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ABSTRACT

Targeted resequencing technologies have allowed
for efficient and cost-effective detection of genomic
variants in specific regions of interest. Although
capture sequencing has been primarily used for in-
vestigating single nucleotide variants and indels, it
has the potential to elucidate a broader spectrum
of genetic variation, including copy number variants
(CNVs). Various methods exist for detecting CNV
in whole-genome and exome sequencing datasets.
However, no algorithms have been specifically de-
signed for contiguous target sequencing, despite its
increasing importance in clinical and research ap-
plications. We have developed cnvCapSeq, a novel
method for accurate and sensitive CNV discovery
and genotyping in long-range targeted resequenc-
ing. cnvCapSeq was benchmarked using a simulated
contiguous capture sequencing dataset comprising
21 genomic loci of various lengths. cnvCapSeq was
shown to outperform the best existing exome CNV
method by a wide margin both in terms of sensitiv-
ity (92.0 versus 48.3%) and specificity (99.8 versus
70.5%). We also applied cnvCapSeq to a real capture
sequencing cohort comprising a contiguous 358 kb
region that contains the Complement Factor H gene
cluster. In this dataset, cnvCapSeq identified 41 sam-
ples with CNV, including two with duplications, with a
genotyping accuracy of 99%, as ascertained by quan-
titative real-time PCR.

INTRODUCTION

In the post-genomic era, next-generation sequencing (NGS)
has revolutionized biological research and discovery. De-
spite its relatively short history, NGS has been universally
adopted as the standard for exploring genomic variation.
However, it still remains economically infeasible to use
whole-genome sequencing (WGS) in the large sample sizes
that are needed to identify rare variants of small effect or in-
complete penetrance. Thus, targeted resequencing is being
used as a cost-effective alternative to WGS for investigating
regions of interest when a priori knowledge of potentially
causal loci is available.

Targeted resequencing strategies, including whole-exome
sequencing (WES), have been used to elucidate both mono-
genic (1-3) and complex disorders (4-6), including some
cancers (7-9). These studies, however, tend to focus exclu-
sively on single-nucleotide variants (SNVs) and indels, es-
sentially disregarding structural variation. Structural vari-
ants, and copy number variants (CNVs) in particular, have
been shown to contribute significantly to genetic diversity
(10) and disease etiology (11-13). The scarcity of CNV find-
ings obtained from targeted resequencing can be largely at-
tributed to systematic biases that arise from the target se-
lection process and render traditional, whole-genome CNV
detection algorithms inapplicable.

Multiple approaches have been developed to selectively
enrich for specific genomic loci prior to sequencing. How-
ever, in addition to known sequencing biases, the enrich-
ment step, whether PCR- or hybridization-based, unavoid-
ably introduces non-uniformity in sequencing coverage
across the target regions. This translates into highly vari-
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able read depth (RD) that is not directly proportional to the
underlying copy number of the region, as assumed by most
CNYV detection methods developed for WGS. Even CNV al-
gorithms that rely more heavily on discordant paired reads
(14,15) rather than RD are adversely affected by the variable
capture specificity which results in insert sizes that are not
readily interpretable. Furthermore, such methods are only
effective if the CNV breakpoints are successfully captured,
which can be challenging in homologous genomic regions.
To overcome these difficulties, a few CNV detection meth-
ods have been specifically developed for targeted resequenc-
ing.

The vast majority of these methods employ two basic
strategies to deal with enrichment biases: control-based
normalization or data-driven normalization. Control-
based normalization attempts to counteract local sequenc-
ing artifacts by dividing the RD by a control depth, thus
generating a log-ratio metric. Existing methods in this cat-
egory include ExomeCNYV (16), EXCAVATOR (17) and
CONTRA (18), which require either a matched control
population that is not always available or an unrealis-
tic pseudo-control calculated from the population aver-
age. Data-driven normalization, on the other hand, at-
tempts to identify and eliminate high-variance components
in the RD signal that are likely dominated by noise. This
strategy essentially constitutes a dimensionality reduction
that can be achieved either using Singular Value Decom-
position (SVD), or the equivalent Principal Component
Analysis (PCA). Popular methods in this category include
CoNIFER (19) and xHMM (20). Post-normalization, all
the aforementioned methods perform CNV detection us-
ing either simple thresholding or established CNV segmen-
tation algorithms such as Circular Binary Segmentation
(CBS) and Hidden Markov Models (HMM). Furthermore,
regardless of normalization strategy, the ability to call ab-
solute copy number genotypes currently requires the use of
a control population.

All of the existing methods focus on detecting exon-
spanning CNVs in WES datasets and are based on the as-
sumption that RD correlation across distal regions reflects
sample batch artifacts. As a result, they require exome-wide
data and cannot accurately resolve CNV breakpoints out-
side exons, which makes them unsuitable for long-range
contiguous capture sequencing. A subset of the existing al-
gorithms, comprising CONTRA, CoNIFER and xHMM,
can theoretically accommodate large capture regions, but
not without significant modifications beyond the scope of
their intended use.

CONTRA corrects for correlated noise between samples
using a control or pseudo-control population. Since it was
originally designed for small-region targeted resequencing,
CONTRA relies on heuristics for predicting large CNVs.
CoNIFER and xHMM perform a z-transformation of raw
RD signal, followed by SVD and PCA respectively. Both
methods exclude samples and probes of high-variance and
attempt to avoid over-correction using empirical rules. All
three methods rely exclusively on RD and none of them pro-
vide absolute genotypes. Another significant obstacle pre-
sented by all three methods is the fact that they require a
list of capture target coordinates as input. This is readily

PAGE 2 OF 9

available for commercial WES platforms, but not for cus-
tom contiguous long-range capture assays.

Here we present cnvCapSeq, a control-free method for
accurate and sensitive CNV discovery and absolute copy-
number genotyping in long-range targeted resequencing
datasets. cnvCapSeq is the first algorithm specifically de-
signed to address the challenges of contiguous capture se-
quencing. By utilizing information at the population level,
our method ameliorates the effects of capture efficiency
bias and minimizes the risk of over-correction without the
need for a baseline reference. Unlike existing methods, cn-
vCapSeq integrates evidence from both RD and read pairs
(RP) to achieve high breakpoint resolution regardless of
coverage uniformity.

MATERIALS AND METHODS
Samples and datasets

cnvCapSeq was developed and benchmarked using an ex-
tensive multi-locus simulation dataset, designed to cover
a wide range of scenarios. Our framework was then vali-
dated on a real cohort of 285 Chinese Singaporean control
samples. The real cohort comprises contiguous capture se-
quence data of the Regulation of Complement Activation
(RCA) locus on chromosome 1.

Simulations

To obtain a comprehensive benchmark for cnvCapSeq, we
generated a synthetic dataset that spans multiple CNV
lengths and population frequencies. For that purpose, we
selected 21 genomic loci on chromosomes 1 and 6 (Sup-
plementary Table S1) that were shown to harbor recurrent
deletions by the 1000 Genomes Project (21). The sizes of
the candidate deletions are evenly distributed between 1 and
115 kb. To facilitate CNV calling, each locus includes 20 kb
on either side of the candidate deletion.

We used Wessim (22) to perform in silico simulations of
contiguous capture sequencing reads in the 21 candidate
loci. Although Wessim was originally designed for exome
sequencing simulations, it can be generalized for any type
of capture sequencing experiment. By emulating a probe-
hybridization step, Wessim generates very realistic synthetic
capture data that cannot be obtained with traditional NGS
simulators. To take advantage of this feature, we fragmented
the candidate loci into unevenly spaced probes with random
overlaps, and queried the reference genome (hgl9) for the
corresponding probe sequences. These sequences constitute
the input for Wessim. However, the probe design itself is ob-
scured from later analysis, as it would be in real capture ex-
periments. The random overlap of the hybridization probes
approximates the custom probe tiling that is necessary for
comprehensive coverage of a target region and is largely
responsible for the observed uneven coverage. The second
source of RD bias within capture targets is the presence of
repetitive genomic sequence that exhibits low alignability.
Such non-unique sequence has been shown to mediate CNV
formation, and may therefore be over-represented in CNV
regions. This type of artifact can only be reproduced by con-
sidering candidate loci with known CNVs, instead of simu-
lating under ideal conditions. The complex structure of our
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21 loci, poses alignability challenges and renders our syn-
thetic dataset more realistic (Supplementary Figure S1).

In each locus we simulated 100 copy-neutral samples to
aid in specificity and precision calculations and 30 samples
with heterozygous deletions to evaluate sensitivity. An em-
pirical error model was used to simulate paired-end reads
from Illumina HiSeq IIx sequencing runs. The reads were
100 bp long with a mean insert size of 200 bp, and were
aligned to the reference using the Burrow-Wheeler Aligner
(BWA) (23). The average coverage was kept constant at 200x
across samples with 94.5% of all bases (across loci) covered
at least 10x. Bases with coverage below 10x were excluded
from further analysis, as they correspond to targets that
failed to capture. This is most likely due to low alignabil-
ity of the underlying probes.

Finally, the deletion-carrying samples were com-
bined with the copy-neutral samples to obtain pseudo-
populations of varying deletion frequencies (1-30%) in
each locus. These pseudo-populations form the basis
for evaluating the performance of cnvCapSeq against
CONTRA, CoNIFER and xHMM.

RCA cohort

The RCA cohort comprises capture sequence data of a
~358 kb locus on chromosome 1q31.3 that contains the
Complement Factor H (CFH) gene and 5 CFH-related
(CFHR) genes. Although this region is known to harbor a
common deletion and has previously been associated with
Age-related Macular Degeneration (AMD) (24) and sus-
ceptibility to meningococcal disease (295), it remains difficult
to characterize due to its high degree of macrohomology.

The target region was enriched using a custom Nimble-
gen SeqCap assay. Despite the highly repetitive nature of
the RCA locus, the assay successfully captured ~90% of
the intended 358 kb region (chr1:196 620 597-196 978 814).
In each assay 24 samples were captured, all of which were
uniquely barcoded. Due to the relatively small size of the
target region, two 24-sample capture libraries could be mul-
tiplexed to allow sequencing of 48 samples per flow cell on
Illumina HiSeq2000, using a paired-end protocol. The se-
quencing libraries consisted of 100 bp reads with a mean
insert size of 200 bp. The sequencing reads were aligned to
the human reference genome (hgl9) using CASAVA, which
is part of Illumina’s data analysis pipeline. Duplicate reads
were removed using Picard followed by local realignment
and recalibration with GATK (26,27). The average depth
of coverage across samples is ~650x and more than 90% of
bases were covered at least 14x (Supplementary Figure S2).
This is expected since the assay did not contain baits to cap-
ture the remaining 10%.

Read depth normalization

The main source of systematic bias arises from varying cap-
ture efficiency, which leads to uneven coverage across the
target region. Capture efficiency depends on various fac-
tors, including sequence composition and enrichment strat-
egy. Especially for hybrid capture technologies, the bait
length and tiling density play an essential role in the re-
sulting RD pattern. Most aspects of sequence composition,
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Figure 1. Read depth profiles. (a) Read depth profile of sample CHH1030
(RCA cohort) across the target region, before and after correcting for GC-
content and alignability using linear regression. The coefficient of deter-
mination (R2, ratio of explained variation to the total variation) is used
to determine the variance explained by each variable. GC explains only a
small fraction of the read depth variance, while alignability explains 57%.
(b) Read depth profile for 10 randomly chosen samples from the RCA co-
hort across the target region. The profiles appear to have a high degree of
similarity, with only minor variations between samples. (¢) Correlogram
for the 10 samples in (b). The lower left panel represents the pair-wise scat-
terplot for all possible sample combinations. The upper right panel repre-
sents the color- and intensity-coded Pearson’s correlation (%) for all possi-
ble sample combinations. The minimum reported 12 is 0.93. (d) The relative
variance for the first five singular components calculated from our entire
dataset. The relative variance of component £ is defined as 52/ Xisi?. The
first singular component dominates with a relative variance of 93%, while
the remaining components have minor contributions.

such as GC content and alignability, are well described and
can thus be modeled (28). Sequence properties, however, ac-
count for only a small fraction of the noise present in cap-
ture datasets (Figure 1a).

Bait design, on the other hand, may explain most of the
variability in RD (Supplementary Figure S1) but is usually
proprietary and as such remains a black box for normal-
ization purposes. Although the individual confounders of
sequencing coverage may remain unknown, it is apparent
that the noise pattern is consistent among samples (Fig-
ure 1b; Supplementary Figure S1; Supplementary Figure
S3). In fact, the RD is highly correlated across samples,
with an average pair-wise Pearson’s correlation coefficient
of 0.97 (Figure 1c). Therefore, RD measurements are highly
amenable to data-driven normalization, which is especially
powerful for large-scale population resequencing projects.

The SVD has been proposed as a robust mathematical
framework for detecting high-order structure in complex bi-
ological datasets (29). Assuming our RD data is sampled
in non-overlapping windows of user-defined length (default
100 bp), normalized by the average per-sample coverage and
arranged into a position-by-sample matrix M, SVD pro-
vides the following factorization:

M=UZV*

The columns of matrix U represent the left singular vec-
tors of M which can be interpreted as uncorrelated eigen-
windows. Similarly, the rows of 1* represent the right sin-
gular vectors of M and can be thought of as uncorrelated
eigen-samples. X' is a diagonal matrix containing the singu-
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Figure 2. Normalization results for a copy-neutral sample and a sam-
ple with CNV from the RCA cohort. (a) Read depth profile for sample
CHH1008 with up to four singular components removed. This sample is
copy-neutral (as validated by qPCR). (b) Read depth profile for sample
CHH1039 with up to four singular components removed. This sample con-
tains a PCR-validated heterozygous deletion (with breakpoints marked by
the orange dashed lines). (¢) RP Distance profile for sample CHH1008 with
various strategies for dealing with multi-mapped reads. (d) RP Distance
profile for sample CHH1039. By locally realigning multi-mapped reads we
manage to unmask a relatively weak RP signal that supports the deletion.

lar values of M, in decreasing order. The magnitude of each
singular value corresponds to the relative importance of
each combination of eigen-window and eigen-sample and
is largely dependent on the number of samples being pro-
cessed in parallel.

Existing methods that apply SVD or PCA for RD nor-
malization in exome sequencing datasets (19,20) use heuris-
tics to determine the number of components that need to be
removed. In our case, however, it was evident that the first
singular value is dominated by the systematic noise (Figure
1d; Supplementary Figure SA). Thus, by removing only the
first singular component and reconstructing the M matrix,
we essentially remove the baseline coverage, making CNV
signal stand out (Figure 2a and b; Supplementary Figure
S3b and e).

Also, unlike other SVD-based methods, we don’t convert
our reconstructed data into z-scores, since that eliminates
all scale information and allows only relative copy number
estimation. Instead, we add the mean coverage back to the
normalized data, thus restoring its original properties. The
shifted, normalized RD can then be treated like its unnor-
malized counterpart, providing an intuitive basis for abso-
lute copy number genotyping.

Read pair processing

RP provide distinct CNV signatures that are largely com-
plementary to RD. When the distance of a mapped RP
is significantly different from the expected insert size, it
can be used to identify both deletions and duplications.
Unlike RD, however, RP signatures only arise when the
sequencing targets happen to contain CNV breakpoints.
Since exome probes are unlikely to capture such break-
points, RPs have been largely overlooked by targeted rese-
quencing CNV methods.
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The analysis of RP data becomes even more challenging
in the presence of repeats and segmental duplications, such
as those found in the RCA locus. As a result, we observe
a large proportion of multi-mapped pairs with ambiguous
distances that are essentially uninformative for CNV call-
ing. By entirely excluding such reads, as CNV algorithms
usually do, all RP information appears to be lost. Instead,
we attempt to rescue non-unique mappings using sensitive
local realignment. This allows us to unveil weak RP signa-
tures that support the absence (Figure 2¢) or presence of
CNV (Figure 2d).

To that end, we extract discordant multi-mapped RP and
perform very sensitive local realignment using Bowtie 2
(30). To increase alignment sensitivity we adjust Bowtie’s
multiseed heuristic by reducing the length of seeds and the
inter-seed distance, while increasing the number of permit-
ted mismatches per seed. Thus, we obtain multiple alter-
native mappings with detailed alignment properties, which
may have been sacrificed by the original aligner in favor of
speed. We then rank the alternative mappings according to
their reported AS and YS alignment scores and select the
combination that maximizes their sum while minimizing the
overall amount of soft-clipping. Pairs with alternative map-
pings of indistinguishable quality are filtered out from fur-
ther analysis. The rest are used to calculate the average dis-
tance of all spanning pairs at any given position (RPS; read
pair span), along with a count of such pairs (RPC; read
pair count). To account for possible differences in library
design among samples, we quantile-normalized the insert
size distributions to a Gaussian reference with a mean of
200 and 15 bp variance. Finally, these metrics are sampled
at the same resolution as the RD.

Data modeling and CNV calling

Considering the contiguous nature of our sequencing tar-
get, the assay likely captures CNV breakpoints thus allow-
ing us to model both RD and RP at the population level to
achieve optimal results. CNV detection and genotyping is
achieved using the HMM framework described in cnvHiT-
Seq (31). The observed continuous variables (RD, RPS and
RPC) are considered to be generated by the hidden under-
lying discrete copy number states.

For WGS, the HMM emission probabilities of RD and
RPC were modeled using the negative binomial (NB) dis-
tribution, whereas a normal distribution was used for the
RPS. However, given that our normalization strategies re-
duce the dynamic range of both RD and RP, we tailored
the distributions for capture sequencing datasets. Thus, we
adopted a fine-tuned set of initial emission parameters for
both the NB and the normal distribution, combined with
a higher initial transition rate, to increase the sensitivity of
the model without affecting its specificity.

Another important addition to the CNV calling frame-
work is the ability to a priori exclude regions that corre-
spond to failed target probes or intentional gaps. If there
is information on loci that were not captured during the
enrichment step, cnvCapSeq will downweight all evidence
arising from these loci, thus avoiding spurious CNYV calls.
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cnvCapSeq implementation

cnvCapSeq is implemented as a collection of Java tools and
helper shell scripts for UNIX systems. It takes BAM align-
ment files as input and offers the option to exclude target re-
gions that are known to have failed the capture step (in BED
format). The pre-processing of the BAM files is performed
with SAMtools (32), while Bowtie2 is used to realign multi-
mapped reads. cnvCapSeq generates normalized RD files
in binary and text format that can be used independently
of our HMM framework. Thus, cnvCapSeq also offers a
standalone normalization tool that can be used in conjunc-
tion with third party segmentation algorithms. When paired
with our HMM solution, cnvCapSeq produces CNV calls in
text format and optional segmentation plots.

The sampling density of RD and RPC is a user-specified
parameter that determines the CNV breakpoint resolution
and the computational requirements of the algorithm. At
the default high-resolution setting of 100 bp, the analysis
of a ~350 kb region in 100 samples (sequenced at 50x), re-
quires 4 GB of memory and one CPU hour. The software is
freely available at http://sourceforge.net/p/cnvcapseq.

Experimental validation

cnvCapSeq’s results on the RCA cohort were validated us-
ing quantitative real-time PCR (qPCR) on a randomly cho-
sen subset of the samples with predicted CNVs, in dupli-
cates and whenever possible in triplicates. The subset com-
prised 13 samples, representing at least one sample from
each detected CNV pattern. gPCR was also performed on
10 additional samples in which CNV was not identified.
We designed four sets of primers distributed across the en-
tire 358 kb region (Supplementary Table S2). Using all sets
of primers for each CNV gave a reasonable estimate on
its length. For instance, the most frequently detected CNV
overlaps through two primer sets, located in the beginning
and the end of the CNV, but not the remaining two sets.
To confirm that the primers were targeting the intended re-
gion, we performed PCR followed by Sanger sequencing for
one sample. For internal control a fifth set of primers for
PRKG]I (a house keeping gene) was also created. Follow-
ing qPCR, copy number estimates were obtained using the
AACt method of relative quantification.

RESULTS
Simulation benchmark

A systematic evaluation of cnvCapSeq’s performance was
obtained using our extensive simulation dataset. This
dataset can serve as a general benchmark for contigu-
ous capture sequencing algorithms and is thus made pub-
licly available. For comparison purposes, we also included
three representative WES CNV methods in our assessment:
CONTRA, CoNIFER and xHMM. However, the appli-
cability of these methods to contiguous targets is limited
by their explicit requirement for capture target coordinates.
The first obstacle for obtaining such coordinates is the pro-
prietary nature of bait design for custom capture assays.
Furthermore, the assumption of contiguity is contrary to
the distinct nature of exons and genes spread across the
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genome. We attempted to overcome these constraints by
generating ‘pseudo-targets’ that cover our simulated loci.
This was achieved by dividing the loci into non-overlapping
100 bp windows.

Our simulation dataset explores numerous conditions
and normalization scenarios. Before proceeding with the
detailed assessment, however, we investigated how the nor-
malization process itself affects our synthetic RD data. To
that end, we applied the SVD and observed that most of
the variance that is due to unmeasurable sources of exper-
imental bias, can be captured by the first and largest sin-
gular value (Supplementary Figure S3). In most cases, the
absence of CNV in copy-neutral samples only becomes ap-
parent after removing the first singular component (Sup-
plementary Figure S3a and d). Conversely, true CNVs are
masked by an overlapping reduction in RD that is present
in all samples (Supplementary Figure S3b and e). Remov-
ing more than one singular component masks all evidence
of CNV (Supplementary Figure S3c and f) and renders RD
uninformative. Thus, we opted to normalize our simulated
data by eliminating just the first singular component. The
other data-driven methods in our benchmark (xHMM and
CoNIFER) employ heuristics to determine the number of
components to remove, which results invariably in over-
correction. Therefore, we decided to override the default
behavior of these methods, forcing them to discard only
the first singular component. This creates bias in favor of
xHMM and CoNIFER, but allows for meaningful compar-
ison with cnvCapSeq.

First, we calculated overall performance metrics to ob-
tain a broad view across simulated conditions. In this as-
sessment, cnvCapSeq outperforms all other methods by
a wide margin (Supplementary Table S3), with an overall
sensitivity of 92.0 versus 48.3% for the next best method
(xHMM) and an overall specificity of 99.8 versus 70.5%. cn-
vCapSeq also has a clear advantage in positive prediction
value (PPV), as it achieves 98.4 versus 12.3% for xHMM.
This disparity is due to the fact that all three WES CNV
methods make considerably more false positive calls than
true positive calls. In fact, CONIFER detected almost none
of the simulated deletions (0.02% sensitivity) and it was thus
excluded from further comparisons.

Next, we set out to explore the relationship between the
length of the simulated CNV and method performance. Our
synthetic dataset comprises 21 genomic loci, each harbor-
ing a deletion of different size. The deletions range from
1014 to 114 663 bp, with an approximate increment of
5 kb. cnvCapSeq remains consistently specific and precise
across lengths while exhibiting small variations in sensi-
tivity. xHMM and CONTRA, however, appear to deteri-
orate significantly with increasing CNV size. The effect is
more pronounced for CNVs larger than 70 kb, which both
xHMM and CONTRA fail entirely to detect (Figure 3a,
Supplementary Figure S4). This can be largely explained
by the fact that WES methods were designed for small- to
medium-sized CNVs, spanning neighboring exons. Thus,
they resort to heuristics for calling larger events, which tend
to restrict their functionality.

In capture sequencing datasets, CNV detection is contin-
gent on the ability to generate a robust RD baseline that
represents the copy-neutral state across targets. Whether ex-
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Figure 3. Performance comparison for three CNV detection methods us-
ing the synthetic dataset. Parallel coordinates plot represent combinations
of sensitivity, specificity, accuracy and positive predictive value (PPV). (a)
Simulated deletions were divided into three size groups and the perfor-
mance metrics were averaged across frequencies. The denser the dash pat-
tern the larger the underlying deletions. The best results for all methods are
achieved for shorter CNVs (b) Simulated deletions were divided into three
frequency groups and the performance metrics were averaged across dele-
tion sizes. The denser the dash pattern the higher the underlying frequen-
cies. The best results for all methods are achieved for lower frequencies.

plicitly required (as in control-based normalization) or in-
directly estimated (as in data-driven approaches), this base-
line is largely affected by the population frequency of the
underlying CNV. We tested this effect by simulating a wide
range of CNV population frequencies (1-30%), while main-
taining a constant overall population size of 100. As ex-
pected, higher frequencies pose challenges for all meth-
ods, with xHMM more severely affected (Figure 3b). cn-
vCapSeq maintains 100% sensitivity for frequencies up to
15%, while specificity and PPV only start to decline at fre-
quencies higher than 27%. On the other hand, xHMM and
CONTRA start deteriorating for frequencies as low as 6%
(Supplementary Figure S5).

Finally, we investigated how the size of the cohort in-
fluences CNV detection. Small cohorts may be economi-
cally preferable, but tend to suffer from higher variance,
which leads to unreliable estimates of the RD baseline. This
is especially problematic for dimensionality-reducing tech-
niques, which attempt to compensate by eliminating more
singular (or principal) components and discarding high-
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variance probes. This comes at the expense of true CNV
signal, which often lies in regions with unstable RD. In
contrast, cnvCapSeq employs a conservative filtering ap-
proach, which confers enhanced performance for smaller
datasets and increased robustness to sample size. This was
demonstrated by simulating various cohort sizes (5-100
samples), while keeping the CNV population frequency ap-
proximately equal to 30%. In this challenging scenario, cn-
vCapSeq is shown to outperform the next best method
(xHMM) by a wider margin for small datasets than for the
full-size cohort (Supplementary Figure S6). Moreover, cn-
vCapSeq reaches stability for cohorts comprising as few as
40 samples, while xHMM requires twice as many samples
for optimal results (Supplementary Figure S6).

Thus, we have demonstrated that cnvCapSeq is superior
to methods designed for exome CNV detection under a
variety of conditions. cnvCapSeq also overcomes a major
limitation of existing data-driven normalization methods,
which can only detect rare variants, while requiring concur-
rent analysis of large sample numbers.

RCA cohort

cnvCapSeq was also evaluated in a real cohort comprising
targeted resequencing data from the ~350 kb RCA locus in
285 control samples. The RCA locus lies on chromosome
1q and contains the CFH gene along with five ancestrally
related genes that arose through duplication of CFH. The
samples were normalized in three batches, corresponding to
the flow cells they were sequenced on, and then pooled for
CNYV analysis.

We normalized the RD using our SVD framework and in-
vestigated how the results differ from our simulated dataset.
We verified our previous observation regarding the contri-
bution of singular components to the RD noise profile (Fig-
ure 1d). As in our simulated data, we observe a highly cor-
related RD pattern across samples, which swamps the true
CNV signal. Both the absence (Figure 2a) and the presence
of CNV (Figure 2b) are elucidated when the first singu-
lar component is removed and suppressed when removing
higher-order components. Therefore, by filtering out only
the first singular component we eliminate the noise pat-
tern, exposing relatively weaker RD perturbations caused
by CNV.

We also subsampled the RCA cohort to assess the consis-
tency of our normalization approach for smaller datasets.
Thus, we confirmed that our strategy can help expose com-
mon CNVs (up to 30% population frequency) in pseudo-
cohorts comprising as few as five samples (Supplementary
Figure S7).

Discordant RP provide orthogonal evidence for the pres-
ence of CNV and have been shown to greatly improve the
specificity of CNV detection algorithms when combined
with RD (31). Nevertheless, RP remain underutilized in tar-
geted resequencing experiments, since they are only relevant
when the size of the target is larger than the insert size and
the CNV breakpoints are captured. RP distance profiles are
also confounded by multi-mapped reads. Rescuing such am-
biguous pairs is especially important in our case, since the
common deletion in the RCA gene cluster is facilitated by
nonallelic homologous recombination between the same re-
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Figure 4. Graphical representation of our CNV calls. The UCSC genome
browser was used to plot the CNVs detected by cnvCapSeq along with
the affected genes. Red color denotes heterozygous deletion, pink denotes
homozygous deletion and green corresponds to three copies.

peat elements that also give rise to the multi-mappings (33).
Therefore, excluding such alignments would eliminate all
RP evidence for the deletion we are aiming to detect (Figure
2¢ and d).

Following normalization, we performed CNV segmenta-
tion and genotyping using a HMM. In our control dataset,
cnvCapSeq detects 42 CNVs in 41 samples (Figure 4), most
of which are consistent with the common ~80 kb deletion
that has been previously reported in the RCA locus (24,33)
and results in the loss of CFHR1 and CFHR3. We also
report an ~90-kb duplication that affects CFHR4 in two
samples. Finally, we identified a 120-kb heterozygous dele-
tion that overlaps both the common deletion and the dupli-
cation, in eight samples (Supplementary Table S4, Supple-
mentary Figure S8).

RCA benchmark

First, we set out to validate our CNV calls using qPCR. To
that end, we genotyped 13 of the predicted CNVs, as well
as 10 copy-neutral samples. cnvCapSeq achieved a perfect
concordance (13 out of 13 CNYV calls) with the PCR results,
indicating very high precision (Table 1a). Furthermore, no
false positives were detected in the copy-neutral samples,
corresponding to high specificity (Table 1b). In addition,
all the CNV lengths were predicted to be accurate at the
locus level, except for a duplication which was predicted to
be shorter by cnvCapSeq than the qPCR estimate. This cor-
responds to an average genotyping accuracy of 99% across
the four primer sets.

Next, we compare cnvCapSeq’s performance against
CONTRA, CoNIFER and xHMM. These methods were
designed for exome sequencing datasets and therefore re-
quire capture target coordinates as input. Thus, we followed
a similar process to our simulation benchmark by dividing
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Table 1. qPCR validation results

Sets of primers
Sample
CFHR3 CFHR1 LOC100996886 CFHR4
a CHH1039 1v 1v 2v 2v
CHH1130 1v 1v 2v 2v
CHH1141 1v 1v 2v 2v
CHH1159 1v 1v 2v 2v
CHH1164 1v 1v 2v 2v
CHH1192 1v 1v 2v 2v
CHH1193 1v 1v 2v 2v
CHH1201 1v 1v 2v 2v
CHH1236 1v 1v 2v 2v
CHH1240 1v 1v 2v 2v
CHH1190 2v 1v 1v 1v
CHH1232 1v 0v 1v 1v
CHH1045 2v 3X 3v 3v
b CHH1008 2v 2v 2v 2v
CHH1037 2y 2v 2v 2v
CHH1137 2v 2v 2v 2v
CHH1163 2v 2v 2v 2v
CHH1179 2v 2v 2v 2v
CHH1183 2v 2v 2v 2v
CHH1186 2v 2v 2v 2v
CHH1197 2v 2v 2v 2v
CHH1227 2v 2v 2v 2v
CHH1230 2y 2v 2v 2v

The copy numbers presented are the qPCR estimates, the green check
marks represent concordance, while the red crosses represent discordance
with cnvCapSeq. We validated (a) 13 samples with CNVs and (b) 10 copy-
neutral samples.

our 358 kb capture region into non-overlapping 100 bp win-
dows which serve as ‘pseudo-targets’.

We run CONTRA on our pseudo-target dataset using
the entire population to create the required pseudo-control.
CONTRA has a special set of parameters for predicting
large CN'Vs using CBS. Even using these parameters, how-
ever, CONTRA identified 28 short CNVs (300 bp-5 kb)
that overlap neither the PCR results nor any of the remain-
ing cnvCapSeq calls. By increasing the significance thresh-
old we were able to recover three of the PCR-validated dele-
tions at the expense of four validated false positives (and
134 CNVs in samples that were deemed copy-neutral by cn-
vCapSeq).

xHMM applies a strict filtering approach to exclude sam-
ples and target probes that exhibit high variance. It also em-
ploys an empirical rule to select how many principal compo-
nents to eliminate. Using the default parameters, most sam-
ples failed quality control and the subsequent removal of
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eight components produced no CNV calls. When we omit-
ted the variance filtering step and forced the removal of
a single principal component, xHMM detected 24 CNVs.
These CNVs overlap 19% of cnvCapSeq callset and include
only two out 13 qPCR validated results and one validated
false positive.

CoNIFER, has a similar recommendation for high-
variance samples, which we ignored as it would have elim-
inated more than half of our dataset. CONIFER’s funda-
mental difference from xHMM is that it requires visual in-
spection of the scree plot to determine the number of com-
ponents to be removed. Based on this empirical approach
we identified eight components for elimination, which again
failed to produce any CNVs. When we relaxed this criterion
to the minimum recommended value of three components,
CoNIFER identified 58 variants, consisting mostly of du-
plications. Out of the 13 PCR-validated CNVs, CoNIFER
successfully detected only three and had one false positive.
When we forced CONIFER to remove only the first singular
component, the overall number of calls doubled, the num-
ber of validated CNVs rose to four, but the number of false
positives also increased to three.

Finally, we wanted to investigate how the sequencing
depth of coverage affects our method’s performance. Our
original RCA dataset had highly variable coverage, rang-
ing from 300x to 1400x across samples. To establish a min-
imum threshold for coverage, we randomly downsampled
our data to 50x and 10x and rerun the analysis. The results
for 50x were almost indistinguishable from the original, ex-
cept for minor breakpoint differences. Using a 50% recip-
rocal overlap criterion, 100% of the downsampled CNV
calls agreed with the unconstrained analysis. Even at 10x,
which is on the lowest end for targeted resequencing exper-
iments, cnvCapSeq correctly identified most CNVs, albeit
with slightly underestimated lengths (Supplementary Fig-
ure S9). The only exceptions were the misclassification of
a PCR-validated nested, homozygous deletion as heterozy-
gous and the fragmentation of a large deletion into two
smaller ones. This led to 93% of the 10x CNV results over-
lapping the original callset.

DISCUSSION

Targeted resequencing technologies offer a cost- and time-
efficient alternative to WGS and are thus rapidly gaining
in popularity. Exome sequencing is the most common form
of targeted resequencing, as it focuses on the genome-wide
analysis of protein-coding variants. However, when the bio-
logical hypothesis instructs a more focused approach, larger
contiguous regions are targeted in an effort to identify in-
tronic and regulatory variants. CNVs in particular, can be
detected more reliably and in higher resolution with larger
targets, but there’s been a paucity of compatible algorithms.
To that end, we have presented cnvCapSeq, a dedicated
framework for discovery and genotyping CNVs in large-
target capture resequencing datasets.

cnvCapSeq has distinct advantages compared to existing
CNYV detection methods for capture sequencing. Since it
was designed for large contiguous regions, our algorithm
doesn’t require a priori knowledge of capture target coor-
dinates. Furthermore, it is the only capture-specific method

PAGE 8 OF 9

to incorporate evidence from discordant RP, which become
relevant as the target size increases. cnvCapSeq doesn’t stan-
dardize or transform the underlying data and can thus gen-
erate absolute copy numbers without a reference panel.
We have demonstrated that cnvCapSeq achieves a high ac-
curacy along with high precision, without the need for
matched control samples. Our method is also robust to high
allele frequencies, low depths of coverage and to high cov-
erage variability within datasets.

As with all dimension-reducing techniques, cnvCapSeq
gains power by concurrently analyzing multiple samples.
Unlike current methods, however, cnvCapSeq avoids elimi-
nating true signal by removing only a single singular com-
ponent from RD. The potential trade-off is higher resid-
ual noise, which is counterbalanced using RP for increased
specificity and HMM for spatial smoothing. Thus, cn-
vCapSeq can be used to analyze smaller datasets and geno-
type both rare and more common variants.

cnvCapSeq was tested on a Nimblegen SeqCap assay,
but remains agnostic to the enrichment technique, requir-
ing only BAM alignment files as input. Thus, our method’s
data-driven normalization approach is applicable in princi-
ple to all hybridization-based targeted sequencing of con-
tiguous regions, regardless of platform. However, enrich-
ment protocols that don’t rely on hybrid capture may ex-
hibit distinct properties and biases beyond the scope of cn-
vCapSeq.
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