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Abstract 
 

On-site sanitation solutions are an economically feasible method of improving sanitation, and 

for reducing the burden of diarrhoeal diseases, in low- and middle-income countries. However, 

suitable faecal sludge management (FSM) solutions are severely lacking in these countries. 

Black solider fly larvae (BSFL) efficiently reduce food-waste and animal manure, and produce 

valuable prepupae, high in protein and fat, supporting investigation into a novel BSFL FSM 

method. The aim of this study was to determine the feasibility of using BSFL as a FSM method, 

by evaluating their faecal matter reduction (FMR), and prepupal production capacity, when 

reared on FS under different conditions.  

Black soldier fly larvae were found to develop successfully on fresh human faeces, effectively 

reducing waste and converting it to prepupal biomass. A survey of pit latrines in South Africa 

found physical and chemical characteristics of faecal sludge (FS) similar to previous studies in 

countries requiring novel FSM methods, with characteristics falling within a range suitable for 

BSFL development. Key rearing parameters, moisture content, feeding rate, and larval density, 

significantly influence FMR and prepupal production of BSFL reared on “top layer” 

homogenised FS. Black soldier fly larvae were found to effectively reduce FS from a variety of 

depths, each with a range of physical and chemical characteristics, and produce prepupae with 

nutritious values comparable to previous research, excepting crude fats. The study also 

demonstrated that reported cleaning chemicals in FS do not affect BSFL mortality at 

manufacturer recommended, or user reported concentrations. 

It is proposed that the use of a novel BSFL FSM method is an economically feasible method of 

improving sanitation in low- and middle-income countries, and may help reduce the burden of 

diarrhoeal diseases.  
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Chapter 1) Introduction 

To conduct the following literature review, Ovid and Google Scholar were used to identify 

peer-reviewed studies, grey literature, and organisational reports. The following keywords 

were used: human excreta, human faeces, human feces, diarrhoea, diarrhoeal, diarrhea, 

diarrheal, global disease burden, sanitation, on-site sanitation, off-site sanitation, faecal 

sludge, fecel sludge, pit latrine, pit latrine emptying, faecal sludge management, fecel sludge 

management, waste management, black soldier fly, BSF, BSFL, Hermetia illucens, pathogen 

reduction, prepupae, prepupal value, insects as animal feed, myiasis, organic fertiliser, organic 

fertilizer, heavy metals, endocrine disrupting chemicals, and nitrification. The search was 

conducted between May 2011 and July 2014. 

1.1. Human excreta 

Vast quantities of human excreta are produced every day around the world, and its safe 

disposal is essential to prevent disease transmission. It is suggested that the total amount of 

excreta produced is approximately 1 litre person-1 day-1 (Shaw 1962, Pradt 1971). However, the 

quantity depends on a number of factors, including diet, climate, occupation and water 

consumption, and varies widely (Franceys et al. 1992). Without detailed data, a reasonable 

estimate is that individuals consuming a high-protein diet in temperate climates can produce 

on average 120 grams of faeces, and 1.2 L of urine person-1 day-1, while individuals consuming 

a high fibre vegetarian diet in tropical climates can produce on average 400 g of faeces, and 1 L 

of urine person-1 day-1 (Franceys et al. 1992).  

There have been few studies quantifying the composition of human faeces. However, the 

studies which have been comprehensively reviewed by Chaggu (2004) and Buckley et al. 

(2008), and are synthesised in Table 1-1. Approximately 84% of dried human faeces is organic 

material (Lopez Zavala et al. 2002), consisting of 55% is bacteria and 17% residual dietary fibre 

(Stephen et al. 1980). Bacteria are around 80% water, consequently, 75% of wet human faeces 
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are bacteria (Stephen et al. 1980). Many species of bacteria present in excreta are anaerobic or 

harmless, however there are also many species which can cause disease (Mara et al. 1999).   

Table 1-1 Summary of physical and chemical characteristics of human excreta: Sources, Buckley et al. 
(2008), Chaggu (2004), and Jensen et al. (1976) 

Characteristic Unit Faeces Urine 

Total solids % 15 – 34 0.5 – 7 
Moisture content % 66 – 85 93 – 99.5 

Total volatile solids % dry mass 79 – 84 - 
pH - 5.50 – 7.50 7.08 – 9.00 

Total chemical oxygen demand (COD) g kg
-1

 dry mass 253 – 1450 12.79 
Soluble COD g kg

-1
 dry mass - 11.33 

Total nitrogen (N) % dry mass 5 – 7 15 – 19 
Total phosphorus (P) % dry mass 0.7 – 2.5 1.1 – 2.2 
Total potassium (K) % dry mass 0.8 – 2.1 3.0 – 4.5 

 

1.1.1. Diseases associated with excreta 

It is estimated that human excreta contains over 50 different pathogenic organisms, including 

bacteria, viruses, protozoa, and soil- and water-transmitted helminths (Table 1-2) (Mara et al. 

1999). Approximately 1.4 million deaths are caused by diarrhoeal diseases which could be 

prevented if suitable hygiene, sanitation and water practices (HSW) were followed (Clasen et 

al. 2014). Systematic reviews of HSW interventions suggest that the risk of diarrhoea can be 

reduced approximately 36% by improving sanitation alone (Esrey et al. 1991, Cairncross et al. 

2010). Diarrhoeal diseases account for the majority of preventable deaths, while the number 

of deaths caused by helminthiasis and schistosomiasis are relatively low. While diarrhoeal 

diseases are still the main cause of lost Disability-Adjusted Life Years (DALYs), 52 million 

annually, helminthiasis and schistosomiasis cause a larger percentage of DALYs than deaths, 

2.9 million and 1.7 million respectively. Similarly, trachoma, the commonest infectious cause of 

blindness caused by Chlamydia trachomatis, results in approximately 1.3 million DALYs lost 

annually, with limited evidence for premature mortality (Burton et al. 2009). Therefore, it is 

important to consider the disability burden of excreta-related pathogens as-well as the 

mortality burden. 
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Table 1-2 Selection of excreta-related pathogenic organisms, including number of annual infections 
and mortality 

Category Organism 
Infections 

(thousands) 
Mortality 

(thousands) 
Source 

Bacteria 

Escherichia coli 200,000 210 
(Lozano et al. 

2012) 

Salmonella typhi 93,800 155 
(Majowicz et al. 

2010) 

Shigella spp. 90,000 123 
(Lozano et al. 

2012) 

Vibrio cholera 4,000 58 
(Lozano et al. 

2012) 
Chlamydia 

trachomatis 
40,000 0 

(Burton et al. 
2009) 

Viruses 
Rotavirus 100,000 251 

(Lozano et al. 
2012) 

Norovirus 260,000 200 
(Debbink et al. 

2012) 

Protozoa 

Cryptosporidium 
sp. 

58,000 100 
(Lozano et al. 

2012) 
Entamoeba 
histolytica 

50,000 56 
(Lozano et al. 

2012) 

Giardia lamblia 280,000 < 1 
(Esch et al. 

2013) 

Soil/water 
transmitted 
helminths 

Ascaris 
lumbercoides 

819,000 3 
(Pullan et al. 

2014) 

Trichuris trichiura 464,600 < 1 
(Pullan et al. 

2014) 

Hookworm 438,900 < 1 
(Pullan et al. 

2014) 

Schistosoma spp. 238,000 12 (Vos et al. 2013) 

 

It is also important to consider how frequent diarrhoeal infections and intestinal parasites are 

an important cause of malnutrition (Bartram et al. 2010). Protein-energy malnutrition is 

estimated to cause approximately 71,000 deaths a year in children under 5 years old. While up 

to 790,000 deaths, in children under 5, are caused by the consequences of malnutrition, such 

as impaired immune systems leading to an increase in susceptibility to other diseases (Prüss-

Üstün et al. 2008). It has been suggested that the interaction between malnutrition and the 

immune system could interfere with rotavirus vaccinations (Linhares et al. 2002). However, 

recent trials suggest that rotavirus vaccines can still be beneficial in malnourished populations 

(Perez-Schael et al. 2007, Maier et al. 2013). This is important considering rotavirus vaccines 
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have significantly reduced the cases of severe childhood diarrhoea in low- and middle-income 

countries (Tate et al. 2010). Additionally, trials are currently underway to evaluate potentially 

effective norovirus vaccines (Debbink et al. 2014). 

The diseases discussed, and consequences of infections, are preventable by safely separating 

humans from excreta. Pathogenic organisms in excreta are transmitted through a number of 

different routes, with safe excreta disposal acting as a primary barrier, and personal and 

domestic hygiene providing a secondary barrier (Figure 1-1) (Mara et al. 1999).  

 

Figure 1-1 Transmission routes of pathogenic organisms found in excreta, where safe excreta disposal 
acts as a primary barrier (PB), and personal and domestic hygiene as a secondary barrier (SB), to 
pathogen transmission; © WELL 2005 

 

The faecal-oral transmission route is where pathogens from excreta pass from one host to the 

oral cavity of another, including when excreta contaminates water sources used for drinking, 

washing, and food washing. Soil-transmitted infections occur when pathogens contaminate 

soil, either due to open defecation or use of untreated excreta as fertiliser (Esrey et al. 1991). 
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The pathogens are then ingested through the faecal-oral route, with contaminated soil  

remaining on hands or fingers due to improper hand-washing practices, or fruits and 

vegetables which have not been cooked, washed or peeled correctly. Hookworm infections are 

acquired primarily by walking barefoot on contaminated soil where larvae mature and 

penetrate human skin (Hotez et al. 1995). Pathogens, including E. coli, Cryptosporidium, E. 

histolytica, Giardia lamblia, A. lumbricoides, T. trichiura, hookworms, and Taenia sp., can also 

be transmitted by mechanical vectors, such as non-biting synanthropic flies (Graczyk et al. 

2005, Adenusi et al. 2013), cockroaches (Majewska 1986, Fotedar et al. 1991, Foil et al. 2000), 

and rats (Fayer et al. 2000). Mechanical transmission occurs when excreta, and pathogens, are 

ingested by the vector or adhere to the vectors exterior. The pathogens are then transported 

to human foods or surfaces, where they are subsequently ingested by a new host. 

Improving access to sanitation can have a significant effect on health (Esrey et al. 1991, 

Fewtrell et al. 2005) by blocking the transmission routes of excreta related pathogens (Figure 

1-1). With approximately 2.5 billion people in low- and middle-income regions of the world 

having no access to improved sanitation (UNICEF/WHO 2014), the goal of providing hygienic, 

affordable and manageable sanitation solutions is more important than ever. 

1.2. Sanitation 

Sanitation generally refers to the safe storage and disposal of human excreta as a way to 

reduce transmission of pathogens (UNICEF/WHO 2014). Unimproved sanitation includes open 

defecation, pit latrines without slabs, hanging latrines, bucket latrines, or improved facilities 

shared between two or more households, and is used by approximately 2.5 billion people 

worldwide (UNICEF/WHO 2014). While improved sanitation includes pit latrines with slabs, 

ventilated improved pit (VIP) latrines, flush/pour flush to piped sewer systems, septic tanks, or 

pit latrines, and composting toilets, and are used by over 4.5 billion people (UNICEF/WHO 

2014). Improved sanitation can be split between off-site and on-site technologies. 
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Off-site sanitation is where excreta are transported from dwellings to another location for 

treatment and disposal, and can be classified as decentralised and centralised (WHO/UNEP 

2006). Decentralised systems involve small bore sewers linking two or more households to 

communal treatment systems, while centralised systems are large piped sewage systems 

serving one or more communities (Franceys et al. 1992). The goal is to treat the excreta to 

reduce the solids content and pathogens present in the material. There are a number of 

obstacles associated with the implementation of off-site sanitation. The prohibitive cost, and 

high water demand, make implementing a conventional sewage system in low- and middle-

income countries often unfeasible (WHO/UNEP 2006). The costs include: building wastewater 

treatment plants, which are scarce in many low- and middle-income countries, connecting 

households with a sewage network, which is impractical in highly populated and dense urban 

areas, supplying households with potable water required for flushing, which is prohibitive in 

water-poor countries as households can use up to 40% of their potable water for excreta 

disposal, and the cost of maintaining and operating the whole system, for example, where 

excreta is treated aerobically, a constant supply of oxygen is required, leading to high 

maintenance costs. These caveats mean that on-site sanitation is more technically and 

economically viable as an option to improve sanitation in low- and middle-income countries 

(UNICEF/WHO 2014), therefore will be the focus of this thesis.  

1.2.1. On-site sanitation 

On-site sanitation is where excreta are stored and contained within a dwelling, or its 

surrounding area (WHO/UNEP 2006). There are around 1.7 billion people, in low- and middle-

income countries around the world who use the most basic form of improved sanitation, the 

pit latrine (UNICEF/WHO 2014). These latrines consist of a single pit to store excreta, covered 

by a slab with a drop hole, separating humans from their excreta, and a superstructure. There 

are a number of ways to improve pit latrines with slabs, including: hygienic, self-draining 

concrete slabs with foot rests, tight-fitting drop hole lids to reduce smells and insects, raising 
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slabs at least 15cm to prevent flooding, lining pits with stones, bricks, concrete rings, or oil 

drums to prevent pit collapse, improving the superstructure, alternating between two pits, 

allowing decomposition of faecal sludge (FS), which, once stored for a period of 12 – 18 

months, can be excavated and used as organic fertiliser, or adding ventilation pipes, which 

reduces flies and foul odours emanating from the pits (Franceys et al. 1992). In principle, all 

the improvements result in a system where FS is stored in a pit where it undergoes 

biodegradation. Flush/pour flush latrines are also used, utilising a water seal to prevent fly and 

mosquito breeding, and foul odours. However, these latrines often have septic tanks which are 

expensive. Due to this high cost, the majority of users in low- and middle-income countries use 

pit latrines, on which this thesis will focus on. 

The main disadvantage of a pit latrine is that it will fill up over time and require emptying, 

discussed in detail below. In rural areas space is available to dig a new pit, but in densely 

populated urban areas, where the lack of space limits households to a single vault, and areas 

with a high water table where only shallow vaults can be dug (Patinet 2010), FS must be 

collected and treated off-site. Additionally, areas with high water tables are subject to 

pathogen infiltration and nitrate pollution of groundwater {Graham, 2013 #1389}. The 

frequency of pit latrine emptying depends on pit latrine fill-rate, which varies depending on FS 

composition and biodegradation through microbial action.  

1.2.2. Faecal sludge composition and decomposition 

The contents of pits latrines contain more than human excreta decomposing into FS. Water 

used for anal cleansing is often added to latrines (Buckley et al. 2008), while solid anal 

cleansing materials are also disposed of in the latrine, including: toilet paper, newspaper, corn 

cobs, cement bags, and stones (Franceys et al. 1992). Household refuse is also found disposed 

of in pit latrines (Buckley et al. 2008), and it has been reported that grey water from cleaning 
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and showering is often added to pits (Couderc et al. 2008). The addition of these materials 

influences the composition of FS, therefore its decomposition. 

There have been few studies quantifying the composition of pit latrine FS. Table 1-3 shows the 

physical and chemical characteristics that give an approximation of biodegradability of FS. 

There is a wide range of values in the characteristics, indicating differences in FS 

biodegradability.   

Table 1-3 Summary of physical and chemical characteristics of pit latrine faecal sludge (FS). Sources: 
Lopez Zavala, 2002; Palmquist, 2005; Buckley, 2008; Irish, 2013 

Characteristic Unit Range 

Total Solids % 6 – 80 
Total Volatile Solids % dry mass 1 – 91 

pH - 5.25 – 8.94 
tCOD g kg

-1
 dry mass 30 - 2000 

sCOD g kg
-1

 dry mass 1 - 750 

 

Two studies into pit latrine fill rates conducted in South Africa on 16 VIP latrines (Bakare 2014), 

and 50 non-improved latrines each in Tanzania and Vietnam (Torondel, LSHTM, unpublished 

data), suggest that there are huge variations in FS biodegradability between different pit 

latrines, and within different layers inside latrines. Some latrines show trends of increasing TS, 

and decreasing TVS and COD, from top to bottom of the latrine, whereas other latrines show 

no significant changes in TS, TVS, and COD, between the top and bottom layers of the latrine. 

Total solids can range between 6 – 80% in the top layer of latrines, to 40 – 80% past 1 metre 

deep, and COD content ranges from 30 – 2000 g kg-1 dry mass in the top layer, to 20 – 300g kg-1 

dry mass in lower layers (Torondel, LSHTM, unpublished data).  

The biodegradation process of FS is caused by aerobic and anaerobic digestion within pit 

latrines, and can be separated into four theoretical layers (Buckley et al. 2008). In the top 

layer, readily biodegradable components in fresh excreta are rapidly digested by aerobic 

micro-organisms when deposited on the surface of the pit. The second layer is the top aerobic 

section of the pit, where aerobic biodegradation of hydrolysable organic material occurs, 
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limited by the aerobic hydrolysis of complex organic material to simpler compounds. Once 

covered, the remaining biodegradable material is slowly degraded by anaerobic micro-

organisms into water, carbon dioxide (CO2), methane (CH4), ammonium (NH4
+), phosphates, 

organic acids, new anaerobic micro-organisms, and non-biodegradable organic material. After 

successful biodegradation, the final layer of FS remaining is largely non-degradable (Buckley et 

al. 2008). This model of biodegradation is relevant, but not complete. Questions have been 

raised over the low abundance of aerobic micro-organisms in fresh excreta, and how they 

could be wholly responsible for the rapid biodegradation observed on the surface of pit 

latrines (Buckley et al. 2008). The results from the aforementioned studies (Bakare 2014, 

Torondel, LSHTM, unpublished data) partially agree with the theoretical model. However, the 

results imply that pit latrines can be divided into at least two categories based on 

biodegradation of organic material: 1) latrines demonstrating changes in TS, TVS, and COD 

with depth indicated organic material in FS undergoes biodegradation over time, resulting in 

lower layers of pits being more stable than higher layers with newer FS, 2) latrines with no 

changes in TS, TVS, and COD with depth indicate there are factors preventing the successful 

biodegradation of FS, or that the biodegradation process has “stalled”. Latrines which fall into 

the first category correspond to the four layer model (Buckley et al. 2008). However it is 

unknown what causes the second category of latrines to “stall”, with research currently 

underway (Torondel, LSHTM, unpublished data), 

Regardless of the exact microbial process responsible for biodegradation, it is known that a 

number of abiotic factors affect decomposition within pits. Temperature affects microbial 

growth and biological reactions, influencing enzyme catalysed reactions and substrate 

diffusion into cells (Chaggu 2004, Grady et al. 2011). While pH stability is important to the 

micro-organisms in FS, with a reported range of 6.5 – 8.0 appropriate (Bhagwan et al. 2008), 

and a pH close to, or below, 6.0 inhibits and kills methanogenic bacteria (Bitton 2011). A 

minimum moisture content (MC) of FS is necessary to enable diffusions of substrates into, and 
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waste products away from micro-organisms (Martin et al. 2003), and an excess of water, 

caused by rainfall, anal cleansing practice, or grey water, could result in soluble substrates 

leaching from the pit, slowing down the biodegradation process (Bhagwan et al. 2008). The 

location of a pit affects biodegradation processes, as the porosity of different soils alter the 

leaching of moisture and soluble components into and out of the pit, while flooding of pits can 

be caused by high water tables and increased rainfall in wet-seasons (Chaggu 2004, Bhagwan 

et al. 2008). Also pit latrine depth and side wall surface area significantly impact temperature, 

pH and moisture content of FS, influencing biodegradation as described previously (Bhagwan 

et al. 2008). These factors all influence the biodegradation of FS, which ultimately affects the 

fill-up rate of pit latrines. 

1.2.3. Pit latrine filling 

The fill-up rate of pit latrines varies greatly (Still 2002, Bakare 2014, Torondel, LSHTM, 

unpublished data), and is determined by FS composition, user behaviours, and factors which 

affect biodegradation, as described above. Variations in fill-up rates results in pit latrines being 

emptied at different frequencies. Average vault emptying frequencies of pit latrines in Dar es 

Salaam, Tanzania, varied according to how the vaults were lined: unlined 8.2 years, partially 

lined 6.5 years, fully lined 8.5 years, and drums/tyre lined 4.7 years (Jenkins et al. 2013). 

Additionally, the average fill-up rate increased with each additional pit latrine emptying. Solid 

waste accumulated in vaults and reduced the volume of FS which could be stored before the 

vault requiring emptying again (Jenkins et al. 2013). A separate study found that the frequency 

of pit emptying varied between countries worldwide, with vault emptying frequencies 

between once a year in Senegal, to once every 3 to 5 years in Cambodia and Vietnam. The 

most common emptying frequency across all countries studied was once every two years 

(Chowdhry et al. 2012). 
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When latrines fill up users must have the vault emptied or resort to sharing latrines or open 

defecation. Sharing latrines leads to an increase in vault fill-up rates, and open defecation 

negates the benefits of improved sanitation, leading to the spread of disease (Esrey et al. 

1991).  An increase in odours emanating from full vaults, as well as in the number of flies and 

mosquitoes, has been reported (Biran 2010b, Biran 2011). Pit emptying is accomplished by 

either mechanical or manual means, as discussed below. 

1.2.4. Pit latrine emptying 

Vault emptying can be conducted either mechanically, or manually. A report which 

investigated faecal sludge management (FSM) provisions of 30 cities, in five countries in Africa 

(Burkina Faso, Ethiopia, Nigeria, Kenya, and Senegal), and five countries in Asia (Bangladesh, 

Cambodia, India, Malaysia, and Vietnam), found that the majority of households, 63.4%, used 

mechanical emptying, while 34.3% using manual emptying services, and 1.4% using a 

combination of both (Chowdhry et al. 2012). However, the method of pit latrine emptying 

differs depending on location. For example, in Addis Ababa, Ethiopia, 100% of households 

reported using mechanical emptying services. This was because of heavily subsidised 

government provided emptying services, costing less than $5, five times less than private 

operators. However, in Kisumu, Kenya, manual emptying accounted for approximately 75% of 

services, costing $30, while mechanical emptying cost on average $52 (Chowdhry et al. 2012). 

Table 1-4 demonstrates how the cost of emptying can vary between $5 and $300, depending 

on method, and distance travelled by the emptying service (Still 2002) (Table 1-4).  

There are many issues associated with pit latrine emptying. The act of emptying vaults poses a 

public health risk to emptiers and the community as exposure to pathogens through improper 

disposal also increases the chance of pathogen transmission by mechanical vectors (Esrey et al. 

1991). Emptying and transportation of FS can also be inconvenient for the latrine owners, as it 
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may result in a contaminated households and cause bad smells in surrounding areas (Biran 

2010a, Biran 2010b). 

Table 1-4 Methods and cost of pit latrine emptying in three African countries. Source: Still, 2002  

Emptying Method Location Cost 
a
 (Range) for 2m

3
 

Manual excavation of old pit 
with fully decomposed contents 

Standard rates for Pit Excavation in 
Soil 

$7 – $14 

Manual scooping/flushing 
with hand tools 

South Africa $5 – $11 

Cart mounted, 200 litre vacuum tank 
indirectly couple to hand pump 

Dar es Salaam, Tanzania $8 

Self-propelled 500 litre tank 
with motorised pump 

Nairobi, Kenya $18 

Trailer mounted, tractor hauled 
2000 litre tank 

Durban, South Africa $20 – $60 

Urban Vacuum tanker, 
5,000 – 15,000 litre truck mounted 

tank 
South Africa $20 – $100 

Rural Vacuum tanker, 
5,000 – 20,000 litre truck mounted 

tank 
South Africa 

$0.7 – $1.5 per 
kilometre 

e.g. 200km = $140 – 
$300 

a
 costs calculated using present day exchange rates 

 

A problem that occurs in cities and unplanned urban settlements is that the vacuum trucks are 

often too big to reach the latrines that need to be emptied (Boesch et al. 1985). In these 

situations, manual emptying must be conducted. Over 90% of manual emptying is reported to 

be conducted by a hired individual or company (Chowdhry et al. 2012). Individuals who 

manually empty pit latrines are often some of the poorest in their communities, unable to 

afford basic protective gear. This lack of equipment exposes them to diseases due to direct 

contact with excreta, broken glass and other discarded waste, resulting in many health 

problems. Additionally, the nature of the work has a negative social image, and stigmatises the 

workers, often required to work at night where they can be harassed by criminals (WSP 2005). 

Manual emptying is often done in areas which are inaccessible to mechanical methods, 

although there are new technologies which may get around this problem. For example, the 

Gulper is a manually operated pump for emptying the contents of wet pit latrines. The Gulper 
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consists of a two metre long PVC pipe and stainless steel valves (WaterAid 2011). Operated by 

one or two people the pipe is lowered into a wet pit latrine and through a pumping action lifts 

the pit contents up the pipe. This is then directed into a container. The small size of the 

equipment makes it ideal for use in densely populated cities and unplanned urban settlement. 

The Gulper has been trialled in a number of countries, including Tanzania (WaterAid 2011), 

and Uganda (Stalker, Engineers Without Borders, personal communication). Currently the 

Gulper is being used by 12 different entrepreneurs around Kampala, Uganda, who charge 

approximately $12 per 200 litre barrel of FS disposed of (Stalker, Engineers Without Borders, 

personal communication). 

1.2.5. Faecal sludge management 

Once FS has been emptied from pit latrines, it must be transported and treated. Treatment of 

FS can be achieved by a number of methods, including official dumping grounds, using 

wetlands, stabilisation ponds, mixing into wastewater treatment plants, or dedicated FSM 

plants (Chowdhry et al. 2012). However, the distance to FSM facilities, and cost of legally 

dumping FS, can lead to pit latrine emptying services illegally dumping FS into the 

environment, causing major environmental and hygiene problems in many cities (Helmer et al. 

1997, Kariuki et al. 2003, WHO/UNEP 2006). It is vital to note that suitable FSM solutions are 

uncommon in low- and middle-income countries. Although precise data are scarce, it has been 

reported that only 30% of cities in countries described previously have dedicated FSM 

solutions (Chowdhry et al. 2012). In Addis Ababa, where two dedicated FSM plants are located, 

their combined capacity is only 66% of the total FS collected (Chowdhry et al. 2012). 

Additionally, in Bangladesh, only 1% of all FS generated throughout the country is treated, with 

the remaining 99% dumped into surface water (Rahman 2009).  

The hygiene and environmental problems caused by the lack of suitable FSM solutions in low- 

and middle-income countries has stimulated innovation of alternative FSM methods. Examples 
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of organisations and new technologies being investigated as affordable and accessible FSM 

methods include Sanergy, Loowatt, and the Tiger Toilet. 

Sanergy aims to improve sanitation in Kenyan urban slums by designing and implementing a 

scalable and sustainably viable sanitation infrastructure in the slums of Nairobi (Sanergy 2013). 

This is achieved by building low-cost, user friendly, and hygienic communal sanitation centres, 

and distributing them through franchising to local entrepreneurs. These entrepreneurs 

operate the sanitation centres, charging an affordable price for use, while ensuring facilities 

are kept clean and well maintained. The facilities are designed so excreta are stored in sealed 

cartridges, ensuring foul odours and filth flies are not a problem, and making it hygienic for the 

surrounding community and collection staff. Excreta are collected daily by properly equipped 

Sanergy staff. Full cartridges are gathered using wheelbarrows, handcarts and/or trucks, from 

facilities which could be in hard to reach areas. The excreta are then delivered to a centralised 

facility which converts it into useful by-products, such as organic fertiliser and renewable 

energy using biogas digesters. The excreta is converted into fertiliser by co-composting with 

sawdust, eliminating pathogens to WHO standards, and then sold to Kenyan farmers. To date 

Sanergy has opened 405 sanitation facilities, servicing 16,000 daily users, creating 462 jobs, 

and has removed and treated almost 2,500 tons of excreta (Sanergy 2013). Sanergy have 

developed an end-to-end approach of excreta storage, collection, transport and treatment, 

utilising simple technologies and a robust support structure for franchise operators. However, 

the development of new technologies is also being investigated. 

Loowatt has developed a waterless, mechanical sealing unit to contain human excreta within a 

biodegradable film while removing odours, and stores the excreta in a cartridge beneath the 

toilet. The unit can be fitted to a range of toilets or sanitation facilities, and can be easily 

emptied daily or weekly, depending on usage. The collected excreta is then processed using 

biogas digesters, where anaerobic micro-organisms decompose the excreta, releasing biogas 
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composed of CH4, CO2, and trace gases (NNFCC 2009). Biogas can be used as a clean, 

renewable energy source, and can increase the value of owning a toilet with the system. The 

residue that remains can also be used as an organic fertiliser, although requires secondary 

treatment to ensure sufficient pathogen removal (NNFCC 2009). Pathogen removal can be 

achieved through thermophilic composting, pasteurisation, or vermicomposting, which uses 

detritivorous worms to compost residue. Currently Loowatt is running a pilot system in 

Antananarivo, Madagascar, with 6 toilets servicing around 250 people daily. In 2013, a $1 

million grant was awarded by the Bill and Melinda Gates Foundation to develop the products, 

systems and implementation strategies of the commodity-generating waterless toilet system 

(BMGF 2013). 

The use of detritivorous organisms to process human excreta is a prospective solution that is 

also being investigated. The tiger worm, Eisenia fetida, has been shown as a potential source 

of vermifiltration technology (Yadav et al. 2010, Kassam 2012, Furlong et al. 2014) for low- and 

middle-income countries. The “Tiger Toilet” is linked to a normal pour-flush pedestal. When 

flushed, the excreta are deposited onto a bed of worms living in a matrix of woodchips or 

similar material. The solid excreta is consumed by the worms, and the liquids are filtered 

through a drainage layer. The worms significantly reduced FS by up to 96%, compared to 38% 

in controls without worms (Furlong et al. 2014), and reduce the number of faecal coliform 

colony forming units (CFU’s) by up to 97.7% (Kassam 2012). The liquid effluent was found to be 

of higher quality than that found in septic tanks and other vermifiltration systems (Furlong et 

al. 2014). In 2013, a “Stage 1: Proof of Concept Development Innovation Ventures” grant was 

awarded by USAID to Bear Valley Ventures to test the Tiger Toilet in 10 households in each of 

India, Myanmar, and Uganda. The project aims to determine the performance, and user 

acceptance, of the Tiger Toilet in rural communities, displaced person camps, and peri-urban 

areas. It is hoped that the Tiger Toilet will become a leapfrog technology, offering lower 

maintenance and better performance than a pit latrine, for a price below that of septic tanks. 



 

Ian J. Banks Chapter 1 38 

An alternative detritivorous species which is being investigated is the larvae of the black 

soldier fly (BSFL), Hermetia illucens (L.). The BSFL consume large quantities of organic matter in 

a short period of time, reducing pathogens and converting excreta into organic fertiliser. The 

prepupae are also a valuable resource, as they are high in protein and fats. These qualities 

indicate that BSFL could be a valuable novel FSM method which can remove dangerous FS 

from the environment, while creating products which could potentially generate a profit. 

1.3. Black soldier fly biology 

1.3.1. Life cycle 

The black soldier fly (BSF) is a Dipteran fly of the Stratiomyidae family, found around the world 

from 49°N to 42°S (Üstüner et al. 2003, Roháček et al. 2013). There have been limited studies 

which investigated their behaviour in the wild, but it has been shown that the adult males 

congregate in small numbers near secluded bushes (Copello 1926) and display lekking 

behaviour (Tomberlin et al. 2001) in order to find a mate. Once mated the females lay egg 

clutches of 600 to 900 eggs close to a larval food source (Booth et al. 1984, Tomberlin et al. 

2002). The eggs hatch within 102-105 hours (Booth et al. 1984) and the newly hatched larvae 

crawl or fall into the food source. The larvae feed, accumulating enough resources to develop 

through 6 larval instars, before they pupate. The pupa undergoes complete metamorphosis, 

holometabolism, before eclosing as an adult (Figure 1-2). 

1.3.2. Adult behaviour 

The BSF adults are neither a nuisance species, nor a mechanical vector for disease. The adult 

females oviposit in crevices around the edges of larval food sources (Copello 1926), but neither 

females nor males feed as they survive on fat stores from their larval stage (Furman et al. 

1959). 
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Figure 1-2 Life cycle of Hermetia illucens; (a) Adult (b) Eggs (c) 1st – 5th larval instars (d) 6th larval 
instar (prepupa) (e) Pupa 

 

These behaviours result in no mechanical pathogen transmission, which can arise from using 

alternative detritivorous species, such as the house fly, Musca domestica (Pieterse et al. 2014). 

Nevertheless, the fact that there have been rare cases of accidental myiasis caused by people 

consuming ripe, unwashed fruit (Calderón-Arguedas et al. 2005, Gonzalez et al. 2009) should 

not be overlooked. There has also been a single incident of furuncular cutaneous myiasis 

recorded after an American woman spent 3 weeks in Uganda, teaching on a sugar plantation, 

and 5 days in Kenya at a tourist lodge (Adler et al. 1995). From the case report it appears that 

the woman involved had a skin condition rendering her uniquely susceptible to larvae that 

crawled onto her clothing. Given the worldwide distribution (Leclercq 1997) of BSF, and the 

limited number of cases described, it can be proposed that myiasis caused by BSFL presents 

negligible risk to humans. 

Adult BSF have limited interactions with humans (Furman et al. 1959), therefore, little is 

known about their natural behaviour. However, there is sufficient knowledge to allow colonies 

of BSF to be reared artificially. Establishing a colony is difficult and requires a number of 

factors to be correct to allow successful adult mating and larval development. The adults mate 

(a) 

(b) 

(c) 

(e) 

(d) 
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on the wing (Booth et al. 1984), and when enclosed require a sufficiently large cage volume to 

result in successful mating. Successful mating has been reported in artificial colonies enclosed 

in cages sized 76cm x 114cm x 137cm (w x d x h) and larger (Tingle et al. 1975, Tomberlin et al. 

2002). Time of day and light intensity are significantly correlated with mating (Tomberlin et al. 

2002), with sunlight promoting the most successful mating. However a quartz-iodine artificial 

light source produces a 61% mating rate compared to a sunlight control (Zhang et al. 2010), 

allowing indoor rearing of BSF. The adults lay their eggs in crevices near a larval food source, 

with significantly more eggs laid in dry cardboard oviposition sites than wet cardboard with 

approximately 52% water content (Booth et al. 1984). Time of day, relative humidity (RH), and 

temperature are positively correlated with oviposition, with more egg clutches laid later in the 

day when temperatures are at or above 26°C, and 80% of egg clutches laid at RH over 60% 

(Tomberlin et al. 2002). It was suggested that this behaviour ensures eggs are laid under 

optimal conditions for survival, where desiccation of eggs can occur due to low RH (Tomberlin 

et al. 2002). Furthermore, temperature and RH have an important influence on the rearing of 

BSF. When larvae were reared at 27 – 30°C, up to 97% emerged as adults. However, at 36°C, 

only 0.1% emerged as adults, even though 73.4% developed into prepupae (Tomberlin et al. 

2009). Increased relative humidity also increases egg hatching and adult emergence, while 

development time decreases with rising relative humidity (Holmes et al. 2012). 

1.3.3. Immature stages 

The larvae are detritivores, obtaining nutrients from decomposing plant and animal matter, 

and faeces. Black soldier fly larvae have been known to feed on human and animal cadavers 

(Dunn 1916, Tomberlin et al. 2005), decaying vegetables (Malloch 1917), animal manure 

(Tingle et al. 1975, Booram et al. 1977, Newton et al. 2005), palm kernel meal (Hem et al. 

2008), municipal organic waste (MOW) (Diener et al. 2011a) fresh human faeces (Lalander et 

al. 2013, Banks et al. 2014) and pit latrine FS (Bradley 1930, Fletcher et al. 1956). The ability of 

BSFL to utilise such varying organic matter as food sources could be due to their gut 
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microbiota. In one study gut bacterial communities in BSFL were shown to be dependent on 

their diet, with food-waste fed BSFL containing more complexity of bacterial species than BSFL 

fed on cooked rice or calf-forage (Jeon et al. 2011). However, 36 bacterial strains were shared 

between the BSFL fed on the three different diets and were unlike intestinal micro-flora found 

in other insects (Jeon et al. 2011). This indicates that BSFL have a unique composition of gut 

microbiota, which allows them to utilise a range of food-sources. 

The larvae can reach maturity in 2-4 weeks depending on temperature and food availability, 

but can survive for up to 10 months in a state of quiescence (May 1961, Myers et al. 2008). It 

has also been proposed that the larvae may feed on the remains of their conspecifics in cases 

of extreme food deprivation (May 1961). Black soldier fly larvae are able to extend their life 

cycles under environmentally stressful conditions, making them suitable for FSM. The final 

larval instar is known as the prepupal stage (Figure 1-2d). 

The prepupal stage is indicated by a change in colour and behaviour. The larvae turn from 

white to a dark brown colour. Prepupae crawl out of their feeding material to find a dry dark 

area to pupate and can crawl up to 100m to find a suitable site (Schremmer 1986). Prepupae 

will climb slopes of 40°, making them easy to collect (Sheppard et al. 1994). This behaviour 

facilitates prepupal harvesting, suggested due to their intrinsic value, discussed in detail later. 

However, BSFL have been observed during laboratory experiments performed in the United 

Kingdom, and South Africa, to climb up vertical surfaces if there is sufficient moisture to 

maintain surface tension (Banks, LSHTM, personal observations). This behaviour could also be 

due to BSFL seeking a more suitable food source with lower moisture content.  

1.4. Black soldier fly applications 

1.4.1. Manure management 

Several researchers have shown that BSFL are effective at reducing animal manure and MOW. 

For example, Newton et al. (2005) fed 169kg of fresh swine manure to BSFL. The larvae were 
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fed in a basin with a 35° ramp that directed prepupae into guttering at the top to facilitate 

harvesting. A total population of 45,000 larvae were added to the basin. The larvae converted 

68kg dry weight of manure into 41.6kg dry weight residue, and 26.2kg of prepupae. Newton 

also recorded BSFL reducing 55kg of fresh manure, dry matter, to 24kg of residue, dry matter, 

within 14 days. The manure was reduced by 56%, with the residue having no objectionable 

odour (Newton et al. 2005). The reduction in odour is supported by preliminary semiochemical 

research in a laboratory experiment, which showed a large reduction in volatiles produced by 

fresh human faeces after being fed on by BSFL (Banks 2010). 

Sheppard et al. (1994) fed BSFL on chicken manure in basins with a migration slope of 40°. 

Approximately 5.2 tonnes of fresh chicken manure, from 460 hens, was reduced to 

approximately 2.6 tonnes residue, yielding 242kg of prepupae, with a mean weight of 0.22g. 

The BSFL reduced the manure by up to 50%, while at the same time eliminating house fly 

breeding (Sheppard et al. 1994).  

Another study, aimed to evaluate the feasibility of using BSFL as a method of MOW treatment 

in low- and middle-income countries, fed BSFL on MOW in “larveros”, with migration ramps of 

28° (Diener et al. 2011a). The larvae were fed different quantities of MOW, 1.5 or 4.6 kg each 

day, with the new food either mixed in or placed on the surface. It was found that prepupal 

migration varied throughout the 55 days of experiment, with daily fluctuations in prepupal 

production. In the treatments, where fresh MOW was manually mixed into already digested 

residue containing BSFL, there were lower mean prepupal weights and prepupal harvests than 

when the fresh food was applied to the surface. The surface fed, high feed amount produced 

largest mean weight of prepupae, 0.22 g, and a mean prepupal harvest of 286 g m-2 day-1. The 

relative wet weight reduction varied from 46.2% to 75.8% (Diener et al. 2011a). Trials 

conducted by Banks et al. (2014) reported that BSFL fed 100mg larvae-1 day-1 of fresh human 
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faeces every three days, resulted in mean prepupal wet weights of 0.30g, with a wet weight 

faecal matter reduction (FMR) of 46%.  

All of these experiments produced similar feed conversion rates (FCR) (Table 1-5), with the 

exception of BSFL fed on fresh human faeces. The FCR is a measure of an animal’s efficiency in 

converting feed mass into increased body mass (USAID 2011), and is calculated using the 

following equation: 

    
           (             )

                      
 

Bioconversion rate is also used to quantify BSFL production efficiency, using the following 

equation: 

                   
                      

           (             )
     

The BSFL fed on fresh human faeces resulted in a higher bioconversion rate than when fed on 

other faecal material. 

Table 1-5 Biomass yield and faecal matter reduction (FMR) of different pilot scale experiments 

Feed Source 
Total 

Amount of 
feed 

Residue FMR 
Prepupal 

yield 
Bioconversion 

(%) 
FCR 

Swine manure 
(Newton et al. 

2005) 
68 kg DW 42 kg DW ~39% DW ~2.7 kg DW 3.97 9.6 

Chicken Manure 
(Sheppard et al. 

1994) 
5,240 kg WW 

~2,620 
WW 

~50% WW 196 kg WW 3.74 13.4 

MOW 
(Diener et al. 

2011a) 
151 kg DW 48 kg DW 68% DW 17.8 kg DW 11.78 5.8† 

Fresh human 
faeces 

(Banks et al. 
2014) 

~480g WW 
~260g 
WW 

~46% WW 108g WW 22.3 2.0 

MOW: municipal organic waste, DW: dry weight, WW: wet weight, FCR: feed conversion ratio, † value 
different to published paper (Diener, Upsala, personal communication)  
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In another experiment, it was demonstrated that BSFL can develop on pure FS taken from 

septic tanks and dewatered to 63% moisture content (Diener et al. 2011b). The BSFL reduced 

the FS by 54.7%. However, the mean dry prepupal weight was 0.02 g, far lower than found in 

other studies (Sheppard et al. 1994, Newton et al. 2005, Diener et al. 2009, Diener et al. 

2011a, Banks et al. 2014). 

1.4.2. Prepupae value 

Another advantage of BSFL is the potential value of the prepupae. Prepupae contain high 

protein and fat concentrations, 42-45% and 31-35% respectively (Sheppard et al. 1994, 

Newton et al. 2005). Research has shown how the prepupae can act as a replacement for 

conventional protein and fat sources in a number of animal feeds, including cockerels (Hale 

1973), swine (Newton et al. 1977), catfish and tilapia (Bondari et al. 1987, Hem et al. 2008), 

and rainbow trout (St-Hilaire et al. 2007b). It is also possible to fractionate the prepupae into 

their constituent parts, using the proteins for animal feed and converting the fats into 

biodiesel (Li et al. 2011a, Li et al. 2011b, Zheng et al. 2012a, Zheng et al. 2012b). It is also 

possible to utilise the chitin from the larval cuticles into chelating agents (Kumar 2000). 

Chelating agents form multiple bonds with a single central metal atom, forming a chelate 

complex, stopping the metal reacting with other elements and producing precipitates (Muller 

1994). Chelating agents can be used in producing fertilisers (Ashmead 1993), and other 

industrial or medical applications. It is even possible to use the residue remaining after 

feeding, comprised of the larval excreta and undigested material. This has been found to be of 

similar chemical composition to commercial fertiliser. Also, when used as a fertiliser in growth 

trials using Chinese cabbages, it resulted in no significant difference in cabbage mass and 

chemical composition compared with commercial fertilisers (Choi et al. 2009). 
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1.4.2.1. Alternative species as animal feed 

The use of insect protein in animal feed is increasingly becoming an issue of worldwide 

importance. This is due to the rising cost of animal feed protein, animal feed insecurity, 

environmental pressures, population growth, and increasing demand for protein amongst the 

middle class (FAO 2013). Black soldier flies are just one of a number of different insect species 

that have been suggested as a resource to be used as animal feed (Table 1-6). These species 

include: the common house fly, M. domestica, silkworms, Bombyx mori, Samia cynthia ricini, 

Antheraea assamensis, An. mylitta and An. paphia, mealworms, Tenebrio molitor, T. obscurus, 

and several species from the order Orthoptera, including locusts, grasshoppers, and crickets 

(FAO 2013). Table 1-6 summarises the nutritional values from a selection of these different 

species, as well as BSF prepupae. The protein content of prepupae is lower than other species 

listed. However, the fat content is higher than M. domestica and Orthoptera species, with 

content and fatty acid composition depending on diet (St-Hilaire et al. 2007a). The prepupae 

are rich in calcium and iron compared to other species, although phosphorus, potassium, 

magnesium, manganese, sodium, zinc, and copper concentrations are lower than M. 

domestica pupal meal. The amino acid profile of BSF prepupae is rich in lysine, and comparable 

to M. domestica (Calvert et al. 1969). 

1.4.3. Pathogen reduction 

The ability of the larvae to reduce the pathogen loads in manure has been shown in a number 

of studies. The BSFL reduce E. coli O157:H7 and Salmonella enterica serotype Enteritidis 

(ME18) in chicken manure (Erickson et al. 2004). After three days of larval feeding on chicken 

manure, there was a 3 log10 (CFU g-1) inactivation of E. coli compared to a control. On days two 

and four of the experiment, there were significant reductions of S. enterica in manure treated 

with BSFL, 4.9 log10 (CFU g-1) and 1.41 log10 (CFU g-1) respectively. However, after two days of 

feeding on Salmonella-treated chicken faeces, the BSFL became contaminated with the 

pathogen, with the Salmonella population 1-log10 higher than in the manure. Between days 
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four and six there was no further decrease in Salmonella populations in both manure and BSFL, 

but during this time larval mass decreased suggesting a reduction in feeding. The reduction in 

larval mass suggests that the inactivation of pathogens is linked to feeding and larval growth. A 

later study found that BSFL significantly reduced E. coli populations in dairy manure (Liu et al. 

2008). It was also found that the amount of manure added significantly influenced the larval 

weight gain and the ability to reduce E. coli. A second experiment found that BSFL were able to 

significantly reduce bacterial growth at 23, 27 and 31°C, with greatest suppression at 27°C (Liu 

et al. 2008). There is also evidence that BSFL reduce the concentration of Salmonella spp. in 

human faeces by 6 log10 (CFU g-1) in eight days (Lalander et al. 2013), a significantly accelerated 

reduction compared to less than 2 log10 (CFU g-1) in controls. These results indicate that using 

BSFL to treat human FS can remove zoonotic pathogens, decreasing the risk of transmission to 

animals and humans should the residues be used further in agriculture. Unfortunately, there 

was no significantly accelerated reduction of Enterococcus spp., bacteriophage ΦX174, and 

Ascaris suum ova. This suggests that an additional treatment of residue would be required if it 

was to be used in food crop production. It was also suggested that, before using the prepupae 

in animal feed, additional processing would be required to destroy any pathogens that may 

remain in the prepupal gut (Lalander et al. 2013). 

1.4.4. Control of Musca domestica 

It has been suggested that a dense population of BSFL will inhibit the development of M. 

domestica larvae. For example, in chicken manure treated with BSFL, M. domestica larvae 

were unable to develop, possibly due to competition for food (Furman et al. 1959). It was 

found that in pit latrines already containing BSFL, there were very low levels of M. domestica 

(Kilpatrick et al. 1959). Kilpatrick also found that, when pits were treated with the insecticide 

dieldrin, there was a subsequent increase in M. domestica, which he attributed to insecticide 

resistance of M. domestica but BSFL’s susceptibility to dieldrin.  



 

Ian J. Banks Chapter 1 47 

Ta
b

le
 1

-6
 N

u
tr

it
io

n
al

 v
al

u
e

s 
o

f 
in

se
ct

 s
p

e
ci

e
s 

p
ro

p
o

se
d

 a
s 

al
te

rn
at

iv
e

 s
o

u
rc

e
s 

o
f 

an
im

al
 f

e
e

d
, s

o
u

rc
e

: 
FA

O
’s

 A
n

im
a

l F
e

e
d

 R
e

so
u

rc
e

s 
In

fo
rm

at
io

n
 S

ys
te

m
 

w
w

w
.f

e
e

d
ip

e
d

ia
.o

rg
/c

o
n

te
n

t/
fe

e
d

s?
ca

te
go

ry
=

1
7

9
1

9
  

M
in

er
al

s 

Ir
o

n
 

m
g/

kg
  

D
M

 

1
3

7
0

 

 

2
5

8
 

 

9
9

5
 

4
4

0
 

3
2

6
 

6
7

 

5
7

 

3
2

 

1
3

 

 

1
1

6
 

5
8

 

1
6

4
 

 

C
o

p
p

er
 

m
g/

kg
  

D
M

 

6
  

3
8

 

 

2
7

 

6
 

1
5

 

1
2

 

1
6

 

1
   

1
5

 

7
 

2
5

 

 

Zi
n

c 

m
g/

kg
  

D
M

 

1
0

8
 

 

3
6

3
 

 

1
1

9
 

1
1

8
 

2
2

4
 

1
2

6
 

1
1

6
 

2
4

 

1
0

 

 

2
1

5
 

6
0

 

2
6

8
 

 

M
an

ga
-

n
es

e 

m
g/

kg
  

D
M

 

2
4

6
 

 

4
1

6
 

 

9
1

 

1
1

4
 

1
8

 

 9
 

4
   

4
0

 

1
0

 

6
8

 

 

M
ag

n
e-

si
u

m
 

g/
kg

  
D

M
 

3
.9

 

 

8
.2

 

 

3
.4

 

4
 

3
.7

 

2
.5

 

2
.3

 

0
.4

 

1
.5

 

 

1
.2

 

 

1
.2

 

 

So
d

iu
m

 

g/
kg

  
D

M
 

1
.3

 

 

5
.7

 

 

5
.2

 

2
.4

 

  

0
.9

 

 

3
.2

 

   

9
.7

 

 

P
o

ta
s-

si
u

m
 

g/
kg

  
D

M
 

6
.9

 

 

1
2

.5
 

 

5
.7

 

3
.5

 

  

8
.9

 

 

1
.1

 

   

1
3

.5
 

 

P
h

o
s-

p
h

o
ru

s 

g/
kg

  
D

M
 

9
 

4
 

1
7

.2
 

 

1
6

 

5
.5

 

6
 

2
.4

 

7
.8

 

3
.7

 

1
.1

 

 

7
.9

 

 

1
0

.4
 

 

C
al

ci
u

m
 

g/
kg

  
D

M
 

7
5

.6
 

1
7

.1
 

5
.2

 

 

4
.7

 

1
.7

 

3
.8

 

3
 

2
.7

 

1
.9

 

1
.3

 

 

1
0

.1
 

5
.3

 

2
  

M
ai

n
 a

n
al

ys
is

 

A
sh

 

%
  

D
M

 

2
0

.6
 

6
 

7
.7

 

2
.1

 

1
0

.1
 

3
.3

 

5
.8

 

2
.4

 

3
.1

 

0
.9

 

6
.6

 

2
.5

 

5
.6

 

2
.4

 

6
.5

 

1
.9

 

G
ro

ss
  

en
er

gy
 

M
J/

kg
 

 D
M

 

2
2

.1
 

 

2
4

.3
 

 

2
2

.9
 

1
.4

 

2
5

.8
 

 

2
6

.8
 

0
.4

 

2
1

.8
 

2
   

2
3

 

 

Et
h

er
  

ex
tr

ac
t 

%
  

D
M

 

2
6

 

8
.3

 

1
5

.5
 

1
 

1
8

.9
 

5
.6

 

2
5

.7
 

9
 

3
6

.1
 

4
.1

 

8
.5

 

3
.1

 

1
7

.3
 

6
.3

 

1
3

.3
 

5
 

C
ru

d
e 

 
fi

b
re

 

%
  

D
M

 

7
  

1
5

.7
 

 

5
.7

 

2
.4

 

3
.9

 

1
.1

 

  

8
.5

 

4
.1

 

  

8
.2

 

1
.1

 

C
ru

d
e 

 
p

ro
te

in
 

%
  

D
M

 

4
2

.1
 

1
 

7
0

.8
 

5
.3

 

5
0

.4
 

5
.3

 

6
0

.7
 

7
 

5
2

.8
 

4
.2

 

5
7

.3
 

1
1

.8
 

6
3

.3
 

5
.7

 

5
9

.8
 

4
.1

 

D
ry

  
m

at
te

r 

%
 a

s 
 

fe
d

 

9
1

.3
 

1
.1

 

9
2

.1
 

 

9
2

.4
 

1
 

9
1

.4
 

4
.4

 

4
2

.2
 

6
.3

 

9
1

.7
 

2
.3

 

2
8

.4
 

4
.5

 

9
4

.1
 

0
.5

 

  

U
n

it
 

M
ea

n
 

SD
 

M
ea

n
 

SD
 

M
ea

n
 

SD
 

M
ea

n
 

SD
 

M
ea

n
 

SD
 

M
ea

n
 

SD
 

M
ea

n
 

SD
 

M
ea

n
 

SD
 

   

B
la

ck
 s

o
ld

ie
r 

fl
y 

p
re

p
u

p
ae

 (
d

ri
ed

) 

M
u

sc
a

 d
o

m
es

ti
ca

 p
u

p
al

 

m
ea

l (
d

ri
ed

) 

M
u

sc
a

 d
o

m
es

ti
ca

 la
rv

al
 

m
ea

l (
d

ri
ed

) 

Si
lk

w
o

rm
 p

u
p

al
 m

ea
l 

(d
ri

ed
) 

M
ea

lw
o

rm
 (

Te
n

eb
ri

o
 

m
o

lit
o

r)
 m

ea
l (

fr
e

sh
) 

Lo
cu

st
 o

r 
G

ra
ss

h
o

p
p

er
 

M
ea

l (
d

ri
ed

) 

H
o

u
se

 C
ri

ck
et

 (
A

ch
et

a
 

d
o

m
es

ti
cu

s)
 (

fr
e

sh
) 

M
o

rm
o

n
 C

ri
ck

et
 

(A
n

a
b

ru
s 

si
m

p
le

x)
 

(d
ri

ed
) 

http://www.feedipedia.org/content/feeds?category=17919
http://www.feedipedia.org/content/feeds?category=17919


 

Ian J. Banks Chapter 1 48 

Black soldier fly larvae were also shown to reduce oviposition of M. domestica on chicken 

faeces by 94-100% (Sheppard 1983). In contrast, observations from large scale breeders 

noticed no reduction in filth fly quantities (Drew, personal communication). 

The mechanisms causing any reduction in larval survival or oviposition of M. domestica due to 

BSFL have not been fully elucidated. Kilpatrick found that the presence of BSFL combined with 

water in the pit maintained a semi-liquid or liquid medium that was unsuitable for the 

development of M. domestica larvae (Kilpatrick et al. 1959). There is also evidence to suggest 

that an allomone, a chemical released by BSFL larvae resulting in interspecific chemical 

communication with the M. domestica gravid females, is present that reduces oviposition 

(Bradley et al. 1984). Egg laying behaviour of gravid females of M. domestica is known to be 

affected by semiochemical (behaviour modifying chemical) cues released by fungal 

competitors on animal faeces (Lam et al. 2010). It is also possible that a combination of both 

chemical and physical factors could work together to repel M. domestica. 

1.4.5. Current and potential BSFL applications 

The method of how to use BSFL for FSM in different situations must be considered. There are a 

number of different techniques suggested, including decentralised BSFL treatment plants, in-

situ BSFL, and a BSFL toilet.  

Decentralised BSFL FSM plants would be located in communities which are lacking suitable 

FSM solutions, and could be suitable for urban, peri-urban, and potentially rural locations, 

depending on population density. The plants would receive a constant stream of FS from 

surrounding pit latrines, either collected manually or mechanically, in order to continuously 

rear BSFL. This would yield a steady supply of prepupae and residue that would be properly 

sterilised to ensure safety. Health benefits would be provided by the provision of a properly 

regulated, hygienic, pit emptying service, while economic benefits, in the form of employment, 

and income from sale of products, would benefit the communities covered by the plant, 
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similar to the Sanergy model. There is currently a pilot BSFL FSM plant running in South Africa 

operated by the BioCycle (BioCycle 2014). The BioCycle is a joint venture between Bear Valley 

Ventures and Agriprotein Technologies that aims to develop commercially viable and scalable 

methods of bioconversion of human FS into valuable products using BSFL. The pilot plant is 

currently processing 150kg of FS per week, covering approximately 25 bucket latrines and 125 

users. The Biocycle are also conducting pathogen trials on prepupae and residue, to determine 

health and safety issues related to the use of the products (Lewis, The BioCycle, personal 

communication).  

Further evidence to support the decentralised processing plant model is provided by a 

business feasibility study conducted by the HAAS Business School, University of California, 

Berkeley, in 2011 (Appendix A). Data were gathered from internet resources, research reports, 

publications, and field interviews in Dar es Salaam, Tanzania. The study used a range of 

assumptions based on data collected, and produced three business models: Model 1 – Crude 

Oil and BSFL feed, Model 2 – Biodiesel and BSFL feed, and Model 3 – BSFL feed only. The 

results showed that a decentralised BSFL FSM treatment plant is feasible under a number of 

scenarios. Model 1 is only feasible in the best case scenario, where highest revenues and 

lowest costs are assumed, resulting in fixed investment breakeven and setup time to be 1.82 

years. In Model 2, the best case scenario is 1.23 years, while the worst case scenario, assuming 

lowest revenue and highest costs, would take 13.51 years to breakeven and setup. However, 

Model 3 is predicted to be unfeasible, never achieving a fixed investment breakeven. This 

suggests that the sale of prepupal lipids, as crude oil or biodiesel, is integral to the business 

model. The model is designed to be flexible. The cost, revenue, and BSFL production data can 

be amended depending on localised information. Also, the model does not account for the sale 

of residue, as an organic fertiliser, which could be a major revenue source. Considering these 

details, the model provides strong supporting evidence for decentralised BSFL FSM solutions. 
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In-situ BSFL treatment could be suitable in rural areas, where the cost of collecting and 

transporting FS to a decentralised BSFL treatment plant would be uneconomical. Faecal sludge 

could be managed by introducing BSFL into pit latrine vaults, subsequently harvesting the 

prepupae from the vault. The primary aim of an in-situ treatment solution would be to reduce 

the FS inside of a pit latrine. This could extend the life of the pit latrine, by reducing the vault 

fill rate, subsequently reducing the frequency of vault emptying. Overall, this would help 

extend the sanitation of the household, and the surrounding community. A secondary benefit 

is that prepupae could be sold to official companies to process safely into a protein source for 

animal feed. It is suggested that to maintain the FSM benefits of the BSFL, larvae could be 

regularly added to the vault or adult BSF could be encouraged to lay eggs within the vault. The 

use of BSFL in-situ may be recommended for use in older latrines, where the technology can 

be retrofitted with a prepupal harvesting system. Harvesting system currently being 

investigated following an InnoCentive Challenge includes the “Kone” and “Daisy Chain” (SV 

2011). The Kone was designed by Swedish water and waste engineering consultants, and is 

comprised of a rubber cone, made from recycled tires, that is placed into a latrine. Prepupae 

migrate up the slopes of the cone into a removable collection pot which is emptied 

periodically. The Daisy Chain was developed following a BSF Toilet Design Workshop, and is a 

flexible lightweight circular tube which sits on top of the FS in a pit latrine. Prepupae migrate 

into the tube through multiple access points, and the tube is pulled up and emptied via the 

drop hole (SV 2011). 

Finally, it is possible to design a new toilet based around BSFL. A BSFL toilet would comprise of 

a BSFL FS treatment unit, which directed migrating prepupae for easy harvesting. Using the 

FMR capabilities of the BSFL, FS would be reduced to residue, resulting in a slow fill rate, and 

reduced emptying and maintenance. This would be most suitable in crisis situations, where a 

long lasting and robust solution is required, due to high usage. The BSFL toilet could help 

prevent disease but reducing FS, but also potentially prevent pathogen transmission via 
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controlling M. domestica populations which would normally breed in pit latrines. A conceivable 

concern with a BSFL toilet is how to maintain the BSFL population. The toilet could be seeded 

with early stage BSFL at regular intervals, or alternatively, a specially designed adult cage could 

be built onto the superstructure. However, it is believed that these problems are not 

impossible to solve with sufficient research and ingenuity. 

1.4.6. Potential pitfalls 

A potentially major drawback of using BSFL to consume FS is the bioaccumulation of hazardous 

compounds. Bioaccumulation is the build-up of a substance by an organism at a greater rate 

than which it is lost. This is important when the substance being absorbed is toxic, such as 

pesticides, organic chemicals or heavy metals (IUPAC 1993). Heavy metal bioaccumulation 

must be taken into consideration when dealing with BSFL due to biomagnification. 

Biomagnification is when there is an increase in concentration of a substance from one trophic 

level to another (Walker 1987). It has been found that the prepupae accumulate cadmium 

within their body, and lead and zinc were found in the larval exuviate: the shed skin of the 

larvae (Diener 2010). The heavy metals had no significant effect on prepupal weight, 

development time, sex ratio and adult bilateral symmetry. However, a later study 

demonstrated the influence of heavy zinc contamination caused reduced adult egg laying and 

increased mortality of young BSFL (Diener et al. 2011a).  

Even though heavy metals such as zinc, cadmium and lead do not affect the development of 

individual BSF (Diener 2010), the problem of biomagnification occurs when the prepupae are 

used for animal feed, such as when larvae are fed directly to chickens. Even though the larvae 

only contain a trace amount of a heavy metal, a large quantity of larvae eaten will cause a 

magnifying effect of the heavy metal. This is magnified again when the chicken is eaten by 

humans. 
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1.5. Rationale 

Improved sanitation is fundamental to enhancing social and economic development (Mara et 

al. 2010). Improved on-site sanitation is low-cost, and the only feasible solution for low- and 

middle-income countries. However, issues arise with on-site sanitation, when pit latrines 

become full and require emptying. The lack of FS treatment and disposal sites means there is a 

necessity for the investigation into novel FSM technologies. Using BSFL as a technology to 

manage pit latrine FS has been suggested due to their FMR efficiency and prepupal value 

(Newton et al. 2005, Diener et al. 2011a). It is suggested that BSFL could be an environmental, 

scalable, and suitable technology alternative FSM solution, which could reduce indiscriminate 

dumping, disease, and provide an income for entrepreneurs. 

However, there are significant gaps in research that must be filled before BSFL can be utilised 

as a FSM solution. Although previous research into BSFL behaviour has shown that they can 

digest fresh human faeces (Banks 2010, Lalander et al. 2013), there is little data on their ability 

to develop on, and digest, pit latrine FS. How effective BSFL are at FMR and prepupal biomass 

production while feeding on fresh faeces and pit latrine FS under different feeding conditions 

must be determined. Variations in the physical characteristics, and chemical components of 

different layers of pit latrine FS, and their effects on BSFL efficiency must be identified, 

specifically in relation to FMR and prepupal yield. Also, it is necessary to determine whether 

heavy metal contaminants found in FS bioaccumulate in prepupae. Finally, it is important to 

understand the effect of commonly used cleaning chemicals, which could be present in FS, on 

the mortality of BSFL. The PhD presented here aims to assess the full potential of BSFL in this 

role. 
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1.6. Objectives 

The overall aim of this PhD is to determine whether BSFL are a viable faecal sludge 

management solution. The specific objectives are: 

1) To determine the growth rates and FMR of black soldier fly larvae on fresh human 

faeces, verifying whether BSFL have the potential as a method of faecal sludge 

management 

2) To determine the physical and chemical characteristics of pit latrine faecal sludge in a 

country where BSFL technology could provide a solution to faecal sludge management 

issues, while establishing whether the characteristics fall within the range of a suitable 

food source for BSFL 

3) To determine the effect of key rearing parameters: faecal sludge moisture content, 

feeding rate, and larval density, on black soldier fly larvae FMR efficiency, and 

prepupal biomass production when reared on pit latrine faecal sludge, establishing an 

optimum FMR model for future trials 

4) To determine the FMR efficiency, and prepupal production, of black soldier fly larvae 

reared on different layers of pit latrine faecal sludge with variations in physical and 

chemical composition, ascertaining the economic practicality of using BSFL as a faecal 

sludge management technology, and determining bioaccumulation of heavy metals in 

prepupae 

5) To conduct a preliminary investigation into the effect of common non-excreta 

additives in pit latrine faecal sludge on black soldier fly larvae mortality, determining 

whether commonly used chemicals could potentially negatively affect BSFL faecal 

sludge management technologies 
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2.1. Abstract 

OBJECTIVES: To determine the efficacy of black soldier fly larvae (BSFL) (Hermetia illucens) at 

converting fresh human faeces into larval biomass under different feeding regimes, and to 

determine the viability of BSFL as a means of human faecal sludge management (FSM).  

METHODS: Black soldier fly larvae were fed fresh human faeces. The frequency of feeding, 

number of larvae and feeding ratio were altered to determine their effects on larval growth, 

prepupal weight, faecal matter reduction (FMR), bioconversion and feed conversion rate (FCR). 

RESULTS: The larvae that were fed a single mass of faeces developed into significantly larger 

larvae and prepupae than those fed incrementally every 2 days. However, the development 

into prepupae took longer. The highest FMR was found in the group containing the most 

larvae, with no difference between feeding regimes. At an estimated 90% pupation rate, the 

highest bioconversion (16–22%) and lowest, most efficient FCR (2.0–3.3) occurred in groups 

that contained 10 and 100 larvae, when fed both single-feed and incremental feeding regimes. 

CONCLUSION: The prepupal weight, bioconversion and FCR results surpass those from 

previous studies into BSFL management of swine, chicken manure and municipal organic waste 

(MOW). This suggests that the use of BSFL could provide a solution to the health problems 

associated with poor sanitation and inadequate FSM in developing countries. 
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2.2. Introduction 

Providing hygienic, affordable and manageable sanitation is vital to the improvement in public 

health in both developed and developing countries. Two and a half billion people in low- and 

middle income regions have no access to improved sanitation (UNICEF/WHO 2014). With 44% 

of these people practicing open defecation, there are serious risks to public health that can 

lead to an increase in disease spread (Esrey et al. 1991). Strong evidence suggests that 

improved sanitation has a significant effect on health in developing regions (Esrey et al. 1991).  

On-site improved sanitation includes pit latrines with slabs, ventilated improved pit latrines 

(VIP), pour-flush pit latrines and composting toilets (UNICEF/WHO 2014). 1.7 billion people in 

low- and middle-income communities around the world use these forms of improved 

sanitation (UNICEF/WHO 2014). However, it has been reported in Vietnam (Biran 2010a) and 

Tanzania (Biran 2010b) that the biggest problem faced by pit latrine owners is the disposal of 

pit latrine faecal sludge (FS). Adequate pit latrine emptying services are not available in many 

areas in developing countries and can be expensive (Still 2002). The emptying process can also 

be inconvenient for the latrine owner and cause bad smells in the surrounding area (Biran 

2010a, Biran 2010b). Digging a new pit is an alternative, but too expensive for many. Also, it 

may be impossible in areas which lack space, such as emergency camps and unplanned 

settlements (Patinet 2010).  

Effective faecal sludge management (FSM) is vital to prevent adverse health and 

environmental effects (WHO/UNEP 2006). The method of FSM must be considered, 

particularly in low-income countries with insufficient piped sewerage systems. It is possible to 

remove pathogens while transporting FS to wastewater treatment plants, but in practice, 

unregulated services and the prohibitive cost, lack of infrastructure and resources render this 

method of FSM in developing countries unfeasible (Helmer et al. 1997, Kariuki et al. 2003, 

WHO/UNEP 2006). Composting can be used to remove pathogens in FS if maintained correctly 
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(USEPA 2003). But pathogens are not always inactivated throughout the entire compost mass 

(Droffner et al. 1995, Hutchison et al. 2005). Biogas systems combine FS with animal waste, 

agricultural waste and water (NNFCC 2009), but only remove some of the pathogenic 

organisms. With a large increase in the number of pit latrines being built in developing 

countries, more consideration needs to be given to improving methods of pit emptying and 

suitable FSM.  

One prospective solution for FSM is the larvae of Hermetia illucens (L.), commonly known as 

the black soldier fly larvae (BSFL). The adult flies are neither a nuisance species nor a 

mechanical vector of disease, as they do not need to feed, surviving on fat stores from their 

larval stage (Furman et al. 1959). As the females oviposit around the edges of larval food 

sources (Copello 1926), they do not transmit pathogens from FS to human food unlike filth 

flies such as Musca domestica. Although there have been rare cases of accidental myiasis 

caused by the consumption of ripe, unwashed fruit (Calderón-Arguedas et al. 2005, Gonzalez 

et al. 2009), but given their worldwide distribution (Leclercq 1969), such cases represent 

negligent risks to humans. Unlike the adults, the larvae are detritivores feeding on human 

cadavers (Dunn 1916), decaying vegetables (Malloch 1917), pit latrine FS (Bradley 1930) and 

animal manure (Tingle et al. 1975, Booram et al. 1977, Newton et al. 2005). The final larval 

stage (prepupal) is indicated by a change in colour from white to dark brown (May 1961). The 

prepupae crawl out of the feeding material to pupate, climbing slopes of 40° when dry, making 

them easy to direct for harvesting (Sheppard et al. 1994). The prepupal stage contains high 

protein and fat levels, 42–45% and 31–35%, respectively (Hale 1973, Newton et al. 1977). 

These nutritional qualities give the prepupae value, as they can be converted into beneficial 

end products (Sheppard et al. 1994). They can provide a suitable replacement for conventional 

fat and protein sources and can be fed to animals such as cockerels (Hale 1973), pigs (Newton 

et al. 1977), catfish and tilapia (Bondari et al. 1987), and rainbow trout (St-Hilaire et al. 2007). 

The prepupae can also be fractionated into their component parts, protein separated for 
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animal feeds and fats converted into biodiesel (Li et al. 2011a, Li et al. 2011b). BSFL are also 

known to reduce oviposition of the disease-spreading house fly, M. domestica (Sheppard 

1983). The quantities of organic material consumed by BSFL can significantly reduce swine, 

chicken and cattle manure in the animal husbandry industry (Sheppard et al. 1994, Newton et 

al. 2005). BSFL can also reduce Escherichia coli and Salmonella enterica pathogen loads in 

chicken and cattle manure (Erickson et al. 2004, Liu et al. 2008), and human faeces (Lalander et 

al. 2013). 

Although there has been much research focusing on the use of BSFL to manage swine, chicken 

and cattle manure (Sheppard et al. 1994, Newton et al. 2005), as well as municipal organic 

waste (MOW) (Diener et al. 2009, Diener et al. 2011), few studies investigated their 

consumption of FS (Dang 2010, Lalander et al. 2013). This study aims to determine the 

efficiency of BSFL at consuming fresh human faeces, under different feeding conditions and 

feeding rates. Efficiency is determined by calculating faecal matter reduction (FMR), 

bioconversion and feed conversion rates (FCR). The results will help optimise the way in which 

BSFL are fed human faeces, increasing FMR and prepupal biomass generation. The value of the 

various components of the prepupae could provide a source of income, while the economic 

benefits through selling BSF products could be an incentive to communities, entrepreneurs, 

non-government organisations and governments to improve FSM. 

2.3.  Methods 

2.3.1. Black soldier fly larvae 

The experiments were carried out at the London School of Hygiene and Tropical Medicine, UK. 

The BSFL used in the study were 18 days old, extra small Phoenix WormsTM (ISR, Georgia, USA). 

The larvae were kept in an inert material provided by the supplier that prevented the larvae 

from gaining weight. The BSFL were stored at 20 °C in an insectary at LSHTM until they were 

needed for the experiments. 
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2.3.2. Faecal sample collection 

Ethical approval for sampling human tissue was obtained from the LSHTM Ethics Committee 

(Appendix B), and all experiments complied with current laws. Volunteers for the study were 

recruited from university staff and the general public. The project was explained to all 

volunteers by the author who conducted the experiment, and the volunteers signed an 

informed consent form. A collection kit, consisting of a sealable faecal collection pot, a pair of 

purple nitrile gloves, a ziplock bag and a large padded envelope, was given to volunteers at 

least 1 day prior to the sample being produced. The volunteers produced a faecal sample, 

ensuring no urine was mixed into the sample, and then contacted the author on the same day 

for collection. Samples were collected every 2 days from different volunteers throughout the 

experiment and stored in a refrigerator at 5°C for a maximum of 48 h, until required. 

2.3.3. Experimental design 

The experiment used two feeding regimes: Feeding Regime 1 (FR-1) and Feeding Regime 2 (FR-

2). In FR-1, the larvae were provided with fresh faeces every 2 days (incremental feeding) for 

12 days. In FR-2, the larvae were only provided with one sample of faeces at the beginning of 

the experiment (lump amount feeding). The quantity of faeces added was calculated according 

to an optimal feeding ratio of 100 mg/food (faeces) larva/day, as determined by a study that 

fed BSFL on MOW (Diener et al. 2009, Diener et al. 2011), or an excess feeding ratio of 1000 

mg/faeces larva/day. The feeding regimes were divided into three groups (A, B and C), which 

differed in larval density (1, 10 or 100 larvae per treatment) and feeding ratio (Table 2-1). 

Equal quantities of faeces, without larvae, served as controls for all groups within both feeding 

regimes. 
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Table 2-1 Description of Hermetia illucens Feeding Regime 1 (incremental feeding), and Feeding 
Regime 2 (lump sum feeding) used in the experiment, includes group allocation, feeding ratio, number 
of larvae, quantity of faeces added, feeding occasions, total feed added and number of treatment and 
control replicates 

 Incremental feeding (FR-1) Lump sum feeding (FR-2) 

Group A B C A B C 
Feeding ratio (mg/larva/day) 1000 100 100 1000 100 100 

Number of larvae (n) 1 10 100 1 10 100 
Quantity feed added (g) 2 2 20 12 12 120 

Feeding occasions (n) 6 (every 2 days) 1 (at beginning) 
Total feed added (g) 12 12 120 12 12 120 

Replicates with BSFL (n) 40 40 6 40 40 6 
Replicates without BSFL (n) 10 10 3 10 10 3 

 

2.3.4. Faecal and larval weights (Day 0) 

Sterilised 50-ml falcon tubes (VWR International Ltd, Leicestershire, UK) were weighed and 

labelled for Groups A and B. Larger containers for Group C, autoclaved 324- ml glass jars (Jam 

Jar Shop, Telford, UK), were weighed and labelled to include Feeding Regime, Group and 

replicate number. Prior to distribution, the samples of human faeces were combined and 

mixed thoroughly in a large bowl to remove variation between samples. The mixed faeces was 

weighed (Oertling RB153, Birmingham, UK) and divided between treatment and control 

replicates. Larvae were counted and weighed on an analytical balance (Oertling NA114, 

Birmingham, UK) in groups for each treatment before adding to the faecal sample. Parafilm 

(Bemis Flexible Packaging, Oshkosh, USA) was stretched over the top of the containers to 

prevent the larvae from escaping and then perforated with a needle to allow the larvae to 

breathe. Treatment and control replicates were stored at 27 °C and 67% relative humidity 

(Diener et al. 2009, Diener et al. 2011) for 2 days in an incubator (GenLab, Widnes, England). 

2.3.5. Faecal and larval weights (Day 2–12) 

New falcon tubes and glass jars were weighed and labelled using the FR-1 nomenclature. Fresh 

faecal samples were mixed in a large bowl to remove variation between samples. The faeces 
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were divided between the new treatment and control replicates, and the containers and 

faeces were weighed. 

All FR-1 and FR-2 replicates were taken out of the incubator. The larvae were removed from 

the FR-1 treatment replicates, weighed and then placed in a new FR-1 treatment replicate, 

with a fresh faecal sample and the same identification number. Sample of larvae was removed 

from the FR-2 treatment replicates, counted, weighed and returned to their treatment 

replicates. The FR-2 control replicates were weighed. Parafilm was replaced over the top of the 

new FR-1 and original FR-2 treatment and control replicates and perforated with a needle. All 

treatment and control replicates were returned to an incubator at 27 °C and 67% relative 

humidity. 

It was not necessary to wash the larvae before weighing, as it was shown in a preliminary 

experiment that washing did not significantly alter larval weight (Banks 2010). This process was 

repeated every 2 days for the 12 days of the experiment. Once the experiment ended, the 

larvae were removed from the treatment replicates. Once larvae developed into prepupae, 

indicated by a change in colour from white to dark brown (May 1961), they were removed 

from their treatments and weighed. The prepupae were then freeze-dried (Edwards Modulyo, 

West Technology, Bristol, England) until a constant weight was reached. 

2.3.6. Statistical analysis 

The data were analysed using Intercooled Stata 12.0 for Windows (StataCorp LP, TX, USA). 

Data were visualised using box-plot graphs, tested for normality using the Shapiro–Wilk test 

and, if necessary, and log-transformed. Percentage data were arcsine transformed, depending 

on range (Parsad 2005).  

Analysis of variance (ANOVA) was used to determine significant differences between feeding 

regimes, and between groups within the same feeding regime. The variables comprised total 

feed added, total residue, FMR, larval mean weight, prepupal mean weight, percentage 
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pupation and prepupal yield. The bioconversion and FCR were calculated for actual yield and 

an estimated 90% harvest. 

2.4.  Results 

2.4.1. Larval development 

Mean larval weight data were normal (Shapiro–Wilk P > 0.05) after the removal of outlying 

data points that were the result of a single larva that failed to thrive (E. Pieterse, personal 

communication). There were significant differences between mean larval weights in all three 

groups of the different feeding regimes (Figure 2-1). 

 

Figure 2-1 Hermetia illucens larval wet weight in grams (arithmetic mean ± 95% CI), over 12 days, for 
two different feeding regimes, FR-1 (filled squares), were fed fresh faeces every 2 days, and FR-2 
(empty squares) were fed a large lump sum of faeces at the start of the experiment. Panel (a) contains 
Group A data from replicates (n = 40) of a single larva fed 1000 mg/faeces larvae/day. Panel (b) 
contains Group B data from replicates (n = 40) of 10 larvae fed 100 mg/faeces larvae/day. Panel (c) 
contains Group C data from replicates (n = 6) of 100 larvae fed 100 mg/faeces larvae/day. Day 
numbers followed by a * indicate significant difference (P ≤ 0.05), and ** indicates highly significant 
difference (P ≤ 0.0001). 
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In Groups A and B, by day 6, the larvae in Feeding Regime 2 (FR-2) were highly significantly 

larger than in Feeding Regime 1 (FR-1) (Group A – P < 0.0001, F = 23.69, df = 1, 45; Group B – P 

< 0.0001, F = 117.04, df = 1, 48). In Group C, the larvae in FR-2 were significantly larger (P = 

0.0254, F = 8.00, df = 1, 7) by day 6, and highly significantly larger (P < 0.0001, F = 98.15, df = 1, 

7) by day 8. In Groups A and B, the majority of the FR-1 larvae had developed into prepupae by 

day 8. In Group A, it took further 4 days for the larvae in FR-2 to reach the same stage. In 

Group B, it took further 2 days for the larvae in FR-2 to reach the same stage. In Group C, the 

majority of prepupae in FR-1 had developed by day 10. Only 8.2% (Table 2-3) of the larvae in 

FR-2 reached the prepupal stage by day 12. 

2.4.2. Faecal matter reduction 

Faecal matter reduction data were between 0 and 100%. The data were arcsine-transformed 

before an ANOVA was performed. All treatment groups had significantly higher FMR (P < 

0.0001) than control groups, in both feeding regimes. The lowest treatment FMR (Table 2-2) 

was found in Group A, FR-2 (25.2% ± 0.80 SE). This was significantly lower (P < 0.0001, F = 

26.15, df = 1, 78) than FR-1 (33.4% ± 1.44 SE). In Group B, there was a significant difference 

between the feeding regimes (P = 0.0032, F = 9.24, df = 1, 78), with FR-1 having higher FMR 

than FR-2, 49.7% ± 1.03 SE and 45.8% ± 0.73 SE, respectively. The highest FMR (FR-1 = 54.2% ± 

0.86 SE, FR-2 = 54.6% ± 2.20 SE) was found in Group C, with no significant difference (P = 

0.8633, F = 0.03, df = 1, 10) between the feeding regimes. 

2.4.3. Prepupal yield, bioconversion and feed conversion rate 

Pupation data were between 0 and 100% and therefore arcsine-transformed before an ANOVA 

was performed. The prepupal weight was significantly higher in FR-2 for all groups than in FR-1 

(Table 2-3). Group A, FR-2 had the largest mean prepupal weight of 0.3151 g. All groups 

showed high levels of pupation, with the exception of Group C, FR-2. Prepupal mean weight 

was significantly affected by Feeding Regime (P < 0.0001, F = 68.03, df = 1,158) and Group (P < 
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0.0001, F = 13.60, df = 2,158), but not by an interaction between Feeding Regime and Group (P 

= 0.0646, F = 2.79, df = 2,158).  

Table 2-2 Total and arithmetic mean (±SE) wet weight of feed added and residue remaining, and 
geometric mean (±SE) percentage faecal matter reduction (FMR), by wet weight. P values indicate 
statistical differences in FMR between groups in different feeding regimes, significant effects are in 
bold 

  
Feed Added (Wet 

Weight) 
Residue (wet weight) 

FMR  
(wet weight) 

Group 
Feeding 
regime 

Total (g) Mean (g) Total (g) Mean (g) Mean (%) P 

A 
FR-1 390.3 9.8 ± 0.23 260.2 6.5 ± 0.20 33.4 ± 1.44 

<0.0001 
FR-2 481.5 12.0 ± 0.04 360.3 9.0 ± 0.10 25.2 ±  0.80 

B 
FR-1 436.5 10.9 ± 0.08 219.8 5.5 ± 0.12 49.7 ± 1.03 

0.0032 
FR-2 482.5 12.1 ± 0.04 261.4 6.5 ± 0.09 45.8 ± 0.73 

C 
FR-1 658.1 109.7 ± 1.43 301.1 50.2 ± 0.81 54.2 ± 0.86 

0.86 
FR-2 720.5 120.1 ± 0.08 327.1 54.5 ± 2.67 54.6 ± 2.20 

 

When bioconversion and FCR were calculated (Table 2-4) for actual prepupal yield, Group B, 

FR-2, had the highest bioconversion (22.9%) and most efficient FCR value of 2.0. The lowest 

bioconversion and least efficient FCR was in Group C, FR-2 (1.6% and 33.9, respectively), 

followed by Group A, FR-1 (2.2% and 15.2, respectively). When prepupal total weight was 

estimated using a 90% yield, Group B, FR-2 maintained the highest bioconversion (22.3%) and 

most efficient FCR value (2.0), however, Group C, FR-2 had improved bioconversion to 18.1% 

and FCR efficiency to 3.0. The lowest bioconversion (2.1%) and least efficient FCR (15.6) were 

found in Group A, FR-1. 

Table 2-3 Hermetia illucens prepupal geometric mean (±SE) wet weight, and percentage of larvae 
reaching prepupal stage. P values indicate statistical differences in prepupal weight and pupation 
between groups in different feeding regimes, significant effects are in bold 

  Prepupal Wet Weight Pupation 

Group Feeding regime Mean (g) P Percentage (%) P 

A 
FR-1 0.2258 ± 0.0078 

<0.0001 
92.5 

0.4624 
FR-2 0.3151 ± 0.0124 87.5 

B 
FR-1 0.1936 ± 0.0026 

<0.0001 
82.8 

0.0001 
FR-2 0.2986 ± 0.0039 92.5 

C 
FR-1 0.1998 ± 0.0034 

0.0023 
85.0 

<0.0001 
FR-2 0.2410 ± 0.0098 8.2 
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Table 2-4 Bioconversion and feed conversion rate (FCR) of Hermetia illucens converting human faeces 
into prepupal biomass, for actual prepupal yield, and estimated 90% yield. The most efficient 
bioconversion and FCR for actual and estimated yield are in bold 

 Actual prepupal yield 

Group 
Feeding 
regime 

Prepupal 
weight (g) 

Feed 
added (g) 

Bioconversion 
(%) 

Feed 
consumed (g) 

FCR 

A 
FR-1 8.5 390 2.2 130.1 15.2 

FR-2 11.3 482 2.3 121.2 10.7 

B 
FR-1 65.3 437 14.9 216.7 3.3 
FR-2 110.7 483 22.9 221.1 2.0 

C 
FR-1 104.8 658 15.9 357.0 3.4 

FR-2 11.6 721 1.6 393.4 33.9 
       

 Estimated 90% yield 

Group 
Feeding 
regime 

Prepupal 
weight (g) 

Feed 
added (g) 

Bioconversion 
(%) 

Feed 
consumed (g) 

FCR 

A 
FR-1 8.3 390 2.1 130.1 15.6 

FR-2 11.6 482 2.4 121.2 10.4 

B 
FR-1 69.9 437 16.0 216.7 3.1 
FR-2 107.9 483 22.3 221.1 2.0 

C 
FR-1 107.9 658 16.4 357.0 3.3 

FR-2 130.7 721 18.1 393.4 3.0 

 

2.5. Discussion 

The BSFL fed fresh faeces every 2 days developed into smaller prepupae (Table 2-3) faster than 

the larvae fed once at the beginning of the experiment (Figure 2-1). Based on the slower 

development and larger prepupae of the larvae fed once, it is theorised that there was a 

nutritional imbalance in the lump amount diet that led to an increase in consumption to 

compensate for deficient nutrients (Raubenheimer et al. 1997, Bennett 2000, Wright et al. 

2003). Both proteins and carbohydrates are critical in the development of insect larvae 

(Bennett 2000, Nijhout 2003, Lee et al. 2004, Simpson et al. 2006). However, there are few 

data regarding the protein and carbohydrate content of fresh and ageing faeces. If pit latrine 

material is used as a proxy, with the top layer being fresh material, and lower layers aged 

material, the protein content of the material drops rapidly within the first 20 cm (J. H. J. Ensink 

& B. Torondel, LSHTM, unpublished data). The increase in development time and larval size 

supports the hypothesis that reduced protein content in the lump sum diet causes a nutritional 
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imbalance that leads to compensatory feeding. If the ageing material is losing nutritional value 

over time, and the feeding rate of insect larvae is highest in the later instars, it is likely that the 

older larvae will need to consume more low nutrition feed than larvae fed fresh, nutritionally 

balanced feed.  

Growth rate plasticity (Metcalfe et al. 2001, Tu et al. 2003, Wright et al. 2003, Dmitriew et al. 

2005, Dmitriew 2011) means that larvae are capable of successfully developing on a range of 

resources that may be transient in nature. Insect herbivores are known to increase their 

consumption of plant tissue when feeding on low-quality plants (Kondoh et al. 2001), which 

increases developmental time and leads to higher vulnerability to natural predators. A slow-

growth, high-mortality hypothesis has been proposed in Lepidoptera (Benrey et al. 1997, 

Fordyce et al. 2003, Medina et al. 2005, Cornellisen et al. 2006) and Coleoptera (Häggström et 

al. 1995). Growth rate plasticity indicates that BSFL could be capable of consuming pit material 

with a range of nutritional contents and still be capable of developing into valuable prepupae. 

2.5.1. Faecal matter reduction, prepupal yield and feed conversion rates 

The results from this study were calculated using wet weight, meaning results can only be 

compared to studies that calculate wet weight FMR. It can be seen that FMR levels in Groups B 

and C are comparable (Table 2-5) to those found when BSFL feed on chicken manure 

(Sheppard et al. 1994).  

It is possible that dry weight FMR could compare to that found with BSFL feeding on MOW 

(Diener et al. 2011), however, those data were not collected in this experiment. The FMR in 

Group A was far lower than Groups B and C. However, this is to be expected with only one 

larva present for each replicate. The percentage pupation ranged from 82.8 to 92.5% (Table 

2-3), excluding Group C, Feeding Regime 2. The low figures of pupation in this group (8.2%) 

could be due to competition between the larvae combined with reducing quality of feed. 
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Table 2-5 Effect of different feed sources on Hermetia illucens mean (±SE) prepupal weight, faecal 
matter reduction (FMR) capacity, prepupal yield, bioconversion and feed conversion rate (FCR). The 
most efficient bioconversion and FCR results are in bold. Other data are from previous studies using 
swine manure (Newton et al. 2005), chicken manure (Sheppard et al. 1994) and municipal organic 
waste (MOW) (Diener et al. 2011) 

Feed Source 

Mean 
prepupal 
weight 

(g) 

Feed 
added 

Residue 
Feed 

consumed 
FMR 
(%) 

Prepupal 
yield 

Bioconversion 
(%) 

FCR 

Swine manure*
 

N/A 68 kg 42 kg 26 kg ~39 ~2.7 kg 3.97 9.6 

Chicken manure†
 0.220 ± 

N/A 
5,240 

kg 
~2,620 

kg 
2620 kg ~50 196 kg 3.74 13.4 

MOW*
 0.220 ± 

0.008 
151 kg 48 kg 103 kg 68 17.8 kg 11.78 5.8± 

Human faeces‡
 

     

Group 
Feeding 
Regime 

     

A 
FR-1 

0.2258 ± 
0.0078 

390g 260g 130g 33 8g 2.1 15.6 

FR-2 
0.3151 ± 
0.0124 

482g 360g 121g 25 12g 2.4 10.4 

B 
FR-1 

0.1936 ± 
0.0026 

437g 220g 217g 50 70g 16.0 3.1 

FR-2 
0.2986 ± 
0.0039 

483g 261g 221g 46 108g 22.3 2.0 

C 
FR-1 

0.1998 ± 
0.0034 

658g 301g 357g 54 108g 16.4 3.3 

FR-2 
0.2410 ± 
0.0098 

721g 327g 393g 55 131g 18.1 3.0 

* Dry weight,† Wet weight, ‡ Estimated 90% prepupal yield, ± value different to published paper 
(Diener, Upsala, personal communication) 

 

However, a higher rate would have been recorded if the experiment had lasted longer. 

Therefore, a 90% yield of prepupae was calculated to compare the FCR against previous 

research (Table 2-5). The bioconversion and FCR of the single prepupae in Group A were 

comparable to the rates found in previous studies (Sheppard et al. 1994, Newton et al. 2005, 

Diener et al. 2011). However, Groups B and C have higher bioconversion rates and lower FCR 

values than reported in previous studies. The high bioconversion rates show that BSFL are 

effective at reducing human faeces, and a low FCR indicates that the larvae feeding on the 

lower feeding ratio of 100 mg/larva/day are more efficient at converting fresh human faeces 

into biomass than swine manure, chicken manure and MOW. 
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Based on a yield of 90% prepupae, the high FMR and effective FCR results support the use of 

BSFL in FSM. The prepupae can be collected for their protein and fat, taking advantage of their 

self-harvesting behaviour of crawling out of their feeding medium. This behaviour removes 

issues that arise from separating them from remaining residue. However, it is unlikely that all 

of the prepupae will self-harvest, suggesting alternative methods of prepupal collection must 

be investigated for large-scale FSM. Also, with further research, the FMR could be optimised, 

resulting in less remaining residue. Additionally, urine was not present in the faeces provided 

by volunteers, and the moisture content of the faeces was not increased artificially. Therefore, 

the samples were not representative of fresh faeces found in standard non-urine diverting 

latrines. The presence of urine may affect the FMR efficacy of BSFL when converting pit latrine 

faecal sludge into biomass. Furthermore, it is important to consider how the presence of urine 

could alter BSFL faecal sludge reduction efficacy. 

In summary, the study has demonstrated that BSFL feeding on fresh human faeces can develop 

successfully. The largest prepupae are produced when given a large quantity of feed, resulting 

in prepupae of a higher mass than previous studies. The larvae are effective at FMR and 

converting the human faeces into a valuable biomass. These results support the use of BSFL in 

FSM. However, a number of issues still need to be addressed. It has been shown that BSFL are 

capable of consuming fresh human faeces on a small scale, but up scaling of this experiment is 

needed to test whether BSFL are capable of developing into prepupae at high densities. To 

help develop the technology for use in developing countries, more research needs to be 

conducted on the ability of BSFL to consume pit latrine FS. Previous research shows how BSFL 

development time varies depending on diet, feeding rate, temperature and humidity 

(Tomberlin et al. 2002, Diener et al. 2009, Tomberlin et al. 2009, Diener et al. 2011, Holmes et 

al. 2012). Therefore, further research is needed to assess the growth rate plasticity of BSFL on 

low-quality diets like pit latrine material. The BSFL should be tested using material from 

different latrine types, with different physical and chemical characteristics recorded to 
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determine effects on FMR and prepupal yield. Also, considering that the prepupal biomass 

could be used to feed animals that are part of the human food chain, it is important to assess 

the potential risks regarding bioaccumulation of heavy metals and contamination by 

pathogens. 

Ultimately, BSFL have the potential to improve sanitation in developing countries by providing 

a way to process dangerous FS, with the benefit of having the prepupae produced have a value 

that could provide a source of income for communities or local entrepreneurs, while the 

remaining residue, if safe, may be used as a fertiliser or soil conditioner. 
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3.1. Abstract 

OBJECTIVES: To determine the physical and chemical properties of faecal sludge (FS) collected 

from stratified layers in pit latrines in South Africa, and to see whether they fall within the 

range suitable for rearing black solider fly larvae (BSFL) for use in a novel faecal sludge 

management (FSM) method. 

METHODS: Faecal sludge was collected from 25 latrines, in 3 communities (urban, peri-urban, 

and rural) around South Africa. Samples were collected from four different layers, 0 – 20 cm, 

21 – 50cm, 51 – 100cm, and 101 – 150cm. Samples were analysed for physical and chemical 

parameters and heavy metals using standard methods. 

RESULTS: Total solids (TS) and pH of FS from peri-urban latrines was significantly lower than 

urban and rural latrines (P < 0.05). Faecal sludge from peri-urban latrines had significantly 

higher total chemical oxygen demand (P = 0.019), total phosphate (P = 0.018), volatile fatty 

acids (P = 0.002), and carbohydrates (P = 0.033), than rural latrines. The FS collected from all 

communities had similar physical and chemical characteristics to FS analysed in Tanzania, and 

previously in South Africa.  

CONCLUSION: The study shows there is differences in FS characteristics of latrines in different 

communities, urban, peri-urban, and rural. It is suggested that differences in FS characteristics, 

and biodegradation of FS are due to different latrine design. The characteristics fall within the 

range suitable for rearing BSFL. Black soldier fly larvae FSM could be used to improve 

sanitation in communities where pit latrines contain FS with similar properties to those found 

in this study. 
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3.2. Introduction 

An estimated 2.5 billion people world-wide lack access to an improved form of sanitation 

(UNICEF/WHO 2014). The high cost associated with piped sewage systems and wastewater 

treatment plants in low- and middle-income countries means that the most appropriate 

solution is on-site sanitation (WHO/UNEP 2006). On-site sanitation solutions have the major 

drawback that they will eventually fill-up and will thus require emptying, transport and 

treatment of faecal sludge (FS). The lack of suitable faecal sludge management (FSM) methods 

in low- and middle-income countries (Chowdhry et al. 2012) may result in illegal dumping of FS 

which causes major environmental and hygiene problems in many cities (Helmer et al. 1997, 

Kariuki et al. 2003, WHO/UNEP 2006).  

There is a great need for alternative FSM solutions to help improve sanitation in communities 

which face problems with FS disposal. One such alternative is the use of black solider fly larvae 

(BSFL), which have been shown to effectively reduce fresh human faeces (Lalander et al. 2013, 

Banks et al. 2014), and yield a potentially valuable product in the form of high protein and fat 

rich prepupae (Hale 1973, Newton et al. 1977). It is known that the physical, biological, and 

chemical characteristics of the larval diet affects the development, and subsequent value, of 

BSFL and similar insect species (Fatchurochim et al. 1989, Bennett 2000, Nijhout 2003, Lee et 

al. 2004, Simpson et al. 2006, Chaudhury et al. 2009, Diener 2010, Diener et al. 2011, Popa et 

al. 2012). Therefore, before determining how effective BSFL are as a FSM method, it is vital to 

determine what physical and chemical characteristics are present in FS, and whether they are 

suitable for the rearing of BSFL.  

However, there have been few studies quantifying the composition of pit latrine FS, as 

discussed by Chaggu (2004) and Buckley et al. (2008), and synthesised in Table 3-1.  
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Table 3-1 Summary of physical and chemical characteristics of pit latrine faecal sludge (FS). Sources: 
Lopez Zavala, 2002; Palmquist, 2005; Buckley, 2008; Irish, 2013 

Characteristic Unit Range 

Total solids % 6 – 80 
Moisture content % 66 – 85 

Total Volatile Solids % dry mass 1 – 91 
pH - 5.25 – 8.94 

Total COD g kg
-1

 dry mass 30 - 2000 
Soluble COD g kg

-1
 dry mass 1 - 750 

Total Nitrogen (N) % dry mass 5 – 7 
Total Phosphorus (P) % dry mass 0.7 – 2.5 
Total Potassium (K) % dry mass 0.8 – 2.1 

 

Two studies examining pit latrine fill rates were conducted in South Africa on 16 VIP latrines 

(Bakare 2014), and in Tanzania and Vietnam using 50 non-improved latrines in each country 

(Torondel, LSHTM, unpublished data). In both studies, there were huge variations in FS 

physical and chemical characteristics between different pit latrines, and between different 

layers within each latrine. Some latrines showed trends of increasing total solids (TS), and 

decreasing total volatile solids (TVS) and chemical oxygen demand (COD), from top to bottom 

of the latrine, whereas others showed no significant changes in TS, TVS, and COD between the 

top and bottom layers of the latrine. Total solids ranged from between 6 – 80% in the top layer 

of latrines, to 40 – 80% past 1 metre deep, and COD content ranged from 30 – 2000 g kg-1 dry 

mass in the top layer, to 20 – 300g kg-1 dry mass in lower layers (Torondel, LSHTM, 

unpublished data). 

In order to determine whether pit latrine FS is a suitable rearing material for BSFL, and how it 

affects BSFL faecal matter reduction (FMR) efficiency, development and survival, it is 

important to understand what range of FS physical and chemical characteristics occur in pit 

latrines in a country which could benefit from BSFL FSM. To determine this, FS will be 

excavated from selected pit latrines, the physical and chemical characteristics ascertained, and 

the characteristics assessed to determine how suitable they are as BSFL rearing material. 
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Additionally, household surveys will be conducted to gather information on user behaviour 

and pit latrine design. 

3.3. Methods 

3.3.1. Study area 

South Africa was chosen as the location to conduct the experiments for a number of reasons. 

Over 4.7 million latrines are used throughout the country, including approximately 2 million 

ventilation improved pit (VIP) latrines, 2.6 million pit latrines without ventilation improved 

pipes, and 79,000 bucket toilets (StatsSA 2012). The number of pit latrines in South Africa, and 

the issue of FSM already faced by municipal governments (DWAF 2005), suggests that an 

alternative FSM solution would benefit the country’s sanitation provisions. 

The survey was conducted in the Western and Eastern Cape Provinces, South Africa. In the 

Western Cape, the survey was conducted in an urban informal settlement (33.9804 S, 18.5792 

E), located near Cape Town International Airport. The area was selected due to the high 

number of “self-built” pit latrines, which possessed easily accessible vaults. In the Eastern 

Cape, the survey was conducted in a rural community (32.2735 S, 28.2002 E) where household 

owners constructed their own pit latrines, and in a peri-urban community (32.1255 S, 28.2789 

E), a rural village, where the local municipal government provided each household with a urine 

diversion, double vaulted VIP latrines to replace self-built, non-improved pit latrines. 

3.3.2. Data collection 

Between the 29th of April and 16th of May 2013, 29 households in the urban settlement, with 

self-built pit latrines, agreed to participate in the study (Appendix C). Household information 

was collected using a questionnaire (Appendix D), and a visual inspection of the pit latrines 

was conducted. The top mound and 20 cm layer of FS was removed from 17 pit latrines which 

fulfilled the emptying inclusion criteria, described below. Between the 6th and 8th of June 2013, 

20 randomly selected households in the rural and peri-urban settlements were surveyed, and a 
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visual inspection of the pit latrines was conducted. Four layers of FS (0 – 20cm, 21 – 50cm, 51 – 

100cm, and 201 – 150cm) were removed from 3 pit latrines in each community that fulfilled 

the emptying inclusion criteria. Latrines selected for emptying were suitable if they fulfilled the 

following inclusion criteria: 1) no chemicals were added to the vault, 2) the FS was sufficiently 

solid (MC approximately 50 – 90%), as determined manually by digging into the top layer, 3) 

the pit latrines superstructure allowed access to the vault and 4) the FS was readily accessible. 

 

3.3.3. Sample collection and analysis 

Faecal sludge was collected by removing latrine superstructures to gain access to vaults. Entire 

layers were excavated using a spade to prevent mixing between layers, and sealed inside 

containers (Addis Roughtote, 68 litre). The FS was immediately stored and refrigerated (4°C) 

after collection. On arrival at the local laboratory it was frozen at -20°C for 48 hours to kill any 

fly larvae present. Once defrosted, items of household waste were removed and the FS was 

homogenised using a drill with a paint mixer bit. Representative samples of homogenised FS 

were taken for analysis to determine physical characteristics and chemical contents. 

All FS samples were analysed for total solids (TS), using Official Method 934.01 (AOAC 2002), 

and pH was measured with a hand-held pH meter (PHH-5012, Omega, UK). A subsample of 

residue remaining from the TS analysis was used to determine ash/total volatile solids (TVS) of 

peri-urban and rural FS, using Official Method 942.05 (AOAC 2002). Total protein and 

carbohydrate values of peri-urban and rural FS was measured using the Lowry assay method 

(Lowry et al. 1951), and phenol-sulphuric acid technique (Masuko et al. 2005), respectively. 

One gram of peri-urban and rural homogenised FS was diluted in 40 millilitres of double 

distilled H2O, and the following chemical analysis performed. Total (tCOD) and soluble (sCOD) 

chemical oxygen demand was determined with Aqualytic COD VARIO kits (tCOD #420721, 

sCOD #420720, Aqualytic, Germany), using the dichromate method. Ammonia (NH4
+) was 

determined with Aqualytic Ammonia VARIO kits (#535650, Aqualytic, Germany), using the 
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salicylate method. Total phosphate (PO4) was determined using Hach Lange kits (LCK350, 

Hach-Lange, USA) and the phosphormolybdenum blue method. Volatile fatty acids (VFA’s) 

were determined using Hach Lange kits (LCK365, Hach-Lange, USA) and the esterification 

method. For sCOD, NH4
+, and VFA analysis, samples were passed through a 0.45 µm filter. 

Aqualytic and Hach Lange reagent kits were digested, when required by methods, with a 

heatblock (HT200S, Hach-Lange, USA), and analysed with a spectrophotometer (DR3900, Hach-

Lange, USA. Heavy metal analysis was conducted by microwave digestion of 0.5g dry weight of 

FS (US EPA method 3015), and trace elements determined by inductively coupled plasma – 

mass spectrometry (ICP-MS) (US EPA method 200.8, 6020A). Specific elements determined 

were: Aluminium (Al), Antimony (Sb), Arsenic (As), Cadmium (Cd), Chromium (Cr), Cobalt (Co), 

Copper (Cu), Iron (Fe), Lead (Pb), Manganese (Mn), Mercury (Hg), Molybdenum (Mo), Nickel 

(Ni), Selenium (Se), Tin (Sn), Vanadium (V), and Zinc (Zn). 

3.3.4. Data analysis 

Using Stata 13 (Statacorp, Texas, USA), data were tested for normality visually using qnorm 

and pnorm functions, and histograms, and statistically using the Shapiro-Wilk, Shapiro-Francia, 

and Skewness-Kurtosis tests. Linear regression was used to analyse whether physical and 

chemical characteristics varied between communities and layer. Trends in physical and 

chemical characteristics were determined by linear regressions followed by F-tests for 

normally distributed data, and non-parametric trend tests for non-normally distributed data. 

3.3.5. Ethical clearance 

Ethical approval for this study was granted by LSHTM Observational/Interventions Research 

Ethics Committee (#5972, amendment #A394) (Appendix B). All study participants provided 

written, informed consent (Appendix C) after having the study explained to them, and before 

filling in the questionnaire (Appendix D).  
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3.4. Results 

3.4.1. Physical and chemical characteristics 

3.4.1.1. Differences between communities 

Table 3-2 contains a summary of the physical and chemical characteristics of FS collected from 

urban, peri-urban and rural communities. Total solids and pH were compared between all 

three communities. Total solids varied significantly between communities (F = 5.58; df = 2, 40; 

P = 0.007). Peri-urban TS was significantly lower than urban ( ̅ TS increase = 6.4%; 95% CI 1.9 – 

10.9; P = 0.006) and rural ( ̅ TS increase = 7.4%; 95% CI 2.5 – 12.4; P = 0.004). Faecal sludge pH 

also varied significantly between communities (F = 5.35; df = 2, 42; P = 0.009). Peri-urban pH 

was significantly lower than urban ( ̅ pH increase = 0.24; 95% CI 0.06 – 0.42; P = 0.01) and rural 

( ̅ pH increase = 0.31; 95% CI 0.10 – 0.51; P = 0.004). 

Table 3-2 Arithmetic mean, and 95% confidence interval, of faecal sludge collected from pit latrines in 
urban (n = 21), peri-urban (n = 3), and rural (n = 3) communities in South Africa. Means followed by a 
different letter are significantly different (F tests; P < 0.05) 

  Urban Peri-urban Rural 

Characteristic Unit Mean 95% CI Mean 95% CI Mean 95% CI 

Total solids % 32
 a

 (29 – 35)
 

26 
b
 (24 – 27)

 
33 

a
 (28 – 38) 

pH - 7.30 
a 

(7.22 – 7.39) 7.06 
b
 (6.99 – 7.13) 7.37 

a 
(7.12 – 7.62) 

tCOD g kg
-1 

  1012 
a
 (726 – 1297) 642 

b 
(496 – 787) 

sCOD g kg
-1

   117 
a 

(51 – 183) 75 
a 

(32 – 117) 

Protein g kg
-1

   95 
a 

(66 – 724) 76 
a 

(56 – 96) 

Total phosphate g kg
-1

   24 
a 

(21 – 28) 19 
b 

(16 – 22) 

Ammonium mg kg
-1

   133 
a 

(83 – 183) 93 
a 

(45 – 141) 

Volatile fatty acids mg kg
-1

   19 
a 

(14 – 24) 10 
b 

(7 – 12) 

Carbohydrates g kg
-1

   822 
a 

(666 – 979) 641 
b 

(561 – 721) 

 

There was a significant difference in specific chemical characteristics of FS collected from peri-

urban and rural communities, including: tCOD (F = 6.44, df = 1, 22; P = 0.019), total phosphate 

(F = 6.48; df = 1, 22; P = 0.018), volatile fatty acids (F = 12.15; df = 1, 22; P = 0.002), and 

carbohydrates (F = 5.14; df = 1, 22; P = 0.033). The results indicate that FS collected from 
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double vaulted VIP latrines in a peri-urban community has higher concentrations of specific 

characteristics. 

3.4.1.2. Differences in depth 

There was a significant difference in tCOD concentrations of FS extracted from peri-urban pit 

latrines (F = 8.86; df = 3, 8; P = 0.0064): FS from 21 – 50cm (1393g kg-1; 95% CI 1055 – 1731) 

had significantly higher tCOD than 101 – 150cm ( ̅ tCOD decrease = 1000; 95% CI 523 – 1478; P 

= 0.001), but not 0 – 20cm ( ̅ tCOD decrease = 180; 95% CI -297 – 658; P = 0.41) or 51 – 100cm 

( ̅ tCOD decrease = 346; 95% CI -131 – 824; P = 0.134). Also in peri-urban pit latrines, there 

was a significant difference in sCOD concentrations of FS  (F = 7.03; df = 3, 8; P = 0.012), FS 

from 21 – 50cm (253 g kg-1; 95% CI 168 – 338) had significantly higher sCOD than 0 – 20cm 

( ̅ sCOD decrease = 203; 95% CI 83 – 323; P = 0.005), 50 – 100cm ( ̅ sCOD decrease = 132; 95% 

CI 12 – 252; P = 0.035), and 100 – 150cm ( ̅ sCOD decrease = -211; 95% CI 91 – 331; P = 0.004). 

The total phosphate concentrations of FS differed significantly within rural pit latrines (F = 

4.46; df = 3, 8; P = 0.04): FS from 21 – 50cm (24g kg-1; 95% CI 20 – 28) had significantly higher 

total phosphates than 101 – 150cm ( ̅ PO4 decrease = 9; 95% CI 3 - 15; P = 0.007), but not 0 – 

20cm ( ̅ PO4  decrease = 4; 95% CI -2 – 11; P = 0.13) or 51 – 100cm ( ̅ PO4  decrease = 6; 95% CI 

-0.2 – 12; P = 0.06). 

3.4.1.3. Heavy metals 

There were significant differences in several heavy metal concentrations between peri-urban 

and rural FS (Table 3-3). 

There was a significant difference in Co concentrations of FS from peri-urban pit latrines (F = 

6.30; df = 3, 8; P = 0.017), FS from 101 – 150cm (12mg kg-1; 95% CI 8 – 15) had significantly 

higher Co than 0 – 20cm ( ̅ Co decrease = 7.9mg kg-1; 95% CI 2.9 – 12.9; P = 0.007), 21 – 50cm 

( ̅ Co decrease = 8mg kg-1; 95% CI 3.1 – 13.0; P = 0.006), and 51 – 100cm ( ̅ Co decrease = 

6.9mg kg-1; 95% CI 1.9 – 11.8; P = 0.013). 



 

Ian J. Banks Chapter 3) 94 

Table 3-3 Arithmetic mean concentration of heavy metals, including 95% CI, of faecal sludge from 
peri-urban (n = 3) and rural (n = 3) pit latrines, analysed using standard methods (US EPA method 
200.8, 6020A). Means followed by a different letter are significantly different (F tests; P < 0.05) 

 Peri-urban Rural Regression model 

Element 
Mean 

(mg kg
-1

) 
95% CI 

Mean 
(mg kg

-1
) 

95% CI F df P 

V 9 
a 

(2 – 17) 67 
b 

(46 – 89) 31.56 1, 22 < 0.0001 

Co 6 
a 

(4 – 9) 21 
b
 (17 – 25) 46.08 1, 21 < 0.0001 

Ni 49 
a 

(30 – 68) 88 
b
 (63 – 113) 7.58 1, 22 0.012 

Cu 72 
a 

(57 – 86) 70 
a 

(61 – 79) 0.04 1, 20 0.85 

As 0.9 
a 

(0.3 – 1.5) 2.2 
b
 (1.7 – 2.8) 13.83 1, 22 0.0012 

Se 1.7 
a 

(1.2 – 2.1) 2.3 
b
 (1.9 – 2.8) 5.72 1, 22 0.026 

Mo 4.3 
a 

(3.3 – 5.3) 5.0
 a 

(4 – 6) 1.24 1, 21 0.28 

Cd 0.3 
a 

(0.25 – 0.4) 0.3 
a 

(0.2 – 0.4) 0.14 1, 18 0.71 

Sn 2.6 
a 

(2.2 – 3.0) 4.2
 b

 (3.5 – 4.9) 18.26 1, 21 0.0003 

Sb 0.2 
a 

(0.1 – 0.3) 0.2 
a 

(0.1 – 0.3) 0.52 1, 21 0.48 

Hg 0.04 
a 

(0.02 – 0.05) 0.04 
a 

(0.03 – 0.05) 0.18 1, 21 0.67 

Pb 5.1 
a 

(2.5 – 7.7) 13
 b

 (8 – 18) 9.59 1, 19 0.006 

Al 4766 
a 

(1701 - 7831) 13328
 b

 (9939 - 16717) 17.31 1, 21 0.0004 

Cr 103 
a 

(62 - 145) 222
 b

 (169 – 274) 15.24 1, 22 0.0008 

Fe 4326
 a 

(1114 - 7539) 22213
 b

 (16233 – 28193) 35.91 1, 21 < 0.0001 

Mn 366 
a 

(276 - 456) 692
 b

 (548 – 836) 19.93 1, 20 0.0002 

Zn 816 
a 

(514 - 1118) 897 
a 

(645 – 1149) 0.20 1, 21 0.66 

 

Additionally, there were significant differences in Mn concentrations of FS from peri-urban pit 

latrines (F = 9.25; df = 3, 8; P = 0.006): FS from 101 – 150cm (568mg kg-1; 95% CI 463 - 673) had 

significantly higher Mn than 0 – 20cm ( ̅ Mo decrease = 310mg kg-1; 95% CI 162 - 458; P = 

0.001), 21 – 50cm ( ̅ Mn decrease = 252mg kg-1; 95% CI 104 - 400; P = 0.004), and 51 – 100cm 

( ̅ Mn decrease = 248mg kg-1; 95% CI 100 – 396; P = 0.005).  

The results demonstrate that the majority of FS from rural pit latrines has higher heavy metal 

concentrations than peri-urban pit latrines. Additionally, only copper and manganese 

concentrations changed significantly between layers, and only in peri-urban pit latrines. 
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3.4.2. Household survey 

In the urban and rural communities surveyed, all latrines surveyed had a single, unlined vault, 

and varied in design, construction material, age and structural integrity. In the peri-urban 

community surveyed, all latrines had the same design, with two concrete lined vaults, 

ventilation pipes, and urine diversion fitted. Table 3-4 shows a summary of responses from all 

households surveyed. There were significant differences in type of latrine, age of pit, number 

of users, age of users, garbage disposal, cleaning chemicals, top layer consistency, and 

reported depth of vault (2 test; P < 0.05).  

Table 3-4 Questionnaire responses from urban (n = 29), peri-urban (n = 20) and rural (n = 20) pit 
latrine owning households. Significant differences in responses between communities was tested 

using 
2
 test (P < 0.05) 

  Community  
 

 
Urban Peri-urban Rural Chi2 Test 

 
 

% χ² P 

Type of Latrine 
Family 34 100 100 

36.16 <0.001 
Communal 66 0 0 

Age of pit (Years) 

≤1 59 0 0 

63.2 <0.001 
>1 to ≤5 38 5 55 

≥5 3 55 45 
Unknown 0 40 0 

Number of daily users 
≤5 28 75 70 

14.24 0.007 >5 to ≤15 69 25 30 
≥15 3 0 0 

Age of users 
≤5 11 12 18 

29.24 <0.001 >5 to ≤15 13 20 35 
≥15 76 68 46 

Distance to sludge? 
≤50cm 38 45 75 

8.92 0.063 >50cm to ≤150cm 55 55 25 
≥150cm 7 0 0 

Garbage disposed of in 
vault? 

Yes 17 0 0 
7.44 0.024 

No 83 100 100 

Cleaning chemicals? 
Yes 41 0 10 

14.38 0.001 
No 59 100 90 

Pit performance 
additives? 

Yes 3 0 0 
1.4 0.497 

No 97 100 100 

Solid/liquid top layer? 
Solid 100 75 100 

13.21 0.001 
Liquid 0 25 0 

Reported depth of vault 

≤100cm 0 10  

32.04 <0.001 
>100 to ≤150cm 0 15  

>150 cm 14 25  
Unknown 86 50  
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None of the latrines surveyed had been emptied, with urban and rural households reporting 

that once vaults had filled, a new vault was dug, the superstructure moved, and the old vault 

filled in with soil. No household reported separating urine, even in the peri-urban community 

where latrines were designed for urine diversion. It was also observed that none of the urine 

diversion pipes were connected. There were anecdotal reports of male members of 

households often urinating outdoors. All households used newspaper or toilet-paper for anal 

cleansing, and disposed of the paper in the vault. No households reported using FS for 

agricultural use.  

Only 17% of households in the urban community reported disposing of other waste in the 

vault, such as diapers, food-scraps, and washing water. However, all of the latrines that were 

emptied contained non-faecal waste, including: building materials (wood, stone, metal), 

clothes, condoms, diapers, food packaging, food-scraps, and paint tins. There was evidence of 

similar materials in pits which were not emptied. No peri-urban or rural households reported 

disposing of other waste in the vaults, however all latrines that were emptied had items similar 

to the urban community, and there was evidence of materials in pits that were not emptied. 

3.4.2.1. Chemical use 

In the urban community, 41% of the households reported using cleaning chemicals to maintain 

the latrines, including: pine antiseptic, bleach, Dettol®, Jeyes Fluid®, and Madubula®. Cleaning 

frequency ranged between twice weekly to once a month. Only a single household (3%) 

reported using pit-additives to increase decomposition in the vault. However, the household 

was unable to identify which product was used. In the peri-urban community, two households 

(10%) reported using chlorine once a month to clean their pit latrines. In the rural community, 

there was no reported use of cleaning chemicals, and no pit-additives were used to increase 

decomposition in the peri-urban or rural communities. None of the households which reported 
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using cleaning chemicals, or pit-additives, had FS excavated, in accordance to emptying 

inclusion criteria. 

3.4.2.2. Emptied latrines 

There were no significant differences in the type of latrines, age of the latrines, number of 

daily users, and reported garbage disposal practices for latrines that were emptied and latrines 

that were not emptied (Table 3-5). This indicates that households where FS was collected were 

representative of their communities. 

Table 3-5 Linear regression analysis comparing household survey responses between emptied and 
non-emptied latrines 

  Regression model 
Variable Community F df P 

Type of Latrine Urban 2.20 1, 27 0.15 

Age of pit (Years) 
Urban 0.36 1, 27 0.55 

Peri-urban 0.06 1, 10 0.81 
Rural 0.02 1, 18 0.90 

Number of daily users 
Urban 0.64 1, 27 0.43 

Peri-urban 1.39 1, 18 0.25 
Rural 1.23 1, 18 0.28 

Garbage disposed of in vault? Urban < 0.01 1, 27 0.95 

 

3.5. Discussion 

The study found differences in physical and chemical characteristics of FS collected from 

urban, peri-urban, and rural pit latrines. Peri-urban FS had significantly lower TS and pH from 

urban and rural latrines, but higher tCOD, total phosphate, volatile fatty acids, and 

carbohydrates than rural latrines. Also, 11 out of 17 heavy metal concentrations were higher in 

rural latrines than peri-urban.   

3.5.1. Physical and chemical characteristics 

Table 3-6 shows how all physical and chemical characteristics of FS, from both peri-urban and 

rural communities sampled, are comparable to fresh human faeces undergoing aerobic 

biodegradation in laboratory experiments (Lopez Zavala et al. 2002, Chaggu 2004), blackwater 
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collected from Swedish households (Palmquist et al. 2005), pit latrine FS collected from the top 

15cm layer (Irish et al. 2013), and pit latrine FS from throughout latrines (Bakare 2014).  

Table 3-6 Arithmetic mean, and 95% CI, of physical and chemical characteristics of faecal sludge 
collected from peri-urban and rural latrines, compared to previous studies 

  This study  
  Peri-urban Rural Previous studies† 

Characteristic Unit Mean 95% CI Mean 95% CI Range 

Total Solids % 26 (24 – 27) 33 (28 – 38) 6 – 80 
ph pH 7.06 (6.99 – 7.13) 7.37 (7.12 – 7.62) 5.25 – 8.94 

tCOD g kg
-1

 1012 (726 – 1297) 642 (496 – 787) 30 – 2000 
sCOD g kg

-1
 117 (51 – 183) 75 (32 – 117) 1 – 750 

Protein g kg
-1

 95 (66 – 724) 76 (56 – 96) 9 – 674 
Total Phosphate g kg

-1
 24 (21 – 28) 19 (16 – 22) 1.0 – 88 

Ammonium mg kg
-1

 133 (83 – 183) 93 (45 – 141) 0.1 – 38 
Volatile fatty acids mg kg

-1
 19 (14 – 24) 10 (7 – 12) 0.6 – 577 

Carbohydrates g kg
-1

 822 (666 – 979) 641 (561 – 721) 0 – 1000 

† (Lopez Zavala et al. 2002, Chaggu 2004, Palmquist et al. 2005, Buckley et al. 2008, Irish et al. 2013) 

 

The results also indicate that there were significant differences in TS, pH, tCOD, total 

phosphate, volatile fatty acids, and carbohydrates, between peri-urban and rural latrines. The 

characteristics are known to affect aerobic and anaerobic micro-organisms, varying 

biodegradation of FS (Martin et al. 2003, Chaggu 2004, Bhagwan et al. 2008), and differences 

are likely to be due to the design of latrine. The rural latrines were unlined, non-improved pit 

latrines, whereas the peri-urban latrines were double-vaulted, VIP latrines, with vault walls 

concrete lined, but no lining on the bottom. The results indicate that biodegradation of FS is 

slower in the peri-urban latrines, resulting in FS with higher organic material. This is important 

when considering the implementation of BSFL FSM, as an increase in organic material could 

result in higher FMR efficiency and prepupal production. It is recommended that future work 

investigates the influence variations in FS physical and chemical characteristics have on the 

rearing of BSFL (see Chapter 4) and Chapter 5). 
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3.5.1.1. Heavy metals 

The FS collected from rural pit latrines had higher heavy metal concentrations compared to 

peri-urban latrines. This is likely caused by the increased biodegradation of FS in rural pits, 

resulting in a decrease in organic material. The inorganic nature of the heavy metals means 

that they are not reduced by biodegradation, therefore a higher proportion of heavy metals 

are present in further biodegraded FS. It is also possible that the higher concentrations are due 

to contamination of the FS due to large quantities of garbage found in all pit latrines, including 

metallic building materials and paint tins. 

The FS collected had lower mean concentrations of Cadmium, Copper, Nickel, Lead, and 

Mercury than European Union (EU) standards for admissible heavy metal concentrations in 

sludge which can be used in agriculture (EU 1986) although Zinc concentrations were higher 

(Table 3-7).  

Table 3-7 Mean concentration (mg kg
-1

), and range, of heavy metals determined in the current study, 
and European Union (EU) standards for admissible heavy metal concentrations in sludge which can be 
used in agriculture 

 This Study EU Standards 
Element Mean Range Range 

Cadmium 0.31 0.14 – 2.69 1 – 3 
Copper 70 32.9 – 169.4 50 – 140 
Nickel 68 22.3 – 170 30 – 75 
Lead 9.2 2.1 – 74 50 – 300 
Zinc 855 181.2 – 2995 150 – 300 

Mercury 0.04 0.01 – 0.29 1 – 1.5 

 

These results suggest that the specific heavy metal concentrations are too high in FS for direct 

use in agriculture, although a more extensive study is recommended as only a small number of 

latrines were analysed in the present study. It is important to determine what concentrations 

of heavy metals are present in the residue and in prepupae, and to determine whether 

prepupae bioaccumulate heavy metals, as previously shown (Diener 2010) (see  Chapter 5). 
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3.5.1.2. Chemical use 

The use of chemicals by household owners varied between communities. This is likely due to 

the availability of commercial chemicals in urban areas, and the lack of availability in rural 

areas. It was found that two households in the peri-urban community used chlorine as a 

cleaning chemical. In South Africa, chlorine is sold for swimming pool maintenance, and is not 

recommended for any other purpose. Although only a single household reported using pit 

latrine additives to speed up digestion, it should be noted that Drakenstein local municipality, 

Western Cape, routinely add bio-additives to long-drop pit latrines and conservancy tanks that 

they service (Kowalewski, Drakenstein Municipality, personal communication).  

The use of cleaning chemicals and additives is important when considering the effect on BSFL 

development during FSM. The results presented here indicate that urban communities are 

more likely to use cleaning chemicals. Depending on how BSFL FSM is implemented, the 

presence of chemicals in FS could increase BSFL mortality. This subject will be investigated in 

future studies (see Chapter 6). However, further work is recommended to determine how 

widespread cleaning chemicals and additive use is, in areas where BSFL FSM is proposed.   

3.5.2. BSFL suitability  

The TS, and moisture content, in FS analysed falls within a range that has been shown to be 

suitable for BSFL development (Fatchurochim et al. 1989), although BSFL have been reported 

in semi-liquefied pit latrines (Copello 1926, Furman et al. 1959, Axtell et al. 1970, Booth et al. 

1984). It has been previously shown that BSFL can develop on organic leachate with a pH as 

low as 4.0, rising to 9.0 in just seven days (Popa et al. 2012). This implies that the pH of the FS 

analysed in this study is suitable for BSFL development. The total COD found in the FS is far 

higher than organic leachates, which have shown successful development of BSFL (Popa et al. 

2012). The ammonia content of the FS analysed in this study was higher than a previous study 

which showed BSFL developing successfully on human faeces (Lalander et al. 2013). Currently 
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there are no data on BSFL development associated with protein, carbohydrates or total 

phosphate levels, however BSFL have been identified in FS with comparable concentrations to 

FS analysed in the current study (Irish et al. 2013). 

Before this study was conducted, it was unknown whether pit latrine FS had physical and 

chemical characteristics suitable for successful BSFL development. The results presented 

indicate that FS, from peri-urban and rural latrines, is suitable for rearing BSFL. If BSFL can be 

successfully reared (see Chapter 5), because of the similarities between FS in this study and 

previous studies, it can be inferred that BSFL FSM could be implemented in low- and middle-

income. 

3.6. Conclusion 

The study has shown that there are differences in FS characteristics of latrines between urban, 

peri-urban and rural communities. It is suggested that differences in FS characteristics and 

biodegradation of FS are due to different latrine design and management. The results also 

indicate that the FS characteristics found in the present study is comparable to previous 

research. The results also suggest that the range of characteristics found in FS is suitable for 

BSFL development. These results can be extrapolated to suggest that similar variation in 

characteristics will be in FS from similarly designed pit latrines and environments found 

globally. If correct, then the use of BSFL as a FSM technology could benefit billions of people 

worldwide. It is important to identify how key rearing parameters affect BSFL FMR and 

prepupal production when reared on FS, what affect the physical and chemical properties of FS 

identified in this study have on BSFL, and their efficiency at FMR and prepupal production, and 

also what influence chemical additives have on BSFL development. These three issues will be 

addressed in the following Chapters. 
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4.1. Abstract 

OBJECTIVES: The aim of this study was to determine how key parameters affect the faecal 

matter reduction (FMR), and prepupal production, of black soldier fly larvae (BSFL) developing 

on homogenised top layer pit latrine faecal sludge (FS), in relation to how the parameters will 

affect BSFL faecal sludge management (FSM).  

METHODS: A 2 x 3 x 3 x 3 factorial design tested the following factors: presence of BSFL (BSFL 

absent, BSFL present), FS moisture content (MC 65%, 75%, 85%), feeding rate (FR 50mg larvae-

1 day-1, 100mg larvae-1 day-1, 200mg larvae-1 day-1), and larval density (LD 400, 800, 1200). 

RESULTS: All factors significantly influenced wet weight FMR (P < 0.0001): presence of BSFL, 

FR, MC, and LD ranked in order of most- to least-influence (F-test value). Optimum FMR 

(57.5%; 95% CI 54.0 – 61.1) was in the presence of BSFL, MC 75%, FR 50mg larvae-1 day-1, and 

LD 400. Prepupal production measurements were significantly influenced by the following 

factors: mean prepupal dry weight – MC, FR, and LD (P < 0.0001), pupation – MC (P < 0.0001) 

and FR (P = 0.035), growth rate – FR (P < 0.0001), and bioconversion – MC (P < 0.0001) and FR 

(P = 0.0056). Optimum prepupal production was with factors MC 85%, FR 200mg larvae-1 day-1, 

and LD 1200.  

CONCLUSION: The results indicate that the key parameters analysed will influence BSFL FSM 

efficiency in different interventions: in-situ, decentralised treatment plants, and BSFL toilets. 

The moisture content of FS in an in-situ intervention must be within a suitable range for 

successful FSM. In decentralised FSM plants, parameters can be adjusted to adapt to different 

aims, either FMR or prepupal production. For a BSFL toilet, anal cleansing behaviour and toilet 

design will be influenced by MC. The study has provided further evidence that the use of BSFL 

at managing FS is a viable alternative to current FSM practices, and could provide an additional 

tool in helping improve sanitation worldwide. 
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4.2. Introduction 

There are currently 2.5 billion people in the world who have no access to an improved form of 

sanitation (UNICEF/WHO 2014). It is known that access to sanitation has a significant effect on 

health (Esrey et al. 1991, Fewtrell et al. 2005) by preventing disease (Mara et al. 1999), and 

that the appropriate solution in low- and middle-income countries is on-site sanitation  

(WHO/UNEP 2006). Issues arise with all forms of on-site sanitation when they fill-up and 

require emptying, transport and treatment of faecal sludge (FS) (Helmer et al. 1997, Kariuki et 

al. 2003, WHO/UNEP 2006, UNICEF/WHO 2014). The transportation of FS to treatment plants 

using manual or mechanical emptying services is a solution (Chowdhry et al. 2012). However 

the distance to faecal sludge management (FSM) facilities, and the cost of legally disposing of 

FS, can lead to indiscriminate dumping, causing major environmental and hygiene problems 

(Kariuki et al. 2003). Therefore it is important to consider alternative methods of on-site FSM. 

The larvae of the black soldier fly (BSFL), Hermetia illucens (L.), have been proposed as an 

alternative method of FSM. This worldwide distributed (Leclercq 1997), non-disease spreading, 

non-nuisance species (Copello 1926, Furman et al. 1959) has been demonstrated to be suitable 

for managing animal manure (Tingle et al. 1975, Booram et al. 1977, Newton et al. 2005) and 

municipal organic waste (MOW) (Diener et al. 2011). Research has also shown how BSFL can 

develop successfully on fresh human faeces (Lalander et al. 2013, Banks et al. 2014), and in pit 

latrine FS (Bradley 1930, Fletcher et al. 1956, Irish et al. 2013). The BSFL have an intrinsic value, 

the final larval stage, known as prepupae, contain high protein and fat levels (Hale 1973, 

Newton et al. 1977). The prepupae can be used to replace conventional protein and fat 

sources in animal feeds (Hale 1973, Newton et al. 1977, Bondari et al. 1987, St-Hilaire et al. , 

Hem et al. 2008), or the fat can be fractionated to produce biodiesel (Li et al. 2011a, Li et al. 

2011b, Zheng et al. 2012a, Zheng et al. 2012b). It is known that variations in key environmental 

and biological parameters, such as feed moisture content (MC) (Fatchurochim et al. 1989), and 

BSFL feeding rate (FR) (Diener et al. 2009) have been shown to affect the faecal matter 
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reduction (FMR) and prepupal production efficiency of BSFL. Chicken manure with MC within 

the range of 40 – 60% resulted in higher prepupal production than < 40% and > 70% 

(Fatchurochim et al. 1989). While feeding rates of 50 and 100 mg larvae-1 day-1 resulted in 

increased FMR, but lower prepupal production, compared to a high feeding rate of 200mg 

larvae-1 day-1. Considering that FMR and prepupal production are vital to the effectiveness of 

BSFL as a FSM method, it is important to investigate how the key parameters affect BSFL 

reared on FS. 

The necessity for alternative FSM technologies is vital when improving sanitation worldwide. 

So far, research has shown that BSFL can develop successfully on fresh human faeces (Lalander 

et al. 2013, Banks et al. 2014), and the FMR and prepupal production efficiency of BSFL is 

affected by key parameters, including feed moisture content (Fatchurochim et al. 1989), and 

feeding rate (Diener et al. 2009). Therefore, it is important to determine how these key 

parameters affect the FMR, and prepupal production, of BSFL developing on pit latrine FS. 

Understanding and optimising these key parameters is vital when considering how a human 

FSM system utilising BSFL would operate, specifically in how effectively FS is reduced and 

prepupal yield is produced. The present study aims to determine the efficiency of BSFL in 

reducing FS at varying MC, FR, and larval quantities, hereto after referred to as larval density 

(LD). This will be accomplished by feeding BSFL under different conditions, and measuring FMR 

and prepupal production. 

4.3. Methods 

4.3.1. Study area 

Faecal sludge was collected from pit latrines in the KTC informal settlement, Cape Town, South 

Africa (see previous Chapter 3). Non-faecal waste, including diapers, building materials and 

clothes, were removed. The FS was passed through a continuous ribbon mixer into a large 

plastic container until it was evenly homogenised, and where smaller non-faecal waste was 
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then removed. Non-faecal waste was removed to accurately measure FMR, as items would not 

have been consumed by the BSFL. The samples were homogenised to remove any variation in 

FS characteristics. Samples were taken of the homogenised FS and MC analysed using standard 

methods (APHA 2012). Four kilograms of homogenised FS were placed into 5 L containers, 

divided into three groups and labelled, 65%, 75% and 85% MC. Using the MC of the 

homogenised FS, a calculated measure of water was added to the containers to rehydrate the 

FS to the required moisture content, with samples taken for TS analysis before being stored at 

4°C until needed. 

Feeding experiments were conducted at Mariendahl Experimental Farm in Stellenbosch, South 

Africa. The experimental containers were stored in a controlled environment at approximately 

27°C, 70% relative humidity (RH), with a 12:12 day/night light cycle. Faecal sludge was added 

at the start of the experiment, and then every 7 days after as described in the experimental 

design section below. 

4.3.2. Black soldier fly larvae 

The BSFL used in the experiments were collected from a colony at the Mariendahl 

Experimental Farm, maintained by AgriProtein Technologies and the University of 

Stellenbosch, South Africa. Adult black soldier flies (BSF) were maintained at approximately 

27°C, 70% RH, with natural sunlight provided to encourage mating (Tomberlin et al. 2002). Egg 

clutches were collected from the colony laid in the previous 24hrs, and placed on chicken layer 

mash (14% protein, 25% fat; Laymax 75/85, Pioneer Foods Ltd, South Africa), which was kept 

moistened to prevent dehydration. The larvae and layer mash, which served as a food source 

for hatched larvae, were stored for six days at approximately 27°C, 70% RH. The 6 day old 

larvae were separated from the layer mash by placing the larvae and layer mash onto a sheet 

of shade cloth which served as a sieve for the larvae to crawl through, separating them from 

the feed. The larvae were then placed on non-insecticide treated netting (1.36mm gauge) 



 

Ian J. Banks Chapter 4) 112 

which served as a sieve to clean off small pieces of feed. One hundred larvae were counted 

and weighed. This was repeated three times and the mean individual weight calculated. The 

mean individual weight was used to measure approximately 400, 800 and 1200 BSFL for 

different replicate tests to be used in the experiment. 

4.3.3. Experimental design 

The experiment consisted of a 2 x 3 x 3 x 3 factorial design testing the following factors: 

presence of BSFL (BSFL absent = 0, BSFL present = 1), FS moisture content (MC 65% = A, 75% = 

B, 85% = C), feeding rate (FR 50mg larvae-1 day-1 = A, 100mg larvae-1 day-1  = B, 200mg larvae-1 

day-1  = C) and larval density (LD 400 = A, 800 = B, 1200 = C). Faecal sludge MC levels were 

selected based on previous research demonstrating how MC affects BSFL survival, 

development time, and dry adult weight (Fatchurochim et al. 1989). Three FR regimes were 

chosen due to their significant effects on BSFL development time, FMR, and prepupal dry 

weight (Diener et al. 2009). Using FR and proposed LDs, the quantity of FS added per week was 

calculated (Table 4-1). The estimated total mass of FS influenced the size of experimental 

containers required, and due to limitations in experimental space, the most appropriate LDs 

were selected. For the factor variations where BSFL are absent, the quantity of FS added were 

based on the same FR and LD calculations described above, emulating the same conditions as 

with the presence of BSFL.  

Table 4-1 Mass of pit material, in grams, to be added to treatment and control replicates per day and 
per week, depending on BSFL feeding rate and larval density 

Feeding Rate (mg larvae-1 day-1) 50 100 200 
Larval Density (# of larvae) 400 800 1200 400 800 1200 400 800 1200 

Pit material per Day (g) 20 40 60 40 80 120 80 160 240 
Pit material per week (g) 140 280 420 280 560 840 560 1120 1680 

 

There were a total of 54 variations of factor levels, with four replicates each, 27 variations 

without BSFL, and 27 variations with BSFL (Table 4-2). Variations of factor levels, MC, FR, and 

LD, were paired by the presence of BSFL factor. For logistical reasons, fourteen randomly 
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chosen paired groups were set up on one day (batch 1). The following day the remaining 

thirteen paired groups were tested (batch 2). Each paired group was randomly allocated a set 

of shelves in the experimental room. The position of each replicate (4 without BSFL, 4 with 

BSFL) within the paired group was randomly allocated and rotated every three days according 

to a Latin-square design (Appendix E). 

Table 4-2 2 x 3 x 3 x 3 Factorial design showing the 54 variations of factors; presence of BSFL, moisture 
content (MC), feeding rate (FR), and larval density (LD). Each variation is made up of four factor levels, 
in the order BSFL, MC, FR, LD, e.g. 0-AAA = without BSFL, 65% MC, 50 FR, 400 LD; 1-BBB = with BSFL, 
75% MC, 100 FR, 800 LD; 0-CCC = without BSFL, 85% MC, 200 FR, 1200 LD 

Factor 
  Presence of BSFL 
  0  1 

FR LD Moisture Content (MC)  Moisture Content (MC) 
Level A B C  A B C 

A 
A 0-AAA 0-BAA 0-CAA  1-AAA 1-BAA 1-CAA 
B 0-AAB 0-BAB 0-CAB  1-AAB 1-BAB 1-CAB 
C 0-AAC 0-BAC 0-CAC  1-AAC 1-BAC 1-CAC 

B 
A 0-ABA 0-BBA 0-CBA  1-ABA 1-BBA 1-CBA 
B 0-ABB 0-BBB 0-CBB  1-ABB 1-BBB 1-CBB 
C 0-ABC 0-BBC 0-CBC  1-ABC 1-BBC 1-CBC 

C 
A 0-ACA 0-BCA 0-CCA  1-ACA 1-BCA 1-CCA 
B 0-ACB 0-BCB 0-CCB  1-ACB 1-BCB 1-CCB 
C 0-ACC 0-BCC 0-CCC  1-ACC 1-BCC 1-CCC 

 

Due to the interaction between FR and LD, there were seven different masses of FS added 

each week (Table 4-1). Different sized, adjustable containers were used for different variations 

of factors in order to standardise the feeding depth. The feeding depth was maintained at 5cm 

or below to ensure BSFL were not crushed under the weight of the FS (Banks, LSHTM, personal 

observation). Four different sized plastic containers were fitted with temporary plastic 

divisions, held in place with a waterproof, temporary adhesive (Prestik, Bostick). This division 

was moved each week when FS was added to maintain depth. Containers were labelled with 

the factor variation and replicate number, e.g. Label: 0-AAA-1 represented - without BSFL, 65% 

MC, 50 FR, 400 LD, replicate 1, Label: 1-CCC-4 represented with BSFL, 85% MC, 200 FR, 1200 

LD, replicate 4 (Table 4-2). 
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4.3.3.1. Faecal matter reduction and prepupal production 

Labelled containers were cleaned, dried, and weighed. The appropriate quantity of FS was 

added to a container and weighed. The appropriate numbers of six day old BSFL were added to 

factor variations designated as “with BSFL”. Each container was then held in a larger “crawl-

off” container, and placed at a randomly allocated position in the environmentally controlled 

experimental room.  

Every three days the weight of each replicate was recorded. For the replicates with BSFL, 10 

BSFL were selected at random, weighed individually, and returned to the replicate. When 

returned to the experimental room, the replicates were moved to the next randomly allocated 

position to reduce environmental bias that could occur from container position. Every seven 

days after placement, experimental containers were weighed, and a fresh quantity of FS was 

added dependent on the factor variation (Table 4-1). To maintain a depth of 5cm, the 

temporary partition in the container was moved. This process of weighing and adding FS 

continued until 50% of the larvae began to develop into prepupae, identified by a change in 

colour from white to dark brown. Prepupae were collected from the “crawl-off” containers, 

counted and weighed. The 50% prepupal endpoint was chosen for each replicate with BSFL, 

and its paired replicate without BSFL, because it had been used in previous studies (Diener et 

al. 2009), and indicated that the FS was suitable for BSFL development. At the endpoint, all 

remaining BSFL and prepupae were removed from the treatment.   

The remaining FS residue and prepupae were weighed, and representative samples collected 

for total solids (TS) analysis. Total solids were determined using Official Method 934.01 (AOAC 

2002). A subsample left from the TS analysis was used to determine ash/total volatile solids 

(TVS) using Official Method 942.05 (AOAC 2002) 
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4.3.4. Data analysis 

Data were entered into Excel 2013 (Microsoft, Washington, USA), and analysed in Stata 13.1 

(Statacorp, Texas, USA). Faecal matter reduction was calculated for both wet and dry weight FS 

and residue data, while bioconversion was calculated using dry weight FS and dry weight 

prepupal data.  The outcome variables, FMR, prepupal dry weight, pupation, growth rate, and 

bioconversion data were tested for normal distribution visually using qnorm and pnorm 

functions, and histograms, and statistically using the Shapiro-Wilk, Shapiro-Francia, and 

Skewness-Kurtosis tests. Non-normally distributed data were transformed where possible to 

result in a normal distribution. Normally distributed data were analysed using univariate and 

multivariate linear regression. Linear regression analysis was used to determine whether 

factors tested, BSFL, MC, FR, LD, and interactions between them, significantly affected the 

outcome variables. 

4.3.5. Ethical clearance 

Ethical approval for this study was granted by LSHTM Observational/Interventions Research 

Ethics Committee (#5972, amendment #A394) (Appendix B). 

4.4. Results 

4.4.1. Faecal matter reduction 

4.4.1.1. Wet weight faecal matter reduction 

Table 4-3 displays the arithmetic mean wet weight FMR for all dependant factors, and 

regression models indicate that all factors significantly affected FMR. The presence of BSFL 

resulted in significantly higher FMR than when BSFL were absent ( ̅ FMR = 7.6%; 95% CI 5.3 – 

10.0; P < 0.001) (Table 4-3). Moisture content had a significant influence on FMR, with 75% MC 

having higher FMR than 65% ( ̅ FMR = 6.6%; 95% CI 3.7 – 9.6; P < 0.001) and 85% ( ̅ FMR = 

6.0%; 95% CI 3.1 – 9.0; P < 0.001) (Table 4-3). Feeding rate had a significant influence on FMR, 

with 50mg larvae-1 day-1 having a moderately significant higher FMR than 100mg larvae-1 day-1 
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( ̅ FMR = 3.1%; 95% CI 0.2 – 6.0; P = 0.034), and significantly higher than 200mg larvae-1 day-1 

( ̅ FMR = 8.9%; 95% CI 6.0 – 11.7; P < 0.001) (Table 4-3). Larval density had a significant 

influence on FMR, with 400 larvae causing significantly higher FMR than 1200 larvae ( ̅ FMR = 

6.7%; 95% CI 3.8 – 9.7; P < 0.001), but not significantly higher than 800 larvae ( ̅ FMR = 2.1%; 

95% CI -0.9 – 5.1; P = 0.17) (Table 4-3). 

Table 4-3 Arithmetic mean wet weight faecal matter reduction (FMR), including 95% CI’s, for 
investigated factors and levels. Means followed by a different letter indicates a significant difference 
between levels within the factor (F-test; P < 0.05) 

  Wet weight  
FMR (%) 

Overall Regression Model 

Factor Level Mean 95% CI F df P 

BSFL 
without 29.3a (27.6 – 31.1) 

42.01 1, 212 < 0.0001 
with 38.2b (36.5 – 39.8) 

       

Moisture Content 
(%) 

65 32.0a (30.0 – 34.0) 
11.90 2, 211 < 0.0001 75 38.6b (36.3 – 41.0) 

85 32.5a (30.5 – 34.7) 
       

Feeding Rate 
(mg larvae-1 day-1) 

50 38.4a (36.2 – 40.5) 
18.94 2, 211 < 0.0001 100 35.3b (33.5 – 37.0) 

200 29.5c (27.2 – 31.8) 
       

Larval Density 
(number of larvae) 

400 37.3a (34.9 – 39.8) 
10.45 2, 211 < 0.0001 800 35.3a (33.7 – 36.8) 

1200 30.6b (28.3 – 32.9) 

 

There were significant differences between the FMR effects of FR at different LDs (Figure 4-1), 

50mg larvae-1 day-1 and 400 larvae caused significantly higher FMR than all other combinations 

( ̅ FMR  = 4.7 – 23.3%; 95% CI 0.5 – 27.5; P < 0.05). A two-way linear regression indicates there 

was a significant interaction between FR and LD (F = 17.85; df = 8,205; P < 0. 001). There were 

significant differences in FMR effects when MC, FR and LD interacted, 75% MC, 50mg larvae-1 

day-1 and 400 larvae caused significantly higher FMR than all other combinations ( ̅ FMR = 10.2 

– 38.1%; 95% CI 4.5 – 43.6; P < 0.001). The three-way linear regression indicates that there was 

a significant interaction between moisture content, feeding rate and larval density (F = 10.24; 

df = 8,187; P < 0.001). However, the F-values of the two models indicate that the association 
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between FR and LD is stronger than MC, FR, and LD. This difference indicates that the 

interaction between feeding rate and larval density was mainly responsible for increased FMR. 

 

Figure 4-1 Arithmetic mean of percentage wet weight faecal matter reduction (FMR), including 95% 
CI’s, for significantly interacting factors, FR (bottom row of horizontal axis) and LD (top row of 
horizontal axis). Column highlighted in red has significantly higher mean wet weight reduction than all 
other factor combinations (F-test; P < 0.05) 

 

The results of a multivariate regression model indicate that the highest wet weight FMR was 

found in the presence of BSFL, MC = 75%, FR = 50mg larvae-1 day-1, LD = 400 (1-BAA) ( ̅ FMR = 

57.5%; 95% CI 54.0 – 61.1; P < 0.001). However, there was no significant interactions between 

all four factors (F = 1.14; df = 8,160; P = 0.34; see Appendix F) for regression table, and detailed 

interactions). None of the interactions between BSFL, MC, FR, and LD listed in Table 4-4 were 

found to be significant. 

4.4.1.2. Dry weight faecal matter reduction 

Dry weight FMR data were calculated using the FS wet weight and TS, and residue wet weight 

and TS. However, errors occurred in the procedure to obtain residue TS. These errors resulted 

in replicates where residue dry weight was higher than the FS dry weight, resulting in a net 
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mass gain. A net gain in mass is impossible, as no other solids were added to the replicates. 

Although only 9.2% of all calculations returned erroneous results, it was decided to exclude dry 

weight FMR data from analysis as the source of the error could not be identified. 

Table 4-4 Linear regression analysis of wet weight faecal matter reduction (FMR) (%); Non-significant 
interactions between factors BSFL, MC, FR, and LD; (F-test; P > 0.01) 

 Wet weight FMR 
Factor Interaction F df P 

BSFL * MC 0.23 2, 208 0.79 
BSFL * FR 1.07 2, 208 0.34 
BSFL * LD 1.85 2, 208 0.16 
MC * FR 0.57 2, 208 0.68 
MC * LD 2.00 2, 208 0.10 

BSFL * MC * FR 0.20 4, 196 0.94 
BSFL * MC * LD 0.61 4, 196 0.66 
BSFL * FR * LD 0.24 4, 196 0.92 

 

4.4.2. Prepupal production 

All data were found to be normally distributed, except for prepupal dry weight, which was 

cube-root transformed to result in a normal distribution. All prepupal production data were 

calculated from factor variations where BSFL were present. Table 4-5 displays the mean 

prepupal dry weight, pupation rate, growth rate, and bioconversion rate of the three 

dependent factors, showing that 85% MC resulted in the heaviest prepupae, highest growth 

rate and bioconversion, but lowest pupation, the highest FR resulted in the heaviest prepupae, 

highest pupation, and growth rate, but lowest bioconversion, and the highest LD resulted in 

the heaviest prepupae, highest pupation, second highest growth rate, but lowest 

bioconversion. 

Mean prepupal dry weight was significantly affected by: MC (F = 24.97; df = 2, 1067; P < 0.001), 

FR (F =887.26; df = 2, 1067; P < 0.001), and LD (F = 10.08; df = 2, 1067; P < 0.001). Pupation 

rate and growth rate were significantly influenced by: MC (F = 13.89; df = 2,1067; P < 0.001 

and F = 3.44; df = 2,104; P = 0.036; respectively), FR (F = 3.48; df = 2,1067; P = 0.035 and F = 

85.02; df = 2,104; P < 0.001; respectively), but not LD (F = 0.21; df = 2,1067; P = 0.81 and F = 
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1.23; df = 2,104; P = 0.30; respectively). Dry weight bioconversion also follows a similar trend 

by being significantly influenced by: MC (F = 40.22; df = 2,104; P < 0.0001), FR (F = 5.45; df = 

2,104; P = 0.0056), but not LD (F = 0.38; df = 2,104; P = 0. 69). 

Table 4-5 Back transformed cube root mean of prepupal dry weight, arithmetic mean pupation, 
growth rate and bioconversion, including 95% CI’s, for investigated factors and levels. Means followed 
by a different letter indicate a significant difference between levels within the factor; data analysed 
using linear regression model (F-test; P < 0.05) 

  
Mean prepupal 
dry weight (g) 

Pupation (%) 
Growth rate 
(mg day

-1
) 

Bioconversion 
(dry weight) 

Factor Level Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI 

Moisture 
Content 

(%) 

65 0.0495
a
 

(0. 0480 –  
0.0514) 

57.8
a
 

(53.3 – 
62.4) 

8.4
a
 

(7.7 – 
9.1) 

3.5
a
 

(3.1 – 
3.8) 

75 0.0485
a
 

(0.0466 – 
0.0504) 

56.8
a
 

(51.5 – 
62.1) 

7.5
b
 

(6.6 – 
8.3) 

4.9
b
 

(4.4 – 
5.3) 

85 0.0572
b
 

(0.0553 –  
0.0590) 

43.8
b
 

(40.6 – 
47.0) 

8.8
a
 

(8.1 – 
9.5) 

6.4
c
 

(5.8 – 
7.0) 

          

Feeding Rate 
(mg larvae

-1
  

day
-1

) 

50 0.0345
a
 

(0.0334 –  
0.0357) 

47.7
a
 

(43.0 – 
52.3) 

6.0
a
 

(5.6 – 
6.4) 

5.4
a
 

(4.7 – 
6.0) 

100 0.0507
b
 

(0.0495 –  
0.0519) 

55.1
b
 

(50.9 – 
59.2) 

8.4
b
 

(7.9 – 
8.9) 

5.3
a
 

(4.7 – 
5.9) 

200 0.0696
c
 

(0.0684 –  
0.0708) 

55.3
b
 

(49.8 – 
60.7) 

10.2
c
 

(9.7 – 
10.8) 

4.1
b
 

(3.6 – 
4.7) 

          

Larval Density 
(number of 

larvae) 

400 0.0482
a
 

(0.0463 –  
0.0501) 

53.1
a
 

(49.1 – 
57.1) 

7.8
a
 

(7.1 – 
8.4) 

5.1
a
 

(4.4 – 
5.9) 

800 0.0534
b
 

(0.0515 –  
0.0553) 

51.4
a
 

(56.5 – 
56.3) 

8.6
a
 

(7.8 – 
9.4) 

4.9
a
 

(4.2 – 
5.6) 

1200 0.0537
b
 

(0.0518 –  
0.0556) 

53.4
a
 

(47.9 – 
58.9) 

8.3
a
 

(7.5 – 
9.1) 

4.7
a
 

(4.3 – 
5.1) 

 

Table 4-6 presents the linear regression results of mean prepupal dry weight, pupation, growth 

rate and bioconversion, for the investigated factors. The MC factor significantly affected 

prepupal dry weight, pupation, and bioconversion, FR affected mean prepupal dry weight, 

pupation, growth rate, and bioconversion, while LD only significantly affected prepupal dry 

weight. This indicates that FR and MC have the most effect on prepupal production. It was 

observed that in FS with a moisture content of 85%, the BSFL took longer to “settle” in the 

food. A lot of surface activity was witnessed, and when the BSFL were initially placed on the FS 

a higher number of larvae crawled out than in the two lower moisture contents. 
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Table 4-6 Linear regression analysis of mean prepupal dry weight, pupation, growth rate and 
bioconversion, for investigated factors and levels, including; estimated model coefficients, 95% CI’s, 
and significant differences (t-test; P < 0.05) between levels of factors, and overall regression model 
displaying significant effect of factor on variable (F-test; P < 0.05) 

   Estimated Model Coefficients Overall Regression Model 
 

Factor Level 
Unstandardised 

Coefficients 
95% CI P F df P 

M
ea

n
 p

re
p

u
p

al
 d

ry
 w

ei
gh

t Moisture Content 
(%) 

65 -0.008 
(-0.0019 – -

0.0019) 
<0.001 

25.05 2,1067 < 0.0001 
75 -0.009 

(-0.0019 – -
0.0019) 

<0.001 

85 0.0572 (0.055 – 0.059) - 
        

Feeding Rate 
(mg larvae

-1
 day

-1
) 

50 -0.0351 (-0.0012 – 0.0012) <0.001 
886.13 2,1067 < 0.0001 100 -0.0189 (-0.0012 – 0.0012) <0.001 

200 0.0696 0.068 – 0.071) - 
        

Larval Density 
(number of 

larvae) 

400 -0.0055 (-0.0019 – 0.0019) < 0.001 
10.11 2,1067 < 0.0001 800 -0.0003 (-0.0019 – 0.0019) - 

1200 0.0537 (0.052 – 0.056) 0.46 

P
u

p
at

io
n

 

Moisture Content 
(%) 

65 57.8 (53.7 – 62.0) - 
13.89 2,100 < 0.0001 75 -1.0 (-7.1 – 5.0) 0.74 

85 -14.1 (-19.9 – -8.2) < 0.001 
        

Feeding Rate 
(mg larvae

-1
 day

-1
) 

50 -7.6 (-14.2 – -1.0) 0.025 
3.48 2,100 = 0.035 100 -0.23 (-6.8 – 6.4) 0.95 

200 55.3 (50.5 – 60.1) - 
        

Larval Density 
(number of 

larvae) 

400 -0.3 (-7.2 – 6.5) 0.93 
0.21 2,100 = 0.81 800 -2.0 (-8.6 – 4.6) 0.55 

1200 53.4 (48.7 – 58.1) - 

G
ro

w
th

 r
at

e
 

Moisture Content 
(%) 

65 -0.4 (-1.4 – 0.6) 0.44 
3.44 2,104 0.36 75 -1.3 (-2.3 – -0.3) 0.012 

85 8.8 (8.1 – 9.5) - 
        

Feeding Rate 
(mg larvae

-1
 day

-1
) 

50 -4.3 (-4.9 – -3.6) < 0.001 
85.02 2,104 < 0.0001 100 -1.9 (-2.5 – -1.2) < 0.001 

200 10.2 (9.8 – 10.7) - 
        

Larval Density 
(number of 

larvae) 

400 -0.8 (-1.9 – 0.2) 0.12 
1.23 2,104 0.30 800 8.6 (7.9 – 9.3) - 

1200 -0.3 (-1.4 – 0.7) 0.55 

B
io

co
n

ve
rs

io
n

 

Moisture Content 
(%) 

65 -3.0 (-3.6 – -2.3) < 0.001 
40.22 2,104 < 0.0001 75 -1.6 (-2.2 – 0.9) < 0.001 

85 6.4 (6.0 – 6.9) - 
        

Feeding Rate 
(mg larvae

-1
 day

-1
) 

50 5.4 (4.8 – 6.0) - 
5.45 2,104 0.0056 100 -0.1 (-1.0 – 0.7) 0.79 

200 -1.3 (-2.1 – -0.4) 0.004 
        

Larval Density 
(number of 

larvae) 

400 5.1 (4.5 – 5.7) - 
0.38 2,104 0.69 800 -0.2 (-1.1 – 0.7) 0.69 

1200 -0.4 (-1.3 – 0.5) 0.39 

 

4.5. Discussion 

This study has determined that the presence of BSFL has a significant effect on FMR compared 

to their absence. It has also verified that a low FR, 75% MC, and low LD result in the highest 
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FMR when BSFL are present, however, high FR, 85% MC, and high LD result in the largest 

prepupae and highest growth rate. 

4.5.1. Faecal matter reduction 

The presence of BSFL had the strongest association with FMR of human FS. These results are 

consistent with previous studies of BSFL feeding on fresh human faeces, where the presence of 

BSFL resulted in significantly higher FMR compared to interventions without BSFL (Lalander et 

al. 2013, Banks et al. 2014). The presence of BSFL in the most effective variation of factor 

levels, 75% MC, 50mg larvae day FR, 400 LD, resulted in an 8.7% higher FMR than replicates 

without BSFL. This is far lower than previously reported by Lalander et al. (2013), with the 

presence of BSFL resulting in a net 30% higher FMR, than the absence of BSFL. This difference 

is most likely due to the containers with FS in the Lalander et al. (2013) study being covered 

with perforated aluminium foil, reducing dehydration of the control material. The Lalander et 

al. (2013) study demonstrated that the reduction in total solids of FS was 43% higher in the 

presence of BSFL than in the absence. Additionally, dehydration and the biodegradation of FS 

by bacteria will occur in both the presence and absence of BSFL. However due to different 

bacterial communities of FS used in the two studies, the speed of biodegradation could vary. 

Unfortunately, it was not possible to calculate the total solid reduction of FS in the present 

study because of an anomaly in the data, as discussed below. 

The most effective FMR rate with BSFL present, approximately 58%, is comparable to BSFL 

FMR of chicken manure, approximately 50% (Sheppard et al. 1994), but higher than the 

reduction of chicken manure and cow manure by common houseflies, Musca domestica, 

approximately 30%, and 25%, respectively  (Morgan et al. 1975). This indicates that the use of 

BSFL to manage human FS could effectively reduce the mass of the FS by half, resulting in 

easier residue management, post-processing. It has been suggested that with suitable 

treatment, residue could be a safe and effective fertiliser for crops suitable for human 
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consumption (Lalander et al. 2013). Future work is required to investigate what value residue 

may contain, and what processes are required to reduce the risk of disease transmission to 

humans and animals.  

The moisture content of FS had a significant effect on FMR, with 75% moisture content 

resulting in the highest FMR. This could be due to the addition of moisture in order to raise the 

MC of the FS from 65% to 75%. However, even more water was added to raise the MC from 

65% to 85%, and the mean FMR was lower than in the 75% MC interventions. This suggests 

that that human FS with an MC of 75% is optimum for rearing BSFL. These results are in 

contrast to a previous study which investigated the moisture content of chicken manure and 

how it affected BSFL production (Fatchurochim et al. 1989) that suggested that prepupal 

production was greatest for chicken manure with a moisture content from 40 – 60%, 

significantly higher than BSFL reared on chicken manure with a moisture content of with 70 – 

80%. However, the study using chicken manure did not investigate FMR. The results presented 

in the current study indicate that optimum FMR of FS occurs when the starting sludge contains 

75% moisture. Also, the results in the current study imply that successful FMR can occur at all 

moisture contents tested, although with varied efficiency. Further research must be completed 

to determine the upper and lower tolerances of BSFL in relation to MC of food, with evidence 

that BSFL can successfully develop in chicken manure with an MC of approximately 55 – 80% 

(Sheppard 1983). The results of future studies should determine whether FS collected from pit 

latrines, which can range from 20 – 94% (Torondel, LSHTM, unpublished data), is suitable 

without any treatment, or whether extra steps, such as drying or addition of water, must 

occur. In the present study, feeding rate was significantly associated with FMR, where lower 

feeding rates resulted in higher FMR. This finding was consistent with previous research 

(Diener et al. 2009, Banks et al. 2014), and was anticipated, as the quantity of food that BSFL 

can consume is limited. With higher feeding rates, there is a larger proportion of residue left 

over which has already passed through the gut of the BSFL, or not eaten at all, compare to 
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lower feeding rates (Diener et al. 2009). This means that the feeding rates used in any 

proposed BSFL FSM system are a vital component, determining the quantity of FS that can be 

processed, and also how much residue remains. The post-processing of the residue must be 

taken into account also. As mentioned previously, residue has the potential of having value as 

a fertiliser. However, further investigation should be conducted into residue that remains post-

BSFL treatment, and whether it contains sufficient nutrients to be fed back to BSFL, to extract 

as much value from the FS as possible.  

The larval density had a significant association with FMR where, surprisingly, lower larval 

densities produced higher FMR than the highest. These results could be due to increased 

intraspecific competition for resources, such as food and space. The effect of larval 

competition has been observed in the Mediterranean fruit fly (Dukas et al. 2001), with larval 

growth and pupal mass showing larger variance when egg clutches were laid on successive 

days than on the same day, implying a competitive advantage for older larvae over younger 

larvae. The BSF egg clutches used in the present study were gathered on the same day, and in 

preliminary research it was found that egg hatching occurred between 84 and 108hrs post-

collection (Banks, LSHTM, unpublished data). This variance in egg hatching could result in a 

competitive advantage for older larvae. With a higher larval density, the number of older 

larvae would increase, amplifying the effect of larval competition. These results suggest that 

FMR efficiency will reduce as the number of BSFL and quantity of FS increases. However, this 

suggestion conflicts with previous research that demonstrated efficient BSFL management of 

chicken manure on a scale 5000 times larger than the experiments conducted in this study 

(Sheppard et al. 1994). Therefore, it is important for future work to investigate how variations 

in early-stage BSFL, caused by egg collection and larval rearing practices, could affect FMR, and 

the scalability of BSFL FSM. This research is especially important when considering large scale, 

decentralised BSFL FSM sites, due to the necessity of standardised methods that will ensure 

reliable and robust FS treatment. 
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Reporting dry weight FMR is more accurate than wet weight FMR, because it excludes the 

varying water concentrations in the FS and residue. However, due to an anomaly where 

residue dry weight was higher than FS dry weight, numerous dry weight FMR values were 

negative, indicating there had been a net increase in dry matter. The technique used to 

determine dry weight of residue and FS is an internationally recognised method (APHA 2012), 

and has been used extensively for similar applications (Newton et al. 2005, Diener et al. 2009, 

Diener et al. 2011, Lalander et al. 2013, Banks et al. 2014). The authors investigated whether 

anomalies, such as found in this experiment, had been previously reported, but with no 

success. The protocol was followed correctly, with container weights subtracted where 

appropriate, and the calculations used in the analysis were checked by a number of 

collaborators, however it was not possible to identify the source of the error. This leads to the 

conclusion that an error occurred while recording data or determining the dry weight of FS and 

residue. Due to the anomaly in the data, the wet weight FMR data must be presented in this 

study, resulting in less accurate indications of FMR. 

4.5.2. Prepupal production 

The FS moisture content of 85% resulted in significantly higher prepupal dry weight, pupation 

rate and bioconversion compared to lower MCs. Previous research found that significantly 

higher BSFL production, characterised by survival to adulthood, days to emergence, and dry 

adult weight, occurred in manure moisture levels of 40 – 60%, compared to manure with a 

moisture content of 70 - 90% (Fatchurochim et al. 1989). However, the study also discussed 

how its results conflicted with previous research that demonstrated the abundance of BSFL in 

semi-liquefied FS (Copello 1926, Furman et al. 1959, Booth et al. 1984). Diet moisture content 

is also known to significantly affect larval survival and size of emerging adults in M. domestica, 

Muscina stabulans, Fannia fenoralis, F. canicularis, and Ophyra aenescens (Fatchurochim et al. 

1989), while low-water reared Manduca sexta (Sphingidae: Lepidoptera) larvae initially grew 
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slowly, but resulted in pupae and adult sizes comparable to controls with 30% higher moisture 

content. 

In FS with 85% moisture content, the BSFL were more active, constantly moving around the 

surface of the FS resulting in dehydration. This allowed the BSFL to burrow into the FS in a 

behaviour which was similar to the two lower moisture content levels. By the end of the 

experiment the moisture content of the residue was still suitable for BSFL feeding. This is 

different to the 65% moisture content FS, where in some factor variations, the residues 

moisture content had reduced to as low as approximately 10%, hypothetically too dry for BSFL 

feeding. The changes in the FS over time explain why 85% moisture content results in the 

highest mean prepupal dry weight, growth rate, and bioconversion. Although not ideal for the 

BSFL when first placed on the FS, their natural behaviour altered their environment to make it 

more suitable. Due to the initially high moisture content, the FS maintained moisture content 

more appropriate for sustained feeding. The BSFL could move through the FS faster than the 

more viscous FS with lower moisture contents. Also, the increased moisture in the FS would 

have made it easier for the BSFL to feed, as their macerating mouthparts could scrape at solids 

softened by the moisture (Schremmer 1986), once more, allowing the BSFL to feed more 

effectively for longer. However, the 85% moisture content did result in a lower pupation rate, 

possibly due to slower initial development. This is important to consider, as the higher 

prepupal dry weight, growth rate and bioconversion could have an increased benefit to 

prepupal production than the additional time required to reach higher pupation levels.  

The highest feeding rate resulting in the highest mean prepupal dry weight, pupation, and 

growth rate, confirming previous results from studies performed using chicken feed and dairy 

manure as larval food sources (Myers et al. 2008, Diener et al. 2009). The results published 

(Diener et al. 2009) show prepupal dry weights comparable to results in the present study for 

all three feeding rates examined, as well as increased growth rate (Table 4-5). While Myers et 
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al. (2008) reported highest survival to prepupal stage in a feeding rate range of 133 – 180mg 

larvae-1 day-1. However, this increase in prepupal production is counteracted by a decrease in 

FMR efficiency, also shown by Diener et al. (2009). The increased quantity of FS available to 

the BSFL results in an increase in weight and growth rate. However, as there is more food 

available, more residue remains, either not eaten, or already passed through the gut of the 

larvae. The higher quantity of residue leads to lower bioconversions, regardless of an increase 

in prepupal biomass.  

It is important to note that an increase in larval density results in an increase in prepupal dry 

weight, while having no significant effect on pupation, growth rate or bioconversion. These 

results suggest that it is possible to scale up the number of BSFL in a FSM system, without 

negatively affecting the mean prepupal dry weight, pupation, growth rate or bioconversion. All 

of these measurements are vital when considering prepupal production. 

The present study has shown that the factor feeding rate has the most significant effect on 

BSFL reduction of FS and prepupal production. This factor should be considered the most 

important when applying the results to a real-world situation. The moisture content of FS used 

in a BSFL FSM system will vary depending on its source, however the additional steps required 

to ensure standardised optimum FMR efficiency are easily accomplished. The results produced 

by this study in regard to larval density and FMR are puzzling, and need to be further 

investigated. After checking the coding of data was correct, the results still suggested that 

more BSFL added resulted in lower FMR. As discussed above, this is contrary to previous 

research, although these differences could be caused by the differences in rearing diets and 

must be investigated further. Further research into the scalability of BSFL FSM is vital to for the 

future implementation of it as a technology, as discussed in the next section. 
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4.5.3. Implications 

The study presented here has shown that key rearing parameters have a significant influence 

on BSFL reared on FS, resulting in changes in FMR and prepupal production. These parameters 

are important when considering the method of how to use BSFL for FSM in different situations. 

There are a number of different techniques suggested, including: decentralised BSFL treatment 

plants, in-situ BSFL, and a BSFL toilet. 

In a decentralised FSM plant, the moisture content, feeding rate and larval density are vital to 

successful and efficient operation. Previous research shows the moisture content of pit latrine 

FS from different depths of latrines can vary between 24% - 79% (see Chapter 1). However, 

this variation is irrelevant in this context because collected FS would become homogenised, by 

combining FS from different pit latrines. However, it would be possible to incorporate a pre-

BSFL treatment stage which could alter moisture content to the desired level. This could be 

achieved by drying FS which is too wet on drying beds, or adding water to FS with low moisture 

content. Using this technique, the FS moisture content could be adjusted to result in more 

effective FMR, or prepupal production, depending on what is required. The feeding rate used 

in a FSM plant will depend heavily on what the desired outcome of the plant is. If a treatment 

plant’s primary aim is to reduce the mass of FS to a safer residue, then low feeding rates will 

result in more efficient FMR. However this will also result in low prepupal production. 

Conversely, if prepupal production is the primary aim of a BSFL treatment plant, and FMR 

secondary, then a higher feeding rate would be beneficial. It is also possible to apply a feeding 

rate which results in a balance between FMR and prepupal production. The larval density 

results presented in the present study indicate that FMR is reduced at higher larval densities, 

however this is contrary to previous studies which utilised BSFL to efficiently manage tons of 

chicken manure (Sheppard et al. 1994). The results suggest that prepupal production is not 

affected by larval density, and that the scale of BSFL FSM can increase without adversely 

affecting prepupal production. This is important when the primary aim of a BSFL treatment 



 

Ian J. Banks Chapter 4) 128 

plant is the production of prepupae as a protein source of animal feed. The study presented 

here suggests that the purpose of a decentralised BSFL treatment plant can be tailored by 

adjusting the key parameters investigated. 

When considering using an in-situ BSFL treatment method, the key parameters presented in 

this study must be considered, particularly the moisture content of FS in a pit latrine, before 

implementation. The moisture content must fall within a specific range if BSFL are to be used. 

Additionally, the water table, and seasonality must be considered before implementation. A 

rising water table, due to seasonal rainfall, could cause flooding of the pit latrines. This would 

raise the moisture content of the FS to inappropriate levels. This study has demonstrated that 

FS moisture contents of 65 – 85% are suitable for BSFL. However, it is vital to conduct more 

comprehensive research using a wider range of FS moisture contents, considering the 

contrasting results to previous work (Fatchurochim et al. 1989). The feeding rate of BSFL in-situ 

would be difficult to determine. However, the results presented indicate that lower feeding 

rates result in increased FMR. This is important when the main aim of an in-situ treatment 

solution is to improve FMR, and increase the life span of a pit latrine. Considering this, an 

approximate feeding rate can be determined by controlling the larval density in the latrine. A 

suitable quantity of BSFL could be seeded into the latrine regularly, with the quantity 

established by calculating how much excreta is added to the latrine under user conditions, 

taking into account the number of users and frequency of use. It may be possible to increase 

the FMR, by the addition of more BSFL, potentially having the BSFL reduce the FS which is 

already in the vault, and not just the fresh excreta added. However, the physical and chemical 

characteristics of FS have been found to alter as depth increases in some latrines (see previous 

Chapter 3), which could affect how BSFL develop, in-situ and in a decentralised BSFL treatment 

plant. 
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Finally, the design of a specialised BSFL toilet will be heavily influenced by moisture content, 

feeding rate and larval density. Fresh human faeces can range between 75 – 85% moisture 

content in healthy people (Chaggu 2004, Buckley et al. 2008). However, the use of water for 

anal cleansing would increase the moisture content of the FS, resulting in the need for a 

draining bed to promote BSFL feeding. It could be possible to incorporate the BSFL into a 

sawdust matrix/feeding bed as found in the Tiger Toilet (Furlong et al. 2014). As discussed 

above, the quantity of fresh excreta which is added to the BSFL toilet, and larval density, will 

determine what feeding rate occurs. A lower feeding rate will result in higher FMR, but lower 

prepupal production. This is important when considering where a BSFL toilet is implemented, 

as discussed previously (see previous Chapter 3). However, a significant amount of research 

and engineering must be undertaken before a BSFL toilet is an achievable FSM technology. 

4.6. Conclusion 

The study presented here has determined that key parameters can affect FMR and prepupal 

production of BSFL when reared on pit latrine FS. Due to the variation in how BSFL can be 

utilised to manage FS, the results indicate that the key parameters can be adjusted depending 

on what the primary aim is, either FMR or prepupal production. However, it is vital for future 

research to concentrate on a number of areas which are integral to BSFL FSM, including: how 

variations in physical and chemical characteristics of FS affect the development of BSFL, value 

of prepupae reared on FS, value of residue, suitability of prepupae and residue for subsequent 

use, in relation to harmful contamination by pathogens or heavy metals. Importantly, the 

study presented here has provided further evidence that the use of BSFL in the management 

of FS is a viable alternative to current FSM practices, suggesting that a BSFL FSM technology 

could provide an additional tool in helping improve sanitation worldwide. 
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5.1. Abstract 

OBJECTIVES: To determine faecal matter reduction (FMR) and prepupal production efficiency 

of black soldier fly larvae (BSFL) feeding on pit latrine faecal sludge (FS), and to assess whether 

different physical and chemical characteristics from different layers of pit latrines influences 

prepupal production. In addition the nutritional value of prepupae and residue post-BSFL 

development will be determined.  

METHODS: Factors tested were presence of BSFL (BSFL absent, BSFL present) and FS “layer” (6 

latrines, 5 layers per latrine: 0 – 20 cm, 21 – 50cm, 51 – 100cm, 101 – 150cm, and 

homogenised layer). Approximately 400 BSFL were fed 50mg larvae-1 day-1 until 50% developed 

into prepupae. Prepupae, FS, and residue samples were analysed for physical and chemical 

characteristics (total solids, total volatile solids, pH, total chemical oxygen demand, soluble 

COD, NH4
+, protein, carbohydrates, VFAs, heavy metals), and nutritional value using standard 

methods. 

RESULTS: Wet weight FMR was significantly influenced by the presence of BSFL (P = 0.013) and 

layer (P < 0.0001). Optimum wet weight FMR occurred in FS from 0 – 20 cm (65%, 95% CI 58.1 

– 71.8). Layer and physical and chemical characteristics did not influence prepupal production. 

CONCLUSION:  The results show that BSFL are efficient at reducing FS from a variety of depths 

with a range of physical and chemical characteristics. The prepupae produced have a 

nutritional value comparable to previous research, except for crude fat which was lower than 

previous studies. The study shows under an optimum situation, a decentralised BSFL 

treatment plant has a strong business model. However, further investigation is required to 

determine potential problems in pathogen transmission or heavy metal bioaccumulation, and 

appropriate treatment, and value, of residue and prepupae. Solutions suggested in this study 

could help improve sanitation for billions of people around the world.  
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5.2. Introduction 

Providing improved sanitation for the 2.5 billion people (UNICEF/WHO 2014) worldwide who 

currently have no access, is vital to the improvement of public health (Esrey et al. 1991, 

Fewtrell et al. 2005). However, the implementation of large scale piped sewage systems, and 

off-site treatment plants in low- and middle- income countries can be prohibited by a lack in 

suitable infrastructure and high costs (WHO/UNEP 2006). Therefore, a more suitable solution 

is to provide on-site sanitation. However, problems arise with the emptying, transportation, 

and treatment of faecal sludge (FS) that collects in pit latrine vaults (Helmer et al. 1997, Kariuki 

et al. 2003, WHO/UNEP 2006, UNICEF/WHO 2014). Furthermore, the distance and cost of 

legally disposing FS at faecal sludge management (FSM) facilities can lead to indiscriminate 

dumping, which causes major environmental and hygiene problems (Kariuki et al. 2003). 

Therefore it is important to consider alternative methods of on-site FSM. 

An alternative method of on-site FSM is the larvae of the black soldier fly (BSFL), Hermetia 

illucens (L.). The detritivorous larvae of this species have been proven to be effective at 

managing animal manure (Tingle et al. 1975, Booram et al. 1977, Newton et al. 2005) and 

municipal organic waste (MOW) (Diener et al. 2011). Previous research has shown that BSFL 

can effectively reduce fresh human faeces (Lalander et al. 2013, Banks et al. 2014), and the top 

layer of FS from selected South African pit latrines (see previous Chapter 4). The BSFL can 

develop successfully on FS into the final larval stage, known as prepupae. Prepupae reared on 

animal manure have high protein and fat levels, 43-45% and 31-35% respectively (Hale 1973, 

Newton et al. 1977). These characteristics give the prepupae an intrinsic value, as they can be 

used as a replacement for conventional protein and fat sources in animal feed (Hale 1973, 

Newton et al. 1977, Bondari et al. 1987, St-Hilaire et al. , Hem et al. 2008). The fat can also be 

fractionated to produce biodiesel (Li et al. 2011a, Li et al. 2011b, Zheng et al. 2012a, Zheng et 

al. 2012b).  
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The nutritional value and faecal matter reduction (FMR) efficiency of the prepupae depends on 

what they feed on as larvae. A number of biological, chemical, and physical characteristics are 

known to affect the development of BSFL, and similar insects, including: total solids (TS) 

(Fatchurochim et al. 1989), feeding rate (Diener et al. 2009, Banks et al. 2014), larval density 

(see previous Chapter 4), pH (Chaudhury et al. 2009), chemical oxygen demand (COD), 

ammonium (NH4
+) (Popa et al. 2012), protein (Bennett 2000, Simpson et al. 2006), 

carbohydrates (Nijhout 2003, Lee et al. 2004) and heavy metals (Diener 2010, Diener et al. 

2011). It is known that the physical and chemical characteristics of pit latrine FS vary between 

pits (Lopez Zavala et al. 2002, Chaggu 2004, Palmquist et al. 2005, Buckley et al. 2008, Irish et 

al. 2013). Variation in pit latrine FS has been investigated in South Africa (Bakare 2014), 

Tanzania and Vietnam (Torondel, LSHTM, unpublished data). The studies suggest that there 

are huge variations between different pit latrines, and between different layers within and 

between latrines. Some latrines show trends of increasing % total solids, and decreasing COD, 

NH4
+, and proteins, from top to bottom of the latrine, whereas other latrines show no 

significant changes from top to bottom layers. Total solids can range between 6 – 80% in the 

top layer of latrines, to 40 – 80% past 1 metre deep, with COD concentrations ranging from 30 

– 2000 g kg-1 dry mass in the top layer, to 20 – 300g kg-1 dry mass in lower layers (Torondel, 

LSHTM, unpublished data).  This variation in FS is important, as the physical and chemical 

properties alter its potential usefulness as a resource, as discussed below. Additionally, heavy 

metal bioaccumulation must be taken into consideration when dealing with BSFL due to 

biomagnification. Biomagnification is when there is an increase in concentration of a substance 

from one trophic level to another (Walker 1987). It has been previously found that cadmium 

bioaccumulates in prepupae (Diener 2010), and even though heavy metals such as zinc, 

cadmium and lead do not affect the development of individual BSF (Diener 2010), the problem 

of biomagnification occurs when the prepupae are used for animal feed, such as when larvae 

are fed directly to chickens.   
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The demand for an alternative method of FSM for low- and middle-income countries is 

necessary to help improve sanitation. Previous research has determined that the physical and 

chemical characteristics of pit latrine FS, collected from communities which would benefit 

from an alternative FSM technology, fall within a range suitable for BSFL development (see 

Chapter 3).  The use of BSFL to manage FS has been shown to be possible, with the correct key 

rearing parameters (see Chapter 4). However, further investigation must be conducted into 

how the physical and chemical characteristics of FS affect the development of BSFL, and their 

FMR efficiency, and prepupal production. The present study aims to determine the FMR 

efficiency and prepupal production of BSFL feeding on pit latrine FS from different layers of pit 

latrines. Faecal sludge physical and chemical characteristics will be identified, and their 

influence on BSFL FMR efficiency and prepupal production correlated. The study aims to 

quantify nutritional value of prepupae produced on FS, and the macro- and micro-nutrient 

value of FS residue post-BSFL development, and identify if bioaccumulation of heavy metals in 

prepupae is a problem. Additionally, the study will determine whether a BSFL FSM is 

economically feasible using business feasibility models (see Appendix A). 

5.3. Methods 

5.3.1. Study site 

Faecal sludge for the experiments was collected from the communities Mnyamanzane 

(32.2735 S, 28.2002 E), and Sheshegu (32.1255 S, 28.2789 E), Eastern Cape Province, South 

Africa. Research was conducted at Mariendahl Experimental Farm (33.8506 S, 18.8262 E), 

Stellenbosch, South Africa. The experimental containers were stored in a controlled 

environment at approximately 27°C, 70% relative humidity, and a 12:12 day/night light cycle. 

Faecal sludge collection procedure was detailed in a previous study (see Chapter 3).  
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5.3.2. Black soldier flies 

The BSFL used in the experiments were collected from a colony at the Mariendahl 

Experimental Farm, maintained by AgriProtein Technologies and the University of 

Stellenbosch, South Africa. The method of BSF egg collection and early-stage larval rearing is 

described in a previous study (see Chapter 4). The mean individual weight was used to 

measure approximately 400 BSFL for each replicate to be used in the following experiment. 

5.3.3. Faecal sludge 

Faecal sludge was collected by removing latrine superstructures to gain access to vaults. Entire 

layers (0 – 20cm, 21 – 50cm, 51 – 100cm, and 101 – 150cm) were excavated using a spade to 

prevent mixing between layers, and sealed inside containers (Addis Roughtote, 68 litre). The FS 

was immediately stored and refrigerated (4°C) after collection. On arrival at the local 

laboratory it was frozen at -20°C for 48 hours to kill any fly larvae present. Once defrosted, 

non-faecal waste, including: diapers, building materials, clothes, condoms, and food packaging, 

were removed from each sample, and the FS was homogenised using a drill with a paint mixer 

bit. Representative samples of homogenised FS were taken for analysis to determine physical 

characteristics and chemical contents. Four layers of FS were collected from six pit latrines. A 

5th layer was produced, containing a sample of FS from each of the four layers. This 

“combined” layer imitated the mixture of a whole vault of FS, with all four layers mixed 

together and is representative of how FS could be presented to BSFL in a decentralised FSM 

system. All 30 layers (5 layers per latrine, and 6 latrines) had their identities blinded for the 

experiment by a third party to reduce observational bias. Samples were taken from each layer 

for physical and chemical analysis as described in a previous study (see Chapter 3). The FS was 

stored at 4°C until needed, and warmed to room temperature before use. 
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5.3.4. Experimental design 

”Presence of BSFL” and “layer” were the two factors tested in this experiment. The quantity of 

FS added to each sample (140g week-1) was calculated using a feeding rate of 50mg larvae-1 

day-1 and a larval density of 400 larvae. These amounts were chosen because they caused the 

most efficient FMR in a previous study (see Chapter 4). All 30 layers were set up on a single 

day. Each layer was paired by the presence of BSFL factor (with or without BSFL), and there 

were four replicates per treatment. Each paired group was randomly allocated a set of shelves 

in the experimental room. The position of each replicate (4 without BSFL, 4 with BSFL) within 

the paired group was randomly allocated and rotated every three days. 

5.3.4.1. Faecal matter reduction and prepupal production 

One litre plastic containers were cleaned, dried, labelled, and weighed.  Faecal sludge was 

added to all replicates and the weight recorded. Six day old BSFL were added to the replicates 

designated as “with BSFL”. Each 1 L container was then placed in a larger “crawl-off” container 

to prevent BSFL escape. All replicates were then placed in the environmentally controlled 

experimental room.  

Every three days the weight of each replicate was recorded. For the replicates with BSFL, 10 

BSFL were selected at random, weighed individually, and returned to the replicate. When 

returned to the experimental room, the replicates were moved to the next randomly allocated 

position to reduce environmental bias that could occur from different microclimatic conditions 

associated with the different container positions. Every seven days after placement, 

experimental containers were weighed, and a fresh quantity of FS was added dependent on 

the factor variation. After the first seven days, a square of fine netting was placed over the top 

of all 1 L containers, and held in place by a lid with a large hole cut in it. This was to prevent 

further oviposition of invasive dipteran species, as invasive larvae had been found 

unexpectedly in a number of replicates without BSFL. 
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The process of weighing, and addition of FS, continued until the BSFL began to develop into 

prepupae, indicated by a change in colour from white to dark-brown. Prepupae were collected 

from the “crawl-off” containers, counted and weighed. Once approximately 50% of the larvae 

had developed into prepupae (see Chapter 4), remaining BSFL and prepupae were removed 

from replicate, and both the replicate and its paired replicate without BSFL were weighed and 

residue samples collected for subsequent analyses.  

5.3.5. Material analysis 

For FS, residue, and prepupae, total solids (TS) were determined using Official Method 934.01 

(AOAC 2002), as described in a previous study (see Chapter 3). For FS and residue samples, pH, 

total (tCOD) and soluble (sCOD) chemical oxygen demand, ammonia (NH4
+), total protein, total 

carbohydrate, and volatile fatty acids (VFA’s), and heavy metals were determined using 

methods described previously (see Chapter 3). 

Crude protein (CP) of prepupae was determined by measuring total nitrogen (N) content by 

block digestion method using copper catalyst and steam distillation into boric acid, Official 

Method 4.2.07 (AOAC 2002), and calculated using the following equation: 

            

Crude fibre (CF) of prepupae was determined using the ceramic fibre filter method, Official 

Method 962.09 (AOAC 2002): two 1 g samples were placed into a crucible (WWCF), then into a 

Fibertec/Dosifiber extrusion apparatus, boiling H2SO4 was added and left to cook for thirty 

minutes, samples were washed three times with dH2O, then 0.313M NaOH added and left to 

cook for a further 30 minutes, the samples were washed three times more with dH2O, then 

dried for 24 hours at 100°C (DWCF), and combusted in a muffle filter for 6 hours at 500°C 

(ashCF), crude fibre content was calculated using the following equation: 

   (
          

    
)      
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Crude fats (EE) of prepupae were determined using the diethyl ether reagent method, Official 

Method 920.39 (AOAC 2002): two 2 g samples were placed in a soxhlet fat beaker (WWEE), 50 

ml of diethyl ether was added, and samples placed in a Tecator Soxtex System HT1043 

Extraction Unit, samples were dried for 2 hours at 100°C (DWEE), and CF was calculated using 

the following equation: 

   (
    
    

)      

Gross energy (GE) of prepupae was measured using a CP 200 isothermal bomb calorimeter 

(IKA, Germany): two 0.5g samples were pelletized, then placed in the bomb which was filled 

with pure oxygen up to 3000kPa, the bomb was placed in the isothermal bomb calorimeter 

and GE was directly measured in MJ kg-1, and standardised with benzoic acid. 

Amino acids (AA), excluding tryptophan and cysteine, determined using hydrolysis, high 

performance liquid chromatography (HPLC), and a fluorescence detector (Cunico et al. 1986): a 

0.1g sample was placed into a hydrolysis tube, and 6ml of 6N HCl and 15% phenol solution 

added, samples were placed under a vacuum, and N added under pressure, samples were 

sealed off with a blue flame and left to hydrolyse for 24 hours at 110°C, samples underwent a 

pre-column derivatisation of AAs, and were separated using HPLC, finally AAs were detected 

using a fluorescence detector. 

To determine whether heavy metals accumulate in prepupae, a bioaccumulation factor (BAF) 

will be calculated using the following equation (Walker 1990): 

    
                                     

                                          
 

5.3.6. Data analysis 

Data were entered into Excel 2013 (Microsoft, Washington, USA), and analysed using Stata 13 

(Statacorp, Texas, USA). When described in subsequent results, faecal sludge (FS) refers to the 
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excavated pit latrine material which was utilised throughout the experiment, while residue is 

defined as the remaining mass of biodegraded FS at the end of the experiment. Layer, 

presence of BSFL, and change in FS and residue physical and chemical characteristics: tCOD, 

sCOD, NH4
+, protein, carbohydrates, VFAs, and heavy metals, were investigated for association 

with the outcome variables, FMR and prepupal data: total solids, ash, dry weight, 

bioconversion, CP, CF, EE, GE, and AAs. Faecal matter reduction, prepupal dry weight and 

bioconversion data were calculated using methods previously described (see Chapter 4).  

Data were tested for normality visually using qnorm and pnorm functions, and histograms, and 

statistically using the Shapiro-Wilk, Shapiro-Francia, and Skewness-Kurtosis tests. Data which 

were non-normally distributed were transformed, but still found to be non-normally 

distributed, therefore were analysed using the non-parametric a Mann-Whitney test. Normally 

distributed data were analysed using univariate and multivariate linear regression. Univariate 

analyses defined significant variables to be retained for the multivariate analysis (F-test; P < 

0.1). In the multivariate analysis, non-significant variables (F-test; P > 0.05), and interactions 

between significant variables (F-test; P > 0.01), were dropped in a backwards stepwise analysis 

until all variables were significant. Data were un-blinded after analysis. 

5.3.7. Ethical clearance 

Ethical approval for this study was granted by LSHTM Observational/Interventions Research 

Ethics Committee (#5972, amendment #A394) (Appendix B). 

5.4. Results 

5.4.1. Faecal matter reduction 

5.4.1.1. Wet weight faecal matter reduction 

Wet weight FMR (Figure 5-1) was significantly affected by the presence of BSFL (F = 6.60; df = 

1, 58; P = 0.013), and layer depth (F = 14.72; df = 4, 55; P < 0.0001). The highest wet weight 

FMR occurred in FS from 0 – 20cm deep, in the presence of BSFL (65%, 95% CI 58.1 – 71.8), 
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significantly higher than the 101 – 150cm layer ( ̅ wet weight reduction = 26.3; 95% CI 16.5 – 

36.1; P < 0.001), and the combined layer ( ̅ wet weight reduction = 13.2; 95% CI 3.5 – 13.2; P = 

0.01). However FMR was not significantly higher than 21 – 50cm deep ( ̅ wet weight reduction 

= 0.2%; 95% CI -9.6 – 9.9; P = 0.97), or 51 – 100cm deep ( ̅ wet weight reduction = 8.1%; 95% 

CI -1.7 – 17.8; P = 0.1). 

The wet weight FMR was significantly higher in the presence of BSFL in FS from 0 – 20cm deep 

( ̅ wet weight reduction = 8.7; 95% CI 3.5 – 13.9; P = 0.004), and moderately significantly 

higher than 21 – 50cm deep ( ̅ wet weight reduction = 9.0; 95% CI 0.1 – 17.9; P = 0.048). 

However, there was no significant difference when BSFL were present or when absent in FS 

from 51 – 100cm deep ( ̅ wet weight reduction = 8.2; 95% CI 5.8 – 22.1; P = 0.22), 101 – 150cm 

deep ( ̅ wet weight reduction = 3.6; 95% CI -8.0 – 15.2; P = 0.5), and the combined layer ( ̅ wet 

weight reduction = 10.3; 95% CI -1.4 – 22.0; P = 0.078).  

 

Figure 5-1 Arithmetic mean wet weight faecal matter reduction (FMR), including 95% CIs, of faecal 
sludge in the presence and absence of BSFL; depths followed by a † indicate a significant difference in 
FMR between BSFL factor (F-test; P < 0.05) 
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Interactions between change in pH, tCOD, sCOD, NH4
+, protein, carbohydrates, VFAs, heavy 

metals, and presence of BSFL and layer did not have a significant effect on FMR (F-test; P > 

0.05, see Appendix G). 

5.4.1.2. Invasive species 

The presence of invasive species of filth fly larvae was found in 86% of interventions without 

BSFL, however there was no significant difference in FMR ( ̅ wet weight reduction = 0.7%; 95% 

CI -13.5 – 12.1; F = 0.01; df = 1, 28; P = 0.91). No invasive larvae were discovered in 

interventions with BSFL. 

5.4.1.3. Dry weight faecal matter reduction 

Dry weight FMR data were calculated using the FS wet weight and TS, and residue wet weight 

and TS. However, errors occurred at some point during the experiment. These errors resulted 

in replicates where residue dry weight was higher than the FS dry weight, a net mass gain. A 

net gain in mass is impossible, as no other solids were added to the replicates, and 23.3% of 

calculations returned erroneous results. Therefore, it was decided to exclude dry weight FMR 

data from analysis, as the source of the error could not be discovered. 

5.4.2. Prepupal production 

The prepupal dry weight (Figure 5-2) was not significantly affected by the depth of FS (F = 1.47; 

df = 4, 21; P = 0.25). However, the prepupal dry weight of BSFL fed on FS from 21 – 50cm deep, 

(0.0133g; 95% CI 0.0102 – 0.0164), was significantly higher than 101 – 150cm deep ( ̅ prepupal 

weight reduction = 0.0069; 95% CI 0.0007 – 0.013; P = 0.03). Dry weight bioconversions (Figure 

5-3) were not significantly affected by layer (F = 2.55; df = 4, 25; P = 0.065). The highest 

bioconversion was in FS from 51 – 100cm (6.5%; 95% CI 3.9 – 9.1), significantly higher than FS 

from 101 – 150cm ( ̅ bioconversion reduction = 4.8; 95% CI 1.1 – 8.5; P = 0.012). However, 

there was no significant difference between the bioconversion rates in depths 0 – 20cm, 21 – 

50cm, 51 – 100cm, and the combined layer FS (F-test; P > 0.05). Changes in pH, tCOD, sCOD, 
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NH4
+, protein, carbohydrates, VFAs, and heavy metals do not have a significant effect on 

prepupal dry weight or bioconversion (F-test; P > 0.05, see Appendix G). 

 

Figure 5-2 Arithmetic mean prepupal dry weight, including 95% confidence intervals, of BSFL reared 
on pit latrine faecal sludge from different depths  

 

Figure 5-3 Arithmetic mean dry weight bioconversion, including 95% confidence intervals, of faecal 
sludge from different depths 
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The pupation data (Table 5-1) collected during the experiment were not normally distributed. 

The data were excluded from analysis, as over 100% of the BSFL placed reached prepupal stage 

in every depth, except 101 – 150cm, where mortality was 100% in FS from two latrines.  

Table 5-1 Mean percentage of BSFL reaching prepupal stage, including range, on different depths of 
faecal sludge 

Depth Mean pupation (%) Range 

0 – 20cm 134 (118 - 151) 

21 – 50cm 124 (111 - 138) 

51 – 100cm 139 (132 - 151) 

101 – 150cm 68 (0 - 159) 

Combined 129 (114 - 151) 

 

5.4.2.1. Prepupal nutritional composition 

“Layer” significantly affected crude protein content of prepupae (F = 6.72; df = 4, 24; P = 

0.0009). Prepupae which developed on FS from 21 – 50cm deep had the highest crude protein 

(35.3%; 95% CI 32.3 – 38.3), significantly higher than 101 – 150cm deep ( ̃ crude protein 

reduction = 9.4; 95% CI 4.9 – 13.8; P < 0.001), and the combined layer of FS ( ̅ crude protein 

reduction = 7.6; 95% CI 3.3 – 11.8; P = 0.001). There was no significant difference between 

crude protein content of prepupae reared on FS from 0 – 20cm ( ̅ crude protein reduction = 

2.3; 95% CI -6.5 – 1.9; P = 0.28), and 51 – 100cm deep ( ̅ crude protein reduction = 2.9; 95% CI 

-7.1 – 1.4; P = 0.18). “Layer” also had a significant effect on ash content of prepupae (F = 3.68; 

df = 4, 24; P = 0.019). Highest ash content (48% of TS; 95% CI 40.6 – 55.5) was found in 

prepupae reared on 101 – 150cm deep FS, significantly higher than 0 – 20cm FS ( ̅ ash 

reduction = 13.6; 95% CI 4.5 – 22.8; P = 0.005), and 21 – 50cm ( ̅ ash reduction = 11.6; 95% CI 

2.4 – 20.7; P = 0.016). There was no significant difference in ash content of prepupae reared on 

FS from 51 – 100cm ( ̅ ash reduction = 5.8; 95% CI -3.4 – 14.9; P = 0.20), and the combined 

layer of FS ( ̅ ash reduction = 4.2; 95% CI -5.0 – 13.4; P = 0.35). 
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Changes in pH, tCOD, sCOD, NH4
+, protein, carbohydrates, VFAs, and heavy metals did not have 

a significant effect on ash and crude protein contents of prepupae (F-test; P > 0.05, see 

Appendix G). Table 5-2 shows the proximate analysis of prepupae reared on FS, with data 

presented combined from all five layers of FS tested. Depth of FS and changes in pH, tCOD, 

sCOD, NH4
+, protein, carbohydrates, VFAs, and heavy metals do not have a significant effect on 

total solids, crude fat, crude fibre and gross energy (F-test; P > 0.05, see Appendix G). 

Table 5-2 Proximate analysis, including 95% CI, of prepupae reared on faecal sludge 

Parameter Unit Mean 95% CI 

Total solids % 24.4 (22.6 - 26.1) 
Ash % TS 41.4 (37.7 - 45.2) 

Crude protein % TS 31.9 (29.5 - 34.2) 
Crude fat % TS 3.4 (2.7 - 4.1) 

Crude fibre % TS 8.0 (7.1 - 9.0) 
Gross energy MJ kg-1 8.2 (7.3 - 9.1) 

 

Table 5-3 Mean amino acid content, including 95% CI, of prepupae reared on faecal sludge; amino 
acids followed by a * are essential amino acids 

Amino Acid Mean (% total) 95% CI 

Histidine* 2.5 (2.3 – 2.6) 
Serine 4.9 (4.7 – 5.1) 

Arginine 4.0 (3.8 – 4.1) 
Glycine 10.5 (10.0 – 10.9) 

Aspartic acid 13.2 (12.2 – 14.3) 
Glutamic acid 11.4 (11.1 – 11.8) 
Threonine* 4.5 (4.5 – 4.6) 

Alanine 7.1 (6.9 – 7.3) 
Proline 5.9 (5.8 – 6.1) 

Cysteine 0.4 (0.3 – 0.4) 
Lysine* 4.9 (4.7 – 5.1) 

Tyrosine 5.4 (5.2 – 5.6) 
Methionine* 1.6 (1.4 – 1.7) 

Valine* 6.8 (6.7 – 6.9) 
Isoleucine* 4.6 (4.6 – 4.7) 

Leucine* 7.6 (7.5 – 7.8) 
Phenylalanine* 4.7 (4.6 – 4.9) 

 

Table 5-2 presents the AA contents of prepupae reared on FS, where data presented are 

combined from all five layers of FS tested. Depth of FS and changes in pH, tCOD, sCOD, NH4
+, 



 

Ian J. Banks Chapter 5) 151 

protein, carbohydrates, VFAs, and heavy metals do not have a significant effect on AA content 

of prepupae (F-test; P > 0.05, see Appendix G). Table 5-4 shows the heavy metal and micro-

nutrient, and the bioaccumulation factor of prepupae reared on FS. The results indicate that 

Cadmium, Manganese, Mercury, and Zinc all have bioaccumulation factors of over 1.0, 

meaning the prepupae absorbed the heavy metals into their bodies. 

Table 5-4 Mean heavy metal and mineral concentration and bioaccumulation factor, including 95% CI, 
of prepupae reared on faecal sludge  

  Heavy metal concentration Bioaccumulation 

Element 
Periodic 
Symbol 

Mean 
(mg kg-1) 

95% CI 
Mean 
(BAF) 

95% CI 

Aluminium Al 4182 (2749 – 5615) 0.49 (0.41 – 0.57) 
Antimony Sb 0.2 (0.1 – 0.2) 0.60 (0.44 – 0.77) 

Arsenic As 0.7 (0.5 – 1.0) 0.55 (0.47 – 0.64) 
Cadmium Cd 2.2 (1.0 – 3.4) 5.07 (4.14 – 6.01) 
Chromium Cr 43 (31 – 54) 0.29 (0.22 – 0.37) 

Cobalt Co 5.2 (3.4 – 7.0) 0.39 (0.31 – 0.46) 
Copper Cu 62 (48 – 76) 0.84 (0.74 – 0.93) 

Iron Fe 3434 (2007 – 4862) 0.33 (0.27 – 0.39) 
Lead Pb 7.4 (3.2 – 11.5) 0.65 (0.49 – 0.81) 

Manganese Mn 539 (450 – 627) 1.08 (0.95 – 1.20) 
Mercury Hg 0.1 (0.0 – 0.2) 1.72 (1.28 – 2.16) 

Molybdenum Mo 3.1 (2.7 – 3.4) 0.62 (0.55 – 0.70) 
Nickel Ni 23 (17 – 28) 0.35 (0.28 – 0.42) 

Selenium Se 1.6 (1.4 – 1.9) 0.86 (0.76 – 0.97) 
Tin Sn 2.6 (2.2 – 3.0) 0.75 (0.66 – 0.85) 

Vanadium V 9.4 (5.0 – 13.8) 0.32 (0.26 – 0.38) 
Zinc Zn 762 (611 – 912) 1.02 (0.81 – 1.24) 

 

5.4.3. Residue analysis 

Table 5-5 summarises the chemical characteristics of FS before the experiment, and the 

remaining residue afterwards. These results show that only tCOD and protein were changed 

significantly by the presence of BSFL, with the presence of BSFL resulting in an increased tCOD 

reduction, and decreased protein reduction. The presence of BSFL did not significantly affect 

the percentage change of sCOD, NH4
+, carbohydrates and VFA. 

Table 5-6 summarises residue mineral content, however there was no significant difference 

between the mineral content of interventions in the presence and absence of BSFL. This 
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implies that the feeding action of the BSFL does not significantly decrease the fertiliser value of 

the residue, compared to FS which has only undergone aerobic digestion. 

Table 5-5 Summary statistics of chemical characteristics; including mean and 95% CI, of faecal sludge 
and residue, and mean percentage change; parameters followed by 

a
 indicate the % reduction in 

parameter is significantly different between replicates with and without BSFL (Mann-Whitney test; P < 
0.05)  

  
Faecal Sludge 

 
Residue % Change 

Parameter units Mean 95% CI 
BSFL 

Present? 
Mean 95% CI Mean 

Total solids 
a
 % 28.9 (27 – 31) 

No 51 (46 – 56) 42 
Yes 62 (57 – 67) 52 

pH 
 

7.2 (7.12 – 7.28) 
No 8.56 (8.35 – 8.77) 16 
Yes 8.54 (8.31 – 8.77) 17 

tCOD 
a
 g kg

-1
 TS 788 (616 – 901) 

No 253 (165 – 340) -67 
Yes 129 (83 – 174) -82 

sCOD g kg
-1

 TS 103 (82 – 125) 
No 6 (4 – 9) -91 
Yes 7 (5 – 9) -89 

NH4
+
 mg kg

-1
 TS 122 (99 – 146) 

No 28 (19 – 37) -74 
Yes 31 (23 – 39) -72 

Protein 
a
 g kg

-1
 TS 91 (79 – 102) 

No 98 (73 – 124) 20 
Yes 61 (44 – 78) -25 

Carbohydrates g kg
-1

 TS 774 (712 – 836) 
No 779 (708 – 851) 2 
Yes 763 (689 – 837) 2 

VFA mg kg
-1

 TS 15 (13 – 17) 
No 22 (13 – 32) 12 
Yes 28 (17 – 40) 54 

 

Table 5-6 Mineral analysis of residue, mean and 95% CI, remaining after interventions with, and 
without BSFL 

  
without BSFL with BSFL regression model 

Nutrient Unit Mean 95% CI mean 95% CI F df P 

Nitrogen % TS 1.9 (1.5 – 2.4) 1.4 (0.9 – 1.8) 3.89 1, 52 0.054 

Phosphorus % TS 3.2 (2.7 – 3.6) 3.0 (2.5 – 3.6) 0.23 1, 52 0.63 

Potassium % TS 1.8 (1.4 – 2.1) 1.7 (1.3 – 2.1) 0.15 1, 52 0.70 

Calcium % TS 5.6 (4.9 – 6.3) 5.4 (4.7 – 6.1) 0.25 1, 48 0.62 

Magnesium % TS 1.4 (1.3 – 1.6) 1.4 (1.2 – 1.6) < 0.01 1, 50 0.99 

Sodium mg kg
-1

 7859 (6370 – 9347) 7700 (5730 – 9670) 0.02 1, 52 0.90 

Iron mg kg
-1

 8852 (5806 – 11899) 12587 (8514 – 16660) 2.26 1, 51 0.14 

Copper mg kg
-1

 72 (65 – 79) 76 (66 – 86) 0.38 1, 52 0.54 

Zinc mg kg
-1

 1112 (858 – 1367) 1145 (871 – 1419) 0.03 1, 52 0.86 

Manganese mg kg
-1

 530 (440 – 619) 572 (460 – 683) 0.37 1, 51 0.55 

Boron mg kg
-1

 27 (21 – 33) 35 (27 – 43) 2.59 1, 52 0.11 

Aluminium mg kg
-1

 7770 (5590 – 9951) 9126 (6914 – 11339) 0.81 1, 52 0.37 

Sulphur % DM 0.7 (0.6 – 0.8) 0.7 (0.6 – 0.8) 0.05 1, 52 0.83 
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There was a significant difference in nitrogen, potassium, sodium and copper concentrations in 

different layers (Table 5-7). However, there was no significant change in phosphorus, calcium, 

magnesium, iron, zinc, manganese, boron, aluminium, or sulphur with increasing depth. 

Nitrogen concentrations were highest in residue of the first 50cms of layers, while potassium, 

sodium, and copper levels were highest in residue from the first 100cms of layers. There was a 

significant reduction in concentration of all four nutrients from the first 50cms of residue 

compared with residue from 100 – 150cm layers.  

Table 5-7 Mineral analysis of faecal sludge residue significantly affected by layer, including arithmetic 
mean and 95% CI 

     Regression model 
Nutrient Layer Mean 95% CI P F Df P 

Nitrogen 
(% TS) 

0 – 20cm 2.3 1.6 – 2.9 0.7 

4.97 4, 49 0.0019 
21 – 50cm 2.4 1.7 – 3.1 - 

51 – 100cm 1.1 0.3 – 2.1 0.005 
101 – 150cm 1.1 0.5 – 1.6 0.002 

Combined 1.3 0.8 – 1.8 0.01 

Potassium 
(% TS) 

0 – 20cm 2.3 1.7 – 2.9 - 

2.77 4, 49 0.038 
21 – 50cm 1.8 1.3 – 2.3 0.17 

51 – 100cm 1.8 1.0 – 2.5 0.21 
101 – 150cm 1.1 0.6 – 1.6 0.002 

Combined 1.7 1.0 – 2.5 0.14 

Sodium 
(g kg-1) 

0 – 20cm 11.2 8.8 – 13.7 - 

7.47 4, 49 0.0001 
21 – 50cm 9.4 6.7 – 12.2 0.23 

51 – 100cm 8.7 5.8 – 11.6 0.13 
101 – 150cm 4.2 2.5 – 5.9 < 0.001 

Combined 5.6 3.2 – 8.0 < 0.001 

Copper 
(mg kg-1) 

0 – 20cm 76 70 – 83 0.27 

3.01 4, 49 0.027 
21 – 50cm 86 69 – 102 - 

51 – 100cm 69 55 – 82 0.081 
101 – 150cm 59 44 – 74 0.003 

Combined 80 65 - 95 0.53 

 

5.4.4. Feasibility model 

A business feasibility study was conducted by the HAAS Business School, University of 

California, Berkeley, in 2011 (see Appendix A) on the commercial viability of a decentralised 

BSFL FSM plant. Using data gathered from field interviews in Dar es Salaam, Tanzania, internet 

resources, research reports and publications, key assumptions were made to evaluate the 
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business model. Critical assumptions include the cost of emptying latrines, bioconversion 

rates, prepupal crude fat content, price of protein rich prepupal animal feed, percentage 

residue remaining, and price of residue as fertiliser (Table 5-8). The business model was 

recalculated using data collected in this study and updated product value estimates (Table 

5-8).  

Table 5-8 Key assumptions included in HAAS feasibility study, Sources: this study, current market 
prices for fishmeal and fertiliser, and estimated latrine emptying price (Still 2002) 

Key  
assumptions 

HAAS Model Whole latrine FS Top layer FS Optimised model 

Latrine emptying 
 cost 

$327 day
-1 

$327 day
-1

 $327 day
-1

 $216 day
-1 

Bioconversion rate  
(wet FS to wet BSFL) 

11.5% 5.9% 6.3% 7.5% 

Prepupae lipid  
content 

30% 4.2% 4.6% 15% 

Price / kg high grade  
BSF feed 

$1 $1 $1 $1.8 

Waste (residue) leftover 
after BSF processing 

40% 45% 35% 40% 

Price / ton of  
fertiliser 

$50 $50 $50 $100 

 

Table 5-9 Business models for decentralised faecal sludge management plants, with varying key 
assumptions for latrine emptying costs, bioconversion, prepupal lipid content, faecal matter reduction 
(FMR), and cost/produce values 

   
HAAS 
Model 

This Study (whole 
latrines) 

This study 
(top layer) 

Optimum 

Model 
Fertiliser 

sold? 
Best case / 
worst case 

Fixed investment breakeven and setup time (years) 

1 
Yes 

Best 0.90 0.94 1.05 0.54 
Worst 2.59 3.02 5.56 0.72 

No 
Best 1.82 2.62 2.61 0.72 

Worst - - - 1.22 

2 
Yes 

Best 0.85 1.17 1.33 0.60 
Worst 1.95 5.09 12.75 0.84 

No 
Best 1.23 3.87 3.76 0.81 

Worst 13.51 - - 1.46 

3 
Yes 

Best 0.53 0.50 0.56 0.39 
Worst 22.62 2.26 - 0.45 

No 
Best - - - 0.51 

Worst - - - 1.26 

Best Case Scenario: Assumes highest revenues & lowest costs + upfront capital expenditure, Worst 
Case Scenario: Assumes lowest revenues & highest costs + upfront capital expenditure 
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Three models were evaluated two times, with and without sale of residue as fertiliser: Model 1 

– Crude Oil and BSFL feed, Model 2 – Biodiesel and BSFL feed, and Model 3 – BSFL feed only. 

Four situations were assessed for each model using key assumption data described above: 

original HAAS model, whole latrine FS, top layer FS, and an optimised model. Success of the 

model was determined by the fixed investment breakeven and setup time, and the best and 

worst case scenarios for each model are presented (Table 5-9). The situation with the fasted 

fixed investment breakeven and setup time was in an optimum situation, Model 3), where 

residue was sold as a fertiliser. 

5.5. Discussion 

The study presented here shows that the presence of BSFL had a significant effect on waste 

reduction, while layer had a significant effect on FMR, prepupal ash and crude protein content. 

Layer, change in pH, tCOD, sCOD, NH4
+, protein, carbohydrates, VFAs, and heavy metals had no 

significant effect on prepupal production, prepupal dry weight and bioconversion, or prepupal 

nutritional value, including: total solids, ash, crude protein, crude fat crude fibre, gross energy, 

and amino acid concentrations. There was no significant difference in residue mineral 

contents, whether BSFL had been present or not. 

5.5.1. Faecal matter reduction 

It is important to note that the FS depth had a significant effect on FMR efficiency. 

Importantly, there was no significant difference in wet weight FMR for the first metre of FS 

that was excavated from the pit latrines. This implies that BSFL could efficiently reduce the top 

metre of FS removed from a pit latrine, providing the FS was suitable. The highest wet weight 

FMR was approximately 65%. This was higher than BSFL FMR of top layer pit latrine material 

(≈58%) (see Chapter 4), fresh human faeces (55%) (Banks et al. 2014), and chicken manure 

(≈50%) (Sheppard et al. 1994). It is also far higher than Musca domestica reduction of chicken 

manure (≈30%) and cow manure (≈25%) (Morgan et al. 1975). However, the FMR is still lower 
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than BSFL reduction of MOW (≈76%) (Diener et al. 2011), and far below the FMR capability of 

Tiger worms (96%) (Furlong et al. 2014). It is important to note that the FMR on the combined 

FS layer, although lower than some layers, was still approximately 50%, comparable to 

previous research mentioned above. The implications of BSFL capacity to reduce waste will be 

discussed later. 

The differences between FMR of FS in the presence or absence of BSFL were slightly smaller 

(≈8%) than in previous studies on pit FS (8.7%) (see Chapter 4), and far lower than previously 

reported by Lalander et al. (2013) when BSFL fed on fresh faeces (≈30%). The possible reasons 

for this were discussed previously (see Chapter 4). Additionally, in this study, several invasive 

species, including house flies (sp. Musca domestica), drain flies (family Psychodidae), and 

thrips (order Thysanoptera), laid eggs, which developed into larvae, in FS replicates without 

BSFL. The presence of the invasive species was not ascertained until a week into the 

experiment, subsequently all containers were covered in netting. It is interesting to note that 

there were no invasive larvae in the replicates which contained BSFL. It cannot be concluded 

that filth flies did not oviposit in replicates containing BSFL, however it can be established that 

no invasive larvae survived. This conclusion is supported by previous research that 

demonstrates the presence of BSFL reduces the ovipositing, or prevents larval development, of 

filth flies (Furman et al. 1959, Sheppard 1983, Bradley et al. 1984). Although the cause of BSFL 

inhibiting filth fly oviposition has not been firmly clarified, there are a number of suggestions. 

Kilpatrick et al. (1959) proposed that the presence of BSFL altered the feeding environment, 

making it unsuitable for the development of filth flies. While Bradley et al. (1984) suggested 

that interspecific semiochemical communication between BSFL and gravid M. domestica 

females reduces oviposition. Additionally, it has been shown how the presence of BSFL 

significantly reduces volatiles, attractive to M. domestica, produced by human faeces after 11 

days of feeding (Banks 2010). However, the infestation which occurred in the current study 

happened within the first week, with 6 days old BSFL, 10 days younger than used in the 
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previous study (Banks 2010). The 6 day old BSFL were too small to effectively alter the FS, 

resulting in no noticeable difference in odour reduction between paired replicates with and 

without BSFL (Banks, LSHTM, personal observation). This supports the theory of semiochemical 

communication between BSFL and filth flies rather than a reduction in attractive volatiles 

produced by the FS. Considering this study was not designed to test attractiveness of FS 

containing BSFL, it is important that future work is conducted to further investigate the 

subject. It is also important to investigate how BSFL as a FSM method, if correctly managed, 

could help control filth fly populations, and it may be possible to identify filth fly repellent 

semiochemicals that could be used to help control these mechanical disease vectors.  

The results show that the change in chemical characteristics, pH, tCOD, sCOD, NH4
+, protein, 

carbohydrates, VFAs, and heavy metals, had no significant effect on the FMR efficiency of BSFL 

when developing on FS. This is an original study, and the results suggest that BSFL are capable 

of efficiently reducing FS within a wide range of the characteristics tested (Table 5-5). 

However, future work is recommended to further investigate the effect of these characteristics 

on FMR efficiency of BSFL, specifically characteristics known to inhibit dipteran larval growth. 

Although the chemical characteristics fall within a similar range to FS identified by previous 

research (see Chapter 3), it is important to determine the upper or lower tolerances of BSFL. 

It was also found that the BSFL significantly reduce the tCOD content of FS by approximately 

82%, and sCOD content by approximately 89%. This is comparable to BSFL when feeding on 

organic leachates (Popa et al. 2012), where COD was reduced by approximately 79%. The 

reduction of COD has also be observed by another novel FSM technology, the Tiger worm, 

shown to remove between 81 – 87% COD from FS (Wang et al. 2011, Furlong et al. 2014).  

Reporting dry weight FMR is more accurate than wet weight FMR, because it excludes the 

varying water concentrations in the FS and residue. However, an anomaly occurred during this 

study as described previously (see Chapter 4). Once again the authors could not identify the 
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source of the anomaly, and the wet weight FMR data has been presented in this study, 

resulting in less accurate indications of FMR. 

5.5.2. Prepupal production 

The results presented here show that there was no significant difference in prepupal weight 

for larvae reared on FS from the top metre or pit latrines or on the combined layer of FS. This 

implies that if FS from the top metre of a latrine, or the entire latrine emptied and mixed 

together, is used as a BSFL rearing material at a feeding rate of 50 mg larvae-1 day-1, the 

prepupae that develop will be a uniform size. Unfortunately, the dry weight of the prepupae is 

approximately 2.5 times smaller than when BSFL are reared on MOW (Diener et al. 2011), and 

in previous studies on pit latrine FS (see Chapter 4). It is possible to increase prepupal size by 

increasing feeding rate (Myers et al. 2008, Diener et al. 2009, Banks et al. 2014). However, this 

would result in lower FMR and bioconversion levels, but increased growth rate. Again, the 

bioconversion rates produced by the experiment are similar across the first three layer depths, 

0 – 100cm, and the combined layer. The bioconversion rates were approximately half that of 

MOW (Diener et al. 2011), and a third of fresh human faeces (Banks et al. 2014), however they 

were approximately 30% higher than swine manure (Newton et al. 2005) and chicken manure 

(Sheppard et al. 1994). Unfortunately the lowest depth of FS had very low bioconversion. This 

is due to the BSFL being unable to develop successfully on the lowest depth of FS, with FS from 

two latrines producing 100% mortality, therefore no prepupae. This is vital when considering 

what quantity of FS to empty from pit latrines. 

The proximate analysis of the prepupae once again indicates that the depth of FS can affect 

the prepupal value as crude protein content was highest in prepupae reared on the top metre 

of FS. The prepupae had approximately a third lower crude protein content than in previous 

studies (Hale 1973, Booram et al. 1977, St-Hilaire et al. 2007b). However the protein content is 

comparable to prepupae reared on chicken layer mash at a higher feeding rate (Diener et al. 



 

Ian J. Banks Chapter 5) 159 

2009). Importantly, the total solids, crude fat, crude fibre, and gross energy contents of the 

prepupae do not vary significantly with depth of FS. While the crude fibre is comparable to 

previous studies (Booram et al. 1977), the crude fat content is ten times lower, and the ash 

content almost three times higher (Hale 1973, Booram et al. 1977, St-Hilaire et al. 2007b). The 

fat content of insects is largely dependent on their diet (Stanley-Samuelson et al. 1983), and it 

has been demonstrated that it is possible to increase prepupal fat content through the 

addition of high-lipid content fish offal (St-Hilaire et al. 2007a). This suggests that it could be 

possible to boost the lipid content of BSFL feed in FS through the addition of high-lipid wastes, 

such as used cooking oil which would otherwise be disposed of.  

The AA content of BSFL (Table 5-10) reared on FS is comparable to previous research where 

BSFL were reared on swine manure (St-Hilaire et al. 2007b), and to M. domestica pupae 

(Calvert et al. 1969), another alternative protein source suggested for animal nutrition 

(Pieterse et al. 2014). Animal feed produced using M. domestica as a protein source has shown 

that the AAs present have a high bioavailability, which can be utilised efficiently by broiler 

chickens feeding. Considering that the AA composition of BSFL is similar to that of M. 

domestica, it is suggested that animal feeds composed of BSFL could be similarly suitable as a 

protein source for animals. It is suggested that future work in conducted to study the 

suitability of BSFL as a protein source for animals, however, and BSFL reared on human faeces 

must be sufficiently sterilised to remove any dangers presented by pathogen transmission. 

5.5.2.1. Heavy metals 

The concentrations of heavy metals in BSFL prepupae reared on FS are important when 

considering the use of BSFL as a source of animal protein. There are regulations inside the 

European Union (EU) that limit the concentrations of heavy metals in animal feed (Table 5-11). 

The current study found that the mean arsenic and mercury concentration is lower than, or 
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equal to the current animal feed regulations. However, the cadmium and lead concentrations 

are higher.  

Table 5-10 Amino acid composition of BSF prepupae reared on faecal sludge (the present study), 
swine manure (St-Hilaire et al. 2007b), and house fly pupae reared on CSMA fly medium (Calvert et al. 
1969); values reported as % of total protein, essential amino acids are marked with * 

 
This study 

(BSF prepupae) 
(St-Hilaire et al. 2007b) 

(BSF prepupae) 
(Calvert et al. 1969) 
(House fly pupae) 

Amino Acid Mean (% total) 

Histidine* 2.5 3.0 3.5 
Serine 4.9 4.3 4.4 

Arginine 4.0 6.8 5.7 
Glycine 10.5 5.9 5.3 

Aspartic acid 13.2 9.6 11.6 
Glutamic acid 11.4 9.7 14.7 
Threonine* 4.5 4.6 4.6 

Alanine 7.1 7.8 5.7 
Proline 5.9 6.2 4.2 

Cysteine 0.4 - 0.5 
Lysine* 4.9 6.7 7.1 
Tyrosine 5.4 7.9 6.7 

Methionine* 1.6 1.9 3.5 
Valine* 6.8 7.2 4.6 

Isoleucine* 4.6 5.2 4.8 
Leucine* 7.6 8.0 7.2 

Phenylalanine* 4.7 5.1 5.7 

 

Table 5-11 Regulated heavy metal concentrations, mean ppm, found in BSFL prepupae reared on 
faecal sludge 

Heavy metals 
(mg kg-1) 

This study (EU 2002) 
Animal feed regulations Mean Range 

Arsenic 0.7 0.2 – 2.5 2 
Cadmium 2.2 0.4 – 15 2 

Lead 7.4 1.3 – 47.6 5 
Mercury 0.1 0.01 – 0.9 0.1 

 

The concentrations of cadmium and mercury could potentially limit the use of BSFL prepupae 

as a source of protein in animal feed when considering the bioaccumulation factor (BAF). 

Cadmium and mercury have a BAF over 1.0, 5.07, and 1.72 respectively (Table 5-4). The BAF is 

an indication of the concentration of heavy metals in the prepupae compared to the FS they 
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were reared in, where a value over 1.0 indicates the prepupae absorbed more heavy metal 

than excreted (Walker 1990). 

It is possible to reduce the heavy metal concentrations in prepupae by avoiding contaminated 

food sources, however this is not always possible, especially considering the variation found in 

human faeces and FS (see Chapter 3). While it is difficult to reduce the heavy metal 

concentrations of individuals’ excreta, it could be possible to reduce concentrations in FS. It is 

known that batteries are a major source of heavy metal contamination (EC 2002), while there 

are reports that batteries are added to reduce FS volumes in rural and urban Tanzanian pit 

latrines (Biran 2010a, Biran 2010b). It is suggested that in areas where BSFL FSM is proposed, it 

could be possible to combine pit latrine emptying/BSFL in-situ treatment, with educational 

information and advice, recommending that batteries, and other sources of heavy metals, are 

no longer dumped into pit latrines. It is also recommended that future work continues to 

investigate into heavy metal contamination of prepupae, and also methods for separating the 

heavy metals from valuable fractions of the prepupae. 

This study has shown BSFL reared on FS produce prepupae significantly smaller than in 

previous studies. However, their protein value and AA composition is comparable to 

alternative animal feed protein sources. The fat content of BSFL reared on FS is far lower than 

when reared on other food sources, however, it is suggested that the fat content could be 

increased by addition of high lipid wastes. The protein and fat content ultimately determine 

the value of the prepupae, which will be discussed further below. 

5.5.3. Residue analysis 

The results show how the pH of FS changes from neutral to alkaline over the course of the 

experiment, although there is no difference in final pH in replicates with and without BSFL. 

This is different to previous research which showed the presence of BSFL resulted in higher pH 

compared to controls without BSFL (Newton et al. 2005, Popa et al. 2012). However, in the 
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study presented, the controls were found to be infested with filth fly larvae. Musca domestica 

are known to increase the pH of the medium they are reared in (Takahashi et al. 1966), 

therefore their presence could have led to similar changes in residue pH. Similar changes in pH 

of FS have been found in vermifiltration systems using tiger worms (Furlong et al. 2014), 

thought to be due to ammonia excretion by the worms.  

The reduction of NH4
+ could be explained by the ammonia-ammonium equilibrium, which is 

determined by pH and temperature (Emerson et al. 1975). As pH increases, more ammonium 

is converted to ammonia. Increased levels of ammonium in FS treatments are caused by the 

presence of BSFL (Green et al. 2012). However, a previous study showed how the presence of 

BSFL resulted in an increase in total ammonium-nitrogen (Lalander et al. 2013), while 

increased ammonia production has also been recorded when M. domestica are used to 

manage pig manure (Čičková et al. 2012). An alternative suggestion is that the ammonium is 

oxidised into nitrites by ammonia-oxidising bacteria, and subsequently oxidised into nitrates by 

nitrite-oxidising bacteria {Hatzenpichler, 2012 #1388}. 

The presence of BSFL has also been previously found to lower chemical oxygen demand 

compared to controls without BSFL (Popa et al. 2012). In a number of FS samples, the presence 

of BSFL increased the sCOD content compared to controls without BSFL. This could be due to 

the physical activity of the BSFL, creating a finer particulate compared with controls. This could 

permit more water to dissolve COD compounds.  

There was a significantly lower protein content in the residue which contained BSFL, compared 

to residue without BSFL. This is unsurprising, as the consumption of proteins is vital to the 

successful development of insect larvae (Bennett 2000, Simpson et al. 2006). There was no 

difference in carbohydrates between residue with and without BSFL, and there is no significant 

change between the carbohydrate contents of FS and the residue. Two explanations have been 

suggested for these results. Firstly, BSFL have high activities of α-amylase, lipase, protease and 
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trypsin-like protease (Kim et al. 2011), resulting in efficient treatment of food-waste and 

organic materials, however, no lignin-modifying enzymes were identified, suggesting that BSFL 

are not able to digest lignocellulose. The second explanation is that there is an issue with the 

method used to determine carbohydrates. It is likely that both contribute to the lack of change 

in carbohydrates, although the method to determine carbohydrates has only been used once 

on FS (Irish et al. 2013), which also reported anomalous results, where carbohydrates content 

up to 100% of total solids. 

5.5.4. Implications and feasibility 

The study presented here has shown that BSFL are efficient at reducing the mass of FS from a 

variety of layers excavated from a pit latrine. It has also been shown that, while BSFL can 

develop on a variety of layers of FS, the bioconversion rates, and lipid content are reduced 

compared to previous studies. These factors are important when considering how to utilise 

BSFL FSM. There are a number of different techniques suggested, including in-situ BSFL and 

decentralised BSFL treatment plants. 

This study has shown that an in-situ BSFL treatment solution is a theoretically viable method of 

treating FS. The results demonstrate that BSFL are capable of reducing FS from a variety of 

depths within a pit latrine, and a wide range of chemical and physical characteristics. Pit 

latrines with suitable characteristics, as discussed previously (see Chapter 4), could be seeded 

with BSFL. Once established, the results from this study suggest that BSFL will be able to 

reduce a large proportion of FS stored within latrines. In an optimum system, BSFL will 

consume all viable material, and then survive on fresh excreta which are deposited daily by 

users. Research still needs to be conducted into how BSFL prepupae can be harvested, and 

how the BSFL population is maintained, either through regular inoculation of BSFL into a pit, or 

luring female BSF to lay in the pit.  
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For decentralised BSFL FSM methods, the original HAAS business model was shown to be 

feasible under a number of best case scenarios (Table 5-9), where highest revenues and lowest 

costs are assumed. When residue was not sold as fertiliser, lipids were extracted and 

converted into biodiesel onsite, and prepupae were sold as animal feed, fixed investment 

breakeven and setup time would be in 1.23 years. When residue is sold as a fertiliser, all three 

business models are feasible, with the optimum being when only prepupae are sold as animal 

feed, taking on 0.53 years to breakeven and setup. 

The reason why only selling prepupae can be profitable is due to the increased capital and 

operational costs involved with crude oil and biodiesel extraction and conversion. When 

assumptions were altered to incorporate values from the current study for bioconversion, 

prepupal crude fat content, and FMR, imitating a situation where FS from a whole latrine was 

excavated, Model 3 including the sale of fertiliser broke even in half a year (Table 5-9). When 

values for bioconversion, prepupal crude fat content, and FMR from only the top 20cm of FS 

were used in the model, imitating a situation where pit latrines were emptied more frequently, 

or only the top layer was excavated, once again Model 3 including the sale of fertiliser had the 

shortest breakeven time, with 0.56 years (Table 5-9). Surprisingly the return on investment 

was lower for the top 20cm of FS, even at the “best” scenario, than when FS from the whole 

latrine was used. However, upon closer review, it was determined that this was due to an 

increase in FMR of the top layer of FS, resulting in a reduced mass of residue to be sold as a 

fertiliser.  

The optimum situation used achievable values for bioconversion rates, enhanced prepupal 

crude fat content (St-Hilaire et al. 2007a), FMR, increased product values based on current 

market prices for high-grade fishmeal and vermicompost organic fertiliser. Additionally, the 

optimum situation reduced the cost associated with emptying individual latrines. Under this 

situation all models, with and without selling fertiliser, were economically viable, ranging from 
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0.39 – 1.46 years (Table 5-9). It could be argued that an optimum scenario is a fabrication, 

however, considering the conservative assumptions made by the model for products sale 

value, and operational costs, and also considering methods of increasing bioconversion and 

enhancing fat content, it can be argued that an optimum scenario is feasible. Additionally, 

charging a latrine emptying cost lower than previously reported for similar services (Still 2002) 

will still benefit low-income households.  

What can be established is that the sale of residue must be considered a virtually vital aspect 

to the successful BSFL FSM business model. This is largely due to the increased revenues 

gained by the sale of the residue as a fertiliser, but also due to the lack of an operational cost 

for disposal of residue. Considering the use of BSFL to manage FSM is the overall aim of 

developing it as a new technology, it is vital that research is conducted into management of 

the residue which is produced after BSFL feeding occurs. It is also recommended that 

alternative business models are investigated, which incorporate reduced operational costs 

associated with pit latrine emptying. 

5.6. Conclusion 

The study presented here has shown that BSFL are efficient at reducing FS excavated from the 

top 100cm of a pit latrine, and a combined layer representative of an entire pit latrine, with a 

range of physical and chemical characteristics. The prepupae that develop have a nutritious 

value comparable to BSFL reared on cow manure, and M. domestica. Although the crude fat 

content was lower than previous studies, further investigation is required into whether it is 

possible to enhance lipid content by addition of waste food oil to FS. The study also provides 

supporting evidence that there are semiochemicals produced by BSFL which could be used as a 

method of controlling filth flies, such as M. domestica, recommending further investigation. 

The results gathered in this study have helped demonstrate that correct conditions, in-situ and 

decentralised BSFL FS treatments are viable methods of FSM. Also, under optimum situations, 
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a decentralised BSFL treatment plant has a strong business model. Solutions suggested in this 

study could help improve sanitation for billions of people around the world. However, further 

investigation is required to determine potential problems that may arise from the use of FS fed 

BSFL as an animal feed source, such as pathogen transmission, or heavy metal 

bioaccumulation. Further investigation into the composition of the residue and its use as a 

fertiliser or soil conditioner is highly recommended, as it is a vital source of income produced 

by FSM using BSFL. Additionally, investigation into liquid effluent quality produced by BSFL 

FSM is important, focusing on the potential hazard of nitrites and nitrification. 
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6.1. Abstract 

OBJECTIVES: To determine whether cleaning chemicals previously reported in pit latrine faecal 

sludge (FS) increase mortality of black soldier fly larvae (BSFL), and to discuss how any effect 

may influence BSFL faecal sludge management (FSM) methods. 

METHODS: Serial dilutions (n = 6) of four cleaning chemicals used by householders were 

assessed: Jeyes Fluid, Madubula, High Test Hypochlorite (HTH), Pine antiseptic, together with a 

permethrin-based positive control and a distilled water negative control. Solutions were added 

to FS with 25 BSFL (replicates n = 4), at a feeding rate of 100mg larvae-1 day-1, until 50% were 

prepupae. Mortality was measured, and dosage-mortality regression equations were 

calculated using PROBIT analysis to estimate a 50% lethal dose (LD50) and a 20% lethal dose 

(LD20). 

RESULTS: Results showed Jeyes Fluid, Madubula, and the positive control had a significant 

influence on BSFL mortality (P < 0.05). While the HTH and Pine antiseptic had no significant 

effect on BSFL mortality (P > 0.05). 

CONCLUSION: Although BSFL mortality can be influenced by cleaning chemicals in FS, the 

concentrations required to increase mortality over natural levels are far higher than 

manufacturer’s guidelines and household owners reported use. It is unlikely that commonly 

used cleaning chemicals will affect BSFL FSM, although further work is recommended to 

determine the effects of other compounds, including: pesticides, insecticides, herbicides, 

pharmaceuticals, and hormone, which could potentially accumulate further down the food 

chain.  
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6.2. Introduction 

The implementation of on-site sanitation is recommended (WHO/UNEP 2006) to improve 

public health (Esrey et al. 1991, Fewtrell et al. 2005) by preventing disease (Mara et al. 1999). 

With on-site sanitation, the emptying, transportation, and treatment of faecal sludge (FS) can 

cause problems (Helmer et al. 1997, Kariuki et al. 2003, WHO/UNEP 2006). These problems 

can be solved by managing FS on-site. One such method is to use the larvae of the black soldier 

fly (BSFL), Hermetia illucens (L.). The BSFL efficiently reduce FS from a range of pit latrines (see 

Chapter 5). The final larval stage of the BSFL, known as the prepupae, has an intrinsic value. 

The prepupae contain proteins and fats which can be used in animal feeds (Hale 1973, Newton 

et al. 1977, Bondari et al. 1987, St-Hilaire et al. , Hem et al. 2008). Although, it has been shown 

that BSFL reared on pit latrine FS have lower protein and fat (see Chapter 5) levels than found 

in previous studies (Hale 1973, Booram et al. 1977, St-Hilaire et al. 2007, Diener et al. 2009), 

although still suitable to be used in animal feed (Diener et al. 2009).  

However, pit latrine FS contains more than just decomposing human faeces. It is known that 

pit latrine owners in South Africa use cleaning chemicals such as Jeye’s Fluid, Madubula, 

chlorine, and pine disinfectant (see Chapter 3)(Buckley et al. 2008, Nwaneri 2009). While in 

Tanzania and Vietnam is has been reported that pit latrine owners use additives, such as ash, 

lime, and kerosene to prevent odours, insects, and to reduce sludge volumes (Biran 2010a, 

Biran 2010b, Biran 2010c). Cleaning chemicals are made up of various constituents, including: 

phenolic compounds, alcohols, and surfactants. Phenolic compounds have been found to 

reduce larval growth in herbivorous insects (Duffey et al. 1981, Kubo 1993), and surfactants 

have been shown to inhibit growth and increase mortality in aquatic dipteran larvae (Lewis et 

al. 1983, Lewis 1991, Ostroumov 2010).  

The top four reported chemicals from a previous survey of South African latrine owners (see 

Chapter 3) were selected for testing: Jeyes Fluid (53%), Madubula (21%), Chlorine (15%), and 
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Pine antiseptic (11%). Jeyes Fluid and Madubula are both Tar Acid (carbolic acid) based 

disinfectants. While Madubula only lists Tar Acid as an active ingredient, Jeyes fluid contains 

Tar Acid, 4-chloro-m-cresol, Propan-2-ol, and Terpineol, and has a pH of 8.0 – 10.0. Tar Acids 

are phenols that have a wide spectrum of microbiocidal, fungicidal, and virucidal and are 

commonly used in areas with heavy soiling, such as on farms or for veterinary work (Jeffrey 

1995). The chlorine that was reported to be used was High Test Hypochlorite (HTH)/Calcium 

Hypochlorite (Arch Chemicals, South Africa), a popular swimming pool water sanitiser. HTH 

granules contain 65 – 70% available chlorine, at low concentrations HTH is recommended by 

the WHO as a way to disinfect drinking water, with higher concentrations used to disinfect 

surfaces. Finally, pine antiseptics were reported to be used. Pine antiseptics contain pine oil, 

which is a phenolic disinfectant that is an effective microbicide, fungicide, but not an effective 

virucide. 

The requirement for an alternative faecal sludge management (FSM) technology is necessary 

to help improve sanitation solutions around the world. The use of BSFL to manage faFS has 

been shown to effectively reduce FS under different rearing parameters (see Chapter 4), and 

from a range of latrines with variations in physical and chemical characteristics (see Chapter 5). 

However, it is important to consider what potentially dangerous chemicals could be present in 

pit latrine FS that could reduce the efficiency of BSFL. The present study aims to determine 

whether previously reported cleaning chemicals are lethal to BSFL feeding on FS. Dose 

response curves of chemicals reported in a survey conducted in South Africa (see Chapter 3) 

will be obtained to provide an indication of whether the quantities of chemicals reported to be 

used have a detrimental effect on BSFL. 
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6.3. Methods 

6.3.1. Faecal sludge 

Faecal sludge for the experiments was collected from non-chemical, portable toilet placed at 

the experimental site.  In order to ensure that no chemicals were present in the FS, clear 

instruction regarding its use were provided, and the investigators emptied the toilet every two 

days, removing any toilet paper. Faecal sludge was homogenised using a drill with a paint 

mixer bit. Following mixing, the FS was divided into labelled batches of 500g, and frozen at -

20OC for 48hrs to kill any fly eggs/larvae present. The FS was stored in a refrigerator until 

required. 

6.3.2. Non-excreta additives 

In order to test toxicity of Jeyes Fluid, Madubula, HTH, and Pine antiseptic to BSFL, a serial 

dilution of each chemical was created (A – F). Additionally, two further concentrations were 

assessed during the experiment: the manufacturers recommended use (G), 1.2% Jeyes Fluid, 

1% Madubula, 0.1% HTH, and 3% Pine antiseptic, and the household owners reported use (H), 

0.12% Jeyes Fluid, 0.15% Madubula, 0.15% HTH, and 2% Pine antiseptic. A negative control 

(distilled H2O) was tested, as well as a serial dilution of a positive control, Doom, a permethrin-

based insecticide. A pyrethroid-based insecticide was selected based on a study which 

previously demonstrated BSFL susceptibility (Tomberlin 2001), however this study was 

conducted in 2001, with no subsequent research conducted. Table 6-1 shows the final 

concentration (g kg-1 FS), of cleaning chemicals, and the positive and negative controls tested. 

After preparing the solutions, a third party allocated randomly generated numbers to each 

solution, blinding the results from the investigators. The solutions were kept refrigerated at 

4°C before use. 
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Table 6-1 Concentration, g kg
-1

, of solutions tested on BSFL, including four cleaning chemicals reported 
to be used in South African latrines, Doom, a permethrin-based insecticide positive control, and 
distilled water negative control. 

 
Concentration (ID) 

Chemical A B C D E F G† H‡ 

Jeyes Fluid 503 50.3 5 0.5 0.05 0.005 6 0.60 
Madubula 503 50.3 5 0.5 0.05 0.005 5 0.75 

Pine Antiseptic 503 50.3 5 0.5 0.05 0.005 15 10 
Chlorine 25 2.5 0.3 0.025 0.0025 0.00025 0.025 0.038 

Doom (Positive Control) 5 1 0.1 0.01 0.001 0.0001 
  

Water (Negative Control) 503 
       

† Manufacturers recommended concentration, ‡ Household owners reported use 

6.3.3. Black soldier fly larvae 

The BSFL used in the experiments were collected from a colony at the Mariendahl 

Experimental Farm, maintained by AgriProtein Technologies and the University of 

Stellenbosch, South Africa. The method of BSF egg collection and early-stage larval rearing is 

described in a previous study (see Chapter 4). Twenty five larvae were counted and placed in 

containers for each replicate to be used in the experiment described below. 

6.3.4. Experimental setup 

A FS feeding rate of 100mg larvae-1 day-1 was selected for the experiment, as it is suitable for 

the successful development of BSLF (see Chapter 4). The quantity of FS added was 17.5 grams 

per week, based on 25 larvae. Labelled 100ml plastic containers had 17.5g of FS added to 

them, then 8.8ml of chemical solution was mixed in, and the pH measured with a handheld 

meter (PHH-5012, Omega, UK). The addition of liquid raised the moisture content of the FS to 

approximately 75%. The moisture content was selected as it had significantly higher faecal 

matter reduction (FMR) than 65% and 85% (see Chapter 4). Also, it was found in preliminary 

experiments that FS with a higher moisture content (>75%) stimulated larval crawl-off. Each 

container had 25 larvae added to them. Four replicates, each containing 25 larvae, were tested 

for each solution (n=39), a total of 100 BSFL for each chemical concentration (WHO 2006). 

Each 100ml container was placed in a 1 litre plastic tub and covered with netting, preventing 

other flies from ovipositing. The experimental containers were stored in a controlled 
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environment, approximately 27°C, 70% RH, and a 12:12 day/night light cycle. Quantities of FS 

and chemical solution were premixed and added to replicates every 7 days which prevented 

mixing inside the 100ml containers, potentially damaging the larvae. The FS in the feeding 

containers was examined for surviving BSFL before re-feeding, and 24 hours after feeding. This 

procedure continued until BSFL started to develop into prepupae in over 50% of the chemical 

solutions tested. At this point all prepupae, larvae, and residues were counted and weighed. 

6.3.5. Data analysis 

Larval and prepupal count data were entered into Excel 2013 (Microsoft, Washington, USA). A 

PROBIT analysis, using SPSS Statistics 20 (IBM, New York, USA), was used to determine dosage-

mortality regression equations plot a dose response curve for each chemical and calculate 50% 

lethal dose (LD50) and 20% lethal dose (LD20) for each chemical. Data were unblinded post-

analysis. 

6.3.6. Ethical clearance 

Ethical approval for this study was granted by LSHTM Observational/Interventions Research 

Ethics Committee (#5972, amendment #A394) (see Appendix B). 

6.4. Results 

Mortality obtained in the negative control of distilled water was 20% (95% CI; -2.7 – 42.7). All 

results presented are adjusted for this mortality. The presence of Jeyes Fluid had a significant 

effect on BSFL mortality (Z-test = 7.3; P < 0.001), LD50 of 103g kg-1 (95% CI 47.1 – 229.5), and 

LD20 of 44.5g kg-1 (95% CI 9.1 – 84.5. Madubula had a significant effect on BSFL mortality (Z-test 

= 7.5; P < 0.001), LD50 of 134.5g kg-1 (95% CI 74.9 – 326.2), and LD20 of 82.8g kg-1 (95% CI 38.9 – 

155.6). HTH and pine antiseptic had no significant effect on BSFL mortality, Z-test = 1.1; P = 

0.27, Z = 1.5; P = 0.13, respectively. The Doom positive control had a significant effect on larval 

mortality (Z = 2.5; P = 0.012), however no confidence intervals could be predicted for the LD50 

of 6.0g kg-1, or LD20 of 2.0g kg-1. The highest concentration of Doom, 5g kg-1, only achieved a 
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58% (SE ± 9.3) mortality. Table 6-2 displays mean mortality, and 95% confidence intervals, for 

all chemical solutions tested. Starting pH of the negative control with water was 8.15. The pH 

of FS with chemicals ranged between 6.78 and 8.94, and had no significant effect on mortality 

(F = 2.24; df = 1, 37; P = 0.14).  
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6.5. Discussion 

The study presented here has shown that some commonly used cleaning chemicals have a 

significant impact on the mortality of BSFL when added to FS. It is evident that Jeyes Fluid and 

Madubula have a significantly negative affect on BSFL mortality. Low doses of Jeyes Fluid and 

Madubula, 44.5g kg-1 and 82.8g kg-1 respectively, can cause BSFL mortality equal to a negative 

control of distilled H2O. However, the quantities of chemicals required to cause an increase in 

mortality is far higher than used in practice under user conditions. Manufacturers’ guidelines 

recommend approximately 7.5 times lower concentration of Jeyes Fluid, and 16.5 times lower 

concentration of Madubula, to be used while cleaning. This implies that household owners 

would have to use the manufacturers recommended amount of Jeyes Fluid once a day, or 

twice a day for Madubula, to have a significant effect on BSFL mortality. Furthermore, pit 

latrine owners reported using 75 times lower concentration of Jeyes Fluid than was found to 

increase mortality, and 110 times lower concentration than Madubula. Therefore, it can be 

assumed that the use of Jeyes Fluid and Madubula would not have a negative effect on BSFL 

mortality if pit latrine owners continued to use it, and the FS was then fed to BSFL. 

The results indicate that the use of HTH granules and pine antiseptic as cleaning chemicals is 

very unlikely to increase mortality of BSFL. The concentrations of both chemicals investigated 

never produced a 100% mortality result, which is why the PROBIT model could not estimate 

lethal doses. Considering that the highest concentration of HTH investigated was 10,000 times 

higher than the manufacturers recommended amount, and 650 times higher than pit latrine 

owners reported use, it is safe to assume that HTH granules will not have a detrimental effect 

on BSFL mortality. The same can be assumed for pine antiseptic, where the highest 

concentration investigated was 33 times higher than the manufacturers recommended 

amount, and 50 times higher than pit latrine owners reported use. However, chlorine users 

reported adding up to 27 litres of water along with the chlorine. This addition of water could 
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lead to the FS containing unsuitably high moisture content, resulting in the sludge needing to 

be dewatered before being fed to BSFL. 

It must be considered that Jeyes Fluid, Madubula, HTH and pine antiseptic contain chemicals 

that are found in other cleaning chemicals which could potentially affect BSFL. It is known that 

phenolic compounds can reduce the larval growth of herbivorous insects (Duffey et al. 1981, 

Kubo 1993). It is important to increase how much is known about the effects of phenolic 

compounds on BSFL. Also, further work is necessary concerning surfactants which are found in 

pine antiseptics, and thousands of other cleaning products, and are known to inhibit growth of 

aquatic dipteran larvae (Ostroumov 2010).   

The negative control produced a mortality of 20% (SE ± 7.1), equivalent to mortalities when 

BSFL were fed on dairy manure at a similar feeding rate (≈ 23%) (Myers et al. 2008). However, 

the mortality was high compared to a previous study that investigated the life history traits of 

BSFL, including mortality, at various relative humilities (≈ 3%) (Holmes et al. 2012). The positive 

control of a pyrethroid based insecticide powder, diluted in water, was expected to be capable 

of causing 100% mortality at most concentrations. This is because previous research had 

shown BSFL are susceptible to insecticides (Furman et al. 1959, Kilpatrick et al. 1959, Axtell et 

al. 1970), including pyrethroid-based insecticides (Tomberlin 2001). However, the positive 

controls produced curious results, with none of the concentrations causing 100% mortality. It 

is possible that the insecticide dust used, which was presented in a water solution, did not 

dissolve fully. This could explain how the reported results are from far lower concentrations 

than calculated. Alternatively, it is also possible that the BSFL have evolved a resistance to the 

insecticide, since South Africa manufactured over R700,000,000 (≈$100,000,000) and imported 

R850,000,000 (≈$120,000,000) worth of pesticides, insecticides, fungicides or herbicides in 

2011 for use in crop protection, household and garden use, the evolution of an insecticide 
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resistance is feasible (StatsSA 2013). Further research is required to determine the levels of 

insecticides that are present in FS, and the susceptibility of BSFL to them. 

The method of BSFL feeding on FS is important to consider when discussing the issues of 

chemical induced mortality, since this study was conducted in laboratory conditions, very 

different to real world situations. If the BSFL are utilised as an in-situ solution, where BSFL are 

inoculated into pit latrine vaults then later harvested for protein and fats, then the addition of 

cleaning chemicals will be highly varied. When a pit latrine owner cleans their latrines, and 

pour the excess chemicals and water into the vault, the chemicals will likely be concentrated 

over a small surface area, rather than uniformly spread throughout the FS. If chemicals cause 

specific areas to become unsuitable for BSFL, they will avoid feeding in them. Such behaviour 

has been seen in the past where BSFL have avoided areas of stagnating liquid (Diener et al. 

2011), and preferentially fed around them. The BSFL are known to be tolerant of harsh 

environments, whether they are conducive for development or not. It is possible that the BSFL 

could adapt to the presence of chemicals, although this could extend development time. It has 

been reported that pit latrine owners add kerosene, ash (Biran 2010c), lime and charcoal 

(Biran 2010a) to reduce odours emanating from pit latrines. However, previous research 

determined BSFL feeding on fresh human faeces significantly reduce the concentration of 

volatiles released, compared to controls where BSFL were absent (Banks 2010). There is also 

anecdotal evidence that residue, post-BSFL treatment, have far lower odour intensities 

compared to residue which did not contain BSFL (personal observation). This implies that in an 

in-situ BSFL treatment situation, the action of the BSFL could help reduce odours emanating 

from a pit latrine, increasing user acceptance, while potentially reducing egg laying of disease 

carrying filth flies, such as Musca domestica. Future work is necessary to further investigate 

what effect BSFL have on pit latrine odours, and user acceptance. 
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However, if FS is excavated from vaults, and processed at a decentralised BSFL treatment 

plant, it is important to consider the effect chemicals could have on mortality. It can be 

assumed that after emptying, FS would be mixed, and any excess garbage removed. The FS 

may also have water added, or be dewatered, to achieve an appropriate moisture content for 

BSFL feeding. During these processes, it is expected that any chemicals that may be present in 

concentrated areas, will be uniformly spread throughout the FS. The results reported here 

suggest that at recommended and reported concentrations, the chemicals investigated here 

would not increase the mortality of BSFL. Additionally, although the chemicals added to the FS 

altered the pH, the range was similar to the pH of FS found in previous studies which were 

suitable for BSFL development (see Chapter 5). However, the chemicals investigated here are 

just a small percentage of possible cleaning chemicals which could end up in FS. It is important 

for future work to determine what range of cleaning chemicals is in use in areas where BSFL 

FSM could be implemented.  

6.6. Conclusion 

This study showed that BSFL mortality can be influenced by cleaning chemicals in FS. However, 

the quantities required to increase mortality over natural levels are so high that it is 

improbable they would ever be added to latrines by the users. Even if household owners 

follow manufacturers’ guidelines, then the presence of cleaning chemicals in FS should not 

affect BSFL mortality implying no change in behaviour would be required from household 

owners. It is also important to continue research into the effects of cleaning chemicals and 

other non-excreta additives, such as ash, kerosene, lime, or pit additives used to reduce pit 

filling have on BSFL. In addition, future work needs to be conducted to determine whether 

more pervasive compounds, including: pesticides, insecticides, herbicides, pharmaceuticals, 

and hormones, could have a negative impact on BSFL mortality, and potentially accumulate 

further down the food chain. Faecal sludge potentially has a wide variety of components which 

could affect BSFL. Therefore it is important to consider them in respect to FSM. However, this 



 

Ian J. Banks Chapter 6) 185 

study has provided initial evidence that commonly used chemicals have a small effect on BSFL, 

further providing evidence for the use of black soldier fly larvae as a novel human FSM system.  
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Chapter 7) Discussion and Conclusion 

7.1. General discussion 

Improved sanitation is vital to improving social and economic development in low- and middle 

income countries (Mara et al. 2010). On-site sanitation is recommended as the most suitable 

method (WHO/UNEP 2006) to improve sanitation globally, however, issues arise when pit 

latrines become full and require emptying. The lack of faecal sludge (FS) treatment and 

dumping sites means there is a requirement for novel faecal sludge management (FSM) 

technologies.  

The use of black soldier fly larvae (BSFL) has been suggested for a number of reasons, 

including: suitability for artificial rearing (Sheppard et al. 2002), ability to develop on and 

efficiently reduce, a variety of organic materials, (Newton et al. 2005, Diener et al. 2011), 

yielding a valuable prepupae high in protein and fat (Newton et al. 2005) which can be used as 

a protein source for animals (Hale 1973, Newton et al. 1977, Bondari et al. 1987, St-Hilaire et 

al. 2007b, Hem et al. 2008), or have fats transformed into biodiesel (Li et al. 2011a, Li et al. 

2011b, Zheng et al. 2012a, Zheng et al. 2012b), the BSFL have also been shown to reduce 

pathogens in chicken and dairy manure (Erickson et al. 2004, Liu et al. 2008), and human 

faeces (Lalander et al. 2013), and are known to develop in pit latrines (Kilpatrick et al. 1956, 

Irish et al. 2013), and on fresh human faeces (Banks 2010, Lalander et al. 2013). 

For these reasons, it was suggested that BSFL could be an environmental, scalable, and 

suitable FSM technology, which could reduce indiscriminate dumping and disease, and provide 

an income for entrepreneurs. However, a number of questions have to be answered before 

BSFL can be used in FSM. Previous research has shown that they can digest fresh human faeces 

(Banks 2010, Lalander et al. 2013), but there was little data on how key rearing parameters 

affected their development. There was also little data on their ability to develop on, and 

digest, pit latrine FS. It was vital to determine how effectively BSFL were at faecal matter 
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reduction (FMR) and prepupal biomass production while feeding on fresh faeces and pit latrine 

FS under different key rearing parameters. It was also a priority to determine variations in the 

physical characteristics, and chemical components of different layers of pit latrine FS, and what 

effects they had on BSFL development. Finally, it was important to understand the effect of 

commonly used cleaning chemicals, which could be present in FS, on the mortality of BSFL.  

This study has shown that BSFL can develop successfully on fresh human faeces. Growth rate 

plasticity means that larvae are capable of successfully developing on a range of resources that 

may be transient in nature (Metcalfe et al. 2001, Tu et al. 2003, Wright et al. 2003, Dmitriew et 

al. 2005, Dmitriew 2011), and implies that BSFL could be capable of consuming FS with a range 

of nutritional contents, while still being capable of developing into valuable prepupae. The 

study has shown that BSFL are effective at FMR. Furthermore bioconversion rates of human 

faeces into prepupal biomass are more efficient than when reared on swine manure, chicken 

manure and municipal organic waste (MOW) (Sheppard et al. 1994, Newton et al. 2005, Diener 

et al. 2011). The results supported the use of BSFL as a novel FSM solution. However more 

research was needed to determine BSFL ability to consume pit latrine FS. 

It was necessary to determine the physical and chemical characteristics of FS from pit latrines 

in a country which could benefit from a novel technology. The study showed that physical and 

chemical characteristics of FS collected in this study were comparable to research also 

conducted in South Africa (Bakare 2014), and Tanzania (Irish et al., 2013, Torondel, LSHTM, 

unpublished data). The results indicate similar trends in the total solids (TS), total chemical 

oxygen demand (tCOD), protein, volatile fatty acids (VFAs) and carbohydrates, as depth 

increased to previous studies in South Africa (Bakare 2014), Tanzania, and Vietnam (Torondel, 

LSHTM, unpublished data). The current study found that FS collected had lower admissible 

heavy metal concentrations than European Union (EU) standards for FS which can be used in 

agriculture, except copper and mercury (EU 1986). It was found that the physical and chemical 



 

Ian J. Banks Chapter 7) 191 

characteristics of the FS were suitable for BSFL development (Fatchurochim et al. 1989, Popa 

et al. 2012). The study implies that, although there is variation in FS between, and within, 

latrines, which was to be expected, there will be regularity between different countries, with 

FS suitable for BSFL development. These results can be extrapolated to suggest that BSFL as a 

novel FSM technology could be suitable for many countries around the world, depending on 

their ability to develop successfully on FS.  

Prior to testing the ability of BSFL to develop on a range of different FS, it was important to 

identify how key rearing parameters affected BSFL FMR and prepupal production when reared 

on homogenised top layer FS. This study showed that the most effective FMR (≈58%) was 

comparable to BSFL FMR of chicken manure (≈50%) (Sheppard et al. 1994), and higher than 

common houseflies, Musca domestica, FMR of chicken manure (≈30%) and cow manure 

(≈25%) (Morgan et al. 1975). This indicated that the use of BSFL to manage human FS would 

effectively reduce the mass of the FS by half, resulting in easier residue management, post-

processing. The study showed that key rearing parameters had a significant effect on FMR, and 

prepupal production, of BSFL when they developed on FS. Moisture content, FR and LD can be 

controlled in a decentralised FSM plant. Moisture content can be controlled by the drying, or 

addition of water, of FS. The FR used in a FSM plant will depend on what the desired outcome 

of the plant is. If a treatment plant’s primary aim is to reduce the mass of FS to a safer residue, 

then low a feeding rate will result in more efficient FMR, but lower prepupal production. 

Conversely, if prepupal production is the primary aim of a BSFL treatment plant, and FMR 

secondary, then a higher FR would be beneficial. The study also suggests that the purpose of a 

decentralised BSFL treatment plant can be tailored by adjusting the key parameters 

investigated. When considering using an in-situ BSFL treatment method, FS MC of a pit latrine 

must be considered before implementation. Additionally, the water table, and seasonality 

must be considered before implementation. A rising water table, due to seasonal rainfall, 

could cause flooding of pit latrines, raising the MC of the FS to inappropriate levels. Feeding 
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rate and LD of BSFL in-situ would be difficult to determine. However, the results presented 

indicate that lower FRs result in increased FMR. This is important when the main aim of an in-

situ treatment solution is to improve FMR, and increase the life span of a pit latrine. 

Additionally, the design of a specialised BSFL toilet will be heavily influenced by all three 

parameters. However, a significant amount of research and engineering must be undertaken 

before a BSFL toilet is an achievable FSM technology. This study has shown that key rearing 

parameters can affect FMR and prepupal production of BSFL when reared on pit latrine FS. 

Due to the variation in how BSFL can be utilised to manage FS, the results indicate that the key 

parameters can be adjusted depending on what the primary aim is, FMR or prepupal 

production. 

One of the key aims of this study was to determine how BSFL developed on FS from various 

layers of a pit latrine, with varying physical and chemical characteristics. It was found that FS 

depth had a significant effect on FMR efficiency. With the highest FMR in FS excavated from 

the first metre of pit latrines. The highest wet weight FMR (≈65%) was higher than 

homogenised top layer pit latrine FS (≈58%) (see Chapter 4), fresh human faeces (55%) (Banks 

et al. 2014), and chicken manure (≈50%) (Sheppard et al. 1994). It is also far higher than the 

reduction caused by M. domestica feeding on chicken manure (≈30%) or cow manure (≈25%) 

(Morgan et al. 1975). However, the FMR is still lower than BSFL reduction of MOW (≈76%) 

(Diener et al. 2011), and far below the FS FMR capability of Tiger worms (96%) (Furlong et al. 

2014). Although Tiger worms provide a low maintenance, affordable, effective and safe 

replacement for septic tanks, no valuable products are produced, whereas BSFL FSM methods 

benefit from the production of protein and fat rich prepupae. It is important to note that the 

FMR on the combined FS layer, although lower than some layers, was still approximately 50%. 

The study has shown that the change in chemical characteristics, pH, tCOD, sCOD, NH4
+, 

protein, carbohydrates, VFAs, and heavy metals, had no significant effect on the FMR 

efficiency of BSFL when developing on FS. This suggests that BSFL are capable of efficiently 
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reducing FS within a wide range of the characteristics tested. This study showed BSFL reared 

on FS produce prepupae significantly smaller than previous studies (Diener et al. 2011)(see 

Chapter 4). However, it is possible to increase prepupal size by increasing feeding rate (Myers 

et al. 2008, Diener et al. 2009, Banks et al. 2014)(see Chapter 4). Additionally, the protein 

value and amino acid composition of prepupae is comparable to alternative animal feed 

protein sources (Diener et al. 2009, Pieterse et al. 2014). Although the fat content of BSFL 

reared on FS is far lower than when reared on other food sources (Hale 1973, Booram et al. 

1977, St-Hilaire et al. 2007b), it was suggested that the fat content could be increased by 

addition of high lipid wastes (St-Hilaire et al. 2007a). The concentrations of heavy metals in 

BSFL prepupae reared on FS are important when considering the use of BSFL as a source of 

animal protein. Regulations inside the European Union (EU) limit the concentrations of heavy 

metals in animal feed, and the current study found that the mean arsenic and mercury 

concentration is lower than, or equal to the current animal feed regulations. However, the 

cadmium and lead concentrations are higher. It is possible to reduce the heavy metal 

concentrations in prepupae by avoiding contaminated food sources. It has been shown that, 

while BSFL can develop on a variety of layers of FS, the bioconversion rates are reduced 

compared to previous studies (Diener et al. 2011, Banks et al. 2014). These factors are 

important when considering different FSM approaches, including in-situ BSFL and 

decentralised BSFL FSM plants. In an optimum in-situ BSFL treatment solution, BSFL will 

consume all viable FS, and then survive on fresh excreta which are deposited daily by users. 

For a decentralised BSFL approach, an optimum scenario was economically feasible, by 

increasing bioconversion rates to achievable values, enhancing prepupal crude fat content (St-

Hilaire et al. 2007a), reducing FMR, reducing operational costs, and increasing product values 

to realistic values. It could be argued that an optimum scenario is a fabrication, although 

considering the conservative assumptions made by the model for products sale value, and 

operational costs, and also considering methods of increasing bioconversion and enhancing fat 
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content, it can be argued that an optimum model is feasible. What can be established is that 

the sale of residue must be considered a vital aspect to the successful BSFL FSM business 

model. Solutions suggested in this study could help improve sanitation for billions of people 

around the world, however it was important to investigate the potential problems caused by 

hazardous substances in FS.  

The study showed how some commonly used cleaning chemicals have a significant impact on 

the mortality of BSFL when added to FS. Jeyes Fluid and Madubula had a significantly negative 

effect on BSFL viability. However, the results implied that household owners would have to use 

the manufacturers recommended amount of Jeyes Fluid once a day, or twice a day for 

Madubula, to have a significant effect on BSFL mortality. Therefore, it can be assumed that the 

use of Jeyes Fluid and Madubula would not have a negative effect on BSFL mortality if pit 

latrine owners continued to use it, and FS fed to BSFL. The results also showed how chlorine 

(HTH) granules and pine antiseptics are very unlikely to increase mortality of BSFL. It must be 

considered that Jeyes Fluid, Madubula, HTH and pine antiseptic contain chemicals that are 

found in other cleaning products which could potentially affect BSFL. It is known that phenolic 

compounds can reduce the larval growth of herbivorous insects (Duffey et al. 1981, Kubo 

1993), and surfactants found in pine antiseptics, and thousands of other cleaning products, are 

known to inhibit growth of aquatic dipteran larvae (Lewis et al. 1983, Lewis 1991, Ostroumov 

2010). Therefore it is important to increase how much is known about the effects of these 

compounds, and others, on BSFL. The method of BSFL feeding on FS is important to consider 

when discussing the issues of chemical induced mortality, since the study was conducted in 

laboratory conditions, very different to real world situations. If the BSFL are utilised as an in-

situ solution, where BSFL are inoculated into pit latrine vaults then later harvested for protein 

and fats, then the addition of cleaning chemicals will be highly varied. If chemicals cause 

specific areas to become unsuitable for BSFL, they will avoid feeding in them. This behaviour 

has been seen in the past where BSFL have avoided areas of stagnating liquid (Diener et al. 
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2011), and preferentially fed around them. However, if FS is excavated from vaults, and 

processed at a decentralised BSFL FSM plant, it is important to consider the effect chemicals 

could have on mortality. It is expected that any chemicals that are present will be uniformly 

spread throughout the FS. The results reported suggest that at recommended and reported 

concentrations, the chemicals investigated would not increase the mortality of BSFL. Faecal 

sludge potentially has a wide variety of components which could affect BSFL viability. 

Therefore it is important to consider them in respect to FSM. However, this study has provided 

initial evidence that commonly used chemicals have little effect on BSFL, further providing 

evidence for the use of BSFL as a novel FSM system. 

7.2. Limitations of study 

There were a number of issues which arose throughout the course of the current study. In 

Chapter 4 and Chapter 5, the dry weight FMR calculation was subject to an anomaly which 

resulted in a net gain of total solids. Weighing of FS and residue was conducted by the author, 

or under the author’s supervision, ensuring that correct weighing protocols were followed, and 

although the data and calculations were thoroughly checked, it is unknown what caused the 

anomaly. The reporting of dry weight FMR is preferential, as it removes the affect variations in 

FS and residue moisture content has on the results, giving a more accurate representation of 

BSFL FMR capacity. Therefore, due to this anomaly, the FMR capacity of BSFL has only been 

reported as wet weight.  

In Chapter 5, a problem developed when filth flies infested replicates which did not contain 

BSFL. The infestation occurred within the first 7 days of the experiment, after which netting 

was used to cover the replicates. However this was too late, with the infestations established, 

removing 100% of the filth fly larvae was not possible. Due to the wide spread number of 

infestations it was not possible to remove the infested replicates from the experiment, as 

there would not have been sufficient remaining for analysis. It was also not possible to restart 
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the experiment again due to time constraints. However, the intensity of the infestation varied 

between replicates, and it was decided to keep infested replicates in the experiment. 

Fortunately, this problem produced thought-provoking data. Even though the replicates were 

infested within the first 7 days of the experiment, only replicates not containing BSFL were 

infested, albeit at an early stage of their development. Due to small size of the BSFL, the 

physical characteristics of the FS had not changed significantly compared to a paired replicate 

without BSFL. Furthermore, there was no detectable difference in foul odours released by both 

replicates, although this was only determined using the experimenter’s sense of smell. These 

results provide further evidence of semiochemical communication between BSFL and filth flies, 

which inhibits adult oviposition or larval development, warranting further investigation. 

In chapter 6 an issue occurred when the pyrethroid-based insecticide positive control failed to 

cause 100% mortality, even at the highest concentrations. It is thought that this was due to the 

insecticide powder being insoluble in water, resulting in uneven distribution and dilutions. It is 

also suggested that the BSFL could have developed a resistance to pyrethrioid insecticides due 

to high usage in South Africa. Additionally, in chapter 6 the chlorine and pine disinfectant 

tested did not cause 100% mortality, resulting in insufficient data to calculate lethal doses 

using PROBIT analysis.  

There are also a number of improvements which could have been made to the study. Ideally, a 

larger number of pit latrines would have been surveyed and the layers of FS excavated. 

Additionally, physical and chemical characteristic analysis could have been conducted, 

gathering more data on variation and trends in FS. It would also have been worthwhile to 

obtain FS mechanically emptied from pit latrines managed by local municipalities, and 

compared the composition to those manually emptied. Furthermore, the identification of 

insects found in FS would have gathered data on species variation found in pit latrines, a topic 

which lacks in-depth investigation. It would also have been useful to conduct in depth analysis 



 

Ian J. Banks Chapter 7) 197 

of FS for hazardous substances, including pesticides, insecticides, hormones and organic 

compounds, which could potentially bioaccumulate in prepupae. In regards to the survey, it 

would have been worthwhile to ask more in-depth questions about the use of BSFL as a FSM 

technology, and people’s opinions on use of FS reared BSFL as a product. 

The experiments described in this study were performed in a retro-fitted experimental room. 

The environmental conditions in the room were controlled using a heater and humidifier, and 

the space was limited. With a larger, purpose built room, variations in temperature and 

humidity would not occur, and there would be more space available. With the extra space an 

increased number of replicates could be performed, improving the statistical strength of the 

data obtained. With a larger space, it would also have been possible to conduct larger scale 

experiments to test mass rearing of BSFL on FS, and to test more levels of moisture content 

and feeding rates in the experiment conducted in Chapter 4. The increase in space could also 

have allowed more than 1 feeding rate to be evaluated in the experiment described in Chapter 

5. Finally, Chapter 6 could have been improved by testing more chemicals, including cleaning 

chemicals and pit latrine additives used to decrease pit fill-up rate, such as lime, ash, and 

commercially sold additives. 

During the work conducted in this study, a number of lessons were learnt by the authors. 

Locating suitable pit latrines was harder than anticipated. The experimental work was 

conducted in the Western Cape Province of South Africa, which has high sanitation coverage 

provided by the municipal government. It was found that the common design of pit latrines 

used by the government prevented manual emptying, due to a solid concrete slab and 

superstructure. Mechanical emptying was viable, however this method would have made it 

impossible to empty the FS in specific layers. In order to locate suitable latrines it was 

necessary to travel to the Eastern Cape Province, which had lower government provided 
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sanitation coverage. However, it still took 5 days to locate suitable pit latrines, even with the 

help of local government officials and non-government organisations.  

It is also interesting to note that pit latrine owners who were surveyed were very willing to be 

interviewed once the project had been fully explained. This emphasises how important the 

topic of sanitation is to people who suffer from a lack of suitable FSM technologies, with the 

owners of pit latrines which were excavated being very gracious. However, it was found that 

not all questionnaires were answered correctly, with the main inconsistency being in the 

reporting of using the pit latrine to dispose of household waste. It is perhaps understandable 

that people who are advised not to dispose of waste into pit latrines are reluctant to report 

the behaviour. 

During the planning of the experiments, the authors estimated how long it would take to setup 

and terminate the experiments, and weigh the FS and BSFL periodically. However, the time it 

took to perform each of these tasks was far longer than anticipated, especially when 

terminating the experiments. Even a relatively “simple”, but well planned, experimental design 

can result in a larger number of work-hours than anticipated, resulting in the requirement to 

employ assistants. This was an invaluable lesson learned which will be considered in all future 

experimental designs, and budgets. 

7.3. Future work 

The study presented has major implications on how BSFL can be used as a FSM method. On-

site applications include in-situ BSFL, and the development of a dedicated BSFL toilet, which 

could be used in areas where the off-site method is unfeasible. The study has shown that fresh 

excreta deposited into pit latrines, or BSFL toilets, can be effectively reduced, degrading the 

waste and decreasing fill-up rates. Also, BSFL can effectively reduce FS already present in pit 

latrines, reducing FS with a wide range of physical and chemical characteristics. The study 

indicates that commonly used cleaning chemicals should not have a negative impact on BSFL 
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viability if they are used in-situ. Implying little behaviour change would be required of pit 

latrine owners in regards to hygiene practices, with the presence of BSFL within a pit not 

reducing the cleanliness of a latrine.  

In situations where on-site BSFL FSM methods are unsuitable, it is suggested that an off-site 

decentralised method could be utilised if economically viable. This study has shown how BSFL 

can effectively reduce homogenised FS with a wide range of physical and chemical 

characteristics. A further advantage of off-site BSFL FSM is that water can be added or 

removed from FS which has unsuitable moisture content for BSFL development. Furthermore, 

by adjusting feeding rates and larval densities, it is possible to match the objectives of a BSFL 

FSM plant to a desired outcome, focussing on FMR, prepupal production, or a combination of 

both. 

However, before any of these BSFL FSM methods can be fully implemented, there are still a 

large number of questions which must be answered. To be able to implement the use of BSFL 

in-situ, it is vital to assess BSFL ability at reducing FS in a real pit latrine. This will indicate 

whether BSFL are capable of slowing pit latrine fill-up rates, ultimately extending the life span 

of the pit latrine. It is also important to investigate devices which could be used to retrieve 

prepupae from within pits, for example the “Kone” or “Daisy Chain”, described previously (see 

Chapter 1). These devices must be tested to determine prepupal collection efficiency, and the 

nutritional content of prepupae harvested must be ascertained. It is also important to 

determine user acceptability of BSFL as a method of FSM. An alternative on-site FSM method 

suggested is the development of a dedicated BSFL toilet. However, this technology is still at a 

very early stage of development, with a large amount of research required to obtain a feasible 

prototype, which would then require development and testing.  

One problem which is shared by both on-site solutions is how to sustain a BSFL population. It 

has been proposed that in communities where on-site BSFL FSM is suitable, local 
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entrepreneurs could provide a service of collecting prepupae from latrines, while maintaining 

the BSFL populations. However, this business model needs in-depth investigation, and may not 

be suitable for BSFL toilets located in crisis situations or remote locations. It has been 

suggested that BSFL populations could be maintained by adult BSF from the surrounding 

environment. However, research must be conducted on how to ensure adults oviposit in 

suitable locations. This could be by using man made oviposition sites, an oviposition attractant 

semiochemical which lures female BSF into egg laying, or a combination of both. 

The implementation of off-site BSFL FSM also requires investigation. There is currently a pilot 

BSFL FSM plant being run in South Africa by The BioCycle, described previously (see Chapter 1). 

It is important that the feasibility of this model is examined, with investigation into how the 

model could be expanded in South Africa, and other countries. It is important to determine the 

size range of communities that can be covered by decentralised BSFL plants, as the number of 

latrines in a community will be a limiting factor for an economically feasible business model. 

The current study has suggested that varying the feeding rate and larval density in an off-site 

BSFL plant could provide flexibility depending on a desired outcome: FMR, prepupal 

production, or a balance of both. It is therefore vital that this adaptability is investigated, with 

thorough research into what outcome thresholds are achievable, variations in between, and 

how the result affect the economic viability of the business model. 

The HAAS business model (see Appendix A) indicates that a decentralised BSFL FSM business 

model is financially feasible under correct conditions. The model was designed for Dar es 

Salaam, Tanzania, and was tailored to provide a free pit latrine emptying service. It is 

recommended that future work is conducted into refining the model, and determine location 

specific data for low- and middle- income countries which would benefit from BSFL FSM 

technologies. Also, the study could incorporate other business models, such as Sanergys end-

to-end approach of excreta storage, collection, transport and treatment (Sanergy 2013). This 
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would reduce overheads, and potentially change the model significantly. The business models 

are also dependant on data gathered on the value of prepupae and residue, however these 

issues will be discussed below. 

Regardless of which BSFL FSM method is implemented, there are a number of challenges, and 

opportunities, which need to be investigated. Considering the wide range of physical and 

chemical characteristics of FS, the limitations at which BSFL can successfully develop, including 

upper and lower moisture content, and the quantities of organic material in FS, needs further 

attention.  

An incidental finding of the present study was that it provided anecdotal evidence, which 

supports previous research, for BSFL controlling filth fly populations. It is recommended that 

the topic is rigorously researched, as the control of disease spreading filth flies would be 

beneficial to BSFL FSM methods, and the surrounding communities. Additionally, it has been 

suggested that a semiochemical is responsible for filth fly control. If correct, a synthetic version 

could be manufactured and used to control filth flies populations, helping reduce disease.  

It is also important to determine what environmental characteristics could limit the successful 

rearing of BSFL, especially in low- and middle-income countries where power and water 

sources may be inadequate to maintain constant rearing conditions. A lot of research must be 

conducted into how to successfully setup and maintain adult BSF colonies, specifically in 

resource poor areas mentioned above. Currently there is a number of organisations 

researching into the mass rearing of BSFL, including AgriProtein (AgriProtein 2014) and The 

BioCycle (BioCycle 2014) in South Africa, EnviroFlight (EnviroFlight 2014) and ESR International 

(ESRI 2014) in the U.S.A, EAWAG (EAWAG 2014) and Bioflytech (Bioflytech 2014) in Europe, 

and PROteINSECT, who work with 12 partners from 7 countries around the world 

(PROteINSECT 2014). These organisations successfully maintain BSF colonies, however a lot of 

research is required to help limit any wastage associated with mass rearing. Methods of egg 
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collection could be improved through investigation into semiochemical oviposition lures. Early 

larval mortality can be improved by examination into early stage larval requirements, such as 

diet and environment, and how they differ from older BSFL. It is also important to consider 

how genetic diversity can affect the mass rearing of BSFL, specifically how variations in 

phenotypes could alter size, egg production, and development time. 

There are also major gaps in knowledge about the products of BSFL FSM, namely the residue 

and the prepupae. It is vital to investigate the value of these products. The value of the residue 

is as a fertiliser, with future work needing to determine the nutrient content, and value in 

plant growth trials. Research must be conducted into how to safely treat the residue to 

remove pathogens, while retaining its value. Alternative methods of residue treatment should 

also be investigated, such as conversion to charcoal for soil amendment, known as biochar. A 

major issue that requires investigation is the potential contamination of residue by hazardous 

components, including: heavy metals, pesticides, insecticides, herbicides, pharmaceuticals, and 

hormones. These contaminates find their way into FS through human excretion or 

environmental leaching, and many are endocrine disrupting compounds (EDC), known to cause 

sterility in men and increase cancer risks (WHO/UNEP 2012). Furthermore, it is recommended 

that an investigation is conducted into liquid effluent produced by BSFL FSM. This is in order to 

determine concentrations of nitrites, which could lead to nitrification of ground water. A 

thorough investigation is required to determine the presence of these contaminants in FS and 

residue, and whether they could potentially limit the use of residue in the food chain. 

Additionally, the same research must be carried out on prepupae which have been reared on 

FS. Research must focus on determining the prepupal value, in regards to proteins and fats, 

methods of safely removing pathogens, acceptability as a protein replacement in animal feeds, 

potential as a source of biodiesel, enhancing prepupal crude fat contents, and the potential 

contamination by hazardous compounds.  
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7.4. Overall conclusion 

A novel FSM system is required to help improve sanitation in low- and middle-income 

countries which currently lack access to suitable FSM. The work conducted in this study shows 

how BSFL could potentially increase the life-span of pit latrines, reducing the frequency of 

emptying, therefore reducing the economic cost on pit latrine owners. Additionally, with 

further investigation, the harvesting of prepupae could provide a source of income for latrine 

owners, or entrepreneurs who offer to service BSFL pit latrines or toilets. Additionally, this 

study has shown that an off-site BSFL FSM plant is economically feasible. By adjusting feeding 

rates and larval densities, it is possible to match the objectives of a BSFL FSM plant to a desired 

outcome, focussing on FMR, prepupal production, or a combination of both. This flexibility is 

important as it means the technology can be tailored to a variety of locations, while this 

adaptability could be central to the successful implication of BSFL as an off-site FSM method. 

Although there are still many topics which need to be investigated, the study presented here 

demonstrates that BSFL are an appropriate method of FSM, both on-site and off-site. They are 

capable of transforming FS into prepupal protein, and a partially-treated residue, providing a 

valuable economic product for low- and middle-income communities. With continued 

investigation, the use of BSFL as a method of FSM could be applied around the world, helping 

improve sanitation, health, and standard of living for billions of people. 
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Appendix A) HAAS Business Model 
  



 

Ian J. Banks Appendices 209 

 

  



 

Ian J. Banks Appendices 210 

 

  



 

Ian J. Banks Appendices 211 

 

  



 

Ian J. Banks Appendices 212 

 

  



 

Ian J. Banks Appendices 213 

 

  



 

Ian J. Banks Appendices 214 

 

  



 

Ian J. Banks Appendices 215 

 

  



 

Ian J. Banks Appendices 216 

 
  



 

Ian J. Banks Appendices 217 

 
  



 

Ian J. Banks Appendices 218 
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Appendix C) Informed Consent Form 
Pit Latrine Survey 

 
Introduction: 
Hello. I am Ian Banks, a student from London School of Hygiene and Tropical 
Medicine, England. I am working with Stellenbosch University, and a company 
called AgriProtein. Together we are looking at ways to improve the emptying of 
pit latrines using an insect called the black soldier fly. The black soldier fly is an 
insect that does not spread disease, and the young black soldier fly (larvae) eat 
lots of waste. These larvae feed on animal and human faeces and may be used to 
improve hygiene and sanitation in communities in South Africa by reducing 
diarrheal disease. The objective of the study is to survey your pit latrine, and if it 
is suitable I will take samples of the pit waste. I will then feed the waste to the 
larvae to see how effective they are at eating it. I would like to take a small 
sample from the pit now, and maybe return to empty it later if it is suitable. 
 
Time 
It will take approximately 30 minutes to fill in the questionnaire, measure 
dimensions of the pit, and take photographs of the pit latrine. If you are happy 
for me to take samples then that will take a further 15 minutes. If I return to 
empty the pit later it may take a whole day to empty. 
 
Household 
I will not ask any questions that make you upset. If you are not happy you do not 
need to give a response during the interview and the survey will stop. All of your 
information provided to us will be kept confidential. A copy of this consent form 
will be given to you and one copy kept by the student. 
 
Contact information: 
If you have any question after interviewing, please contact the below 
information.  
 
Researcher 

 Ian Banks 
 Mariedahl Experimental Farm, Elsenberg, Stellenbosch, 7607 
 072 6113 869 
 ian.banks@lshtm.ac.uk 

 
Do you want to participate in this study? If yes,  
 
 
 
 
__________________________________________ ______________________________________           __________ 

Interviewer (Translator name)  Interviewee     Date  



 

Ian J. Banks Appendices 221 

Appendix D) Pit Latrine Questionnaire 
Pit ID  

Date  

Time  

Province  

Municipality  

Township  

Village  

Latitude  

Longitude  

Elevation  

Type of latrine? Family/Communal 

Name of Latrine Owner  

Owner Contact Number  

Average daily users?  

How many people in family under 5?  

How many people in family between 5 & 15?  

How often do you eat meat? (inc. fish) 3daily/2daily/1daily/weekly/monthly/never 

How often do you eat stampmielies & beans? 3daily/2daily/1daily/weekly/monthly/never 

How often do you eat Maize meal? 3daily/2daily/1daily/weekly/monthly/never 

How often do you eat fruit & vegetables? 3daily/2daily/1daily/weekly/monthly/never 

When was pit constructed?  

When was the pit last emptied?  

Is urine separated? YES/NO 

What is used for anal cleansing? Water/Paper/Leaves/ Other:__________ 

If paper/leaves are used, where are they 
disposed? 

In vault/separated/Other:__________ 

Is the vault content used in agriculture? YES/NO 

If yes, roughly how often?  

Is other waste disposed of in the pit latrine? YES/NO 

Quantity?  

How Frequently?  

If so what? 
Kitchen waste/Wastewater/ 
All waste/Soil/Other:__________ 

Does the family use specific cleaning products 
or chemicals? 

YES/NO 

If so, what? Bleach/Chlorine/Other:__________ 

Quantity?  

How Frequently?  

Does the Family use something to make the pit 
perform better? 

YES/NO 

What? 
Soil/Bleach/Ash/Lime/ 
Other:__________ 

Quantity?  

How Frequently?  
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Questionnaire 

Pit ID  

Latrine design? Slab/VIP/UD/Other __________________ 

Number of vaults?  

Shape of vault(s) Circle/Square/Other:_________ 

Distance from top of the pit to sludge    Metre 

Top layer of sludge Solid/Liquid 

Reported depth of Vault?  

Is sludge at least 150cm Deep? YES/NO 

Is the pit suitable for emptying? YES/NO 
 

BSF Perception 

Would you feed your livestock on BSFL that have eaten pit latrine waste? YES/NO 

Would you eat livestock that have been fed BSFL which have eaten pit latrine 
waste? 

YES/NO 

Would you eat eggs produced by chickens fed BSFL which have eaten pit latrine 
waste? 

YES/NO 

IF feeding livestock on BSFL that have eaten pit latrine waste increased their value, 
would this change your perception? 

YES/NO 
 

Pit Odour 

In Superstructure  

Skatole – Odour Intensity 0/1/2/3/4/5/6 

Ammonia – Hedonistic Tone +4/+3/+2/+1/0/-1/-2/-3/-4 

In Pit  

Skatole – Odour Intensity 0/1/2/3/4/5/6 

Ammonia – Hedonistic Tone +4/+3/+2/+1/0/-1/-2/-3/-4 
 

Pit Emptying 

Is the vault lined? YES/NO 

What is the vault lined with? 
Bricks/Concrete Rings/Mud/ 
Plaster/Other:__________ 

Is the bottom of the vault lined? YES/NO 

What is the bottom of the vault lined 
with? 

Bricks/Mud/Plaster/Other:__________ 

Depth of Sludge (metres)    Metre(s) 

Dimensions of pit (metres) W x H x D    Metre(s) 
 

Notes 
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Appendix E) Latin-squares 

 

A B C D E F G H A B C D E F G H A B C D E F G H

1BSFL 7 2 8 5 1 4 3 6 1BSFL 1 2 6 3 4 5 7 8 1BSFL 4 3 6 1 7 2 8 5

2BSFL 1 5 3 2 7 8 6 4 2BSFL 2 7 1 4 3 6 8 5 2BSFL 6 8 5 3 2 7 4 1

3BSFL 4 6 2 1 3 7 5 8 3BSFL 4 8 5 1 2 7 6 3 3BSFL 3 2 1 6 5 8 7 4

4BSFL 2 7 1 8 6 5 4 3 4BSFL 6 4 8 5 7 1 3 2 4BSFL 1 5 8 7 4 3 2 6

1noBSFL 6 4 5 7 8 3 1 2 1noBSFL 8 3 2 7 1 4 5 6 1noBSFL 5 6 7 8 3 4 1 2

2noBSFL 5 3 7 6 4 2 8 1 2noBSFL 3 6 7 8 5 2 1 4 2noBSFL 7 1 4 2 8 6 5 3

3noBSFL 8 1 4 3 2 6 7 5 3noBSFL 7 5 3 2 6 8 4 1 3noBSFL 2 7 3 4 1 5 6 8

4noBSFL 3 8 6 4 5 1 2 7 4noBSFL 5 1 4 6 8 3 2 7 4noBSFL 8 4 2 5 6 1 3 7

A B C D E F G H A B C D E F G H A B C D E F G H

1BSFL 7 4 6 5 3 2 1 8 1BSFL 4 6 2 3 1 7 5 8 1BSFL 2 6 5 4 8 7 3 1

2BSFL 8 3 1 4 5 6 7 2 2BSFL 5 4 6 7 8 3 2 1 2BSFL 6 5 1 8 3 2 7 4

3BSFL 5 2 4 7 6 3 8 1 3BSFL 2 1 8 6 7 5 3 4 3BSFL 3 4 2 6 1 5 8 7

4BSFL 6 5 2 1 8 7 3 4 4BSFL 1 2 7 8 3 4 6 5 4BSFL 5 3 8 7 4 6 1 2

1noBSFL 4 8 5 3 2 1 6 7 1noBSFL 8 7 1 5 6 2 4 3 1noBSFL 7 8 4 1 2 3 6 5

2noBSFL 3 1 7 6 4 8 2 5 2noBSFL 6 5 3 4 2 8 1 7 2noBSFL 8 7 3 2 5 1 4 6

3noBSFL 2 7 3 8 1 5 4 6 3noBSFL 3 8 4 2 5 1 7 6 3noBSFL 1 2 7 3 6 4 5 8

4noBSFL 1 6 8 2 7 4 5 3 4noBSFL 7 3 5 1 4 6 8 2 4noBSFL 4 1 6 5 7 8 2 3

A B C D E F G H A B C D E F G H A B C D E F G H

1BSFL 6 3 2 5 8 1 7 4 1BSFL 4 2 1 8 5 6 7 3 1BSFL 5 8 3 1 4 2 7 6

2BSFL 3 2 8 6 5 7 4 1 2BSFL 6 7 8 3 1 5 2 4 2BSFL 6 4 7 2 8 3 1 5

3BSFL 8 5 4 3 1 6 2 7 3BSFL 1 8 6 5 7 3 4 2 3BSFL 2 3 1 4 6 5 8 7

4BSFL 5 8 1 4 7 3 6 2 4BSFL 2 6 5 7 3 4 1 8 4BSFL 3 5 4 6 7 1 2 8

1noBSFL 4 6 7 1 3 2 8 5 1noBSFL 7 5 4 2 6 8 3 1 1noBSFL 7 6 8 3 2 4 5 1

2noBSFL 7 1 5 2 4 8 3 6 2noBSFL 8 4 3 1 2 7 5 6 2noBSFL 8 1 2 7 5 6 3 4

3noBSFL 1 7 6 8 2 4 5 3 3noBSFL 5 3 2 6 4 1 8 7 3noBSFL 1 7 6 5 3 8 4 2

4noBSFL 2 4 3 7 6 5 1 8 4noBSFL 3 1 7 4 8 2 6 5 4noBSFL 4 2 5 8 1 7 6 3

A B C D E F G H A B C D E F G H A B C D E F G H

1BSFL 2 7 6 3 5 4 1 8 1BSFL 1 5 2 8 7 4 3 6 1BSFL 4 5 8 6 1 7 2 3

2BSFL 1 4 3 8 7 2 5 6 2BSFL 7 1 5 4 6 3 2 8 2BSFL 1 2 6 4 7 3 5 8

3BSFL 7 6 5 2 4 3 8 1 3BSFL 3 6 7 5 2 8 1 4 3BSFL 3 7 4 2 8 6 1 5

4BSFL 6 5 1 7 2 8 3 4 4BSFL 5 3 4 2 1 6 8 7 4BSFL 7 4 5 1 3 8 6 2

1noBSFL 4 2 8 1 6 5 7 3 1noBSFL 8 2 3 7 4 5 6 1 1noBSFL 2 6 3 7 5 1 8 4

2noBSFL 8 3 2 6 1 7 4 5 2noBSFL 6 4 8 1 5 2 7 3 2noBSFL 5 1 7 8 4 2 3 6

3noBSFL 3 1 4 5 8 6 2 7 3noBSFL 2 8 1 6 3 7 4 5 3noBSFL 6 8 1 3 2 5 4 7

4noBSFL 5 8 7 4 3 1 6 2 4noBSFL 4 7 6 3 8 1 5 2 4noBSFL 8 3 2 5 6 4 7 1

A B C D E F G H A B C D E F G H A B C D E F G H

1BSFL 6 3 8 2 5 4 7 1 1BSFL 7 3 4 8 1 5 2 6 1BSFL 6 3 4 5 7 1 2 8

2BSFL 1 5 2 7 4 6 3 8 2BSFL 4 1 3 5 8 6 7 2 2BSFL 8 1 7 2 4 5 3 6

3BSFL 5 8 4 3 7 2 1 6 3BSFL 8 2 1 4 6 3 5 7 3BSFL 4 7 3 6 1 8 5 2

4BSFL 8 4 1 5 3 7 6 2 4BSFL 2 4 8 1 3 7 6 5 4BSFL 7 6 1 8 3 2 4 5

1noBSFL 2 6 7 4 1 3 8 5 1noBSFL 5 7 6 3 4 2 8 1 1noBSFL 2 8 5 3 6 4 7 1

2noBSFL 3 7 6 8 2 1 5 4 2noBSFL 1 5 2 6 7 4 3 8 2noBSFL 3 2 8 1 5 7 6 4

3noBSFL 4 1 3 6 8 5 2 7 3noBSFL 3 6 5 7 2 8 1 4 3noBSFL 1 5 6 4 2 3 8 7

4noBSFL 7 2 5 1 6 8 4 3 4noBSFL 6 8 7 2 5 1 4 3 4noBSFL 5 4 2 7 8 6 1 3

A B C D E F G H A B C D E F G H A B C D E F G H

1BSFL 8 5 1 3 6 4 2 7 1BSFL 2 8 1 7 4 6 3 5 1BSFL 7 6 3 4 1 2 8 5

2BSFL 5 8 6 1 2 3 7 4 2BSFL 4 6 5 3 2 7 1 8 2BSFL 8 5 2 1 7 3 6 4

3BSFL 3 7 2 4 5 6 8 1 3BSFL 1 3 8 2 6 5 4 7 3BSFL 1 4 6 2 3 8 5 7

4BSFL 2 3 4 6 7 5 1 8 4BSFL 8 7 2 1 3 4 5 6 4BSFL 5 3 4 7 6 1 2 8

1noBSFL 4 1 8 7 3 2 5 6 1noBSFL 5 2 6 4 7 1 8 3 1noBSFL 4 7 1 5 8 6 3 2

2noBSFL 7 6 5 2 8 1 4 3 2noBSFL 7 5 3 8 1 2 6 4 2noBSFL 2 1 8 3 5 4 7 6

3noBSFL 6 4 7 5 1 8 3 2 3noBSFL 3 1 4 6 5 8 7 2 3noBSFL 6 2 5 8 4 7 1 3

4noBSFL 1 2 3 8 4 7 6 5 4noBSFL 6 4 7 5 8 3 2 1 4noBSFL 3 8 7 6 2 5 4 1
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A B C D E F G H A B C D E F G H A B C D E F G H

1BSFL 5 4 7 2 1 6 8 3 1BSFL 4 2 5 8 3 7 6 1 1BSFL 5 3 2 4 7 1 6 8

2BSFL 2 5 8 3 6 7 1 4 2BSFL 7 4 3 1 5 2 8 6 2BSFL 8 1 5 3 2 4 7 6

3BSFL 4 8 2 6 7 3 5 1 3BSFL 2 1 6 5 4 8 3 7 3BSFL 1 2 7 6 4 8 5 3

4BSFL 7 2 4 5 8 1 3 6 4BSFL 3 5 1 7 2 6 4 8 4BSFL 3 4 1 2 5 6 8 7

1noBSFL 3 1 5 8 4 2 6 7 1noBSFL 1 8 2 3 6 5 7 4 1noBSFL 6 7 4 8 1 3 2 5

2noBSFL 1 6 3 7 2 8 4 5 2noBSFL 8 6 4 2 7 3 1 5 2noBSFL 2 6 3 7 8 5 1 4

3noBSFL 6 7 1 4 3 5 2 8 3noBSFL 6 3 7 4 8 1 5 2 3noBSFL 4 5 8 1 6 7 3 2

4noBSFL 8 3 6 1 5 4 7 2 4noBSFL 5 7 8 6 1 4 2 3 4noBSFL 7 8 6 5 3 2 4 1

A B C D E F G H A B C D E F G H A B C D E F G H

1BSFL 7 4 5 1 8 3 6 2 1BSFL 7 1 5 8 4 3 6 2 1BSFL 4 3 2 1 6 7 5 8

2BSFL 5 8 7 6 2 1 3 4 2BSFL 6 5 8 1 2 7 3 4 2BSFL 8 7 3 6 2 1 4 5

3BSFL 2 5 3 8 4 7 1 6 3BSFL 1 3 6 2 5 4 8 7 3BSFL 5 2 1 7 4 8 6 3

4BSFL 3 7 6 5 1 2 4 8 4BSFL 5 8 3 4 7 6 2 1 4BSFL 6 1 7 2 8 5 3 4

1noBSFL 4 1 2 7 5 6 8 3 1noBSFL 2 7 4 3 1 8 5 6 1noBSFL 1 6 4 8 5 3 2 7

2noBSFL 8 2 1 3 6 4 7 5 2noBSFL 3 2 7 6 8 1 4 5 2noBSFL 3 8 5 4 1 6 7 2

3noBSFL 1 6 4 2 3 8 5 7 3noBSFL 4 6 2 7 3 5 1 8 3noBSFL 2 3 8 3 7 4 1 6

4noBSFL 6 3 8 4 7 5 2 1 4noBSFL 8 4 1 5 6 2 7 3 4noBSFL 7 4 6 5 3 2 8 1

A B C D E F G H A B C D E F G H A B C D E F G H

1BSFL 4 7 8 5 3 1 6 2 1BSFL 4 5 6 8 1 3 2 7 1BSFL 5 3 4 1 8 6 2 7

2BSFL 5 8 2 7 6 3 4 1 2BSFL 2 1 8 5 4 6 7 3 2BSFL 4 5 6 8 7 2 1 3

3BSFL 6 1 7 2 4 8 3 5 3BSFL 5 2 7 4 3 1 6 8 3BSFL 7 2 1 6 3 8 4 5

4BSFL 3 5 6 8 1 2 7 4 4BSFL 7 3 2 1 6 8 5 4 4BSFL 2 1 3 7 5 4 6 8

1noBSFL 7 2 1 6 5 4 8 3 1noBSFL 6 7 4 3 2 5 8 1 1noBSFL 3 8 7 4 2 1 5 6

2noBSFL 8 6 3 4 2 5 1 7 2noBSFL 1 6 5 7 8 4 3 2 2noBSFL 1 4 8 3 6 5 7 2

3noBSFL 2 3 4 1 8 7 5 6 3noBSFL 8 4 3 6 7 2 1 5 3noBSFL 6 7 2 5 4 3 8 1

4noBSFL 1 4 5 3 7 6 2 8 4noBSFL 3 8 1 2 5 7 4 6 4noBSFL 8 6 5 2 1 7 3 4
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Appendix F) Multiple regression analysis  

 

       Control#1200     -2.232135   2.295751    -0.97   0.332    -6.766018    2.301748

        Control#800      .3936444   2.389494     0.16   0.869     -4.32537    5.112659

       cont_treat#LD  

                      

               1200     -4.999303   1.623341    -3.08   0.002    -8.205242   -1.793364

                800     -14.49764   1.623341    -8.93   0.000    -17.70358    -11.2917

                  LD  

                      

     Control#200#85      7.460955   3.313632     2.25   0.026     .9168586    14.00505

     Control#200#65      4.858056   3.313632     1.47   0.145     -1.68604    11.40215

     Control#100#85       7.12934   3.246683     2.20   0.030     .7174614    13.54122

     Control#100#65      2.773949   3.246683     0.85   0.394     -3.63793    9.185827

    cont_treat#FR#MC  

                      

             200#85      5.266155   2.295751     2.29   0.023     .7322727    9.800038

             200#65     -5.916296   2.295751    -2.58   0.011    -10.45018   -1.382413

             100#85      2.528643   2.295751     1.10   0.272     -2.00524    7.062526

             100#65      3.845828   2.295751     1.68   0.096    -.6880548    8.379711

               FR#MC  

                      

         Control#85     -5.666241   2.295751    -2.47   0.015    -10.20012   -1.132358

         Control#65     -2.665669   2.295751    -1.16   0.247    -7.199552    1.868214

       cont_treat#MC  

                      

                 85     -6.854683   1.623341    -4.22   0.000    -10.06062   -3.648744

                 65     -6.008372   1.623341    -3.70   0.000    -9.214311   -2.802432

                  MC  

                      

        Control#200      .2115983   2.389494     0.09   0.930    -4.507417    4.930613

        Control#100     -3.188114   2.295751    -1.39   0.167    -7.721996    1.345769

       cont_treat#FR  

                      

                200     -6.357283   1.623341    -3.92   0.000    -9.563223   -3.151344

                100     -8.889363   1.623341    -5.48   0.000     -12.0953   -5.683424

                  FR  

                      

            Control     -5.018328   1.623341    -3.09   0.002    -8.224267   -1.812389

          cont_treat  

                                                                                      

           arc_ww_wr        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                                      

       Total    7323.70346   213  34.3835843           Root MSE      =  2.2958

                                                       Adj R-squared =  0.8467

    Residual    843.275823   160  5.27047389           R-squared     =  0.8849

       Model    6480.42763    53   122.27222           Prob > F      =  0.0000

                                                       F( 53,   160) =   23.20

      Source         SS       df       MS              Number of obs =     214

. regress arc_ww_wr ib1.cont_treat##i.FR##ib1.MC##i.LD
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               _cons     49.36373   1.147876    43.00   0.000     47.09678    51.63067

                      

Control#200#85#1200     -10.07403   4.639084    -2.17   0.031    -19.23576   -.9122923

 Control#200#85#800     -7.413255   4.686183    -1.58   0.116      -16.668    1.841494

Control#200#65#1200     -6.590887   4.639084    -1.42   0.157    -15.75262    2.570848

 Control#200#65#800     -3.253792   4.686183    -0.69   0.488    -12.50854    6.000957

Control#100#85#1200     -8.889094   4.591503    -1.94   0.055    -17.95686    .1786715

 Control#100#85#800     -10.78533   4.639084    -2.32   0.021    -19.94707   -1.623599

Control#100#65#1200     -2.524908   4.591503    -0.55   0.583    -11.59267    6.542857

 Control#100#65#800     -3.458935   4.639084    -0.75   0.457    -12.62067      5.7028

 cont_treat#FR#MC#LD  

                      

        200#85#1200     -5.315762   3.246683    -1.64   0.104    -11.72764    1.096117

         200#85#800      -17.3121   3.246683    -5.33   0.000    -23.72398   -10.90023

        200#65#1200      9.104547   3.246683     2.80   0.006     2.692669    15.51643

         200#65#800     -2.958557   3.246683    -0.91   0.364    -9.370436    3.453321

        100#85#1200      3.294888   3.246683     1.01   0.312     -3.11699    9.706767

         100#85#800     -11.11488   3.246683    -3.42   0.001    -17.52675   -4.702998

        100#65#1200     -5.862691   3.246683    -1.81   0.073    -12.27457    .5491879

         100#65#800     -7.368683   3.246683    -2.27   0.025    -13.78056   -.9568042

            FR#MC#LD  

                      

    Control#85#1200      9.779585   3.246683     3.01   0.003     3.367707    16.19146

     Control#85#800      8.253919   3.313632     2.49   0.014     1.709822    14.79801

    Control#65#1200      4.015414   3.246683     1.24   0.218    -2.396465    10.42729

     Control#65#800      2.760451   3.313632     0.83   0.406    -3.783645    9.304547

    cont_treat#MC#LD  

                      

            85#1200     -.4957289   2.295751    -0.22   0.829    -5.029612    4.038154

             85#800      10.99396   2.295751     4.79   0.000     6.460073    15.52784

            65#1200      .7838446   2.295751     0.34   0.733    -3.750038    5.317727

             65#800      9.347903   2.295751     4.07   0.000      4.81402    13.88179

               MC#LD  

                      

   Control#200#1200      3.721878   3.313632     1.12   0.263    -2.822218    10.26597

    Control#200#800     -.4477586   3.379254    -0.13   0.895    -7.121453    6.225936

   Control#100#1200      4.838376   3.246683     1.49   0.138    -1.573502    11.25025

    Control#100#800      5.143142   3.313632     1.55   0.123    -1.400954    11.68724

    cont_treat#FR#LD  

                      

           200#1200     -6.846466   2.295751    -2.98   0.003    -11.38035   -2.312583

            200#800      12.40228   2.295751     5.40   0.000     7.868393    16.93616

           100#1200      5.459943   2.295751     2.38   0.019     .9260603    9.993826

            100#800      15.70746   2.295751     6.84   0.000     11.17358    20.24135

               FR#LD  
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Appendix G) Supplementary results 
 

Factor 
Wet weight faecal matter reduction 

F df P 

pH 0.04 4, 36 0.99 
tCOD 0.08 5, 34 0.99 
sCOD 0.13 6, 34 0.99 
NH4

+
 0.20 7, 31 0.98 

protein 0.49 1, 58 0.49 
carbohydrates 0.02 1, 58 0.89 

VFAs 0.40 7, 31 0.89 
Aluminium Al 0.60 5, 34 0.70 
Antimony Sb 0.29 5, 31 0.91 

Arsenic As 0.43 7, 31 0.88 
Cadmium Cd 0.79 3, 36 0.51 
Chromium Cr 0.71 7, 31 0.66 

Cobalt Co 0.18 6, 33 0.98 
Copper Cu 0.28 3, 35 0.84 

Iron Fe 0.71 6, 32 0.64 
Lead Pb 0.30 7, 29 0.95 

Manganese Mn 0.11 6, 32 0.99 
Mercury Hg 0.82 6, 33 0.56 

Molybdenum Mo 0.43 5, 35 0.82 
Nickel Ni 0.25 6, 33 0.95 

Selenium Se 0.16 6, 32 0.98 
Tin Sn 0.86 6, 31 0.53 

Vanadium V 0.63 8,30 0.75 
Zinc Zn 1.26 6, 32 0.30 

 
 

 

Factor 
Prepupal dry weight 

F df P 

pH 2.41 3, 14 0.11 
tCOD 0.38 1, 22 0.54 
sCOD 3.85 1, 22 0.06 
NH4

+
 1.27 1, 22 0.27 

protein 0.71 1, 22 0.41 
carbohydrates 2.21 1, 22 0.15 

VFAs 3.09 1, 22 0.10 
Aluminium Al 0.63 1, 22 0.43 
Antimony Sb 0.57 1, 21 0.46 

Arsenic As 1.16 1, 22 0.29 
Cadmium Cd 0.36 1, 22 0.56 
Chromium Cr 0.35 1, 22 0.56 

Cobalt Co 3.81 1, 22 0.64 
Copper Cu 2.11 1, 22 0.16 

Iron Fe 0.46 1, 22 0.51 
Lead Pb 1.49 1, 21 0.24 

Manganese Mn 4.21 1, 22 0.05 
Mercury Hg 0.50 1, 22 0.49 

Molybdenum Mo 0.98 1, 22 0.33 
Nickel Ni 0.86 1, 22 0.36 

Selenium Se 3.93 1, 22 0.06 
Tin Sn 0.07 1, 21 0.79 

Vanadium V 0.89 1, 22 0.35 
Zinc Zn 0.55 1, 22 0.46 
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Factor 
Bioconversion dry weight 

F df P 

pH 2.61 4, 19 0.07 
tCOD 0.62 6, 17 0.71 
sCOD 2.31 5, 24 0.08 
NH4

+
 1.35 8, 15 0.30 

protein 0.52 1, 28 0.48 
carbohydrates < 0.01 1, 28 0.98 

VFAs 1.88 7, 16 0.14 
Aluminium Al 2.55 1, 25 0.12 
Antimony Sb 0.06 1, 27 0.81 

Arsenic As 2.31 1, 28 0.14 
Cadmium Cd 0.17 1, 28 0.69 
Chromium Cr 1.27 1, 28 0.27 

Cobalt Co 3.63 1, 24 0.07 
Copper Cu 1.69 1, 28 0.20 

Iron Fe 0.96 1, 28 0.34 
Lead Pb 0.07 1, 27 0.79 

Manganese Mn 2.72 1, 28 0.11 
Mercury Hg <0.01 1, 28 0.96 

Molybdenum Mo 3.03 1, 28 0.09 
Nickel Ni 2.13 1, 28 0.16 

Selenium Se 0.54 7, 16 0.79 
Tin Sn 0.70 1, 27 0.41 

Vanadium V 0.84 1, 28 0.37 
Zinc Zn 1.15 1, 28 0.29 

 
 

 

Factor 

Prepupal ash 

F df P 

pH 1.05 4, 16 0.41 
tCOD 0.37 6, 14 0.88 
sCOD 1.01 1, 25 0.33 
NH4

+
 2.61 1, 25 0.12 

protein 0.12 1, 25 0.73 
carbohydrates < 0.01 1, 25 0.99 

VFAs 1.07 7, 13 0.44 
Aluminium Al 1.31 1, 25 0.26 
Antimony Sb 0.68 1, 24 0.42 

Arsenic As 2.16 1, 25 0.15 
Cadmium Cd 1.61 1, 25 0.22 
Chromium Cr 0.88 6, 14 0.53 

Cobalt Co 1.02 6, 14 0.45 
Copper Cu 0.71 4, 16 0.60 

Iron Fe 0.85 1, 25 0.36 
Lead Pb 2.50 1, 24 0.13 

Manganese Mn 1.03 6, 14 0.45 
Mercury Hg 0.89 1, 25 0.35 

Molybdenum Mo 0.46 5, 15 0.80 
Nickel Ni 1.00 5, 15 0.45 

Selenium Se 0.26 7, 13 0.96 
Tin Sn  < 0.01 1, 24 0.95 

Vanadium V 1.42 1, 25 0.24 
Zinc Zn 0.56 1, 25 0.46 
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Factor 

Prepupal crude protein 

F df P 

pH 0.80 4, 18 0.54 
tCOD 0.79 6, 16 0.59 
sCOD 2.87 1, 27 0.10 
NH4

+
 1.73 8, 14 0.18 

protein 0.32 1, 27 0.32 
carbohydrates < 0.01 1, 27 0.97 

VFAs 3.56 1, 27 0.07 
Aluminium Al 2.27 1, 27 0.14 
Antimony Sb 0.48 1, 26 0.49 

Arsenic As 3.59 1, 27 0.07 
Cadmium Cd 2.46 1, 27 0.13 
Chromium Cr 3.95 1, 27 0.06 

Cobalt Co 0.89 7, 15 0.54 
Copper Cu 3.57 1, 27 0.07 

Iron Fe 0.86 1, 27 0.36 
Lead Pb 0.28 7, 14 0.95 

Manganese Mn 0.70 7, 15 0.67 
Mercury Hg < 0.01 1, 27 0.97 

Molybdenum Mo 0.58 6, 16 0.74 
Nickel Ni 0.48 7, 15 0.83 

Selenium Se 0.61 7, 15 0.74 
Tin Sn 0.06 1, 26 0.81 

Vanadium V 1.38 1, 27 0.25 
Zinc Zn 0.29 1, 27 0.60 

 
 

 

Factor 

Prepupal total solids 

F df P 

Layer 1.74 4, 21 0.18 
pH 0.37 1, 24 0.55 

tCOD 0.08 1, 24 0.78 
sCOD 0.59 1, 24 0.45 
NH4

+
 1.24 1, 24 0.28 

protein 3.03 1, 24 0.09 
carbohydrates 2.58 1, 24 0.07 

VFAs 0.28 1, 24 0.60 
Aluminium Al 0.01 1, 24 0.92 
Antimony Sb 2.23 1, 23 0.15 

Arsenic As 0.02 1, 24 0.88 
Cadmium Cd 0.03 1, 24 0.87 
Chromium Cr 0.43 1, 24 0.52 

Cobalt Co 0.02 1, 24 0.88 
Copper Cu 0.57 1, 24 0.46 

Iron Fe 0.01 1, 24 0.92 
Lead Pb 0.68 1, 23 0.42 

Manganese Mn 0.12 1, 24 0.73 
Mercury Hg 0.84 1, 24 0.37 

Molybdenum Mo 0.34 1, 24 0.34 
Nickel Ni 0.47 1, 24 0.50 

Selenium Se 0.02 1, 24 0.89 
Tin Sn 0.05 1, 23 0.82 

Vanadium V < 0.01 1, 24 0.98 
Zinc Zn 0.04 1, 24 0.84 
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Factor 

Prepupal crude fat  
F df P 

Layer 0.71 4, 22 0.59 
pH 1.91 2, 24 0.17 

tCOD 1.46 2, 25 0.24 
sCOD 0.80 1, 25 0.59 
NH4

+
 1.98 1, 25 0.17 

protein 3.15 2, 24 0.06 
carbohydrates 3.14 1, 25 0.09 

VFAs 4.00 1, 24 0.06 
Aluminium Al 0.49 1, 25 0.49 
Antimony Sb 0.03 1, 24 0.86 

Arsenic As 1.42 1, 25 0.24 
Cadmium Cd 0.06 1, 25 0.80 
Chromium Cr 3.75 1, 25 0.06 

Cobalt Co 0.49 1, 25 0.49 
Copper Cu 0.72 1, 25 0.40 

Iron Fe 1.15 1, 25 0.29 
Lead Pb 0.14 1, 24 0.72 

Manganese Mn < 0.01 1, 25 0.96 
Mercury Hg 0.39 1, 25 0.54 

Molybdenum Mo 0.40 1, 25 0.80 
Nickel Ni 3.16 2, 24 0.06 

Selenium Se 4.44 1, 25 0.05 
Tin Sn 0.15 1, 24 0.71 

Vanadium V 0.43 1, 25 0.52 
Zinc Zn 1.54 1, 25 0.23 

 
 

 

Factor 

Prepupal crude fibre  
F df P 

Layer 0.42 4, 13 0.79 
pH 3.61 1, 16 0.08 

tCOD 0.02 1, 16 0.90 
sCOD 4.25 1, 16 0.06 
NH4

+
 < 0.01 1, 16 0.98 

protein 0.11 1, 16 0.74 
carbohydrates 2.22 1, 16 0.16 

VFAs 0.14 1, 15 0.72 
Aluminium Al 3.22 1, 16 0.09 
Antimony Sb 1.69 1, 15 0.21 

Arsenic As 1.11 1, 16 0.31 
Cadmium Cd 0.50 1, 16 0.49 
Chromium Cr 0.01 1, 16 0.92 

Cobalt Co 0.37 1, 16 0.55 
Copper Cu 1.22 1, 16 0.29 

Iron Fe 0.30 1, 16 0.59 
Lead Pb 0.63 1, 16 0.44 

Manganese Mn 0.30 1, 16 0.59 
Mercury Hg 1.08 1, 16 0.31 

Molybdenum Mo < 0.01 1, 16 0.99 
Nickel Ni 0.01 1, 16 0.93 

Selenium Se 0.21 1, 16 0.65 
Tin Sn 0.43 1, 16 0.52 

Vanadium V 0.02 1, 16 0.88 
Zinc Zn 1.93 1, 16 0.18 
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Factor 

Prepupal gross energy 

F df P 

Layer 2.38 4, 16 0.10 
pH 4.53 1, 19 0.05 

tCOD 1.88 1, 19 0.19 
sCOD 0.27 1, 19 0.61 
NH4

+
 0.26 1, 19 0.61 

protein 0.55 1, 19 0.47 
carbohydrates 0.01 1, 19 0.94 

VFAs 0.57 1, 18 0.46 
Aluminium Al 0.33 1, 19 0.57 
Antimony Sb 1.33 1, 18 0.26 

Arsenic As 0.26 1, 19 0.62 
Cadmium Cd 1.14 1, 19 0.30 
Chromium Cr < 0.01 1, 19 0.96 

Cobalt Co 0.11 1, 19 0.74 
Copper Cu 1.30 1, 19 0.27 

Iron Fe 0.12 1, 19 0.73 
Lead Pb 1.59 1, 18 0.22 

Manganese Mn 0.23 1, 19 0.63 
Mercury Hg 0.07 1, 19 0.80 

Molybdenum Mo < 0.01 1, 19 0.96 
Nickel Ni 0.03 1, 19 0.88 

Selenium Se 0.34 1, 19 0.57 
Tin Sn 0.01 1, 18 0.92 

Vanadium V 0.01 1, 19 0.92 
Zinc Zn 0.72 1, 19 0.41 

 

 




