
Web Appendix

A.1 Definitions of direct and indirect effects

Indirect and direct effects come in several flavours. We express these using the ter-
minology of the Rubin causal model [1] in terms of potential values of the outcome
Y (x, z), representing the outcome which would be observed if X were set (by inter-
vention) to x and Z were set to z, and potential values of the mediator Z(x), the
value taken by the mediator if X were set to x. All effects are given on the difference
scale; with a binary outcome, effects on a relative risk or odds ratio scale can also be
defined, but the decomposition is more complex [2, 3].

A total effect is defined as the effect on the outcome of a change in the exposure
from, say, X = x to X = x+1. It comprises the effects of the change in the exposure,
and the change in the mediator as a result of the change in the exposure:

TE(x, x+ 1) = Y (x+ 1, Z(x+ 1))− Y (x, Z(x)) (1)

A controlled direct effect is defined as the effect of a change in the exposure keeping
the mediator fixed at a given level, say Z = z [4, 5]. The controlled direct effect may
depend on the choice of z:

CDE(z; x, x+ 1) = Y (x+ 1, z)− Y (x, z) (2)

A natural direct effect is defined as the effect of a change in the exposure with
the mediator fixed at the level it would naturally take if the exposure were fixed at a
given level, say X = x:

NDE(x;x, x+ 1) = Y (x+ 1, Z(x))− Y (x, Z(x)) (3)

A natural indirect effect is defined as the effect of a change in the mediator from
the value it would naturally take if the exposure were unchanged to the level it would
take if the exposure were changed. The exposure itself is kept fixed at a given level,
say X = x+ 1:

NIE(x+ 1; x, x+ 1) = Y (x+ 1, Z(x+ 1))− Y (x+ 1, Z(x)) (4)

In the linear case, the natural direct and indirect effects represent a decomposition
of the total effect, in that TE(x, x + 1) = NDE(x; x, x + 1) + NIE(x + 1; x, x + 1)
(or alternatively TE(x, x+1) = NDE(x+1;x, x+1)+NIE(x; x, x+1)). Under the
condition:

Y (x+ 1, z1)− Y (x, z1) = Y (x+ 1, z2)− Y (x, z2) (5)

for all values of Z = z1, z2, and for all individuals, the controlled direct effect is
equal to the natural direct effect [4]. The natural direct effect has a clearer intuitive
interpretation as a measure of mediation than the controlled direct effect, which can
be interpreted even if Z is not a mediator. However, it is not possible to conceive of an
experiment which would produce the natural direct effect, as the quantity requires the
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outcome if the exposure were set at two different levels (for example, in NDE(x;x, x+
1), Y (x + 1, Z(x)) requires X = x + 1 for Y , but X = x for Z). This is known as a
“cross-world” quantity, as setting the exposure to two different values is only possible
in two different worlds [6].

More generally, in a non-parametric context, evaluation of natural direct and indi-
rect effects requires the distribution of Y (x, Z(x′)). This can only be evaluated under
the assumption that Y (x, z) is independent of Z(x′) for x ̸= x′. This is a cross-world
assumption and cannot be empirically verified. Even if the distributions of Y (x, z)
and Z(x) can be estimated, for example using instrumental variables, it is not possi-
ble to express an estimate of the natural direct or indirect effect without making the
cross-world assumption. In contrast, estimation of the controlled direct effect does
not require any cross-world assumption, and can be obtained directly at a given value
of X = x and Z = z from estimates of the distributions of Y (x, z) and Z(x).
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A.2 Impact of interactions on estimates of the direct and
indirect effect

To assess the impact of an interaction between X and Z in their effect on Y on
estimates of the direct and indirect effects, we perform further simulations. Data
were simulated on 5000 individuals indexed by i from the following data-generating
model:

xi = αGgXi + u1i + u2i + ϵXi (6)

zi = βGgZi + βXixi + u1i + u3i + ϵZi

yi = γXixi + γZizi + γXZixizi + u2i + u3i + ϵY i

βXi ∼ N (µβX
, τ 2), γXi ∼ N (µγX , τ

2), γZi ∼ N (µγZ , τ
2)

γXZi ∼ N (µγXZ
, ψ2) independently

u1i, u2i, u3i, ϵXi, ϵZi, ϵY i ∼ N (0, 1) independently

gXi, gZi ∼ Binomial(2, 0.3) independently

This model is the same as that considered in the main paper, except that an additional
term (γXZixizi) has been added to the data-generating model for Y to allow for an
interaction between X and Z. We consider three scenarios for the parameter values
(µγXZ

, ψ2), the mean and variance of γXZi:

1. µγXZ
= 0, ψ2 = 0.32: interaction is present at an individual level, but absent

on average. The average direct and indirect effects of X on Y controlling for Z
are µγX = 1 and µβX

µγZ , as before. An equivalent model could be achieved by
allowing omitting the additional term (γXZixizi) and allowing the γXi and γZi

parameters to be correlated in their distributions.

2. µγXZ
= 0.5, ψ2 = 02: interaction is present, and is homogeneous across individ-

uals.

3. µγXZ
= 0.5, ψ2 = 0.32: interaction is present, and is heterogeneous across indi-

viduals.

In both the second and third scenarios, the average direct and indirect effects
depend on the interaction between X and Z, and the individual-level direct effects
will depend on the value of Z. All other parameters take the same values as in the
simulation study in the main paper.

For scenario 1, we present estimates of the direct and indirect effect, and compare
these with the theoretical values (Web Table A1). For scenarios 2 and 3, we present
estimates of the direct effect only, and compare this with the average direct effect,
calculated by adding one to the exposure for each individual in the data-generating
model for the outcome but keeping the mediator constant (Web Table A2).

We see that estimates of the direct and indirect effects, which are similarly es-
timated by regression-based and SEM methods, are not substantially biased by the
presence of a zero mean interaction term. However, with non-zero mean interaction,
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estimates of the direct effect differ somewhat from the average direct effect. If an
interaction between the exposure and mediator is expected, this can be modelled
explicitly using the multiple-stage least squares approach [7].

Direct effect (µγX = 1) Regression-based SEM

µβX
µγZ τ2 = 0 0.22 0.42 τ2 = 0 0.22 0.42

1 1 1.01 1.00 1.01 1.00 0.99 1.00
1 −1 1.00 1.00 1.02 0.99 0.99 1.00
−1 1 1.00 1.00 1.00 0.99 0.99 0.99
−1 −1 1.00 1.00 1.01 0.99 0.99 0.99

Indirect effect (µβX
µγZ ) Regression-based SEM

µβX
µγZ τ2 = 0 0.22 0.42 τ2 = 0 0.22 0.42

1 1 0.98 0.98 0.98 0.99 0.99 0.99
1 −1 −1.00 −1.01 −1.01 −0.99 −1.00 −1.00
−1 1 −1.02 −1.01 −1.00 −1.01 −1.00 −0.99
−1 −1 1.00 1.00 1.00 1.01 1.01 1.01

Web Table A1: Mean estimates of the direct and indirect effects of X on Y control-
ling for Z from regression-based and structural equation model (SEM) methods in
simulation study with zero mean interaction between X and Z (Scenario 1)
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Scenario 2: Non-zero mean interaction, homogeneous across individuals

Regression-based SEM

µβX
µγZ Average direct effect τ2 = 0 0.22 0.42 τ2 = 0 0.22 0.42

1 1 1.24 1.30 1.30 1.28 1.29 1.30 1.27
1 −1 1.24 1.32 1.30 1.29 1.30 1.29 1.28
−1 1 1.02 0.96 0.96 0.96 0.95 0.95 0.94
−1 −1 1.02 0.97 0.98 0.96 0.96 0.96 0.95

Scenario 3: Non-zero mean interaction, heterogeneous across individuals

Regression-based SEM

µβX
µγZ Average direct effect τ2 = 0 0.22 0.42 τ2 = 0 0.22 0.42

1 1 1.24 1.32 1.26 1.32 1.31 1.25 1.30
1 −1 1.24 1.33 1.30 1.31 1.31 1.29 1.30
−1 1 1.02 0.95 0.97 0.96 0.94 0.95 0.96
−1 −1 1.02 0.96 0.97 0.95 0.95 0.96 0.94

Web Table A2: Mean estimates of the direct effect of X on Y controlling for Z from
regression-based and structural equation model (SEM) methods in simulation study
with non-zero mean interaction between X and Z (Scenarios 2 and 3)
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A.3 Impact of heterogeneity in the genetic effects on esti-
mates of the direct and indirect effect

To assess the impact of heterogeneity in the genetic effects of GX on X and of GZ on
Z on estimates of the direct and indirect effects, we perform further simulations. Data
were simulated on 5000 individuals indexed by i from the following data-generating
model:

xi = αGigXi + u1i + u2i + ϵXi (7)

zi = βGigZi + βXixi + u1i + u3i + ϵZi

yi = γXixi + γZizi + u2i + u3i + ϵY i

αGi ∼ N (µαG
, 0.12), βGi ∼ (µβG

, 0.12) independently

βXi ∼ N (µβX
, τ 2), γXi ∼ N (µγX , τ

2), γZi ∼ N (µγZ , τ
2) independently

gXi, gZi ∼ Binomial(2, 0.3) independently

u1i, u2i, u3i, ϵXi, ϵZi, ϵY i ∼ N (0, 1) independently

This model is the same as that considered in the main paper, except that the fixed
coefficients αG and βG are replaced with draws from normal distributions αGi and βGi

for each individual i. The mean values of these distributions are set at µαG
= 0.3 and

µβG
= 0.5 when µβX

= 1 and µβG
= 0.36 when µβX

= −1. These are the same as the
values of αG and βG in the original set of simulations. All other parameters take the
same values as in the simulation study in the main paper.

Results are given in Web Table A3. No material differences are observed from
those in the original simulation study in the main paper. We repeated the simulation
except modelling the coefficients αGi and βGi by a multivariate normal distribution
with correlation 0.4 and −0.4; almost identical results were obtained, with differ-
ences between mean values of estimates compatible with chance variation (results not
shown).
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Direct effect (µγX = 1) Regression-based SEM

µβX
µγZ τ2 = 0 0.22 0.42 τ2 = 0 0.22 0.42

1 1 1.00 1.01 1.01 0.99 0.99 0.99
1 −1 0.99 0.99 1.00 1.00 0.99 0.99
−1 1 1.00 0.99 0.99 1.00 1.00 0.99
−1 −1 1.00 1.00 1.01 0.99 0.99 0.99

Indirect effect (µβX
µγZ ) Regression-based SEM

µβX
µγZ τ2 = 0 0.22 0.42 τ2 = 0 0.22 0.42

1 1 0.98 0.98 0.99 0.99 1.00 0.99
1 −1 −1.00 −0.99 −1.01 −1.00 −1.00 −1.00
−1 1 −1.00 −1.01 −1.02 −1.01 −1.00 −1.01
−1 −1 0.99 1.00 1.00 1.01 1.01 1.01

Web Table A3: Mean estimates of the direct and indirect effects of X on Y control-
ling for Z from regression-based and structural equation model (SEM) methods in
simulation study with heterogeneous genetic effects on X and Z
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A.4 Impact of correlations in the causal effect parameters

In the simulations in the main paper, the causal effect parameters βXi, γXi, and γZi

were allowed to vary between individuals, but they were assumed to vary indepen-
dently. We perform a further simulation to consider estimates of direct and indirect
effects when the parameters vary dependently. Specifically, the vector (βXi, γXi, γZi)

T

for each individual i is drawn from a multivariate normal distribution with mean
(µβX

, µγX , µγZ ) and variance-covariance matrix consisting of diagonal elements τ 2 and
off-diagonal elements ρτ 2, where ρ is taken to be +0.4 and −0.4. This means that
the correlation between each pair of βXi, γXi, and γZi is ρ. All other aspects of the
simulation (including the data-generating model and the parameter values) are taken
as in the original set of simulations in the main paper.

Results are given in Web Table A3. No material differences are observed from
those in the original simulation study in the main paper for estimates of the indirect
effect. Slightly increased estimates of the direct effect are observed with ρ = +0.4, and
slightly decreased estimates with ρ = −0.4, with bias increasing as the heterogeneity
parameter τ increases.
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ρ
=

+
0
.4

Direct effect (µγX = 1) Regression-based SEM
µβX

µγZ τ2 = 0 0.22 0.42 τ2 = 0 0.22 0.42

1 1 1.01 1.03 1.06 1.00 1.01 1.06
1 −1 1.02 1.01 1.07 1.01 1.00 1.06
−1 1 1.01 1.01 1.07 1.00 1.00 1.06
−1 −1 1.01 1.02 1.07 0.99 1.01 1.07
Indirect effect (µβX

µγZ ) Regression-based SEM
µβX

µγZ τ2 = 0 0.22 0.42 τ2 = 0 0.22 0.42

1 1 0.98 0.98 0.99 1.00 0.99 0.99
1 −1 −1.01 −1.00 −1.00 −1.00 −0.99 −1.00
−1 1 −1.01 −1.00 −1.01 −1.01 −0.99 −1.01
−1 −1 1.00 0.99 1.00 1.02 1.00 1.01

ρ
=

−
0.
4

Direct effect (µγX = 1) Regression-based SEM
µβX

µγZ τ2 = 0 0.22 0.42 τ2 = 0 0.22 0.42

1 1 1.01 1.00 0.92 1.00 0.98 0.92
1 −1 1.02 0.98 0.94 1.01 0.98 0.93
−1 1 1.01 0.98 0.94 1.00 0.97 0.94
−1 −1 1.01 0.99 0.94 0.99 0.98 0.94
Indirect effect (µβX

µγZ ) Regression-based SEM
µβX

µγZ τ2 = 0 0.22 0.42 τ2 = 0 0.22 0.42

1 1 0.98 0.98 0.99 1.00 1.00 1.00
1 −1 −1.01 −1.00 −1.00 −1.00 −0.99 −0.99
−1 1 −1.01 −1.00 −1.02 −1.01 −0.99 −1.01
−1 −1 1.00 0.99 1.00 1.02 1.00 1.01

Web Table A4: Mean estimates of the direct and indirect effects of X on Y control-
ling for Z from regression-based and structural equation model (SEM) methods in
simulation study with correlations (ρ = ±0.4) in causal effect parameters of X on Z,
X on Y , and Z on Y
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A.5 Genetic variants and allele scores used in applied exam-
ple

Genetic variants used as instrumental variables for body mass index (BMI) were:
rs2815752, rs1514175, rs11165643, rs543874, rs2867125, rs10182181, rs887912, rs13078807,
rs7647305, rs10938397, rs13107325, rs2112347, rs6864049, rs206936, rs987237, rs10968576,
rs7127684, rs2030323, rs3817334, rs7138803, rs17109256, rs2241423, rs12444979, rs7359397,
rs1421085, rs571312, rs29941, rs2287019, and rs3810291 (29 variants). These were
taken from the paper by Speliotes et al. [8] and are located in various regions through-
out the human genome; only variants available (or with an available proxy) on the
CardioMetabochip (Illumina) were considered, as these were the variants available for
the largest proportion of the EPIC-InterAct study population. Weights in the allele
score were taken as the coefficients from the Speliotes paper (0.13, 0.07, 0.06, 0.22,
0.31, 0.14, 0.10, 0.10, 0.14, 0.18, 0.19, 0.10, 0.07, 0.06, 0.13, 0.11, 0.06, 0.19, 0.06,
0.12, 0.13, 0.13, 0.17, 0.15, 0.39, 0.23, 0.06, 0.15, 0.09 respectively).

Genetic variants used as instrumental variables for C-reactive protein (CRP) were:
rs3093077, rs1205, rs1130864, rs1800947, and rs3091244 (5 variants). These were taken
from the paper by Wensley et al. [9], with the addition of rs3091244, which was not
considered in the main analysis of this paper. All the variants are located in and
around the CRP gene region on chromosome 1, which is the coding region for CRP.
Weights were taken as the coefficients from the Wensley paper (0.21, 0.18, 0.13, 0.26
respectively), with 0.3 as the weight for rs3091244.

Genetic variants used as instrumental variables for uric acid were: rs4481233 (lo-
cated in the SLC2A9 gene region on chromosome 4; this gene encodes a protein which
transports uric acid [10]), and rs2231142 (located in the ABCG2 gene region on chro-
mosome 4; this gene is also involved in uric acid transportation [11]). An unweighted
allele score was used (2 variants).
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