively as locations
for study sites for Phase 1. The “hotspot” designation is determined by the Regional Health
Bureau, to indicate sites which have relatively high burden of malaria and are at risk of
epidemics. The six woredas were chosen from different zones (administrative level 2) to allow
coverage of different geographical and ecological settings of SNNPRS. One kebele
(administrative level 4, municipalities) was chosen as the study site from each of the six
woredas. Selection criteria for kebeles included presence of a government primary school
with regular attendance of at least 100 children, a functional health post (community-level
health facility offering a basic package of diagnosis and treatment services), an altitude range
of less than 200 metres (calculated using digital elevation model in Geographic Information
System), and accessibility by vehicle during the rainy season. Although the majority of kebeles
in SNNPRS have primary schools and operational health posts, some woredas identified as
“hotspots” for malaria are characterised by a wide range in altitude and poor accessibility.
Location of selected sites is shown in Figure 4.2. Eight repeat school and community surveys
were conducted at approximately ten-day intervals from March to May 2012. Due to lack of
prior data describing likely range of key indicators, no sample size calculation could be
completed; therefore, the number of sites and visits was maximised within the available

budget and expected transmission season.
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Figure 4.2 - Locator maps of Ethiopia (A) and SNNPRS (B), with map of study kebele location (C). Six
sites which were included in the Phase 1 school and community surveys as well as Phase 2 pilot are
indicated by red markers, while the remaining 14 sites participating in Phase 2 pilots only are indicated
by orange markers. Assignment to cluster A (symptom questionnaire) during Phase 2 is indicated by
circular markers, assignment to cluster B (absenteeism estimated from attendance registers) is

indicated by square markers
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The community survey protocol followed Malaria Indicator Survey procedures for mapping
and random selection of 25 households per survey site [104]. Primary sampling units were
defined as primary school catchment area rather than census enumeration area used for MIS.
All six study sites and, therefore, primary sampling units, were chosen purposively. Prior to
commencing surveys, all households within the school catchment area were mapped using a
hand-held global positioning device (eTREX, Garmin International, Kansas USA). Parental
consent for inclusion of children in school surveys was requested during household mapping.
A random number table was used to select 25 households for inclusion in community survey,
with random selection repeated for each of the eight survey iterations. Households were
permitted to be included more than once over the course of the study. Selected households
who refused participation or were absent were replaced with the next household on the

mapping list.

At each household, a simple questionnaire was completed to collect socio-demographic
information from all household members, fever history, school enrolment and attendance
history for children of school age, as well as status of indoor residual spraying of households
with insecticide (IRS), insecticide-treated net (ITN) ownership and use. All individuals aged
older than one month were invited to provide a finger-prick blood sample for preparation of
thick and thin blood films, malaria rapid diagnostic test (RDT, CareStart PfHRP2/panLDH,

Access Bio, Somerset NJ, USA) and collection of blood spots on filter paper.

School surveys followed a standard methodology previously used in Ethiopia and Kenya
[16,297]. Briefly, 100 children (plus ten reserves) were randomly selected from children in
grades two to six present on the survey day, and from whom parental written consent had
been received. Equal numbers of boys and girls were selected. Random selection of children
was repeated at each survey iteration. Children aged over 16 years were excluded. Each child
was interviewed in the local language and a standard questionnaire completed including

basic socio-demographic information, fever history, frequency of school attendance, recent
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absences from school and reason, use of ITN at home and status of IRS. Each child was
requested to provide a single finger-prick blood sample for preparation of multi-species RDT,

thick and thin blood film, and blood spots on filter paper.

In addition to cross sectional surveys, school directors were requested to give permission for
photocopying of their attendance registers at the end of the Phase 1 data collection period.
Registers were requested from all classes of grades two to six. For each class, weekly
absenteeism was calculated as the total child-days absence recorded, divided by product of

total children enrolled and number of days that attendance was recorded by the teacher.

Summary weekly malaria data are routinely collated by health facilities for reporting to the
woreda level, as part of the Integrated Disease Surveillance and Response (IDSR) system on
priority infectious diseases [93]. The study team collected weekly malaria data from health
centres and health posts serving the six study sites at the end of the Phase 1 survey period,
by manually transferring data from routine records onto duplicate forms prepared by the
investigator, or photographing original forms. Health facility data included total suspected
malaria cases, number tested by microscopy (health centre) or RDT (health post) and total

confirmed malaria cases.

4.3.3 Blood film processing, reading and quality control

Blood films were fixed and stained at the local health centre daily during Phase 1 surveys.
First slide reading was conducted at the Adama Malaria Reference Laboratory with the aim to
validate RDT result. Microscopists recorded the presence or absence of asexual or sexual
parasite forms, Plasmodium species and parasite count using standard methods. Slides from
any individual with a positive RDT were read, along with slides from any individual in a
household with an RDT-positive individual, and slides from all individuals in 10% randomly
selected households where all individuals were RDT-negative. A random selection of 10% of

RDT-negative slides from school surveys were also read. A second microscopy reading was
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conducted at the Ethiopian Health and Nutrition Research Institute (EHNRI) in Addis Ababa,
comprising all slides from individuals with positive RDT result, all slides found to be positive
on first microscopy reading, and 10% of all remaining slides previously read. A third reading
was conducted at EHNRI to settle discrepancies from first and second microscopy readings, as

well as confirm conflicting RDT and microscopy results.

4.3.4 Phase 2: piloting of two school-based malaria surveillance systems

Based on findings from Phase 1 and discussions with partners, two surveillance systems were
piloted during the second school semester, from October 2012 to January 2013 (Figure 4.1).
Twenty woredas were purposively chosen for inclusion in Phase 2 activities, using the same
inclusion criteria as during Phase 1. All sites included in Phase 1 were retained for Phase 2,
and a further 14 woredas were selected from within the six zones included in Phase 1 (Figure
4.2). Woredas were assigned to participate in either the cluster A or B pilot without
randomisation, in such a way that an equal number of woredas were in each cluster, and all
woredas within a zone were assigned to the same cluster. This was in order to reduce
confusion between the two pilot methodologies by any zone health office staff supporting
implementation. Two teachers from each school (i.e. school director and one other member
of staff) and a representative from the woreda health office were invited to a one-day
training session for orientation in the pilot study procedures. Separate training days were

held for each cluster.

Cluster A sites focussed on monitoring schoolchildren’s reports of fever, absence from school
for any reason and absence due to illness during the previous week. A short questionnaire
including the three indicators of interest and nine masking symptoms (e.g. headache, cough,
diarrhoea) was completed every Monday, immediately following completion of the routine
attendance register. The teacher usually responsible for recording attendance in each class

interviewed children using the questionnaire. Each child was called in turn to the teacher’s
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desk for the interview, to allow privacy while responding to the symptom questions. The
symptom questionnaire was restricted to grades two to four, since school directors indicated
that higher grades had less time to participate in piloting due to exam preparations.
Interviews were rotated weekly between these three grades to minimise disruption to

normal teaching.

Cluster B sites were requested to use data recorded in their usual attendance registers to
complete a weekly summary across all grades of the proportion absent, with total children

enrolled multiplied by number of days attendance was recorded as the denominator.

At the end of the pilot period, copies of attendance registers were collected from a
convenience sample of schools from both clusters for validation purposes. Weekly health
facility malaria data were also collected from 20 health centres and 20 health posts serving

the Phase 2 study populations.

4.3.5 Data entry and analysis

Questionnaire data from Phase 1 surveys were entered into a customised Microsoft Access
2007 database developed to automatically conduct consistency and range checks, while
microscopy results, health facility and school absenteeism extracted from attendance
registers were entered into Microsoft Excel. All data were merged in Stata 12.0 (Stata
Cooperation, College Station, Texas USA). Household coordinates for Phase 1 sites were
imported into ArcMap 10.0 (Environmental Systems Research Institute Inc., Redlands,
California USA) for display and calculation of Euclidean distance between household and
school (at approximately 100m resolution). Phase 2 data were entered into Excel

spreadsheets and exported to Stata 12.0 for merging and analysis.
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4.3.6 Analysis of Phase 1 data

A wealth index to summarise socio-economic factors was created using principal component
analysis, at household level for community survey data and at individual level for school
survey data [298] (detailed in Appendix 1). Due to a lack of diversity in socio-economic
factors, the wealth index was classified into three categories only for both school and

community survey data.

Mixed effects logistic regression was used to develop multivariate multilevel models
describing risks of non-enrolment in school, as reported by head of household during
community survey, with household-level and site-level random effects. A backward step-wise
method was used to exclude the least significant fixed effects one by one: a likelihood ratio
test was used to re-test excluded variables for inclusion in the final model. The same
modelling strategy was used to generate models of risk factors for the binary RDT result,
generating separate models for data from school- and community-based surveys.
Community-survey multivariate models included household and site as random effects, but
school-survey models included only site as a random effect since it was not possible to link

children sampled in schools to their households.

4.3.7 Analysis of Phase 2 data

Analysis of Phase 2 data focussed upon describing the characteristics of indicators collected
at schools during the pilot. Box plots and logistic regression were used to describe
absenteeism by grade over the study period. To explore dropout levels in these populations,
mean absenteeism was evaluated by time. Accuracy of weekly summary absenteeism
calculated by cluster B sites was determined by comparing teacher-generated summaries

against summaries calculated by the study team using original registers.
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4.3.8 Theoretical framework for the syndromic surveillance system

An information and decision flow diagram is presented in Figure 4.3 to demonstrate the key
processes involved in one of the piloted school-based syndromic surveillance systems (based
on absenteeism calculated from school attendance registers). Cross-sectional surveys
conducted in the community and school during Phase 1 were designed to assess the level of
enrolment in school and factors associated with enrolment. Blood samples were collected
from sampled populations to explore changes in malaria burden over the transmission
season, and individuals were asked to report recent febrile illness. These indicators were also
extracted from routine health facility records, but representing individuals attending health
facilities, rather than the random sample of the population assessed in surveys. Reasons for
short-term absence were collected during surveys, and attendance registers collected to
assess levels of absenteeism and dropout. The syndromic surveillance system piloted in Phase
2 used the weekly absenteeism rate calculated from attendance registers, to prompt a
decision by school directors if there was an unexpected increase in absenteeism, and
whether to alert the health extension worker. This alert feeds into the health extension
worker activities, and is compared to the routine surveillance data (clinical data from patients
attending health post). The health extension worker can therefore decide to launch an
epidemic response as a result of their routine data, intelligence from the school, or a

combination of both.
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Figure 4.3 - Information and decision flow chart, describing the use of a school-based syndromic surveillance system to identify malaria
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4.3.9 Ethical considerations

Approval for this study was granted by the London School of Hygiene and Tropical Medicine
ethical committee (6003) and by the SNNPRS Health Research Ethics Review committee

(P026-19/6157).

Written, informed consent for participation of children in school surveys was collected from
parents during the household mapping exercise, prior to the first school survey. Parents were
free to withdraw consent at any time by informing the school director. Children without
written consent were not eligible for selection in school surveys. Children provided written
assent for participation, and were informed of the study procedures prior to random
selection, as well as their right to withdraw at any point. The head of household provided
written consent for inclusion of household members in community survey at the point of data
collection. Verbal assent was sought from all household members before participation.
Where households were selected more than once, written consent was requested at each

survey.

A health extension worker was present throughout school and community surveys to assist
the survey team. Any individual with positive RDT was provided with treatment by health
extension worker on the same day, according to national guidelines (i.e. artemether-
lumefantrine for P. falciparum or mixed infections and chloroquine for P. vivax mono-

infection).
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4.4 RESULTS

4.4.1 Population participating in school- and community-based surveys

Each of the eight repeat community surveys at all six sites included 25 households, with 140
households being randomly selected for inclusion in more than one survey. Communities had
mean 664 households within the school catchment area (range by site 390-831). RDT results
were available from 4117 individuals participating in community surveys, aged from two
months to 101 years (mean 20 years). Of the 5238 children participating in school surveys,
data from 5189 children aged from seven to 16 years were retained for further analysis.
"School-aged" in the current study was defined as aged seven to 16, since national policy is
for children to enrol in school at seven years of age [299]. RDT results were available from

5145 of these children sampled during school surveys.

The prevalence of Plasmodium infection by RDT across all sites and survey iterations was
2.0% (range across site and iteration 0-12.3%) for school surveys and 2.6% (0-8.9%) for
community surveys. Of the 104 RDT-positive samples from school surveys, slides were
missing or unreadable from three individuals, 35 (34.7%) were positive by microscopy (15 P.
falciparum and 20 P. vivax). In community surveys, slides were available from 84 of the 106
RDT-positive individuals, 32 (38.1%) of which were positive by microscopy (7 P. falciparum
and 25 P. vivax). Of 501 slides read for validation purposes from RDT-negative individuals
across both school- and community-based surveys, three were Plasmodium-positive by
microscopy. The range of RDT positivity across school survey iterations and sites was 0-12.3%,
and 0-8.9% for community surveys. At any single site, the maximum difference in RDT
prevalence over all survey visits was 7.6%. A summary of key indicators by survey type and
site, as well as from health facilities during the Phase 1 period are presented in Table 4.2.
Trends in RDT prevalence in surveys and total confirmed malaria cases confirmed at health

centre over Phase 1 at each study site are presented in Figure 4.4.
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Table 4.2 - Description of key indicators collected during Phase 1 school- and community-based surveys

at six sites. The number of individuals providing blood samples across all visits to each site, and range

of RDT prevalence by survey iteration at each site are shown, to demonstrate changes in malaria

infection in each community over the study period. In addition, the range in total clinical malaria

(febrile illness), confirmed malaria and test positivity rate by week at each health centre and health

post are presented for each study site

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6
School surveys
N children bled 855 861 820 868 872 869
% RDT positive range
acrosssurvey 55-12.3 0.0-1.0 0.9-4.4 0.9-4.6 0.0-3.7 0.0-0.9
iterations
Community surveys
N bled (all ages) 575 718 823 675 656 673
% RDT positive range
across survey 1.3-8.9 0.0-3.8 23-7.6 0.0-6.4 0.0-3.8 0.0-2.4
iterations
Health post
N weeks data reported 12 9 12 11 0 12
n RDT positive range 5-12 4-26 0-27 1-18 - 0-21
Health centre one”
N weeks data reported 12 11 8 11 11 11
n febrile range  14-64 280-438 165-284 30-83 28-64 112 - 212
n malaria range 8-23 77 - 319 105-195 10-43 1-41 6-24
% test positivity range 19.6-100 92.9-988 54.2-68.7 379-75.0 19-68.2 3.3-15.2
Health centre two®
N weeks data reported 0 12 0 12 0 12
n febrile range - 348 647 - 30-64 - 54 -174
n malaria range - 210-335 - 1-52 - 3-28
% test positivity range - 444 -60.3 - 3.0-100 - 3.0-24.1
School attendance registers
N weeks data reported 12 12 10 12 11 12
n child-days attendance
B 247-3598 334-1634 918-3130 1430-3190 168-2876 1560 -2951
%absentecismrange ;) o g3, 434.77.9 69.5-92.4 659-86.1 67.7-82.2 60.7-82.5

across school

" Health centre one is the health centre closest to the study site

® Health centre two is a larger health centre in the woreda town, also serving the study area
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Figure 4.4 - Phase 1 community survey (solid line) and school survey (dashed line) prevalence of RDT

positivity at each survey iteration. Dotted lines indicate total confirmed malaria cases identified at the

local health centre by routine passive surveillance, plotted against secondary y-axis. Individual graphs

are plotted for each Phase 1 study site.
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In Figure 4.4, the lack of variation in crude total malaria cases confirmed at health centres

over the Phase 1 period can be seen at sites 1, 4, 5 and 6. Sites 2 and 3 had higher burden of

malaria reported from health centres, but fluctuations in burden appeared to be random

noise rather than the expected seasonal transmission peak. Prevalence of infection by RDT

(any Plasmodium species) from school- and community-based surveys similarly showed small

fluctuations between survey iterations.
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4.4.2 Reported primary school enrolment of school-aged children

Overall, 32.7% of the population living in sampled households were of school-age (7-16
years). Of all school-age children registered during community surveys, 54.0% (range by site
42-62%) were reported by their head of household to be enrolled at the local primary school.
While it is possible that some children are enrolled at a different school, this is expected to be
very unlikely since the survey was conducted in the target primary school catchment area,
therefore even if another primary school exists in the kebele, the closest school is the target
school for the study. Furthermore, there is no culture of private or boarding school
attendance in rural Ethiopia, therefore the majority of children who attend school will do so
at the closest primary school to their home. Full description of the school-aged population
and reported enrolment of school-aged children in school is presented in Table 4.3. Factors
associated with non-enrolment of school-aged children were investigated to assess any
commonalities among the school-aged children who would not be captured by school-based

malaria surveillance.
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Table 4.3 - Description of school-aged population by site, and reported enrolment in primary school by
health of household from community-based surveys in Phase 1. Factors which may influence likelihood
of school enrolment are also described at each of the survey sites. Number in brackets are 95%

confidence intervals unless otherwise stated.

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

Total unique households

. . 182 167 175 167 185 175
interviewed

Total unique children
7-16 years in 328 267 397 269 256 277
interviewed households

4.91 5.29 6.59 5.11 4.89 5.19

Mean household size ) ¢/ "s 18) (4.99,5.59) (6.28,6.90) (4.58,520) (4.58,520) (4.89,5.49)

Mean number children 1.80 1.58 2.26 1.59 1.38 1.54
7-16 in household (1.58,2.01) (1.39,1.77) (2.01,2.50) (1.41,1.78) (1.19,1.56) (1.37,1.73)
% SAC reported enrolled 59.6 61.7 54.9 60.2 46.3 41.7
in school (54.1, 65.0) (55.6,67.6) (49.9,59.9) (54.0,66.1) (40.0,52.6) (35.8,47.8)
Median (range) wealth -0.05 -0.94 -0.94 0.08 -0.94 -0.94
index (-1.48,6.97) (-1.48,1.95) (-1.48,5.09) (-0.94,2.98) (-1.48,2.98) (-1.48,2.98)

Median (range) distance
of household from
school in metres

0.90 1.06 1.20 1.12 0.90 1.74
(0.00,2.35) (0.11,2.45) (0.11,2.57) (0.11,2.99) (0.00,2.27) (0.16,3.24)

% household heads with 40.1 28.1 38.2 42.2 60.7 79.3
no formal education (32.9,47.6) (21.5,35.6) (30.9,45.8) (34.6,50.1) (53.2,67.8) (72.5,85.1)

SAC: school-aged children
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From multivariate modelling, key risk factors for non-enrolment of school-aged children in
school were the distance of the household from school, and the number of children of school
age in the household (Table 4.4). Odds of a child not being enrolled in school were lower in
the least poor and median wealth households compared to the poorest households. Odds of
enrolment also varied with education level of the head of household, with children from
households where the head had attended any education having higher odds of enrolment

than those from households headed by an individual with none.

Table 4.4 - Multivariate model of risk factors for non-enrolment of school-age children (as reported by
head of household during community survey). Fixed effects are presented, the multilevel model
included random effects at household- and study-site level. Data were available from 1794 unique

children and total 908 households, sampled from six sites in SNNPRS in 2012.

Odds ratio 95% confidence interval P
Age (increasing) 0.91 0.88, 0.95 <0.001
E;‘S;:E;Ic: children 7-16 years in 1.20 1.08,1.33 <0.001
Distance from school in km 1.57 1.30, 1.89 <0.001
Household wealth
Poorest 1 - -
Median 0.73 0.49, 1.10 0.132
Least poor 0.64 0.49,0.84 0.001
Parental education
None 1 - -
Primary incomplete 0.66 0.51,0.86 0.002
Primary complete or higher 0.64 0.42,0.96 0.030
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4.4.3 Child-reported reasons for absence from school

During school surveys, children were asked their frequency of usual school attendance, if
they had been absent from school in the previous two weeks and the reason for absence
(Table 4.5). Across all sites, 94% of children reported usually attending school five days per
week, indicating that when children are enrolled they do routinely attend. Of all reported
absences by children, 28% were due to illness, while 67% of absences were in order to assist
in the home or with farming activities. Variations by site were seen, with two sites reporting
the majority of absences being due to illness. Where children reported absence from school
due to illness, fever was the most common symptom (88%), however only 50% of those who
reported fever as a reason for absence from school attended a health facility. The same
questions were included in community surveys for children reportedly enrolled at school,
with the majority of those enrolled attending every day (94%). Due to small numbers of
children reportedly enrolled and absent from school in the previous two weeks who were

interviewed in community survey, it was not possible to assess reasons for absence in-depth.
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Table 4.5 - Description of frequency of usual school attendance and reasons for recent absence from

school, as reported during school- and community-based surveys, by Phase 1 study site

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Total

Community survey

Total unique children reported

. 195 163 218 162 119 115 972
enrolled in school

% report usually attend 5

100.0 95.1 88.3 98.2 92.4 94.8 93.7
days/week

% report absence in previous 2

1.6 3.7 17.5 13.6 6.8 3.5 8.3
weeks

Reason for absence among those
reporting absence in previous 2
weeks

Unwell 66.7 0.0 22.2 72.7 0.0 0.0 34.7
Helping in the home or fields 333 333 36.1 9.1 100.0 100.0 373

Working elsewhere 0.0 333 2.8 4.6 0.0 0.0 4.0
Other’ 0.0 333 38.9 13.6 0.0 0.0 24.0
School survey
Total children interviewed 859 866 846 870 871 868 5180

% report usually attend 5

98.6 92.7 97.2 99.8 96.7 77.0 93.6
days/week

% report absence in previous 2

5.0 5.0 9.4 11.0 3.7 25.3 9.9
weeks

Reason for absence among those
reporting absence in previous 2
weeks

Unwell  62.8 65.1 34.2 30.2 31.3 11.0 28.3

Helping in the home or fields 27.9 32.6 58.2 57.3 68.8 88.6 67.0
Working elsewhere 0.0 2.3 0 7.3 0.0 0.0 1.6

Other’ 9.3 0.0 7.6 5.2 0.0 0.4 31

% of children absent due to

. . 80.8 82.1 88.9 83.3 80.0 83.3 83.5
iliness reporting fever

'Other reasons for absence from school (reported in community survey) included food shortage, to

visit the market, and absence of teachers

’Other reasons for absence from school (reported in school survey) included lack of school materials,

absence of teachers, travel, and menstruation.
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4.4.4 Risk factors for Plasmodium infection during cross-sectional surveys

Considering the lower than expected school enrolment level, supplementary analysis was
conducted to explore the risk factors for Plasmodium infection, and whether there are
common risk factors for non-enrolment and malaria. Common risk factors would reduce the
sensitivity of the syndromic surveillance system, if a large proportion of individuals at highest
risk of malaria were not likely to be enrolled in school. Insufficient infections (29 among 1026
school-aged children tested) were found in community surveys to conduct stratified analysis
to explore whether risks of malaria were similar between enrolled and non-enrolled school-

aged children.

Univariate analysis indicated that reported fever during the previous two weeks and on the
day of the survey, sex and household wealth were associated with RDT positivity in school
surveys. The minimal multivariate model retained sex, fever in the previous two weeks and
household wealth, with females having lower odds of RDT positivity, and recent fever
associated with much higher odds of RDT positivity (odds ratio, OR, of 3.21, 95% confidence
interval 1.92, 5.34). Unexpectedly, children from households with higher levels of wealth had

higher odds of RDT positivity than children from the poorest households (Appendix 2).

Univariate analysis of community survey data indicated that age, previous fever, ITN use on
previous night and household wealth were associated with RDT positivity. The minimal
multivariate model for community survey data, including random effects at household and
study site level retained only age and ITN use, with odds of RDT positivity declining with age
(OR=0.87, 95% Cl 0.74, 1.02) and declining with reported use of an ITN on the previous night
(OR=0.15, 95% CI 0.03, 0.88). Full results of univariate and multivariate modelling of
Plasmodium infection determined in community- and school-based surveys are listed in

Appendix 2.
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4.4.5 Phase 2 surveillance system pilot

Nine of the 10 cluster A schools submitted weekly summaries of the proportion of children
reporting fever, absence from school, and absence due to illness during the previous week.
Schools collected the weekly indicators for a mean 11 weeks (range 6-14), overlapping with
the peak transmission season from October to December. On average 68 children were
interviewed each week (range 16-170). All ten of the cluster B schools submitted weekly
estimates of absenteeism, calculated by summarising absent sessions recorded in attendance
registers. Schools reported a mean 12 weeks of data (range 11-13). Schools summarised
attendance for an average of 508 children each week (range 118 to 914). In addition to the
indicators collected from cluster A and B sites, available attendance registers were collected
from a convenience sample of seven schools (five from cluster A and two from cluster B) for

comparison and validation of indicators.

4.4.6 Absenteeism and drop-out recorded by school attendance registers

At most schools, summary rates of absenteeism calculated from attendance registers appear
similar between classes. There was no evidence for a statistical difference in absenteeism
across sites when comparing all grades individually (all p>0.70) or when grade was used as a

proxy for age and assessed as a continuous linear variable (p=0.84).

Changes in proportion of enrolled children who are absent from school are expected to
increase over the course of the semester as a result of drop-out. Strong evidence for an
increase in average weekly absenteeism was found when analysing grade total absenteeism
and allowing for clustering by school (p=0.008). Absenteeism fluctuated on a weekly basis

and varied by school, but showed an overall increase of 10% during the study period.

Weekly summary attendance recorded at cluster B schools was validated at two sites by
comparing teachers' calculated absenteeism against original attendance registers (Figure 4.4).

One school showed good agreement between teacher and study team calculated
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absenteeism. However absenteeism was consistently underestimated at the second school,
likely as a result of teachers not counting absences by children who were judged to have
dropped out. For any future study, it is essential that the strategy for inclusion or exclusion of

children who appear to have dropped out be clarified.

Figure 4.5 - Scatterplots of weekly absenteeism recorded by school director against absenteeism
calculated by study investigators using attendance registers, at two sites in cluster B, with line of unity

(solid) and best fit line (dashed)
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4.4.7 Do syndromic surveillance indicators from schools correlate with health facility

malaria trends?

Testing of the syndromic surveillance system was hampered by the lack of strong seasonal
increase in malaria cases seen at the study sites during both Phases 1 (Figure 4.6) and 2
(Figure 4.7). Health facility data from all sites demonstrated weekly fluctuations in number of

cases but no clear peak in transmission and no epidemic situation.
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Figure 4.6 - Phase 1 weekly proportion of children absent from school, calculated from school
attendance register (solid line, primary y-axis) and total confirmed malaria infections identified at the
local health centre by routine passive surveillance (dashed line, secondary y-axis). Individual graphs are

plotted for each of the six Phase 1 study sites.
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Figure 4.7 - Phase 2 weekly proportion of children absent from school, calculated by school staff from
attendance registers (solid line, primary y-axis) and total confirmed malaria infections identified at the
local health centre by routine passive surveillance (dotted line, secondary y-axis). Individual graphs are
presented for each for the nine Phase 2 study sites in cluster B which reported data (one school failed

to collect or report data).
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Correlations between indicators collected in schools and health facility data were examined,
but no strong correlations were seen between confirmed malaria at health facilities and the
majority of the piloted indicators (child-reported fever, reported recent absence from school,
absence from school due to illness, or teacher-summarised weekly absenteeism). There was
evidence for an association between the proportion of child-days absent by week extracted
from attendance registers collected for validation purposes and health facility total positive
cases (p=0.002) or test positivity rate (p=0.028). No evidence was found for an association
between confirmed malaria at health facilities and teacher-summarised absenteeism from

cluster B sites (p=0.197).
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This difference in association with health facility data using absenteeism data from different
sources may be a result of differences in malaria transmission levels between sites, with
different locations contributing data to the attendance registers collected for validation
purposes from both clusters A and B, and the teacher-summarised data from cluster B sites

only.

4.5 DISCUSSION

This study was the first application of a syndromic surveillance system based on school
absenteeism to the context of malaria epidemic early warning in a resource-poor setting. The
study was conducted in two phases: first exploring factors associated with enrolment of
children in school, reasons for school absenteeism and risk factors for Plasmodium infection
assessed by RDT, then piloting two school-based syndromic surveillance systems over the
course of one semester and transmission season. Enrolment in school was lower than
expected from available national statistics, and linked to a number of factors including
household wealth, number of school-aged children in the household, distance of household
from school and whether the head of household attended school. However, none of these
factors were found to be associated with Plasmodium infection except wealth, which had an
association in opposite directions for the two outcomes. Therefore, we hypothesise that non-
enrolled children do not have different malaria risks compared to those who are enrolled.
Levels of weekly absenteeism varied by site, but were consistent across grades within each
site, as well as increasing over time as a result of drop out. During both the first and second
phases of the study, no seasonal peaks in malaria were observed from either the health
facility data or from RDT positivity in sampled individuals over the Phase 1 survey iterations.
As a result, the majority of absences from school were reported to be not due to illness, and

it was not possible to rigorously assess the reliability of school absenteeism as an indicator of
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increasing malaria burden within communities. Findings of a qualitative evaluation of the
school-based syndromic surveillance system, resulting from in-depth interviews with school
staff, health extension workers and woreda health office staff will be presented in a
forthcoming publication (Okello G, Kefyalew T, Batisso E, Mesele T, Ashton R, Brooker S:

Teacher and health worker perceptions of a school-based syndromic surveillance system).

4.5.1 School enrolment in SNNPR

The normal age for first entry to primary education in SNNPRS is seven years, which was
corroborated by our findings on reported school enrolment during community survey.
National level data indicate that the net enrolment (i.e. ratio of primary school aged children
who are enrolled in primary school to the total population of the official primary school age)
in Ethiopia was 79% in 2012 [162], but enrolment was found to vary from 42% to 62% across
sites, substantially lower than expected. Previous studies in Ethiopia have shown primary
school enrolment to be more likely in female-headed households, and positively associated
with educational level of the head of household, as well as household wealth [300]. Boys
have been shown to be more likely to be enrolled than girls, and presence of younger
children in the household has a negative impact on likely enrolment in school of older
children [300]. Our data indicate that enrolment is associated with higher household wealth,
the head of household having attended formal education (including incomplete primary
education) and age of child. We found that the odds of enrolment were reduced with
increasing number of school-aged children in the household, and increasing distance

between household and school.

It was not possible to conduct a stratified analysis from the available community survey data
to determine whether those children who are not enrolled in school have any increased risk
of malaria, due to small number of Plasmodium infections identified during the course of the

Phase 1 surveys. Multivariate modelling indicated that odds of RDT positivity in the
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community survey decreased with increasing age, and ITN use during the previous night was
strongly protective. In the school surveys, RDT positivity was associated with fever during the
previous two weeks and household wealth (lower odds of infection in the poorest
households). Girls were found to have lower odds of infection than boys. Therefore, there is
potential for an overestimate of community malaria burden when using school-based
platforms, considering the increased likelihood of enrolment for children from the richest
households. There were no associations between distance of household from the school and
odds of malaria, although it is acknowledged that microheterogeneity in malaria transmission
may exist within a community [47,265,301], which is more complex than straight-line
distance of household from school. Considering that universal enrolment and attendance at
primary school has not yet been achieved in Ethiopia, it is possible that the sensitivity of a
school-based syndromic surveillance system will be reduced, since the whole community will
not be captured at a school-level platform. It will be necessary to further explore whether
there are common socio-economic, age, gender, or geographical risk factors for enrolment or

attendance at primary school and malaria risk.

4.,5.2 School absenteeism

Absence in schools can be classified as temporary or permanent (i.e. dropout). The most
common reasons reported in the current study for temporary absence from school were to
assist with domestic chores in the home or on farmland, but the second most common
reason for absence from school was illness. Additional, infrequently reported reasons
included economic activities, attending market and lack of school materials (books, uniform
etc). Food insecurity has also been shown to be a determinant of school absenteeism and
attainment [302]. We expect that these reported reasons for absence from school are
accurate, since ad hoc discussion with school staff during the survey period yielded similar
feedback that children miss school to support their family with farming or domestic chores,

and these reasons for absence are seasonal (higher during harvest and planting seasons. The
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shift system which operates in many rural primary schools is recommended as an effective
way to allow children to balance their schooling with work responsibilities of farming, herding
or domestic chores [303]. Nevertheless, it remains likely that during periods of peak
agricultural activity, children may be increasingly absent from school to support farming

activities.

While absence due to illness may be an intuitively more sensitive indicator for malaria
surveillance, all-cause absenteeism is a more reliable indicator to collect on a daily basis.
When a child is absent it is not always possible to know the reason for that absence unless a
sibling is present in the same class. It is not feasible on the first day of absence from school to
either trace a sibling or neighbour who may know the reason for a child’s absence, or to
contact a parent or guardian at home. Therefore absence due to illness would likely have
worse temporal resolution than all-cause absence, due to the need for classification of reason
for absence when the child returns to school. It is not currently routine practice for schools in
SNNPRS to record the reason for absence, although where it is known it may be noted in the
attendance register. While teachers are expected to collect attendance data on a regular
basis, levels of supervision of this activity by school director was variable, and consequently

the level of completeness of attendance registered between classes and schools.

The current study collected school attendance data from different sources: from school
attendance registers, reported by head of household during community surveys, reported by
school-attending children during school surveys, and reported by school-attending children to
their teacher as part of the syndromic surveillance pilot. Weekly absenteeism (as calculated
from attendance registers) was found to be similar across grades, and absenteeism could
therefore be monitored from any grade as part of future implementation of the surveillance
system. Some differences were observed when comparing weekly absenteeism calculated by
school staff and study team from attendance registers. This is likely due to individuals’

interpretations of whether children who have dropped out from school should be counted as
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absent or ignored. Excluding data from children who have dropped out is problematic, unless
schools adhere to a common definition of how long a child must be continually absent for to

be designated as permanent drop-out.

The Ministry of Education set a target drop-out rate for the academic year 2010/11 of 8%, but
actual drop out rate was 13% [299]. At participating study sites, drop out was approximately
10% over the semester. Schools participating in the current study reported conducting
community sensitisation before the start of the semester to increase enrolment, but also
carrying out home visits when a child was absent from school for extended periods to try and
understand why the child was persistently absent, to prevent them dropping out. While
reasons for drop out were not specifically investigated in the current study, drop out can
either be due to the long term challenges which also influence likelihood of enrolment, as
well as by economic shocks (e.g. drought, crop failures, death and iliness of family members),
with these shocks influencing the proportion of a child's time which is dedicated to unpaid
activities in the home or paid activities elsewhere [299]. Older children have been shown to
be more likely to drop out of school in Ethiopia, and risk of drop out also increases with the

number of children under five years in the household [304].

Syndromic surveillance systems in high-income countries generally use electronic data
capture or web-based systems to collate reported and existing data for analysis
[17,18,149,150]. Low- and middle-income countries are increasingly adopting such
technology. A surveillance system for gastrointestinal and respiratory infectious diseases in
China required daily submission of data using a web-based system [148]; while systems in
Cambodia and India have used SMS reporting of data to a central level, where it is entered to
a database, analysed and responses issued [138,146]. The surveillance system piloted in
Ethiopia did make use of existing data, school attendance registers, but rather than develop a
more complex system of data reporting to a central level for analysis and then response, the

aim was to simply enable an alert to be passed from school to community health worker of
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possible increases in illness in the community. This information would then act as a prompt
for the health extension worker to assess their recent case data, or to conduct active
surveillance in targeted areas of the kebele. While this system has low specificity, it builds
upon existing links at community level between school and health extension workers,
through the kebele committee’s weekly meetings to discuss local issues. This low-tech, simple
approach may prove more sustainable in the long-term than any surveillance system
requiring data to be reported upwards for analysis and feedback. It also allows flexibility to
respond to rumours and local opinion as well as the defined indicators. Health extension
workers routinely spend a proportion of their time making home visits in the kebele, and it is
credible that intelligence from the syndromic surveillance system may allow targeting of

home visits at the sub-kebele level to areas of highest absenteeism.

4.5.3 Benefits and drawbacks of the piloted system

Of the two piloted syndromic surveillance systems, monitoring school absenteeism is a less
time-intensive activity than weekly completion of symptom questionnaires by school-
attending children, therefore, absenteeism is a more feasible indicator for long-term
implementation. Absenteeism is routinely recorded by primary schools in Ethiopia, and
generation of weekly summary absenteeism is a fast and simple addition to existing
responsibilities. However it was apparent during the study implementation that schools do
not have any standard procedures for recording absence: symbols for absent and present,
follow-up of reasons for absence, defining period of absence for drop out, and summary data
are not routinely generated. Additionally, class teachers usually keep their registers in their
home, consequently, senior staff are often not able to not validate registers. For any future
school absenteeism-based surveillance system, it is recommended to roll-out standard
register formats and symbols for recording pupils’ daily presence and absence, as well as

regular checking and feedback on attendance register completion by senior school staff.
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IM

Differences in “normal” absenteeism rates between schools would likely remain due to
systematic differences in populations across epidemic-prone areas. The usefulness of the
system would be dependent on motivation of the school director and teachers to collect and
assess absenteeism data, and report to health extension workers when increases occur. No
thresholds would be assigned to schools, but it would be the responsibility of the school

director to determine when absenteeism becomes unusual and to alert the health extension

workers.

4.5.4 Future implications

In the current study, the lack of any malaria epidemic or strong seasonal peak in malaria
transmission during the data collection period at the study sites resulted in inconclusive
findings, preventing evaluation of the performance of a school-based syndromic surveillance

system for malaria epidemic detection.

The key limitations of a surveillance system using school absenteeism are drop out during the
academic year, and low rates of enrolment. In a resource-poor context, drop out is unlikely to
be eliminated in the near future. Any system using school absenteeism should account for
gradual increases in absenteeism over the semester. Implementing a system without fixed

III

thresholds for alert generation, and relying on subjective identification of “unusual” increases
by school staff is one approach to avoid bias due to drop out. Low school enrolment is a
major limitation to the sensitivity of the piloted surveillance system, and further investigation
is required to determine if individuals at higher risk of malaria, and those who may be the
initial index cases of malaria in a community, are likely to be those families who are not able
to enrol their children in school. However, it is expected that in the context of a malaria

epidemic, the school-based system would have sufficient sensitivity to identify large increases

in illness, and resultant school absenteeism in the community.
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CHAPTER 5. COMPARATIVE EVALUATION OF STRATEGIES

FOR MALARIA SURVEILLANCE AND MONITORING: HOW

COMPLEMENTARY ARE CROSS-SECTIONAL SURVEYS,

PREDICTIVE MODELS AND ROUTINE HEALTH FACILITY

DATA?

5.1 OVERVIEW

Previous chapters have explored the use of cross-sectional school- and community-based
surveys to describe the endemicity of malaria, as well as investigating alternative epidemic
detection systems. While many tools for surveillance and monitoring of malaria are available,
there have been few attempts to compare the indicators they generate and their usefulness
for malaria control programmes. This chapter presents a comparative analysis of survey data
using traditional and new malaria indicators with estimates of incidence using routinely

recorded health facility data, and modelling estimates of malaria endemicity.

This chapter has been prepared for submission to the Malaria Journal, but at the date of
thesis submission has not been submitted to the journal or subject to peer review. | led the
conceptualisation and analysis presented in this chapter. Input to the analysis strategy and

development of the scoring framework was provided by Simon Brooker.

5.2 BACKGROUND

In settings with low and unstable malaria transmission, data collected as part of monitoring,
evaluation and surveillance activities have two key purposes. First is a need to monitor the

implementation of malaria control activities and evaluate their impact on malaria burden
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within the population, as well as their value for money. This process is critical to allow
evidence-based design of intervention packages and targeting of resources. Evaluating
changes in malaria transmission can be particularly challenging in settings with low and
unstable malaria transmission, consequently, tools used by control programmes for this
purpose must be carefully considered to ensure they are sufficiently sensitive and
representative of the true extent of transmission [267]. The second key purpose to collect
these data is for surveillance: the continuous collection and analysis of data in order to
generate timely alerts and responses to increases in malaria that may develop into epidemics.
The most important feature of surveillance data is its temporal resolution, since reliable data
must be generated, analysed and acted upon within a sufficiently narrow timeframe to

enable nascent epidemics to be identified.

Various tools are used for monitoring, evaluation and surveillance, yet in a context of
declining malaria transmission and limited resources, there is a need to reconsider the
relative merits and capacity of different tools and indicators to meet the needs of a malaria
control programme. National malaria control programmes must therefore tailor available
tools and balance their investments in different monitoring, evaluation and surveillance

strategies.

As | highlight in Chapter 1, the specific challenges of malariometric surveys in low
transmission settings were first emphasized during the Global Malaria Eradication
Programme [305], primarily the reduced sensitivity of malariometric indices to measure
changes in transmission at relatively low levels. Incorporating malariometric indicators into
large-scale population surveys such as the Malaria Indicator Survey (MIS) continues to be
popular and widely used across a range of transmission settings [104], but as shown in
Chapter 3, parasitological surveys may not capture the small scale spatial heterogeneity in
infection in low transmission surveys. As described in Chapter 4, inclusion of serological

indicators of exposure to malaria and spatial modelling of data are way to adapt
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malariometric surveys, which can overcome some limitations of parasitological surveys in low
transmissions settings. Molecular diagnostic tools are also valuable in such parasitological
surveys due to their improved sensitivity to detect Plasmodium parasites [193,194].
Definitions of malaria elimination strategies and indicators that can robustly measure malaria
endemicity remain a subject of ongoing research and debate [9,306,307], and it is likely that a
combination of malariometric surveys and surveillance systems are needed. Key to effective
surveillance systems is timeliness of data reporting and responsiveness to these data,
particularly in areas vulnerable to epidemics. Chapter 4 presented a syndromic surveillance
system using school attendance as a surrogate indicator of malaria burden within a
community, to explore the utility of syndromic surveillance to complement data collection
and reporting at health posts, particularly to support timely identification of malaria
epidemics. Other innovations piloted elsewhere to explore improved surveillance and
monitoring strategies include a “rolling” MIS at district-level [107], and the use of sentinel

health facilities to generate gold standard surveillance data [308].

The aim of this chapter is to review the main malaria monitoring and surveillance approaches,
and to apply a set of performance parameters to evaluate the suitability of these monitoring
or surveillance platforms and indicators in a setting of low and unstable malaria transmission.
| then compare data collected by a variety of monitoring and surveillance methods to
describe Plasmodium infection and exposure levels in Oromia Regional State, and describe
the correlation between these estimates of malaria burden at spatially congruent locations.
Finally, | provide recommendations as to the most appropriate malaria surveillance tools for

future implementation in settings such as Ethiopia.
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5.3 METHODS

5.3.1 Data sources

This chapter utilizes multiple data sources that collect data on a variety of malariometric
indicators from cross-sectional surveys, passively reported malaria cases at health facilities

and statistical modelling predictions. A summary of the data used is provided in Table 5.1.

5.3.1.1 Routine health facility data

Monthly malaria outpatient data from all public health facilities from health post to referral
hospital were requested from woreda health offices in Oromia Regional State, for the period
from June 2006 to January 2011. Health facilities routinely record the number of clinical
(suspected) malaria patients and number tested and confirmed by parasitological diagnosis,
including breakdown by species. In addition, the total outpatient attendance was requested
from all health facilities as a denominator for all-cause health service access over time. Data
were entered into an EpiData template (The EpiData Association, Odense, Denmark), which
included range and logic checks to reduce potential for entry errors. Data were exported into

Stata 12.0 (Stata Corporation, College Station, TX, USA) for cleaning and analysis.

Monthly data were converted from Ethiopian calendar to Gregorian calendar, approximating
the month of Tir to January. Data reported for Pagume, the 13" month of the Ethiopian
calendar, have been included in totals for the prior month (equivalent to August). New
woredas formed after the 2007 national census are included under their former woreda
boundaries [234]. Missing data were estimated by linear interpolation for instances where
fewer than three months’ data were missing (4.8% of all data). Health facilities with large
guantities of missing data or significant inconsistencies and logic errors were excluded from
the dataset (4.1% of all health facilities where any data were received). Health facility data

were pooled to woreda-level annual data.
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Woreda-level population estimates were extracted from the 2007 census [234], and reported
annual population growth rate in Oromia of 2.9% used to estimate woreda populations in
2008, 2009 and 2010. Annual population incidence for all ages was estimated by woreda for

2007, 2008, 2009 and 2010.

5.3.1.2 School-based survey data

A large cross-sectional survey was conducted at 197 government primary schools in Oromia
Regional State in 2009. A two-stage sampling design was used, selecting schools using
probability proportional to size, and then randomly selecting a fixed number of children (100
plus ten reserves) from each school. Full details of school selection and sample size
calculations are presented in Chapter 2. From each school, equal proportions of boys and girls
were randomly selected from all present in grades two to six on the survey day. Children
provided a single finger-prick blood sample for preparation of a thick and thin blood film,
haemoglobin measurement (HemoCue Ltd, Angelholm, Sweden) and collection of blood spots
on filter paper (Whatman 3MM, Whatman, Maidstone, UK). School location was recorded
using handheld global positioning satellite receiver (eTREX, Garmin International, KS, USA).
Data used from these school-based surveys in the current analysis was the prevalence of

Plasmodium infection by site, including speciation, as determined by microscopy.

5.3.1.3 Serological indicators of exposure to malaria

Dried blood spots collected from school surveys in 2009 were used for subsequent serological
analysis by enzyme-linked immunosorbent assay (ELISA) to investigate the population
exposure to malaria. Schools for serological analysis were chosen purposively from 197
surveyed: 20 schools with highest prevalence of infection by microscopy, 20 schools with
highest anaemia levels, and random selection of remaining schools. Full details of serological

methods and results by antigen are listed in Chapter 3. Estimates of school seroprevalence
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against P. falciparum were available from 62 schools, while P. vivax seroprevalence estimates

were available from 71 schools.

In addition to measured seroprevalence at schools, multivariate Bayesian binomial models
were developed and used to predict P. falciparum and P. vivax seroprevalence at 5km
resolution across Oromia Regional State. The optimal model for P. falciparum included a
school-level random effect and a geostatistical random effect (using isotropic, stationary
exponential decay function) as well as selected environmental variables. The P. vivax
predictive model included a school random effect and a geostatistical random effect, but no

environmental variables. Full modelling methods are detailed in Chapter 3.

5.3.1.4 Malaria Indicator Survey 2011

A national MIS was conducted in Ethiopia from September to December 2011 [228], following
Roll Back Malaria guidelines [104]. A stratified two-stage sample design was used, with
census enumeration areas (EAs; administrative level 5, usually 150-200 households) as
primary sampling unit, and households within EAs as secondary sampling units. The aim was
to generate robust national level estimates of intervention coverage for areas <2,500 metres
elevation, and rural- and urban-level information for <2000m, sample size calculation
therefore was based upon indoor residual spray coverage. Selected administrative regions,
including Oromia, were over-sampled to allow generation of sub-national estimates. 440 EAs
were sampled nationally during MIS 2011, with 162 EAs in Oromia. From each EA, 25
households were selected for participation in the survey, following mapping of all households
in the EA using personal digital assistant (PDA) with built-in geographic positioning satellite
receiver (GPS) capacity. From each household, all children under five years of age provided a
blood sample for preparation of thick and thin blood films, RDT (CareStart HRP2-panLDH) and
haemoglobin measurement. Individuals of all ages from every fourth household were asked

to provide blood samples for blood slide and RDT. A household questionnaire was used to
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collect information on malaria knowledge and intervention use, and a women's questionnaire

targeted to one woman aged 15-49 in each household.

MIS data were available from 156 EAs sampled in Oromia, encompassing 3793 households.
Blood samples were taken from 4887 individuals. 51% of blood samples were taken from
children under five years of age. Serological analysis of MIS samples is planned against one P.
falciparum antigen and one P. vivax antigen, but had not been conducted at the time of

analysis.

5.3.1.5 Malaria Atlas Project modelled parasite rate

Posterior mean predicted P. falciparum and P. vivax parasite rates generated by the Malaria
Atlas Project (MAP) were downloaded [292] and imported to ArcMAP 10.2 (Environmental
Systems Research Institute Inc., Redlands CA, USA). Age-standardised P. falciparum parasite
rate (PfPR,.10) describes the estimated proportion of children aged from two to ten years who
are infected with P. falciparum, averaged over the 12-month period of 2010 [20]. Estimates
of PfPR,.1o were available at 1km? resolution. The modelled P. vivax parasite rate was age
standardised to the 1-99 years age range (PvPRigs), and similar to PfPR,,, describes the
estimated proportion of the population who are infected with P. vivax at any time, averaged
over 2010 [21]. PvPR,.q9 Was available at 5km? resolution. In addition, surfaces describing the
estimated transmission limits of both P. falciparum and P. vivax were downloaded [292].
Transmission limits were classified using a combination of medical intelligence and
temperature and aridity masks into transmission-free, unstable transmission (annual parasite
incidence [API] <0.1%) and stable transmission (APl > 0.1%) [20,21]. Data collected during
parasitological surveys in 2009 were not included in MAP databases, and therefore did not

contribute to the MAP modelled PfPR,.;o or PvPR;.q9 estimates.
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Table 5.1 - Key descriptive characteristics of the various surveillance data compiled for the current study

Woreda annual
incidence

Malaria Indicator Survey
RDT data

School survey
microscopy data

School survey
serology data

Modelled
seroprevalence

Malaria Atlas Project
modelled PR

Data collection
method

Denominator

Age range of
sampled population

Indicator

Diagnostic tool

Number clusters
sampled

Number individuals
sampled per cluster

Range of recorded
indicator by cluster

Mean cluster
indicator value

Patients attending
health facilities

Population in health
facility catchment area
for all woreda facilities

All ages

Mean annual incidence
confirmed malaria, per
1000 people
Microscopy and rapid
diagnostic test, as
normally used at facility

256 woredas

Mean 17,241 annual
outpatient visits
recorded in a woreda

0 - 200 confirmed
malaria cases / 1000
people / year

12 confirmed malaria
cases / 1000 people /
year

Cross-sectional
household survey

All children <5 in
sampled households,
and all individuals in
every 4th household

All ages, but children
under 5 over-sampled

Proportion of sampled
individuals in each
cluster with positive RDT

HRP2-panLDH rapid
diagnostic test

156 enumeration areas
in Oromia

Mean 31 individuals (all
ages) and 16 children <5
sampled per EA

0 - 48.6% (any species,
all ages)

1.3% (any species, all
ages)

Cross-sectional school
survey

All children present at
school on the survey day

5-16 years

Proportion of individuals
in each school
microscopy positive
Microscopy examination
of thick & thin blood
films

197 schools

Mean 106 children
sampled per school

0-14.5% Plasmodium
prevalence

0.5% Plasmodium
prevalence

Cross-sectional
school survey

All children present
in school on the
survey day

5-16 years

Proportion of
individuals in each
school seropositive

ELISA against P.
falciparum and P.
vivax antigens

75 schools

Mean 94 children
sampled per school

P. falciparum:
0-50%

P. vivax: 0-89%

P. falciparum:

11.0%
P. vivax: 10.9%

Model predictions,
using school survey
serology data

Total school-aged
population resident
in location

5-16 years

Estimated proportion

of 5-16 years olds
seropositive
ELISA against P.
falciparum and P.
vivax antigens

Model predictions
with 5km resolution

N/A

Range of woreda
mean P. falciparum:
1-95%, P. vivax: 1-
49%

P. falciparum: 8.6%
P. vivax: 11.6%

Model predictions, using
historical survey data at
continental scale

Total population resident
at location

Age-standardised: 2-10
years P. falciparum and
1-99 years for P. vivax

Age-standardised
parasite rate

N/A

P. falciparum has 1km
pixel resolution, P. vivax
pixel resolution 5km

N/A

Woreda mean PfPR: 0.7-
7.4%, woreda mean
PvPR: 0.6-2.2%

PfPR: 2.8%
PVPR: 1.2%
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5.3.2 Matching spatially congruent data

Descriptive characteristics of all surveillance data utilised are presented in Table 5.1. Sampled
school and EA location were recorded during the school survey and MIS implementation,
respectively, and point data plotted in ArcMAP. Survey locations were matched to their
administrative woreda, using 2007 census administrative classifications, in order to link
woreda-level health facility indicators with survey data. To reduce possible noise in the raster
values extracted to survey point locations, the mean of a three-by-three pixel array with the
centred at the survey location was calculated for both the PfPR,., and PvPRigg rasters.
Where a survey location fell in an area defined as beyond the limits of transmission (API=0)

by the MAP predictions, a parasite rate of zero was assigned.

P. falciparum and P. vivax seroprevalence model estimates at 5 km? resolution were
summarised by woreda, with summary statistics including minimum, maximum, mean and
standard deviation of pixel values within the woreda calculated. The same method was used
to generate summary statistics by woreda for PfPR,..o0 and PvPR.g9 from MAP model raster
data. Seroprevalence model and MAP model summary statistics by woreda were linked with

woreda-level health facility data.

In addition to data cleaning processes described previously for survey and health facility data,
further exclusion criteria were applied to woreda-summary health facility data to remove
unreliable data. Any woreda with fewer than ten health facilities in total reported data (n=6)
was excluded from further analysis, as well woredas with logic errors in summary data (total
outpatient attendance < total recorded clinical malaria cases, total outpatient attendance <

total confirmed malaria, total tested by microscopy or RDT < total confirmed malaria).
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The number of spatially-matched data points for each pair-wise combination of indicators is

presented in Table 5.2. Due to cluster randomisation sampling for the school survey and MIS,

there are instances of more than one cluster data point existing within a single woreda, in

which instance cluster data were matched for incidence using a many-to-one strategy.

Table 5.2 - Two-way matched data available from the five surveillance data. Data are matched using

woreda location, therefore number of cross-sectional survey clusters and encompassing woredas are

presented for each combination of data. It was possible for more than one cross-sectional survey

cluster to be present in a single woreda.

Malaria
Woreda Malaria School School Modelled Atlas
annual Indicator survey survey sero- Project
incidence Survey RDT | microscopy serology prevalence modelled
PR
Malaria .
Atlas 218 136 EAs in 174. schools | 66 s<-:hools 220 256
. 116 in 98 in
Project woredas woredas woredas
woredas woredas 51 woredas
modelled PR
Modelled 219 137 EAsin 174. schools 66 .schools 264
sero- 117 in 98 in51
woredas woredas
prevalence woredas woredas woredas
School 62 schools 50 schools .
. . 75 schools in
survey in & 42 EAs in 58 woredas 75 schools
serology 50 woredas | 38 woredas
School 165 schools | 127 schools
survey in 97 & 78 EAsin | 197 schools
microscopy woredas 67 woredas
Malaria 132 EAsin
Indicator 116 156 EAs
Survey RDT woredas
Woreda 230
annual
. woredas
incidence
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5.3.3 Scoring framework development

To qualitatively assess some core characteristics of the various surveillance data, a scoring
framework was applied to seven parameters of the surveillance systems and the data they
generate. For each parameter and dataset, a description was provided and score assigned by
the author between one and three. An expert opinion scoring workshop is planned, following
which, scores will be reviewed and published. The scoring system was defined as: 1 = poor; 2
= neutral; 3 = good. Directionality of parameter scoring was defined as higher parameter
value conferring higher score, except for cost and complexity, where systems with lower cost

or complexity received higher scores.

5.3.4 Data analysis

Data included in this chapter include indicators used for periodic monitoring (survey and
modelling data) as well as those used for surveillance (health facility data). Considering the
different objectives of surveillance and monitoring, these data are not directly comparable,
and there is no universal gold standard against which to measure the accuracy of each

indicator.

Associations between indicators at survey locations, as well as mean indicator values by
woreda, were explored by generating scatter plots, calculating correlation and simple linear

regression between the continuous measures.

Woreda annual mean incidence per 1000 people was used as the basis for endemicity
classification. While there is no gold standard indicator, woreda incidence data were used to
classify endemicity since these data are the most widely available. Histograms were
generated from all surveillance data for each of P. falciparum, P. vivax and any Plasmodium

infection to describe the distribution of the various indicators (Figure 5.1).
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Woreda mean incidence was classified into three categories: moderate unstable
transmission, low unstable transmission and very low unstable transmission. Classification
was informed by the distribution of the data, as well as the range of malaria transmission
settings anticipated over Oromia Regional State, to ensure that sufficient data would be
retained within each of the categories. Endemicity category cut-offs were identical for each of
the species and for any Plasmodium infection indicators. Cut-off values used for the
categories were: very low unstable transmission or malaria-free being <1 confirmed cases per
1000 people; low unstable transmission being 1-10 confirmed cases per 1000 people;
moderate unstable transmission being >10 confirmed cases per 1000 people. To explore the
distribution of other indicators according to these endemicity categories, and therefore the

level of agreement between surveillance data, box-plots were generated.

Figure 5.1 (following page) - Histograms displaying distribution of key indicators from the various
surveillance data. Axes and bin width have been adjusted for each variable to optimise display of the
available data. Histogram are presented for woreda annual parasite incidence per 1000 people from
health facility data, MIS RDT cluster prevalence and school survey microscopy prevalence by P.
falciparum, P. vivax and a summary any Plasmodium infection category. In addition, school P.
falciparum and P. vivax seroprevalence, woreda mean Malaria Atlas Project modelled PfPR and PvPR,

and woreda mean of modelled P. falciparum and P. vivax seroprevalence
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5.4 RESULTS

5.4.1 Parameters of surveillance system performance

Considering the different need of ongoing surveillance compared to periodic monitoring, it
was decided to present scoring frameworks separately for parameters important for
monitoring and for surveillance, respectively. Parameters used to score systems for their
utility in programme monitoring and evaluation were sensitivity, frequency of data collection,
time for feedback to peripheral levels, spatial resolution, complexity and cost (Table 5.3). The
parameters crucial to identification of an optimal surveillance system were temporal

resolution and spatial resolution.

5.4.1.1 Sensitivity

In this application, sensitivity refers to the ability of the surveillance system indicator to
accurately represent the level of malaria within the underlying population sampled. The use
of microscopy and rapid diagnostic test in cross-sectional surveys has moderate sensitivity to
identify infections in the individuals randomly selected for testing, although it is likely that
some low density infections are missed by both tools. These cross-sectional surveys are not
powered to give representative cluster-level estimates of prevalence of malaria in very low
transmission settings. In contrast, seroprevalence gives a more accurate representation of
the malaria situation in a location due to the wider temporal reference period for the
diagnostic indicator. Similarly, woreda annual incidence is generally representative of malaria
burden within the catchment areas of the health facilities, provided that access to health
services is high and diagnostic services at the facilities are quality assured. Indicators of
uncertainty are available for modelled parasite rate, therefore it is possible to estimate the

sensitivity of these data across the spatial extent of interest.
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5.4.1.2 Frequency of data collection

All of the survey and modelling data presented are collected and re-analysed every three to
five years, with the exception of woreda annual incidence. It would also be possible to
generate monthly incidence using projected population estimates and summary monthly
data from the woreda health facilities. Weekly data are available from health facility as part
of the Public Health Emergency System, but the indicator would be crude total cases rather

than population incidence.

5.4.1.3 Time for feedback to peripheral level

Effective surveillance systems include a feedback component, whereby findings from
submitted data are reported back to peripheral levels to enable change, as well as providing
accountability and motivation for ongoing submission of data. Cross sectional MIS and school
surveys operate with a minimum six to 12 month period for analysis of data to take place,
and for feedback on the findings and action required to be provided to malaria control
programme personnel. Limited feedback is expected from modelled parasite rate data, since
models are produced at global level, however additional data may be submitted to refine
future models. Feedback is a core aspect of the routine health facility data reporting system,
however in practice, limited feedback on submitted HMIS data is provided to peripheral

health facilities and health workers on the quality and impact of their data.

5.4.1.4 Complexity

The complexity of a surveillance system will influence its future sustainability, as a result of
the level of specialist skills and equipment required to operate the system and generate data.
Modelled parasite rate has a high level of complexity to develop the model predictions, but
maps are available free to download, therefore, only Internet access and an understanding of
the indicator is needed for this tool to be of use. Some comprehension of defined uncertainty

around the model predictions is beneficial to aid interpretation of model outputs. Cross-
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sectional surveys have moderate to high complexity, primarily related to the skills required to
select sites for sampling without bias, as well as data handling and analysis, particularly
where weighting is required to generate indicator estimates. Routine health facility data
systems have low complexity, and although understanding of key epidemiological concepts
and data handling skills are required, there is often capacity within countries for these tasks,

but it may not be present at the health cluster or woreda level.

5.4.1.5 Cost

The cost of a surveillance system influences its sustainability, since tools with high cost and
complexity are generally only feasible when substantial additional resources are available
beyond the standard levels of government funding. Routine health facility data collation is a
low cost strategy, and encompassed within the usual responsibilities of health system staff.
Use of modelled parasite rate data has a low cost to the end user, since maps are available
for free. Of the cross-sectional survey methods presented, school surveys are estimated to be
lower cost than the Malaria Indicator Survey. This is likely a result of the reduced time
required at each cluster site to complete sampling; for school surveys only one day is needed
while household surveys often require one day for mapping households, then up to two days
to sample individuals. Serological analysis does increase the cost of school surveys, however
the cost per sample analysed by ELISA is approximately one US Dollar, broadly equivalent to

the cost of a rapid diagnostic test.

5.4.1.6 Spatial resolution

Malaria Indicator Survey findings have poor spatial resolution, being powered to generate
reliable indicator estimates at national or regional level. Similarly, microscopy has poor
spatial resolution from school surveys as a result of the moderate sensitivity of the indicator
and low parasite prevalence found during the surveys. Serological indicators have improved

spatial resolution, and modelling results using serology data were able to generate 5km
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resolution predictions of seroprevalence with good reliability. Modelled parasite rate also has
good spatial resolution, generating predictions at 5km for P. vivax and 1km for P. falciparum.
Health facility data analysed here to generate woreda annual incidence is limited to a
woreda-level resolution, but it may be possible to generate data at the health cluster level

(one health centre and five satellite health posts), or even individual health facility level.

5.4.1.7 Temporal resolution and responsiveness to epidemics

Temporal resolution is coarse for all surveillance tools evaluated in this chapter except health
facility data at woreda level, since most of the presented indicators are only collected
periodically. Modelled parasite rate data has the largest temporal resolution, since the
models are developed using historical data and may not reflect recent changes in malaria
transmission. Serology data has a temporal resolution of months or years due to the
persistence of antibodies in the population, however selective sampling and serological
testing of young children can restrict the temporal reference period for serology data in
population surveys. Use of RDT and microscopy as indicators in the MIS and school survey,
respectively, have a fine temporal resolution and reflect presence of Plasmodium in sampled
individuals at the time of the survey. However RDT and microscopy in cross sectional surveys
would only coincidentally identify epidemics if a site with an epidemic happened to be

randomly selected for inclusion in the cross sectional survey.
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Table 5.3 - Description of parameters of surveillance system performance, leading to development of scoring for each parameter

Woreda annual incidence

Malaria Indicator
Survey RDT data

School survey
microscopy data

School survey serology
data

Modelled
seroprevalence

Malaria Atlas
Project modelled
parasite rate

Sensitivity

Frequency of
data collection

Temporal
resolution:
responsiveness
to epidemics

Time for
feedback to
peripheral
level

Spatial
resolution of
data

Biased by population
health-seeking behaviour
and quality of routine
diagnostic services at
health facilities

Monthly data, reported
monthly or quarterly.
Weekly malaria data may
be accessible in the future
Moderate. Weekly IDSR
reporting designed to be
responsive to epidemics,
monthly HMIS data
indicates longer term
trends

Limited feedback in
practice from central level
following analysis of data

Currently woreda-level,
could be adapted to
health cluster (one health
centre & 5 satellite health
posts

Reasonable sensitivity
at individual level, poor
sensitivity to describe
transmission intensity at
population level

Periodic, repeated every
3-5 years

Limited. Not suitable for
epidemic identification
unless an epidemic
happens to be occurring
at a location randomly
selected to participate
6-12 months from data
collection to sample
analysis and reporting
of findings to local
health authorities

Surveys powered to
yield national and sub-
national level estimates

Reasonable sensitivity
at individual level, poor
sensitivity to describe
transmission intensity
at population level

One-off activity, could
be repeated every 3-5
years

Limited. Not suitable
for epidemic
identification since
samples analysed after
survey completion

6-12 months from data
collection to sample
analysis and reporting
of findings to local
health authorities

Poor resolution, 100
samples per site
insufficient power
where microscopy
prevalence is very low

Captures exposure
across previous
transmission seasons,
representative of
transmission intensity at
population level

One-off activity, could be
repeated every 3-5 years

Limited. Not suitable for
epidemic identification
since samples analysed
after survey completion

6-12 months from data
collection to sample
analysis and reporting of
findings to local health
authorities
Moderate resolution,
reliable estimates at
cluster-level, models can
extrapolate and predict
beyond sampled
locations

Estimates exposure
across previous
transmission seasons,
representative of
transmission intensity
at population level
One-off activity,
models could be
updated as additional
serology data available

Limited. Not suitable
for epidemic
identification.

12-18 months from
data collection to
reporting modelling
findings to local health
authorities

Predictions at S5km?’
resolution for both P.
falciparum and P. vivax

May not represent
current PR if rapid
changes in
transmission
intensity have
occurred

Models updated
approximately
every 3-5 years

Limited. Not
suitable for
epidemic
identification

No feedback
expected, other
than submission of
additional data for
model refinements

Prediction at 1km’
(P. falciparum) or
5km? (P. vivax)
scale




Woreda annual incidence

Malaria Indicator
Survey RDT data

School survey
microscopy data

School survey serology
data

Modelled
seroprevalence

Malaria Atlas
Project modelled
parasite rate

Low. Collation of monthly
data is routine, simple

Complexity .
calculation to generate
incidence.
Low. No incentives paid
for data submission,
Cost

routine activity for
salaried staff

Moderate. Standard
tools available from
RBM, but countries
usually require technical
support in sampling
design and data analysis

High. Total national
survey including
supplies, sensitisation,
implementation, and
technical support ~$1.1
million. Proportion for
Oromia ~$400,000

Moderate. National
control programme
staff may require
technical support with
two-stage sampling
using PPS, and data
analysis

Moderate. Total survey
including supplies,
implementation and
technical support
~$230,000

Moderate. Two-stage
sampling using PPS.
Laboratory analysis
possible at national

level, but external
support may be required
for data processing and
analysis.

Moderate. Total costs
for survey and
laboratory analysis
~$280,000

High complexity for
data collation and
model generation, but
maps shared for health
authorities” use

Moderate. Specialist
statistical skills
required in addition to
~$280,000 for surveys
and laboratory analysis

High complexity for

data collation and

model generation,

but national maps

freely available for
use

Maps available free.
Costs of data
extraction and
modelling not
available.
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5.4.2 Scoring framework result

Considering the different needs of periodic monitoring and ongoing surveillance systems, the

parameters used to score each of the evaluated systems were split into those prioritised for

surveillance and those important for monitoring. Therefore each system has two summary

scores, with higher scores indicating better performance against the parameter.

For periodic monitoring (Table 5.4), woreda annual incidence data had the highest assigned

score, while serological indicators from school survey had the next highest score, followed by

modelled seroprevalence and parasite rate. Microscopy and RDT indicators from cross-

sectional surveys received the lowest scores.

Table 5.4 - Scoring framework for programme monitoring and evaluation. Scores assigned by the

author, justifications and description listed in Table 5.3. Scoring system: 1=poor, 2=neutral, 3=good.

Higher parameter levels are judged to be better for all variables except complexity and cost, where

high scores are assigned for the lowest parameter levels.

Woreda M?Ia"a School School Modelled Malaria
Indicator
annual survey survey sero- Atlas

. Survey . .

incidence RDT microscopy  serology  prevalence Project PR
Sensitivity 3 1 1 3 3 2
Frequgncy of data 3 1 1 1 1 1
collection
T|m.e for feedback to ) ) ) ) 1 1
peripheral level
Spatial resolution of ) 1 1 ) 3 3
data
Complexity 3 2 2 2 1 1
Cost 3 1 2 2 2 3
Total score (of 18) 16 8 9 12 11 11
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For surveillance (Table 5.5), routine data from health facilities again received the highest
score as a result of the potential for fine temporal and spatial resolution of these data. The
poor temporal resolution of all other data collection platforms assessed limits their utility for

ongoing surveillance, regardless of spatial resolution.

Table 5.5 - Scoring framework for surveillance. Scores assigned by the author, justifications and

description listed in Table 5.3. Scoring system: 1=poor, 2=neutral, 3=good.

Routi
I:)eilltr:ne Malaria School School Modelled Malaria
- Indicator survey survey sero- Atlas
facility . .
data Survey RDT microscopy serology prevalence Project PR
Temporal
resolutlt?n: 1 1 1 1 1
responsiveness to
epidemics
Spatial resolution 3 1 1 ) 3 3
of data
Total score (of 6) 6 2 2 3 4 4
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5.4.3 Association between surveillance indicators

Scatter plots comparing all Plasmodium indicators, P. falciparum indicators and P. vivax

indicators are presented in Figures 5.2 to 5.4, respectively.

Figure 5.2 - Scatter plots comparing indicators which describe Plasmodium infection, from routine

health facility data summarised as annual incidence, Malaria Indicator Survey RDT positivity and school

survey microscopy positivity
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Figure 5.4 - Scatter plots comparing indicators describing P.

vivax incidence, cluster prevalence and seroprevalence,
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5.4.3.1 Cross-sectional survey malaria infection and incidence

Results of analysis of routinely recorded health facility data and annual incidence of
confirmed malaria are detailed in Appendix 3. RDT positivity across sites sampled in Oromia
during MIS was 1.5% among individuals of all ages, and also 1.5% among children under five.
A very weak correlation (R?=0.195, p=0.003) was seen between proportion RDT positive (all
ages) during the MIS and the mean incidence of confirmed malaria at health facilities,
including data from 2007-2010 (Figure 5.2), however, this should be interpreted cautiously
due to the predominance of 0% RDT results in MIS data. Health facility data were not
available for 2011, therefore it was not possible to directly compare facility incidence and
survey prevalence for the same period. When assessing the correlation between MIS RDT
positivity and incidence by year, the correlation was strongest in 2008 (R’=0.405, p=0.002),

with no correlation seen in the 2010 and 2007 data (scatter plots by year not shown).

Slide positivity during school-based survey in 2009 was very low (0.56%) and the majority of
sites had no Plasmodium infection detected by microscopy. However a correlation was seen
between proportion of children with infection detected by microscopy and mean incidence of

malaria in 2009 in the woreda (R?*=0.423, p=0.001, Figure 5.2).

5.4.3.2 Cross-sectional survey malaria infection and Malaria Atlas Project modelled
parasite rate

MIS RDT positivity was weakly correlated with predicted PvPR;q (R?=0.308, p<0.001),

however the majority of MIS cluster prevalence results were 0% by RDT. No correlation was

seen with RDT positivity and PfPR,.1 prediction (R?=0.025, p=0.97, Figure 5.3). No correlation

was seen between school survey prevalence of P. falciparum by microscopy and predicted

PfPR,.10 (p=0.231), but a weak correlation was found between school survey P. vivax

prevalence and PvPRy.q9 (RZ:O.187, p=0.003, Figure 5.4).

181



Chapter 5. Comparing strategies for malaria surveillance in low transmission settings

5.4.3.3 Serological indicators from cross-sectional surveys

While few and very weak correlations were found between cross-sectional survey estimates
of prevalence of malaria infection and either annual mean incidence from routine health
facility data or modelled parasite rate, use of serological indicators of malaria exposure
collected from cross-sectional surveys offers an alternative indicator with a longer temporal

reference period than presence of parasites on the survey day.

Upon comparing P. falciparum school seroprevalence and predicted PfPR,.10, No correlation
was seen (p=0.60, Figure 5.3), however a non-linear relationship was seen between P. vivax
seroprevalence and predicted PvPR;.o Figure 5.4. For locations with PvPr,q9 < 1.2%, school P.
vivax seroprevalence was very low, while a far wider range of seroprevalence was seen (but

with no clear linear relationship) for higher values of PvPR_gq.

Strong correlations were found between school seroprevalence and average annual incidence
of malaria recorded by health facilities in the woreda. A correlation was seen between P.
falciparum seroprevalence and mean annual incidence of P. falciparum in the woreda in 2009
(R?=0.892, p<0.001, Figure 5.5). The association between measured school P. falciparum
seroprevalence and incidence of P. falciparum at health facilities was also seen using mean

incidence data from 2008 (R*=0.510, p=0.036) and 2007 (R?=0.831, p<0.001).

A significant correlation was also found between P. vivax seroprevalence and annual mean
incidence of P. vivax in 2009 (R*=0.691, p<0.001, Figure 5.5), however the association was not
observed from incidence data in 2008 (R°=0.406, p=0.068) or 2007 (R’=0.342, p=0.20). Prior
to 2009, P. vivax infection could only be confirmed by microscopy at health centres, since
RDTs in use at health posts were detected HRP2 antigen only, so it is unsurprising that
seroprevalence data did not have any association with P. vivax incidence before the

availability of combination HRP2-panLDH RDTs at health posts from 2009 onwards.
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Figure 5.5 - Scatter plot of (left) measured P. falciparum seroprevalence in school-based surveys

against mean incidence of P. falciparum per 1000 people in 2009 in the same woreda, and (right) P.

vivax seroprevalence against woreda mean P. vivax incidence per 1000 people in 2009.

A 2 .3 4 5

School P. falciparum seroprevalence

0

R® = 0.892, p<0.001 .

0 10 20 30 40 50
Woreda mean P. falciparum incidence per 1000 in 2009

2 4 .6

School P. vivax seroprevalence

0

R® = 0.691, p<0.001

0 10 20 30 40
Woreda mean P. vivax incidence per 1000 in 2009

T

50

Figure 5.6 - Scatterplots of (left) woreda predicted mean P. falciparum seroprevalence against woreda

mean predicted PfPR;.,o, and (right) woreda predicted mean P. vivax seroprevalence against woreda

mean predicted PvPRy_g9. These scatter plots are also presented in the composite Figures 5.3 and 5.4

40

30

20

10

0

Mean woreda predicted Pf seroprevalence

R®=0.162, p=0.162

o

[e]e] o
o LT
00%8° oﬁ%&i@@og@o ioo"o o0 ° °
o ° co @ © &
0 02 04 .06 .08

Mean predic;ted PfPR by woreda, Malaria Atlas Project

50

10 20 30 40

L

Mean woreda predicted Pv seroprevalence
0

o “°R?=0.624, p<0.001

n

!

s

005 01 015 02 025
Mean predicted PvPR by woreda, Malaria Atlas Project

183



Chapter 5. Comparing strategies for malaria surveillance in low transmission settings

5.4.3.4 Bayesian predictive models of seroprevalence and parasite rate

The mean model prediction value by woreda for MAP age-standardised parasite rate and
predicted seroprevalence were compared, to investigate if model predictions identified
similar woredas as relative high and low transmission (Figure 5.6). No evidence was found for
any correlation between woreda mean PfPR,.1, and P. falciparum seroprevalence (R*=0.162,
p=0.162), but there was evidence of an association between PVvPRiq and P. vivax
seroprevalence (R’=0.624, p<0.001). The different types of models used to predict P.
falciparum and P. vivax seroprevalence across Oromia may be contributing to the variation in
association with MAP model outputs; P. falciparum seroprevalence was predicted by a model
incorporating spatial random effects as well as environmental covariates, while the P. vivax
model was a spatial smoothing model without environmental covariates. As a consequence
of the P. vivax model using spatial smoothing only, the range of pixel seroprevalence
estimates in a woreda was far smaller than the range of P. falciparum seroprevalence

predicted within a woreda.

5.4.4 Classifying endemicity by woreda

Visual inspection of the distribution of woreda annual mean incidence of confirmed malaria
led to the identification of endemicity class boundaries according to the incidence data.
Woredas with very low unstable transmission were those with mean <1 confirmed case per
1000 people per year, woredas with low unstable transmission assigned as 1-10 confirmed
cases per 1000 people per year, and those with moderate unstable transmission were all with
210 confirmed cases per 1000 people per year. The other surveillance data variables were not
categorised into endemicity classes, but their distribution compared to incidence-defined

endemicity classes using box plots (Figure 5.7).

Comparison of the distribution of school survey microscopy prevalence and MIS RDT

prevalence between the endemicity categories was severely limited by the few sites which
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had >0% prevalence. Median school seroprevalence increased across increasing endemicity
categories for both P. falciparum and P. vivax, with the very low endemicity category
effectively identifying the schools with very low P. vivax seroprevalence. The woreda mean
seroprevalence model predictions appeared to show superior agreement with endmicity
categories for P. vivax as median woreda seroprevalence increased across the endemicity
categories, but there was little difference in predicted woreda seroprevalence by the
different endemicity categories. A similar finding was observed for the MAP parasite rate
predictions, being similar across the P. falciparum endemicity categories but an increasing

median PvPR into the higher endemicity categories.
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Figure 5.7 - Box plots describing the distribution of each of the surveillance indicators against mean

woreda annual incidence, classified as: <1 case/1000 as very low unstable transmission; 1-10

cases/1000 low unstable transmission; >10 cases/1000 moderate unstable
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5.5 DISCUSSION

The relative merits and shortcomings of a range of routinely used and innovative surveillance
and monitoring tools have been presented in the form of scoring frameworks, scoring tools
separately against parameters which are most important for ongoing surveillance and for
periodic monitoring. In addition, indicator values from different surveillance tools at spatially
matched locations were compared to evaluate correlation between indicators. However,

there exists no gold standard for these monitoring and surveillance data.

The scoring framework applied in this study does not evaluate the quality of data generated
by each of the surveillance systems, but assumes that each system is operating correctly
according to its design. Woreda summary data from health facilities was identified as the
best-performing tool with the highest score, while use of RDT and microscopy data from MIS
and school surveys were the lowest scoring methods. School survey seroprevalence and

modelling estimates of seroprevalence and parasite rate received similar mid-ranging scores.

Routine data from health facilities scored highly on almost all parameters, but this is based
upon assumptions of high levels of access to parasitological diagnosis of malaria at health
facilities, that diagnosis is quality assured, data are reported accurately and in a timely
fashion, as well as analysis and feedback being provided in good time. These data from health
facilities are unique in having the potential to monitor the malaria situation over time, but

also have sufficient temporal resolution to be valuable as a surveillance tool.

All other tools included in the scoring framework should be considered as monitoring tools
only; they had reduced scores compared to health facility-generated data due to their limited
temporal resolution for epidemic response. Among these monitoring tools, use of RDT and
microscopy as the primary indicator in cross-sectional malariometric surveys is acceptable to
generate nationally-representative estimates of parasite prevalence. However, to capture

sub-national or small scale heterogeneity in malaria burden and transmission in an
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environment such as Ethiopia would require large sample sizes to generate representative
cluster-level parasite rate estimates. Predictive modelling using Bayesian methods and
incorporating associated environmental covariates allows generation of fine spatial
resolution estimates from the available survey data. Endemicity maps generated using this
method have the potential to be well-used by malaria control programme staff for
stratification of risk and targeting of resources, provided there is some understanding of the
associated uncertainties in model estimates. While it appears that many national malaria
control programmes are aware of malaria risk mapping, and incorporate various types of risk
map into official documentation including strategies and programme reviews or Global Fund
applications, these risk maps are rarely used to support national planning activities such as
targeting of interventions and resource requirements [309]. The majority of maps presented
in these documents are either expert opinion and eco-climatic stratification, or mapped data

from routine or national sample surveys

The strongest correlations of all pair-wise comparisons conducted using surveillance data
available in this study were between serological indicators of exposure to malaria and
estimates of annual incidence at the woreda level, estimated from passively detected cases
presenting to health facilities. The correlation was particularly strong for P. vivax. This could
reflect a recent transition in malaria epidemiology in Ethiopia with reductions in P. falciparum
but stability in P. vivax, as a consequence, the serological data representing transmission over
a period of months to years has a stronger correlation with P. vivax incidence than P.
falciparum. The correlation between woreda endemicity category defined by incidence, and
the measured seroprevalence at schools and model-predicted seroprevalence was apparent

from box plots, where median seroprevalence increased with increasing endemicity.

The cross-sectional survey data using standard malariometric survey tools of microscopy and
RDT identified very few infections, and the vast majority of clusters were found to have zero

prevalence. The predominance of zero prevalence sites limits the ability of these surveys to
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differentiate between sites which are malaria free or very low risk, and those which do
experience malaria but where the peak seasonal transmission may have been missed by the
cross-sectional survey. In low and seasonal transmission settings, findings from cross-
sectional surveys using microscopy and RDT prevalence as primary outcomes should be
interpreted in conjunction with longitudinal surveillance data, such as routine data from
health facilities, to confirm whether surveys were conducted at the peak transmission

season.

The use of cross-sectional survey cluster-level estimates to develop predictive spatial models
and endemicity maps has shown growing popularity in infectious diseases, with initiatives in
place for malaria and neglected tropical diseases to collate historical data and make map

outputs available for use at no cost [310-312].

In this chapter, woreda summaries of predictions from global models of P. falciparum and P.
vivax parasite rate were compared to recent field-level estimates of parasite rate, and to
estimates of incidence from passively detected cases presenting to health facilities. When
comparing mean predicted MAP parasite rate by woreda with incidence-defined endemicity
categories, little agreement was seen for P. falciparum, but model predictions did increase
with increasing category of endemicity for P. vivax. The superior agreement between
modelled seroprevalence and endemicity categories over the MAP predictions may be a
result of the serological model having been fitted to data for Oromia Region, rather than

global data, or may be due to use of more contemporary data for serology than parasite rate.

While this study was able to successfully match multiple surveillance indicators spatially, not
all of the indicators could be matched temporally. In particular, health facility data were not
available during the period of the MIS in 2011. This may have resulted in bias in
interpretation of cross-sectional survey findings from 2011, particularly if there is substantial

heterogeneity in the locations that are found to show seasonal increases in malaria infection
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from year to year. The spatial resolution of health facility data would have been improved if
health facility location coordinates were available, allowing generation of health cluster (one
health centre and 5 satellite health post) resolution estimates of incidence. Furthermore, the
health facility data collected were incomplete; some woredas were excluded due to absence
of data or very incomplete or inconsistent data, therefore not all cross-sectional survey

clusters could be matched to woreda incidence data.

The findings from this chapter indicate that a combination of monitoring and surveillance
tools are required in low transmission settings. Routine health facility data has potential to be
a very valuable source for both surveillance and monitoring needs, but practical application
of these data continues to be limited by quality and timeliness. Serological indicators have
the potential to be a valuable addition to the monitoring toolkit, while use of microscopy and
RDT data to generate of estimates of Plasmodium prevalence are of declining utility. Spatial
model predictions offer an additional tool to inform national malaria control programme
activities, particularly stratification and intervention targeting. Generation of nationally-
representative parasite prevalence estimates using microscopy and RDT data from large
cross-sectional surveys are likely to continue to be a component of periodic malaria
monitoring, however, in low transmission settings these data should be accompanied by

additional surveillance and monitoring data offering higher temporal and spatial resolution.
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CHAPTER 6. SUMMARY AND DISCUSSION OF FINDINGS

6.1 OVERVIEW

Substantial investment in interventions for malaria control and concomitant reductions in
disease burden have led to a resurgence of interest in monitoring, evaluation and surveillance
tools. These tools are used to demonstrate impact of the interventions applied, track
progress of malaria control towards elimination, and subsequently monitor for recrudescence

or reintroduction of Plasmodium.

Resource-limited countries continue to face challenges in availability and quality of routine
data from health facilities, limiting the utility of these data for programme monitoring and for
ongoing surveillance. Considering the increasing number of countries where malaria
epidemiology is in transition from high or moderate transmission to low and temporally
variable transmission, it is timely to evaluate the ability of standard monitoring and
evaluation tools to describe programmatically and epidemiologically relevant indicators, and

to pilot innovative strategies for malaria monitoring.

This thesis therefore aimed to evaluate alternative strategies and indicators used for malaria
monitoring, evaluation and surveillance in Ethiopia, with a view to generating
recommendations of the most informative and appropriate tools to meet future needs in
similar epidemiological settings. This chapter provides a summary of the findings and their
implications for future monitoring, evaluation and surveillance activities in low transmission

settings, as well identifying areas for further research.

6.2 SUMMARY OF FINDINGS

The need to collect data to describe implementation, outputs and impact of malaria control

programmes is essential to ensure that control programmes remain relevant, effective and
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responsive to the needs of the population and context [313]. The range of monitoring and
surveillance strategies for malaria programmes were reviewed in Chapter 1, in addition to
description of the various indicators available for use by these systems. Low and unstable
malaria transmission settings present specific challenges to monitoring and surveillance, and
the majority of standardised tools for monitoring, evaluation and surveillance have been
designed for settings with moderate to intense transmission. Therefore, there remains a need
to define tools that are appropriate for malaria programme periodic monitoring, and ongoing

surveillance for epidemic detection.

Chapter 2 presented findings from large-scale school-based cross-sectional surveys in Oromia
Regional State, describing Plasmodium infection by microscopy, risk factors, spatial
distribution and clustering of infection. The results demonstrated very low levels of
Plasmodium infection at the time of the survey, and a large proportion of infections were
found to be asymptomatic. The sampling frame of the survey was designed to generate
representative estimates of parasite prevalence within each of five ecological zones,
representing anticipated different malaria transmission settings. Use of insecticide-treated
mosquito nets by school-aged children was found to be low, but net use was a risk factor for
Plasmodium infection, likely as a result of successful targeting of long-lasting insecticide-
treated mosquito nets (LLINs) to areas at highest malaria risk. The results of Chapter 2
adequately captured programmatic indicators such as use of LLINs, but due to both the
sampling design of the survey and very low prevalence of infection by microscopy, it was not
possible to generate statistical models of endemicity and spatial distribution using

microscopy data.

While microscopy has long been considered as a gold standard for malaria diagnosis in a
clinical context, in areas of temporally unstable malaria transmission microscopy may not be
the most appropriate primary indicator for cross-sectional surveys, due to logistical

challenges in ensuring that the survey is conducted at the peak transmission season in every
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location. Chapter 3 presented the use of serological indicators of exposure to Plasmodium
collected from school surveys in Oromia Regional State, as an alternative analysis tool for
samples collected by cross-sectional methods in low and temporally unstable settings. By
assessing previous exposure rather than current infection with Plasmodium, it is possible to
generate more comparable estimates of malaria endemicity across sampled locations, since
intra- and inter-year differences in transmission are smoothed out at each site sampled as a
result of the persistence of anti-Plasmodium antibodies for months to years. This approach
combining a simple cross-sectional survey design and relatively simple laboratory assay is
particularly appropriate as a periodic monitoring tool alongside, or in place of, standard
malariometric surveys generating nationally-representative estimates of parasite prevalence

in pre-elimination settings.

Chapter 3 also presents the first application of Bayesian geostatistical modelling methods to
malaria serological data to generate endemicity maps for both P. falciparum and P. vivax.
While the optimal model for P. falciparum seroprevalence included a spatial random effect
and various environmental indicators describing suitability of an area for vector breeding and
survival, for P. vivax a simple spatial smoothing model was the most appropriate. Factors
contributing to the large spatial scale of P. vivax may include relapse of previous infections, or
sporogenesis at lower temperatures than for P. falciparum and therefore potential for P.

vivax transmission higher altitudes.

While Chapter 3 presented an innovative tool for periodic monitoring of malaria endemicity,
a novel system for ongoing surveillance and malaria epidemic detection was presented in
Chapter 4, using school attendance as a proxy indicator of malaria burden within
communities at sites in the Southern Nations, Nationalities and People’s Regional State,
Ethiopia. Syndromic surveillance using pre-diagnostic (clinical) indicators has been piloted in
resource poor settings as an epidemic warning system for diseases such as dengue,

meningitis and malaria, where laboratory confirmation of notifiable diseases is not widely
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available. Syndromic surveillance using surrogate indicators such as school attendance has
primarily been used in high-income countries to identify outbreaks of pandemic influenza.
Chapter 4 explored the potential of both syndromic and surrogate indicators of malaria,
piloting surveillance systems at school-level that were designed to feed into existing routine
surveillance systems at health post. While school enrolment was found to be lower than
expected in the pilot communities, and the lack of strong seasonal increase in malaria
transmission during the pilot limited the ability to test reliability of the piloted systems, it was
simple to generate a weekly all-cause absenteeism summary at pilot schools using existing
attendance registers. In a setting such as Ethiopia with a strong community-level health
system, but ongoing limitations to timeliness and quality of routine health information
system data, the syndromic surveillance system offers a community-level solution whereby
school staff have a framework to identify unusual health events which result in increased

school absenteeism, and alert health extension workers to investigate further.

Chapters 2, 3 and 4 presented in-depth a selection of monitoring and surveillance indicators
and strategies, however there are few studies which have compared in detail different
monitoring and surveillance methods for use in low transmission settings. Chapter 5 aimed to
score and compare some of the different indicators that are used for programme monitoring
and malaria surveillance: routinely recorded data from health facilities; prevalence of
infection by microscopy or rapid diagnostic test (RDT) from school surveys and Malaria
Indicator Survey (MIS), respectively; seroprevalence from cross-sectional school surveys;
model-predicted parasite rate; and model predicted seroprevalence. A scoring framework
was used to evaluate the different tools against defined parameters, then spatially congruent
data linked and correlation between indicators investigated. Routine health facility data
received the highest scores for both monitoring and surveillance from the scoring framework,
demonstrating the potential of a fully functional and high quality health information system

to meet the needs of both ongoing surveillance for epidemic detection as well as monitoring
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the impact of control interventions on malaria burden. However, while routine data from
health facilities continues to by limited by poor timeliness in reporting and data analysis, lacks
quality assurance, and where access to health services is limited in some geographic areas or

population groups, alternative strategies are needed.

The challenges of malariometric cross-sectional surveys in settings where malaria is strongly
seasonal and of low transmission intensity are apparent from the findings of Chapter 5, with
many survey clusters finding no infections using microscopy and RDTs. For such cross-
sectional surveys to have sufficient power to generate population-representative estimate of
parasitaemia at sub-national of level at very low levels of transmission, sample sizes may
need to be increased from those used at present. Diagnostic tools with superior sensitivity to
microscopy and RDT may add additional resolution to estimates of parasite prevalence from
cross-sectional surveys, since they would detect more of the very low density and
asymptomatic infections present in the population, however surveys such as MIS would likely
remain under-powered for generation of reliable estimates of sub-national infection

prevalence.

Chapter 5 particularly highlighted the potential of serological indicators in cross sectional
surveys to overcome the limitations of classical tools of parasite detection, by representing
population exposure to malaria transmission over a period of months or years. This temporal
smoothing effect reduces the potential bias in estimating cluster prevalence in strongly
seasonal settings, where there is a risk of survey implementation not exactly coinciding with
the actual transmission peak at each site, by presenting an estimate of exposure averaged
over previous years. While serological analysis has limited current utility for surveillance
focussed on epidemic detection, it may prove to be a significant addition to the periodic

monitoring toolkit for malaria programme managers.
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Upon developing the parameters for the scoring framework to assess the surveillance data
available, it became clear that a single tool or indicator would be unlikely to meet the
objectives of both monitoring and surveillance in Ethiopia. The needs of a monitoring tool are
weighted towards sensitivity and spatial resolution, with some potential to accommodate
higher complexity and cost in order to achieve this. However, surveillance tools are focussed
towards temporal resolution and ease or speed of generation of feedback between those
collecting data and those conducting the analysis. Therefore it is crucial for national malaria
control programmes to identify their priorities in order to allocate resources appropriately,
whether a system with high temporal resolution to identify epidemics, a system with high
sensitivity to identify every malaria case, or a system to document large-scale changes in

malaria burden over time.

6.3 RECOMMENDATIONS FOR APPROPRIATE MALARIA SURVEILLANCE AND

MONITORING TOOLS IN LOW TRANSMISSION SETTINGS

Routinely recorded data at health facilities has the potential to be a highly sensitive tool for
malaria monitoring and surveillance, justifying further investments to address the remaining
limitations in these data. A focus on ensuring both timely and complete reporting of data
from all facilities, including zero-reporting, should be an immediate priority. While the
limitations in analysis and interpretation of routinely collected health facility data are well-
known [94,314], it remains the most sustainable and lowest cost monitoring and surveillance
tool, and exploration of new initiatives for surveillance should not reduce the investment in
improved health information systems. Innovations such as reporting of data using mobile
telephones may improve timeliness of reporting and simplify data entry prior to analysis, and
may also have a secondary impact by providing additional motivation for submission of data

and increasing completeness and compliance by health workers [315-317].
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In low transmission and pre-elimination settings, malariometric surveys using standard cross-
sectional survey designs and tools such as microscopy and rapid diagnostic tests designed to
generate national-level estimates of parasite prevalence are costly. This is not an unexpected
finding, and recommendations have been made previously advising of the imprecise nature
of population parasite rate estimates using cross-sectional surveys when prevalence falls
below 5% [9]. Furthermore, MIS guidance recommends that malariometric modules be
included in MIS in areas of stable transmission [104]. Where Plasmodium prevalence is
estimated in surveys, there should also be reconsideration of the sampled population groups,
since most malariometric surveys currently focus on testing children under five years and
pregnant women. Modelling of data from 23 African countries indicates that in low
transmission settings more than 60% of infections will be in individuals over 15 years of age,
supporting expansion of the age range included in blood sampling beyond children under five

years [318].

An alternative to the standard MIS and other large-scale malariometric surveys may be to
incorporate indicators of intervention coverage, access to diagnosis and treatment and
malaria knowledge into other population-representative surveys or activities, to generate
these key indicators of interest to donors and for comparison against other country
programmes. Several questions relevant to malaria are already incorporated into
Demographic and Health Surveys. Amending the sampling frame or reducing the scale of a
guestionnaire-only MIS is a further alternative to ensure that the surveys remains relevant
and low cost, collecting key indicators. This may allow focus on selected epidemiologically
relevant sentinel sites, to track changes in malaria transmission across the range of different
transmission settings that exist in Ethiopia. Reducing the scale of such surveys may
potentially allow incorporation of more sensitive and expensive diagnostic tools, or increased
frequency of survey implementation to allow control programmes to be more responsive to

changing needs in different settings.
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A further alternative is the use of schools to monitor malaria control and intervention
coverage. Across sub-Saharan Africa, net enrolment in primary school (enrolment among
children of the official primary school age) in 2011 was estimated at 76% [162]. Primary
schools are therefore increasingly representative of the underlying population. Schools have
been used to monitor Plasmodium infection and mosquito net use, for intermittent screening
and treatment of malaria, and to estimate local transmission intensity in Kenya
[111,319,320]. While in the Gambia, school surveys have been used in the dry season to
investigate hotspots of malaria which may be responsible for resurgence of Plasmodium

transmission during and following seasonal rains [192].

Further innovation is required to refine monitoring and surveillance tools for woredas that
are within the World Health Organization pre-elimination classification of less than one
malaria case per 1000 population, but the focus should remain on surveillance at fine
temporal scale due to the risk of epidemics. If the long-term aim is to break transmission in
these areas meeting pre-elimination criteria, then identification of the hotspots of
transmission and reservoirs of parasites is required. However, programme managers should
balance the priorities and long-term costs of sustained control versus attempting elimination
where there remains the potential for resurgence and importation of parasites from

neighbouring areas.

6.4 FUTURE DIRECTIONS

The results presented in this thesis have explored the relative merits and disadvantages of
several innovative strategies for malaria monitoring and surveillance in low and unstable
transmission settings in Ethiopia. Chapter 2 presented the application of school-based
surveys as an alternative to large-scale community surveys used to monitor population
Plasmodium prevalence as well as access to and use of key malaria interventions such as

LLINs. While school surveys have logistical advantages over community surveys, they face the
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same limitations in low transmission settings as other large-scale surveys utilising standard
diagnostic tools of microscopy or RDTs, in that very few infections are found and extremely
large sample sizes would be required to adequately capture geographical heterogeneities in

transmission intensity.

Alternative indicators may be needed if national malaria control programmes wish to
continue conducting periodic large-scale cross-sectional surveys to monitor changes in
Plasmodium transmission and burden. Highly sensitive molecular diagnostics are one
potential solution, but use of this tool will also restricted by the operational challenges of
targeting cross-sectional surveys to the peak transmission period at every sampled site.
Periodic population monitoring using serological indicators of exposure shows much promise
as a malaria monitoring tool to compare relative transmission intensity between different
settings, using blood samples collected through a cross-sectional survey method.
Alternatively, where cross-sectional surveys are not possible, a convenience sampling
approach could be used, conducting further analysis of blood samples from individuals
presenting at health facilities for a different diagnostic test requiring finger-prick blood
samples. This could also be applied in a pre-elimination setting to selectively screen blood
samples from children less than five years attending sentinel health facilities (or
accompanying children) for antibodies to Plasmodium, in order to selectively investigate
recent malaria transmission in areas approaching elimination. These alternative sampling
strategies should only be applied if the Ministry of Health and relevant malaria control
partners deem them appropriate, and provided that full informed consent is given for

additional diagnostic testing of samples.

In conclusion, this thesis has presented alternative strategies for malaria monitoring,
including the use of school-based cross-sectional surveys as an alternative to standard
household-level population surveys, and proposed serological indicators of exposure to

Plasmodium as an alternative indicator for such periodic large-scale monitoring activities. This
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thesis specifically presented an endemicity map generated using seroprevalence data from
cross-sectional surveys, but serological indicators may have further potential applications for
malaria monitoring in low and unstable malaria transmission settings. In addition to new
tools for malaria periodic monitoring, this thesis also presented a first pilot of a school-based
syndromic surveillance system, whereby school absenteeism was proposed as a
complementary indicator of malaria epidemics in the community. While the syndromic
surveillance system requires further refinement and testing, it has potential as a
complementary system alongside routine health post systems for malaria and other
infectious disease epidemic detection. Finally, this thesis presented a comparative analysis of
a range of malaria surveillance and monitoring systems, presenting recommendations of the

most appropriate tools for future use in areas of low and unstable malaria transmission.
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APPENDICES

APPENDIX 1: GENERATION OF A WEALTH INDEX FOR SCHOOL AND COMMUNITY

SURVEYS CONDUCTED IN SNNPR, CHAPTER 4

A wealth index was generated to summarise socio-economic indicators among the study
population sampled for Chapter 4 using principal component analysis (PCA). Each variable has
binary coding, 1 if true and 0 otherwise. For household construction, there was little diversity
in households’ materials for walls, roof and floor, therefore binary coding was sufficient to
define the materials. Data were not standardised prior to conducting PCA, therefore

correlation matrix was used rather than co-variance matrix.

For the community surveys, the percentage of covariance explained by the first principal
component is 34%, the first eigenvalue is 2.39, the second eigenvalue is 1.31. For the school
surveys, the percentage of covariance explained by the first principal component is 34%, the

first eigenvalue is 2.40, the second eigenvalue is 1.37.

Scoring factor (eigenvector) for each factor contributing to the wealth index calculated from
community survey and school survey data. The mean and standard deviation of each variable

within the two datasets are also presented.



Appendices

Supplementary Table 1 - Principal components (scoring factors) for the variables included in wealth

index, together with population mean and standard deviation for each variable

Community survey School survey
Variable Scoring Mean SD Scoring Mean SD
factor factor

Own radio 0.404 0.220 0.414 0.346 0.532 0.499
Own mobile telephone 0.387 0.246 0.431 0.354 0.570 0.495
Own bicycle 0.235 0.056 0.230 0.241 0.229 0.420
Latrine 0.119 0.948 0.222 0.066 0.989 0.104
Brick walls in household 0.463 0.065 0.246 0.497 0.120 0.325
Iron roof in household 0.444 0.248 0.432 0.442 0.398 0.489
Cement floor in household 0.454 0.049 0.215 0.501 0.099 0.299

The principal component analysis creates uncorrelated indices, where each component is a

linear weighted combination of the initial variables:

PC, =a,X +a,X,+...4+a,X,

ml mn

Where a,,, represents the weight for the m principal component and n™ variable.

The households in community data and individuals in school survey were classified into three
groups according to the wealth index. Three categories were used due to the small dataset
size (particularly for community survey) and limited variation at the six sites contributing this
phase one data. The mean variable value for each of the three wealth index group are

presented in the table below, along with mean socio-economic index in each group.
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Supplementary Table 2 - Mean variable values for each wealth category, according to classification of

wealth index calculated by principal component analysis. The mean wealth index value by group is also

presented for both school and community surveys.

Community survey

School survey

Variable Poorest Middle Richest Poorest Middle Richest
Own radio 0.000 0.456 0.494 0.225 0.627 0.845
Own mobile telephone 0.000 0.537 0.546 0.207 0.734 0.879
Own bicycle 0.000 0.000 0.170 0.027 0.303 0.421
Latrine 0.920 0.966 0.987 0.979 0.993 0.999
Brick walls in household 0.000 0.000 0.195 0.000 0.001 0.421
Iron roof in household 0.000 0.007 0.751 0.000 0.349 0.997
Cement floor in household 0.000 0.000 0.147 0.000 0.000 0.348
Mean socio-economic -0.987  -0.028  1.646 -1.303 0164  1.972

index
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APPENDIX 2: RISK FACTORS FOR PLASMODIUM INFECTION IN SCHOOL AND

COMMUNITY SURVEYS, CHAPTER 4

Univariate associations between RDT-positive and microscopy-corrected RDT result from
school and community surveys (phase one) and potential individual and household-level risk

factors

Supplementary Table 3 - Univariate analysis of school survey Plasmodium infection

RDT result Slide-corrected RDT result
Variable OR 95% CI p OR 95% CI p
Sex (female vs. male) 0.56 0.37,0.84 0.006 0.60 0.31,1.18 0.137
Age 0.92 0.83,1.02 0.109 0.96 0.81,1.13 0.601
Fever in previous 2 weeks 1.30 1.04,1.62 0.019 1.22 0.85,1.76 0.281
Fever on survey day 2,70 1.25,5.80 0.011 2.38 0.71,7.94 0.160
Net use last night? 0.79 0.52,1.20 0.271 0.98 0.49,1.97 0.955
Any nets in household? 1.29 0.75,2.20 0.360 1.41 0.60, 3.34 0.433
IRS in household? 136 0.47,3.95 0.571 3.38 0.51,22.29 0.206
Household wealth
Poorest 1 = = 1 - -
Median 1.86 1.01,3.43 0.047 190 0.71,5.07 0.200
Least poor 1.81 1.03,3.18 0.038 1.78 0.70,4.51 0.226
Education of household head
None 1 - - 1 - -
Primary incomplete 0.91 0.50,1.65 0.753 0.66 0.27,1.63 0.370
Primary complete or higher 0.62 0.32,1.22 0.168 0.50 0.18,1.35 0.172
Distance to walk to school*
<1 km 1 - - 1 - -
1-2km 1.20 0.77,1.88 0.429 1.02 047,219 0.964
>2km 0.85 0.46,1.55 0.593 1.22 0.50,2.96 0.660

TEstimated using reported time to walk to school, and assuming a child walks at 3.4 miles per hour on average
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Supplementary Table 4 - Minimal multivariate model of RDT result (binary) and risk factors for
infection in school-based survey, with study site random effects. Multivariate models could not be

produced for slide-corrected RDT result due to small numbers.

Odds ratio 95% confidence interval P
Sex (female vs. male) 0.56 0.37,0.85 0.006
Fever in previous two weeks 3.21 1.92,5.35 <0.001
Household wealth
Poorest 1 - -
Median 1.98 1.06, 3.69 0.032
Least poor 1.92 1.08, 3.42 0.027
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Supplementary Table 5 - Univariate analysis of community survey Plasmodium infection

RDT result Slide-corrected RDT result
Variable OR 95% ClI p OR 95% ClI p
Sex (female vs. male) 0.92 0.62,1.36 0.667 097 0.49,193 0.940
Age (continuous) 0.97 0.96,0.98 <0.001 0.98 0.96,1.00 0.111
Age group
<7 years 1 - - 1 - -
(school age) 7-16 years 0.86 0.54,1.37 0.537 1.34 0.58,3.12 0491
>16years 0.33 0.20,0.55 <0.001 0.52 0.21,1.27 0.151
Fever in previous 2 weeks 1.39 1.15,1.69 0.001 1.33 0.99, 1.80 0.061
Fever on survey day 1.11 0.85,1.46 0.428 1.13 0.76,1.68 0.547
Net use last night? 0.41 0.21,0.79 0.008 0.59 0.22,1.61 0.304
Any nets in household? 0.77 0.49,1.20 0.254 0.56 0.25,1.27 0.166
Number of nets in household 0.85 0.65,1.12 0.244 0.71 0.42,1.20 0.202
IRS in household? 1.09 0.54,2.20 0.803 4.05 1.25,13.18 0.020
Household wealth
Poorest 1 - = 1 = -
Median 1.63 0.89,2.99 0.112 3.27 112,960 0.031
Least poor 1.58 1.01,2.47 0.046 3.32  1.39,7.90 0.007
Education of household head
None 1 - - 1 - -
Primary incomplete 1.31 0.83,2.06 0.241 240 1.04,5.56 0.040
Primary complete or higher 1.75 0.99,3.08 0.053 1.25 0.36,4.31 0.727
Distance from household to
school
<1 km 1 - - 1 - -
1-2km 0.84 0.56,1.27 0.406 0.54 0.25,1.15 0.111
>2km 066 0.27,1.61 0.358 0.55 0.12,2.55 0.445
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Supplementary Table 6 - Minimal multivariate multilevel model of RDT result (binary) and risk factors
for infection in community-based survey, with random effects at household- and study site-level.

Multivariate models could not be produced for slide-corrected RDT result due to small numbers.

Odds ratio 95% confidence interval P
Age (continuous) 0.87 0.74,1.02 0.085
Slept under net previous night 0.15 0.03,0.88 0.036
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APPENDIX 3: SUMMARY RESULTS FROM ROUTINELY COLLECTED HEALTH FACILITY

DATA IN OROMIA REGIONAL STATE, 2006-2011

Of a total 6553 government health facilities (hospitals, health centres, clinics and health
posts) estimated by Oromia Regional Health Bureau to be operational at the end of 2010,
5,553 (85%) facilities were included in documentation submitted as part of the retrospective
data collection activity, and data from 5304 (81%) facilities in 246 woredas were suitable for

inclusion in the clean dataset.

While the primary indicator of interest from health facility data was annual incidence of
confirmed malaria, these data should be interpreted in the context of some important
changes in malaria diagnosis and treatment in Oromia, which occurred concurrent to the data
presented. Over the study period, there was a large expansion of the health extension
programme, with many health posts becoming operational and beginning to submit data as
part of HMIS. From January 2007 to December 2010, the number of health posts increased
from 992 to 3939 (four-fold increase). The number of health centres operational and
reporting data also increased (305 to 523) from June 2006 to January 2011. Mean woreda
annual any-cause outpatient attendance increased from 12,732 in 2007 to 22,160 in 2010,

indicating an overall 74% increase in utilisation of health facilities from 2007 to 2010.

The mean number of health facilities reporting data from a single woreda was 20, including
two health centres and 18 health posts. The population of a single woreda (from 2007
census) ranges from 10,752 to 337,913. A large increase in proportion of health facilities with
access to parasitological diagnosis (either microscopy or RDTs) was seen, from 26% at the
start of 2007 to 57% by the end of 2010, with further increases documented since 2010. The
increase in access to diagnostics is more striking when considering that the proportion of all
suspected malaria cases which were tested using RDT or microscopy increased from 45% in

2007 to 81% in 2010.
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It was possible to calculate annual mean incidence of confirmed malaria for 219 woredas. A
map displaying annual incidence of confirmed malaria from each year from 2007 to 2010,

inclusive, is presented in Supplementary Figure 1.

Supplementary Figure 1 - Annual woreda incidence of confirmed malaria per 1000 people, for all
health facilities reporting data. Note that from 2007 to 2010, health facilities had increasing access to
confirmatory diagnostics, both increased use of microscopy at health centres and availability of rapid
diagnostic tests (changing from HRP2-only to HRP2-panLDH combination kits from 2009 onwards) at
health posts. In addition, expansion of the health extension system resulted in a large increase in the
number of health facilities reporting data to the Health Management Information System from 2007 to

2010

Annual incidence of confirmed malaria, per 1000 people
<1.00 . 2.51-5.00 [ 7.51 -10.00 I 25.01-50
11.01-2.50 5.01 - 7.50 [ 10.01 - 25.00 [l >50.00
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