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Abstract 

The last decade has seen significant progress towards the elimination of blinding 

trachoma as a health problem. However, gaps in our understanding of the epidemiology of 

trachoma at large scales are increasingly important in the context of programmatic scale 

up. This thesis therefore aimed to define the current distribution and burden of trachoma, 

in addition to investigating the spatial heterogeneity of trachoma and underlying risk 

factors at different scales. 

A systematic review of trachoma prevalence data was used to generate the Global Atlas of 

Trachoma, a unique spatially-referenced global database. In addition to highlighting 

important regional differences in the geographic distribution of trachoma, this database 

was used to quantify the disease burden in Africa; estimating nearly 153,000 disability-

adjusted life years (DALYs) attributed to trachomatous vision loss and 155,500 additional 

DALYs to trichiasis. Detailed analyses of individual and cluster-level risk factors 

underlying the distribution of trichiasis in Nigeria and active trachoma in Kenya identified 

a number of key socio-demographic and environmental factors. Both analyses suggested 

that spatial dependency (generated by underlying associations with shared risk factors at 

larger scales) may vary in endemic areas. These findings emphasise the importance of 

local epidemiology and the need for robust and well-designed survey methodologies to 

identify areas of high risk. Computerised simulations were used to evaluate the 

performance of Integrated Threshold Mapping (ITM) in comparison to the accepted gold 

standard trachoma survey design. The results found that ITM tended to underestimate the 

prevalence of trachoma across a range of epidemiological contexts where attendance was 

low and/or the risk of disease was lower in school-going children.  

This thesis provides the first systematic investigation into the geography of trachoma; 

highlighting heterogeneities at different scales and their potential programmatic 

implications. In particular, the findings and methods from this thesis may help to inform 

future survey design. 
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Environmental improvement 

SES socioeconomic status  

STH soil-transmitted helminths  

TF trachomatous inflammation–follicular 

TRA trachoma rapid assessment  

18 
 



 

TT trachomatous trichiasis  

UIG ultimate intervention guidelines  

WHO World Health Organization 

YLD years of life lived with disability  

YLL years of life lost to premature mortality  
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Chapter 1: Introduction 

 

1.1 Background and context 

Trachoma, a blinding eye infection, is a significant public health risk in developing 

countries and has caused an estimated 1.3 million current cases of blindness globally [2].  

In 1998, the World Health Assembly called for the global elimination of trachoma as a 

public health problem by the year 2020 (GET2020). The specific targets are to reduce the 

burden of trachoma to less than one prevalent case of trachomatous trichiasis (TT) 

unknown to the health system per 1000 total population, and prevalence <5% 

“trachomatous inflammation–follicular” (TF) in children aged 1-9 years, at sub-district 

level [3]. To meet these targets, it will be necessary to scale up control activities in all 

endemic areas of every country by 2016-2018 in order to allow sufficient time for 

programme impact.   

A broad consortium of partners have successfully mobilised political will and funding in 

order to identify key milestones in meeting this target and address current gaps in our 

knowledge. One critical limitation identified early in the process was that the exact 

distribution and disease burden is unknown in the majority of trachoma endemic 

countries. While many surveys have been carried out in the last few decades, some 

epidemiologic data are out-of-date while other areas suspected to be endemic remain 

unmapped.  Cost-effective implementation of trachoma control relies on an evidence 

based understanding of the distribution of trachoma at different scales, and effective use 

of this knowledge to geographically target resources and inform survey design. 

Spatially referenced trachoma prevalence data increasingly form the evidence base for a 

wide range of programmatic and epidemiologic activities.  Maps of the current 

geographical distribution of trachoma allow identification of gaps where data are lacking, 

determine the geographic overlap of different Neglected Tropical Diseases (NTDs) and 
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provide a common platform to mobilise partners for action. While aggregated maps of 

district-level prevalence estimates within countries are used to target implementation of 

trachoma control, information at larger scales can also refine estimates of the burden of 

disease attributed to trachoma and broadly inform resource allocation. More recently, as 

the geographic coverage of underlying trachoma surveys have increased and mapping 

methodologies are standardised, maps have provided an important tool in visualising 

spatial heterogeneity, or variation, at smaller scales.  

As a first step in interpreting patterns of disease distribution, it is important to understand 

heterogeneities and underlying determinants of the risk of trachoma in different contexts.  

Heterogeneity in risk between individuals, households and communities has long been 

recognised as a hallmark of the disease [4].  An extensive body of research has 

investigated sources of this variation at smaller scales, including individual-level risk 

factors associated with heterogeneities in the pathogenesis of disease and within-

community patterns of disease and determinants of risk. However, only a few studies have 

systematically investigated spatial variation in risk at larger scales and identified 

underlying context specific associations. As well as adding to our epidemiological 

understanding of disease ecology in different contexts and at varying scales, associations 

may be useful in targeting survey activities to areas predicted to be at higher risk and 

better defining the burden of disease. 

There is a critical need to rapidly and accurately scale up trachoma mapping to all endemic 

areas if the goals of control efforts are to be achieved by 2020. Thus, survey designs used 

for this baseline mapping must meet required standards of reliability and validity in order 

to inform control decisions, as well as context-specific restrictions on costs and feasibility. 

These requirements may change as control efforts are scaled up, and transmission levels 

are reduced. Consequently, evaluation of alternative survey designs represents an 

important and potentially expensive process over the course of a control programme. 

Furthermore, spatial characteristics of diseases, both in terms of variability and spatial 
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clustering, will likely have important implications for survey designs. With advances in 

spatial statistical methods, and an increasing amount of high resolution data, there is now 

an opportunity to quantifiably investigate and take into account spatial aspects of 

trachoma to assist in the evaluation and rational design of surveys.   

The aim of this thesis is to describe the geographical distribution of trachoma at global, 

national and local levels to address current gaps in the evidence base, inform estimates of 

disease burden, and assess potential applications in disease mapping and survey design. 

This chapter provides an introduction to a number of topics that provide contextual 

information to the thesis. In particular, it provides an overview of the pathology and 

clinical features of trachoma, before describing current diagnostic and survey methods 

used to estimate the burden of disease. Next, the epidemiology of trachoma is reviewed in 

the context of differing spatial scales, followed by an introduction to the use of statistical 

tools for analysing spatial data and applications in disease mapping.  

 

1.2 Overview of Trachoma 

1.2.1 Biology and developmental cycle 

Trachoma is a chronic bacterial conjunctivitis caused by Chlamydia trachomatis. A subset 

of four serovars (A-C) that are selective for ocular epithelial tissue are responsible for 

blinding endemic trachoma, while other serovars infect genital tissues and may 

occasionally cause self-limiting conjunctivitis [5,6]. As an obligate intracellular bacterium, 

reproduction is metabolically dependent on the host cell. Extracellular, infective stages are 

called elementary bodies (EB), which bind to and enter epithelial cells in the conjunctiva. 

Upon entry, the EB expands to form a larger reticulate body (RB) and begins transcription, 

causing the formation of inclusions within infected cells. Newly formed EBs rupture from 

the cell and are found in ocular and nasal secretions [7]. Both resolution of infection, 

which is age-dependent and typically occurs over a period between one to14 weeks [8], 
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and pathogenesis of disease are driven by complex inflammatory processes governed by 

the host’s cell-mediated immune response [9].   

1.2.2 Clinical features and natural history of disease 

Trachoma encompasses a broad spectrum of clinical manifestations that include 

inflammatory signs of disease broadly referred to as “active trachoma” and later cicatricial 

changes resulting from multiple episodes of infection (Figure 1.1). Although these distinct 

signs generally reflect progress of the disease, they may overlap in an individual at a given 

time point. Many infections are symptomless or may present as a mild conjunctivitis and a 

single episode is unlikely to result in important sequelae [9,10]. However, prolonged 

infection causes clinical signs of active trachoma, including development of characteristic 

lymphoid follicles and an intense, progressively chronic, inflammation of the conjunctiva 

[9]. 

Increased inflammatory and follicular responses are believed to be dependent on a 

number of factors, including number of episodes of infection and bacterial loads [10-13], 

and are likely mediated by individual immune responses [11]. Increasingly, there is 

evidence that some individuals may develop a hypersensitivity to infection, so that clinical 

signs of active disease are sustained even without recent exposure [9]. Non-chlamydial 

pathogens may also play a role in development of clinical signs of active trachoma in the 

absence of infection [14,15].  

Recurrent episodes of infection and associated inflammation are responsible for chronic 

disease states and disabling sequelae through progressive scarring of the conjunctival 

stroma, causing the lashes to turn inwards and scratch the cornea (trichiasis). This 

mechanistic pathway to blinding complications (Figure 1.1) is supported by several 

longitudinal studies, although there is considerable variation in disease progression rates.  
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Figure 1.1 Simplified diagram showing progressive disease states and sequelae for trachoma. 
Developed for this chapter 

 

 Studies in Tunisia, Tanzania and the Gambia have shown that severe inflammatory 

disease was predictive of higher incident conjunctival scarring [10,16], which in turn is 

predictive of trichiasis [17] and subsequent corneal opacity [18,19]. The main factor 

determining variation in reported rates is likely to be the number and duration of 

infections experienced, with evidence supporting faster progression associated with 

increasingly severe inflammatory disease and persistent infections [10,20,21]. However, 

the role of host immune responses in disease pathogenesis remains incompletely 

understood and a growing body of evidence suggests that collateral damage caused by 

individual cell-mediated immune responses against chlamydial antigen may mediate 

tissue damage and fibrosis as well as age-dependent clearance of infection [8,22,23]. Other 

bacterial infections may contribute to the scarring process, with greater severity of 

trachomatous scarring associated with a higher prevalence of bacterial isolates in case-

control studies in the Gambia and Tanzania [24,25]. As a consequence of the long 

development of chronic sequelae and its multifactorial aetiology, incident cases of 

trichiasis are expected to arise in the adult population for some time, even where control 

of infection in children is immediately effective, and contribute to subsequent vision loss.   
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1.2.3 Diagnostic methods 

For programmatic purposes, cases of trachoma are diagnosed based on clinical signs of 

disease during an ocular examination, usually using the 1987 WHO simplified grading 

system presented in Figure 1.2 [26]. This system distinguishes between five distinct 

grades of trachoma which can be easily recorded in the field at low cost and where 

laboratory capacity may be limited. Typically, a minimum of two key clinical signs are 

collected for use in trachoma control programmes: trachomatous inflammation–follicular 

(TF) in children aged 1-9 years and trachomatous trichiasis (TT) in adults aged over 14 

years.   These two signs are directly relevant to programmatic action as they are 

interpreted as a proxy for active infection (TF, at least in highly endemic contexts) and the 

surgical burden (TT). Other signs distinguished in this grading scheme, in particular 

trachomatous inflammation – intense (TI) and trachomatous scarring (TS), are not 

collected as often, in part due to the greater inter-grader variability in grading these signs, 

and in part due to the lack of programmatic action mandated by high prevalence of these 

signs. Numerous more detailed grading systems that distinguish between major and minor 

forms of chronic disease stages exist [27,28], but are typically restricted to research 

studies tracking pathological process and increasing severity of disease. Signs of scarring 

could serve as a more sensitive indicator for monitoring the impact of control programmes 

on chronic sequelae, as a certain proportion of individuals with signs of TS would be 

expected to progress to TT over time. 
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Figure 1.2 WHO simplified system for community assessment of trachoma, depicting five clinical 
signs of trachoma. Adapted from Thylefors et al. (1987) [26]. 

 

The presence of TF is not considered a reliable marker of infection with C trachomatis 

[7,11,29,30] and increasing disparity is noted in areas of lower endemicity, particularly 

after mass drug administration (MDA) [31,32]. The specificity of clinical signs thus poises 

an increasingly important issue for trachoma control programmes attempting to target 

antibiotic distribution as the prevalence of trachoma declines. In some instances, TF may 

be present without detectable C trachomatis due to clearance of infection prior to 

resolution of clinical signs, or presence of non-chlamydial pathogens that may elicit a 

similar follicular reaction [30],[14,33]. Recent work using latent class analyses to quantify 

the performance of trachoma diagnostic tests have highlighted the low specificity of TF, 

which was reported as 36.6% in a hyperendemic, pre-treatment area in Ethiopia [34]. In 

contrast, the same analysis found that polymerase chain reaction (PCR)-based assays, 

which are commonly used as a diagnostic gold standard, provide a highly specific (100%) 

and reasonably sensitive (87.5%) test for C trachomatis infection. While PCR methods 

remain largely confined to research studies due to their high cost and technical 

requirements,  recent field evaluation of various assays for ocular Chlamydia infection 

show promising results for monitoring treatment impact and targeting interventions in 

hypoendemic areas [35,36].  

 Grade & Clinical signs  Grade & Clinical signs 
      

 

Normal  

 

Trachomatous Scarring (TS) 

The presence of scarring in the tarsal 

conjunctiva 

 

Trachomatous inflammation – follicular 

(TF) 

The presence of five or more follicles in the 

upper tarsal conjunctiva 

 

Trachomatous Trichiasis (TT) 

At least one eyelash rubs on the 

eyeball or evidence of recent removal 

of inturned eyelashes. 

 

Trachomatous inflammation – intense 

(TI) 

Pronounced inflammatory thickening of the 

upper tarsal conjunctiva that obscures 

more than half of the normal deep tarsal 

vessels 

 

Corneal Opacity (CO) 

Easily visible corneal opacity so that at 

least part of the pupil margin is 

blurred when viewed through the 

opacity. 
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1.2.4 Control strategies 

A multi-faceted approach to trachoma control is advocated, known as SAFE: Surgery to 

correct trichiasis, Antibiotic to clear C trachomatis infection, Facial cleanliness and 

Environmental improvement to reduce transmission. The strategy is targeted based on the 

prevalence of clinical signs of active disease (TF or TF/TI) in children aged 1 to 9 years 

and blinding sequelae (TT) in adults. While the first two components are typically 

implemented directly through national trachoma control programmes, behavioural and 

environmental improvements often require intersectoral collaborations and support from 

ministries of education, water and sanitation or rural development. As a consequence, in 

practice the SAFE strategy is not always implemented in full and the F & E components 

have lagged behind antibiotic distributions and surgical interventions. 

Despite widespread support and a solid rationale for this strategy, the evidence base for 

individual SAFE components is relatively weak. Individuals with trichiasis are at 

immediate risk of going blind, and so an important component of SAFE is providing 

surgical interventions. Prevalence estimates are used to estimate the expected surgical 

burden for planning ophthalmic services, as programmes should aim to operate on all 

cases. Although surgeries have been shown to be effective at reducing discomfort 

associated with trichiasis, there is inconclusive evidence of their effect on preventing 

vision loss [37]. Surgeries have up to a 20-60% recurrence rate and uptake is poor in 

many communities [38,39]. The remaining components of this strategy and best methods 

for reducing the burden are aimed at preventing the blinding complications of trachoma as 

a result of repeated infection. 

Two antibiotics are currently used to treat infection (oral azithromycin and topical 

tetracycline) and are administered through repeated mass distributions in order to reduce 

the community pool of infection and suppress re-emergence of infection [40]. While 

evidence of the impact of antibiotics on infection is relatively robust, there is less evidence 

of a corresponding impact on signs of clinical disease and high levels of heterogeneity in 
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estimates of effect for both outcomes. The recent update to the Cochrane review reported 

estimates of the relative risk (RR) of active trachoma from individually randomised 

antibiotic treatment trials to be 0.78 (95% 0.69 to 0.89) and 0.74 (95% 0.55 to 1) at 3 and 

12 months following antibiotic treatment. Estimates of the effect on active trachoma from 

community randomised trials (using oral azithromycin) are scarce, but a large study 

randomising 24 communities (TANA 2009 study) reported a 95% confidence interval of 

the relative risk of active trachoma ranging from 0.47 to 0.72 at 12 months following 

treatment [41]. Estimates of the effect of antibiotic treatment on infection with C 

trachomatis from individually randomised trials are similar (3 months: RR 0.81, 95% 0.63 

to 1.01; 12 months: RR 0.25, 95% 0.08 to 0.78), while community randomised trials 

provide stronger evidence of an effect (RR 0.35, 95% 0.21 to 0.60)  despite considerable 

heterogeneity in relative risk estimates and quality of evidence [42].  

Variation between estimates of effect between studies may arise from differences in the 

trial designs, populations and compliance.  Although both antibiotics have been found to 

be effective against C trachomatis, single-dose oral azithromycin is suggested to have 

higher compliance and potentially greater impact on TI [43,44], treat extraocular 

reservoirs of infection [45], and reduce overall mortality in young children [46].  The 

possibility of local elimination of infection has been demonstrated with moderate to high 

coverage of repeated treatments of azithromycin, even in hyperendemic communities 

[47,48]. 

While local elimination of infection might be achieved through frequent administration of 

antibiotic distribution alone at sufficiently high coverage, its reintroduction poses an 

unknown threat to control efforts. Reintroduction of infection after MDA through travel 

between villages has been observed in the Gambia [49]and Ethiopia [50,51], but not in 

Tanzania [52].  A number of factors are likely to influence the likelihood of this being an 

important source of re-emergence, including initial endemicity levels, scale of treatment, 

coverage and contact patterns between communities. To successfully eliminate blinding 
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trachoma, it is probably not necessary to eliminate all infection or all active disease (as 

recognized by the 5% prevalence targets), but rather keep transmission below an 

undefined threshold. Promotion of facial cleanliness and environmental improvement 

through provision of latrines and increasing water availability is aimed at making more 

sustainable changes in transmission, although the evidence base for these components is 

fairly weak [53-55].  

The prevalence of clinical signs of disease are used to guide the planning and 

implementation of control strategies at the district (second administrative) level, as 

outlined in Table 1.1, with subsequent focus on sub-districts as appropriate [56]. For 

example, district-wide mass antibiotic treatment is recommended for districts where the 

prevalence of active trachoma is 10% or more among children aged 1-9 years. In districts 

with prevalence between 5% and 10%, sub-district level assessment and treatment is 

advocated. Clinical indicators are also used to define GET2020 ultimate intervention 

guidelines (UIGs), signifying when trachoma has been eliminated, which are less than one 

case of TT unknown to the health system per 1000 total population and <5% TF in 

children aged 1-9 years , at the sub-district level [3].  

Treatment thresholds are currently based on expert option, rather than empiric studies. 

While longitudinal trials and post-impact intervention surveys have provided support for 

more than 3 years of treatment in highly endemic contexts [57,58], the lower (10%) 

threshold is increasingly questioned due to the large discrepancy between clinical signs 

and infection in low endemicity settings [59]. MDA stopping points, represented by the 5% 

threshold, have been the subject of a recent mathematical modelling studies by Ray et al. 

(2009) that found a graduation strategy based on this threshold to be reasonably effective 

in hypo- and meso-endemic areas but more variable in hyper-endemic areas [60]. These 

results highlight the sensitivity of stopping points to different transmission parameters, 

likely influenced by behavioural (i.e. contact patterns between and within communities), 

as well as environmental factors.  
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Table 1.1 Endemicity classes for implementation of SAFE based on trachomatous inflammation–
follicular (TF) and trichiasis (TT). 
TF Prevalence band Classification Implementation 
<5% Non-endemic No need for implementation of AFE 
≥5% and <10% Hypo-endemic Mapping, F and E can be applied, focal A 
≥10% and <30% Meso-endemic AFE at district level (≥3 years then review) 
≥30% Hyper-endemic AFE at district level (≥5 years then review) 
TT Prevalence band Classification  
<0.1% UIG achieved  
≥0.1% UIG not yet achieved  
   

 

1.3 Defining the distribution of trachoma 

1.3.1 Global distribution of trachoma 

The global distribution of trachoma has evolved over time as a reflection of population 

movements, including through trade routes and military action, as well as economic and 

social development. MacCallan (1931) recounted evidence of its presence dating as far as 

1800 BC in Egypt, where early epileption forceps have been found [27], and various 

references document its presence in antiquity across Asia, Greece and the Middle East 

[61,62]. Trachoma is thought to have been introduced to Europe in 13th century through 

the Crusades and became entrenched in preindustrial cities following the return of 

soldiers from Egypt during the Napoleonic wars [62,63]. During the 1800s and early 

1900s, trachoma was a public health problem in much of Europe and parts of the United 

States, but the disease was eliminated from these countries as a result of general 

socioeconomic improvement and specific public health measures including ophthalmic 

hospitals, boarding schools for infected children, immigration control and treatment with 

sulfa antibiotics [64,65]. Thus, the wide-ranging distribution of trachoma does not lend 

support to the idea of climatic limits, whilst both geographical heterogeneity and disease 

persistence have traditionally been associated with socioeconomic development and 

inequalities at various scales.  
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Currently, the WHO classifies 53 countries as endemic for trachoma, which include areas 

of Africa, Latin America, South East Asia, the Eastern Mediterranean and the Western 

Pacific (Figure 1.3) [66]. An endemic disease is usually defined as one that is present in a 

population or area at all times, although in practice most countries that are classed as 

endemic are those where trachoma has been found to be a public health problem or are 

lacking data to the contrary. Many countries where early studies of trachoma were focused 

are now considered post-endemic, including Saudi Arabia, Lebanon, Tunisia, and Palestine. 

Some countries which remain classified as trachoma endemic (such as India and Namibia) 

have experienced significant economic growth and socioeconomic changes; however no 

recent data are available to support a reduction in prevalence. Trachomatous blindness 

has been found by national blindness surveys in some countries currently considered to 

be non-endemic (including Tonga and Occupied Palestinian Territories), while cases of 

trichiasis have been found in Rwanda as part of rapid assessment surveys.  

 

Figure 1.3 Map of countries classified as trachoma endemic by the World Health Organization. 
Adapted from World Health Organization (2012) [66]. 
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1.3.2 Disease mapping 

Several global maps of trachoma have been developed over the past 100 years and these 

have been important for documenting the distribution of the disease at different time 

points. Figure 1.4 shows the first known world map of trachoma which was developed in 

1929 by the International Council of Ophthalmology [67]. This map was based on data 

collated from existing ophthalmic societies and shows trachoma still present in Europe 

and North America. Later global mapping efforts by the WHO in 1949 and 1961 showed 

trachoma disappearing from northern Europe, but remaining widespread in much of 

Africa, Asia, the Pacific and some countries of Latin America [68,69].  Common to all these 

early mapping efforts is that they described broad areas/countries where endemic 

trachoma was found, however, they did not indicate the levels of trachoma prevalence or 

variations in prevalence within and between countries.  

 

 

Figure 1.4 World map of trachoma developed in 1929 by the International Council of 
Ophthalmology Block colour indicates ‘The approximation is of a certain exactness’. Hashed colour 
indicates ‘The approximation is more roughly’. Circles are ‘figures of American Indians’. The 
percentage categories are as follows: 0-0.1% (green), 0.1-1.9% (yellow), 2-4.9% (orange), 5-10.9% 
(pink), 11-30.9% (purple), 31-30.9% (brown), 61-100% (grey), unknown (white) 
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In 2005, the London School of Hygiene & Tropical Medicine (LSHTM), in collaboration 

with WHO Prevention of Blindness and Deafness and with support from the International 

Trachoma Initiative (ITI), created the first global trachoma atlas displaying systematically 

collated district-level prevalence data [70]. These maps highlighted the variation in 

trachoma prevalence within and between countries, but also the paucity of reliable data in 

many trachoma endemic countries, particularly in Africa. The development of 

Geographical Information Systems (GIS) - computerised systems for managing, analysing 

and mapping disease information – together with standardisation of trachoma survey 

methodology has facilitated efforts to develop a framework for trachoma mapping. 

Increasingly, high resolution trachoma prevalence data are collected through the use of 

smartphones with geographical positioning systems (GPS), providing the potential for 

more detailed and accurate mapping of disease distribution at various scales.  

Increasingly, the term “disease mapping” is used interchangeably with “baseline surveys”, 

reflecting the growing recognition of the use of maps to inform control decisions – and the 

ease with which modern technology allows survey data to be displayed in map form.  

 

1.3.3 Global disease burden 

Within the context of a control programme, the burden of trachoma is typically defined as 

the prevalence of active trachoma and trichiasis. However, it is well recognized that 

prevalence estimates do not capture the full burden experienced by the individual over 

their lifetime as a result of a disease. For example, a condition which is severely disabling 

or of long duration might be considered to confer a larger burden than one that is of 

shorter duration or causes no discomfort. In order to compare the burden attributed to 

different diseases, various summary measures are used to quantify this disability. The 

disability-adjusted life year (DALY) is a commonly used measure for setting health 

research priorities, used by the Global Burden of Disease (GBD) study, and is calculated as 

a weighted measure of morbidity and mortality [71]. Specifically, the DALY is the sum of 
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the years of life lost to premature death (YLL) and years of life lived with a disability 

(YLD). YLLs are computed by multiplying the number of deaths at each age by the 

corresponding standard life expectancy, while YLDs are calculated as the prevalence of a 

given disease and injury sequelae multiplied by a disability weight. Weights represent a 

measure of the severity of health lost and range from 0 to 1, where 0 is commensurate 

with perfect health and 1 is commensurate with death [72]. The current estimation of 

DALYs differs from the original study in 1990, primarily due to how YLDs are calculated. 

Previously, estimates of YLDs were based on incidence, rather than prevalence, and 

incorporated age-weighting and discounting to reflect respective social valuation of years 

of life at different ages and the present time over the future [73].  More recent YLD 

estimates are based on prevalence data and do not use discounting. 

DALYs attributed to trachoma are based solely on the morbidity associated with resulting 

visual impairment. Cause-of-blindness surveys are used to generate trachomatous 

blindness prevalence estimates, which are the epidemiological data used to estimate 

disability.  These are population-based prevalence surveys that typically use probability 

proportional to size (PPS) to ensure population representativeness (see section 1.4). 

Rapid Assessment of Avoidable Blindness surveys (RAAB) are increasingly common, 

which are usually conducted in representative populations aged 50 and above years, using 

a streamlined examination technique [74].  In both of these protocols, visual acuity is 

typically measured using Snellen E optotypes or Landolt C charts at specified distances, 

where low vision is typically defined as best corrected vision being < 6/18 and blindness 

as 3/60 [75]. While this definition of vision loss is typically used in trachoma endemic 

counties, with the exception of India, many more developed countries use 6/60 [76].  

Where vision is less than 6/18 in either eye, the cause of vision loss is diagnosed based on 

a detailed ophthalmic examination using a slitlamp or reflected light [77].  Trachoma is 

most commonly reported as a cause of blindness where there is central scarring in the 

presence of trichiasis/entropion, conjunctival scarring, pannus or Herbert’s pits [77]. 

Often more than one contributing cause can be diagnosed, but only one principal cause is 
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reported based on which is readily curable or most easily preventable. As cataract is 

widely reported to the most common cause of blindness in Africa and Asia, and is 

prioritised above trachoma based on these criteria, the burden of blindness attributed to 

trachoma based on causes-of-blindness surveys is likely to be an underestimate [78].  

A first seminal effort to define the global prevalence of trachomatous blindness was 

provided by Ranson and Evans (1995) for the 1990 GBD study [79]. This study has 

informed subsequent estimation strategies [80,81], with the most recent GBD 2000 

estimates provided by WHO [82].  Unfortunately, epidemiological data on the prevalence 

of trachomatous blindness are limited and national surveys on causes of blindness are 

even scarcer. This lack of data has been overcome by either (i) extrapolating the results of 

national surveys to all endemic countries within a world region [79,80] or (ii) modelling 

the data using national gross domestic product (GDP) estimates to provide estimates for 

countries that are lacking blindness data and those without data at multiple time points 

[82]. Regional extrapolation makes use of the more similar socioeconomic and climatic 

conditions in countries within a region, but ignores the sizeable variation that often exists 

between neighbouring countries. 

There are a number of clear limitations of current estimates of the global burden of 

trachoma. First, chronic stages of trachoma are not included in current global blindness 

estimates or modelling strategies despite some evidence that trichiasis imposes functional 

limitations on activities [83]. Longitudinal studies measuring subjective assessments of 

pain and photophobia have shown an improvement following TT surgery, and support an 

added impact on quality of life [84].  These limitations may confer an economic burden 

that is not captured in current measures. Second, the scarcity of data in space and time 

limit current methods to estimate the burden of trachomatous blindness. Finally, existing 

causal blindness surveys are powered for all cause blindness, rather than trachomatous 

blindness, and limit the precision of cause-specific estimates. 
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1.4. Survey design 

1.4.1 Current trachoma survey methodologies 

In order to target interventions appropriately, surveys must use reliable indicators of 

disease and be designed so that the sample is both representative of the underlying 

population and able to correctly identify districts requiring treatment. Surveys assessing 

the burden of trachoma use one of four methodologies: population based prevalence 

surveys (PBPS); trachoma rapid assessment (TRA); acceptance sampling trachoma rapid 

assessment (ASTRA); or “Integrated Threshold Mapping” (ITM) [85]. PBPS are the 

recommended method since they provide a representative measure of the prevalence of 

trachoma within a population, and are currently the basis for targeting SAFE interventions 

according to treatment thresholds.  

The most common PBPS strategy is cluster randomized sampling (CRS) which uses a 

representative, two-stage sampling methodology to provide a “gold” standard prevalence 

estimate for each district. This methodology often selects clusters using probability 

proportional to size (PPS) in order to provide a representative population estimate at this 

level. General guidelines recommend sampling 20 clusters per district, although this varies 

in practice. Sample size calculations are based on an expected prevalence of active 

trachoma of 10% in children aged 1-9 years, and use a design effect of four to account for 

expected clustering within the survey population [56].   

More recent PBPS in Kenya have defined geographically smaller evaluation units and 

reduced the design effect to two, based on the assumption that risk is more homogenous 

within these areas [86]. Estimates of TT tend to be less precise due to their lower 

prevalence, although the precision of district-level prevalence estimates is rarely reported. 

While the majority of surveys continue to sample adults over the age of 15 years, some 

protocols are being adapted to restrict sampling to higher age groups [87]. Although this 
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will provide a more precise estimate for the same sample size, it depends upon an 

accurate correction factor to calculate the number of all-age cases.  

TRA was developed as a rapid and inexpensive method using convenience sampling to 

rank communities in terms of priority for control programmes [88].  TRAs are intended to 

be “optimally biased” to find trachoma where it is endemic and do not provide a reliable 

estimate of trachoma prevalence in the overall population. Although it is generally 

assumed that a negative TRA reliably identifies the absence of trachoma, sampling is 

targeted to populations assumed to be at the highest risk and thus estimates of risk and 

subsequent rankings are reliant on the accuracy of the informant and noted to be highly 

subjective and variable [89,90].  Increased discrepancy between PBPS and TRA rankings 

has been reported where prevalence is low [91], and a validation study in China by Liu et 

al. found that the presence of TF was not detected in several sites where it was found by 

PBPS [92]. ASTRA is a form of lot quality assurance sampling and can reliably classify 

communities in relation to a threshold value [93], but has in practice rarely been used as it 

requires modification to derive overall population estimates of trachoma prevalence.  

More recently, ITM has been developed as a rapid and cost-effective alternative design for 

undertaking baseline assessment of populations for trachoma and other NTDs 

simultaneously.  This methodology employs convenience sampling of school children, pre-

school children and women of child-bearing age [94]. A minimum of 20 sites are randomly 

selected from the district (with a minimum of two per subdistrict), and an equal number of 

children aged 1-5 years and 6-9 years are sampled from each site to make a total of 50. 

This methodology was piloted in Mali and Senegal [95], and it has since been used in a 

nationwide NTD mapping in Togo [96]. The key concern cited regarding the use of ITM for 

trachoma surveys is the use of a school based platform. A study by Courtright et al. (1991) 

highlighted the limitations of a school-based approach in Egypt, and found that only 50% 

of pre-school age children were in a household with a trachomatous school-age sibling and 

not all children attended school in this context [97]. School attendance is likely to be low in 
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many endemic settings in Africa and, furthermore, the sample pool of young children and 

adults relies on active engagement from the community.  

 

1.4.2 Evaluation of survey designs 

Surveys to estimate trachoma prevalence are important in determining appropriate 

control strategies, yet large-scale evaluation of alternative survey designs may be 

prohibitively expensive. Typically, an internal validation is carried out in multiple settings, 

in which the new methodology is compared to an existing “gold standard”. Ideally, this 

gold standard would be the true prevalence, and the performance of surveys could be 

assessed in terms of reliability of district classification, which is directly relevant to 

control thresholds. In practice, it is unfeasible to generate gold standard data of that type, 

and so validation studies use the recommended survey strategy (CRS) for comparison and 

are restricted in geographical scope. Validation studies for TRA and ITM  have all been 

based on relatively few clusters within a subdistrict [90], district [91,95] or province [92], 

although one country-wide evaluation of ITM was carried out in Togo [96].  Clearly, these 

studies are limited by choice of a gold standard, which is subject to sampling error, and 

cannot allow full exploration of the performance of sampling methodologies in different 

contexts.   

A relatively unexplored method for evaluation of NTD survey designs, and one that can 

help to address some of the limitations of trachoma survey evaluations, are computerised 

sampling simulations. A simulation approach can been used to solve a wide variety of 

computational problems and provide a convenient platform for evaluating more complex 

survey designs, particularly where there is an interest in understanding what factors 

impact on survey performance. In this thesis, simulation methods are used in two different 

ways: 1) as a computational tool that serves as an alternative strategy to frequentist 

statistics in solving complex models, where a direct analytic solution may not be possible 

(as used for risk analyses) and 2) in order to produce realistically varying data and 
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mechanically test a specific sampling procedure under different conditions. Geostatistical 

and statistical algorithms can be used to simulate a realistic gold standard disease data 

that reproduce spatial variation in risk at different scales and aspatial variation within 

various demographics or subpopulations. Sampling can then be repeatedly carried out, 

using Monte Carlo simulations, according to defined protocols. There are many advantages 

to this approach.  First, subsequent comparisons between different survey designs can 

fully incorporate sampling error. Second, key parameters can be varied to assess their 

impact on survey performance. Third, the use of Monte Carlo methods allows calculation 

of probability. Finally, data and sampling simulations can be conducted at larger scales, in 

order to quantify the performance of a survey methodology in correctly identifying areas 

requiring treatment. Sampling simulations offer a cost-effective means of comparing 

survey methodologies in different endemic settings, and have been utilized in animal 

populations [98] and more recently in human populations [99-101]. With an increasing 

amount of geographically referenced data on the distribution of trachoma in populations 

at multiple scales, this approach has enormous potential to explore the performance of 

alternative survey designs in different contexts. 

 

1.5 Epidemiology of trachoma 

The following sections provide an overview of the principles behind the ecology of disease 

and their application to the epidemiology of trachoma. This is followed by a review of the 

evidence base for specific risk factors for trachoma and pathways through which they may 

influence the distribution of disease at different scales. 

 

1.5.1 Ecology of disease and spatial scales 

Spatial heterogeneity, or variation in an outcome or process through space, is found 

throughout nature; indeed true uniformity or randomness is rarely observed. From an 
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ecological perspective, the geographical distribution of disease is determined by variation 

in underlying factors which create suitable environmental niches for transmission. Some 

of the observed variation in disease prevalence is structured by spatial location, due to 

factors that are themselves clustered at different spatial scales and affect transmission. 

The remaining variation is aspatial and should, by definition, be distributed randomly 

between sites without any quantifiable spatial structure (e.g. personal hygiene). 

 The issue of scale is an important one, as relevant processes influencing the distribution 

of disease will depend on the level of the analysis and the influence of unpredictable, 

stochastic events will be less at larger scales [102]. Spatial patterns are described by 

variation that may be classified as macro-scale (large-scale and usually caused by risk 

factors that form a gradient across wide areas), meso-scale (local dependence structure 

caused by risk factors that cluster within a country) or micro-scale (occurring within 

meso-clusters and caused by differences in risk factors at a very small scale, such as at the 

household level)[103]. 

 

1.5.2 Overview of risk factors for trachoma 

 The spatial distribution of trachoma is likely to arise from complex relationships between 

risk factors for trachoma at different scales, as illustrated in Figure 1.5. Micro-scale risk 

factors are those which are associated with transmission at the individual or household 

levels, including genetic factors that are likely to influence immune responses, hygienic 

behaviours and differences in contact patterns or exposures correlated with 

sociodemographic factors. Meso-scale risk factors vary at a larger scale, between villages 

or subnationally, and may include water availability, latrine coverage, livestock and access 

to treatment facilities. Macro-scale risk factors operate over a larger scale and include 

climatic factors such as rainfall, aridity and temperature that may influence risk factors at 

other levels. 
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Small scale patterns of the risk of trachoma develop as a result of exposures to 

determinants of infection within households, as well as stochastic contact patterns and 

individual immunological differences.  Over larger scales, spatial dependency is more 

likely to reflect shared exposure to underlying environmental determinants, and may 

mask stochastic variation occurring at smaller scales. However, it is noted that 

transmission dynamics (and underlying contact patterns) between communities 

undoubtedly plays a role in reinfection after MDA in some contexts [49] and will influence 

subsequent spatial patterns at varying scales [104]. Risk factors at multiple scales will 

influence the same transmission pathways; with macro-scale risk factors such as climatic 

conditions mediated by risk factors operating at smaller scales (including access to 

treatment and behavioural differences) potentially breaking up large scale patterns of risk.  

Figure 1.5 Diagram of factors at different scales associated with risk of trachoma. Genetic risk factors 
and TS are not shown. TF/TI: trachomatous inflammation-follicular/ trachomatous inflammation-
intense; TS: trachomatous scarring; TT: trachomatous trichiasis; SES: socioeconomic status. Figure 
developed for this chapter. 
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1.5.3 Transmission pathways and small-scale dynamics 

As described in section 1.2.1, infectious stages of C trachomatis are found in ocular and 

nasal secretions. Mechanisms of transmission include direct contact or indirect 

transmission through fomites such as towels and other shared objects or transmitted via 

eye-seeking flies [27]. Although the relative importance of these pathways is likely to vary 

in different contexts, transmission requires relatively close contact which defines 

observed epidemiological clustering of disease at small scales [105].  Active disease has 

been observed to cluster within households and bedrooms [11,106-108], which is 

consistent with findings of higher risk in individuals cohabiting with an infected individual 

at baseline and after MDA [49,97]. Mathematical modeling studies have supported these 

findings, and suggest that an average of 71% of incident infections result from 

transmission within the household [109].  

 

1.5.4 Individual risk factors 

The prevalence of active disease (trachomatous inflammation) is consistently found to be 

highest in young children, who also have a greater bacterial load, particularly in highly 

endemic contexts, and are likely to be an important source for transmission of infection 

[11,13]. Increased prevalence in this age group is likely to reflect closer contact patterns 

and poorer hygiene of small children, as well as higher rates of clearance in older 

individuals resulting from accumulated exposure [8,110]. Progressive scarring results 

from cumulative infections, consequently entropion and trichiasis are more prevalent in 

older age groups [18,19,111].  
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Figure 1.6 Age-prevalence curves of clinical signs of trachoma. Taken from Taylor et al. (1992) 
[112] 

 

Females are often observed to have higher risk of trichiasis compared to males across 

different contexts, with a recent meta-analysis by Cromwell et al. (2009) [113] estimating 

an increased odds of 1.8 for trichiasis (95% CI 0.40 – 1.73). The variability in risk 

associated with gender is hypothesized to relate to division of labor and subsequent 

differences in contact with young children [107,114].  

Finally, an increasing body of research supports a genetic basis for observed individual 

differences in persistence of inflammatory disease and intrinsic variation in susceptibility 

to infection, clearance and progression to chronic disease states [9,23].   

Individual and household-level hygienic behaviors are expected to be proximal factors 

that influence transmission of C trachomatis, although their measurement presents a 

challenge for epidemiological studies. Routine face, hand and laundry washing should 

decrease discharge present on the face, fingers, and the personal environment; thus 

reducing spread of infection through fomites and eye-seeking flies and the likelihood of 

auto-reinfection [54,115].   Self-reported measures may be biased, due to the perceived 
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desirability of the hygienic behavior, but more objective measures of facial cleanliness 

have also been frequently associated with individual risk of active trachoma in 

observational studies in different settings [59,115-120].  

Clearly, risk factors discussed above influence transmission between individuals and 

correlate with variation in risk of trachoma at micro scales (i.e. individual or household 

level). Access and use of antibiotic treatment will also influence risk of transmission and 

disease at this level. Although active trachoma typically causes minimal discomfort 

(compared to other ocular bacterial infections) and is unlikely to prompt health-seeking 

behaviour, treatment for other bacterial infections (including pneumonia, typhoid and 

gastroenteritis) with azithromycin and other antibiotics will also be effective against C 

trachomatis. Individual behavioral factors also provide a potentially important link to 

environmental risk factors at larger scales, as discussed in subsequent sections.  

 

1.5.5 Environmental risk factors 

Water 

Particularly in underdeveloped or resource constrained settings, access to water for 

hygienic purposes represents an initial constraint on its use. Following basic availability, 

important determinants of water allocation within a household may include ease of access, 

the quantity and quality of water available, and priorities around water use. The 

complexity of relationships between water and its use for hygienic purposes is reflected in 

inconsistent associations between trachoma and different measures of water availability. 

Type of water source has found to be a risk factor in some [116,121,122], but not all 

[123,124], studies. A more proximal risk factor is likely to be the allocation of water within 

households, which may be better predicted by collection time, distance to or quantity of 

water available depending on the context [121,123,125,126]. However, there is 

substantial variation in how studies have defined water sources for analyses, with some 
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comparing piped water to all other sources [115,122] and others comparing protected and 

unprotected water sources [127,128].  

Where a reliable water source has been put in place, subsequent behavioral changes 

around water use are likely to be mediated by the value that is placed on the water that is 

collected and perception of how much water is needed for washing in different contexts 

[123,129-132]. Although intensive participatory strategies to increase face washing has 

shown an improvement on facial cleanliness[133], subsequent randomized community 

based trials of a behavior modification campaign in Tanzania and Ethiopia provided 

limited evidence of impact on the prevalence of TF [53,134]. Clearly, modifying behaviors 

around water use in contexts where access is not a constraint presents a key challenge in 

achieving a sustainable impact on trachoma.  

Water allocation for hygienic purposes within a household will be an important risk factor 

determining variation at micro scales, and potentially mediate the observed effect of 

differences in access to water between households and communities at micro and meso 

scales. In the absence of water and sanitation interventions, it is likely that natural 

resources will determine common exposures around water availability at larger scales and 

in some contexts may also influence hygienic behaviors. It is hypothesized that climatic 

factors may mediate the observed impact of interventions to improve domestic water 

access, which would be expected to vary based not only on the type of intervention but 

also existing physical and social environmental conditions [129]. For example, one would 

expect a greater impact on water availability and disease prevalence in semi-arid areas, 

where water is scarce, compared to the same intervention in a water-rich environment. 

 

Flies 

The Muscidae fly Musca sorbens, which is strongly attracted to and feeds on human 

secretions, acts as a vector in the transmission of ocular C trachomatis in some contexts. 
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Flies have long been associated with transmission of bacterial conjunctivitis, although 

much of the seasonal ophthalmic diseases observed were attributed to gonococcal 

infections [27]. M sorbens is widespread throughout Africa, Asia, and the Western Pacific 

and observations on its ecology, as well as experimental work, have associated its survival 

and relative abundance with variation in climatic factors [135]. Increased fly densities 

have been associated with outbreaks or an increased risk of trachoma in Ethiopia [136], 

Morocco [137], Tanzania [138] and Egypt [139]. Fly density has in turn been associated 

with increased number of flies on the face [140], which is a common risk factor for active 

trachoma [141]. Work by Emerson et al. (2000) definitively demonstrated the ability of M 

sorbens to carry C trachomatis in The Gambia, by identifying the bacteria on flies caught 

from the eyes of infected children[142]. 

Human faecal material in and around the household introduced by open defecation 

provides the favored breeding material for M sorbens [143], and its presence has been 

associated with an increased prevalence of active trachoma and infection [128].  Use of a 

pit latrine should reduce fly density around households, as larval stages have not been 

found in latrines nor have adult flies been caught emerging from them [142,144,145]. 

Access to a latrine has been associated with a lower prevalence of active TF in Egypt, 

Malawi, and Ethiopia [11,49,97,115`], although not in Tanzania [119]. Similarly, living in 

close proximity to livestock has also been associated with an increased risk of trachoma in 

Tanzania and South Sudan, and may be related either to increased fly density or act as a 

marker for other socioeconomic risk factors [118,126,138].  

Despite the above evidence linking fly density with trachoma and latrines, the impact of fly 

control through spraying or latrine provision on trachoma has not been shown 

conclusively. Although a pilot cluster-randomised controlled trial of insecticide spraying 

showed a 61% reduction in trachoma prevalence, it was limited by a small sample size and 

included only 7 clusters in each arm [146]. A randomized controlled trial of fly control and 

latrine provision demonstrated that fly-eye contacts were reduced both by spraying 
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(88%) and latrine provision (30%), but a reduction in new prevalent cases of TF was 

statistically significant for the insecticide intervention group only [147]. A cluster-

randomized trial of latrine promotion in 24 communities in Ethiopia showed no impact on 

the prevalence of ocular chlamydial infection after two years [148], although a subsequent 

secondary analysis associated uptake of latrine use with a greater reduction in trachoma 

that was significant for infection but not TF/TI [149]. Inconsistent associations between 

observational studies and variation in impact within intervention sites may be related to 

variable use of latrines or insufficient latrine coverage within communities to have an 

effect on fly density [150,151]. Furthermore, the relative importance of routes of 

transmission is likely to vary by settings and may reduce any observed impact of fly 

control where other pathways are more important.   

Where flies provide an important pathway for transmission of C trachomatis, the above 

risk factors may be associated with variation in trachoma at multiple spatial scales. Fly eye 

contact at the individual level will be influenced by the presence of secretions on the face, 

which in turn are determined by individual hygienic behaviors. Behavioral factors such as 

open defecation may promote higher fly densities and clustering of disease risk within 

households and communities, while community-level latrine coverage may offer 

protection at meso scales. At macro scales, climatic factors may affect transmission 

through influence of fly density [135,142]. Currently, no evidence exists for a climatic 

influence on the survival of infectious elementary bodies on flies or surfaces. 

 

Climate 

Based on the historical distribution of trachoma and its current presence in climates 

ranging from humid and wet (Amazonas, Brazil) to hot and dry (Egypt), it is implausible 

that this represents a constraint on risk of infection. However, the links between climate 

and more proximal risk factors for transmission provides a basis for these factors to 
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influence large-scale trends in the distribution of trachoma. There may also be a potential 

role for climatic factors to directly affect disease progression in trachoma endemic areas, 

through ocular dryness or irritation [18,19].  

Variation in active trachoma within continents and countries has been previously 

associated with broad scale geographic and climatic characteristics, including temperature 

[152,153], aridity and rainfall [154-158], and altitude [136,159]. On this macro scale, 

factors are likely to influence transmission dynamics through water availability and as 

determinants of fly density [160].  As noted in the recent review by Ramesh et al. (2013), 

studies that have investigated large scale associations with climatic factors are often 

limited by low power [136], statistical methods used [157,159],  or have inadequately 

controlled for socioeconomic and environmental confounders [161]. The most robust 

study was conducted by Hagi et al. (2010) [152], which investigated clustering of active 

trachoma among 210 villages in Mali using a Bayesian hierarchical model, finding nearly 

40% of observed variation was attributed to the village level and identifying four 

explanatory climatic risk factors. This study established strong associations between 

macro-scale variation in risk factors and disease risk, after controlling for numerous risk 

factors at the individual, caretaker, household and village level. 

Although differences in water availability and subsequent allocation of water for hygiene 

between seasons is possible, there is limited evidence to support seasonality of 

transmission of C trachomatis or active trachoma. A longitudinal study by Holm et al. 

(2001) noted seasonal fluctuation in active trachoma prevalence corroborating anecdotal 

reports of seasonality in Nepal [162], and observed in Morocco and Australia 

[137,163,164]. While it is likely that fly density undergoes seasonal variation, this was not 

linked to trachoma prevalence in Ethiopia [136].   
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1.5.6 Socioeconomic risk factors 

Disparities in socioeconomic status (SES) are consistently related with health disparities 

across a broad range of contexts. Although SES is traditionally associated with trachoma 

risk [4,27,165], associations are found to be inconsistent between different settings and 

often absent. An individual level analysis by Jansen et al. (2007) in Tanzania and Vietnam 

relating trachoma prevalence to living standards lends support to the notion that these 

associations are likely to vary by context [166].  

Socioeconomic indicators traditionally include measures of occupation, education and 

income, which are distinct but may be found to correlate in some contexts. As opposed to 

directly causing disease, socioeconomic factors determine access to those resources and 

physical environments which directly modify exposure to C trachomatis, or influence 

mediating behaviors. As such, mechanisms of association may act through the proximal 

risk factors discussed above (access to water, latrines and presence of cattle), or influence 

the risk of trachoma through other unmeasured behavioural or environmental exposures. 

Therefore, given the complexity of this framework, associations may vary and reflect local 

importance of different pathways to disease. Briefly, this section provides an overview of 

the mechanisms through which each of the commonly collected measures of SES may 

influence risk of trachoma, the evidence base and the perceived limitations. 

Income-based indicators of SES are typically measured at the household level, and have 

been associated with a reduced prevalence of active trachoma in Ethiopia [121] and Mali 

[116]. While a higher income provides the means for better housing, water and sanitation, 

translating financial resources into disease prevention requires individuals to have 

invested in these improvements. In addition, income is a highly unstable measure 

(whereas trachoma is a chronic disease), and does not capture all assets that may 

influence behavior (i.e. contextual services and resources). Furthermore, an income-based 

measure may not translate well to protective behaviors in contexts where women have 

little control over how income is spent in the household. Income, however, is easily linked 
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to housing conditions and crowding, providing a measure which is easily collected and 

directly relevant to transmission pathways [116,165]. Occupation is regarded as a more 

stable measure than income, and provides a clear structural link between education and 

income. Head of household occupation has been associated with active trachoma in The 

Gambia [59] and Malawi [167]. However, measures of occupation do suffer from a lack of 

precision introduced by rather broad categories and a gender bias that may not 

distinguish “homemakers” from unemployed persons.  

Finally, the socioeconomic measure that is arguably the most robust for trachoma is 

education. Although measured in different ways in different studies, education is easy to 

quantify and fairly stable beyond early adulthood. This measure is particularly likely to 

capture aspects of lifestyle and behaviors, although its importance may vary according to 

social values [168]. Education is typically measured as the years of education of the head 

of household or literacy, and in most [115,121,167], but not all [124], studies has been 

negatively associated with active trachoma. Child education may independently influence 

the risk of trachoma both through behavioural education taught through schools and 

reduced exposure to small (infectious) children and unsanitary household conditions.  

Larger-scale environmental and climatic factors are likely to be closely linked with 

socioeconomic status. To start with, poor people are usually pushed to more fragile, 

marginal lands where water access is limited, vegetation scarce and opportunities for 

cattle grazing or income generation are few [169]. Thus, elevation, landcover and rainfall 

may act as key constraints to livelihood opportunities, except where irrigation has 

increased potential agricultural productivity. Fewer opportunities leads to a cycle of 

poverty, which may strengthen rather than break associations with environmental 

determinants of poverty and water availability in the absence of interventions targeted to 

these high-risk populations.  
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1.6 Spatial analyses and disease mapping 

Standardised collection of trachoma survey data and increasing use of GPS has generated a 

wealth of more accurate and comparable data associated with spatial locations. These data 

open up a range of statistical approaches to improve our understanding of spatial patterns 

and processes of active disease and infection. Increasingly, spatial analyses of existing 

prevalence data have informed control strategies for other diseases, through an improved 

understanding of the scales over which a disease clusters, in order to i) inform survey 

design and ii) use information on underlying determinants to target surveys and 

interventions. This section will provide an introduction to approaches to spatial analysis 

and modelling, an overview of their use in trachoma research, and application to disease 

control.   

 

1.6.1 Approaches in spatial analysis 

There are three main branches of spatial statistics: continuous spatial variation, discrete 

spatial variation and spatial point processes. The first two both rely on sampled 

measurements of an outcome and model the overall degree of spatial dependency; the 

former assuming the outcome to be continuous in space and the latter using aggregate 

data. In contrast, spatial point processes model events that have arisen from a population, 

rather than sampling from an underlying process, and so compare the physical location of 

events within a study region and their propensity to cluster to a random or uniform null 

distribution [170]. Point processes have an important place in spatial statistics, and are 

the subject of many detailed reviews [171,172], but as this thesis uses data that has been 

purposefully sampled they are not considered further.  

Four key concepts are essential to understanding spatial structure that may arise in data 

and statistics used to characterise this structure. First is the concept of spatial 

dependency, or autocorrelation, which refers to the tendency for measurements taken 

51 
 



Chapter 1: Introduction 

from sites in close proximity to be more similar than those further apart [173]. This is a 

well recognized phenomenon, first defined by Tobler in his first law of geography, and 

results from underlying formative processes (meteorological or behavioural). Spatial 

dependency over a study area violates basic statistical assumptions around the 

independence of observations and, as each observation contributes only a fraction of the 

information, may result in spuriously small standard errors and false inferences regarding 

statistical significance. Spatial heterogeneity, defined as the variation over space of the 

observed values from a spatially continuous process, is a distinct but related concept. 

Values may be heterogeneous and unstructured in space or heterogeneous in the presence 

of spatial dependency, which depending on the scale over which this dependency is 

present will result in variable levels of overall heterogeneity.  

Clearly then, the second key concept is the importance of scale in determining spatial 

structure and its influence on the analysis. Different processes act over different ranges 

and therefore, spatial patterns are likely to manifest at multiple scales. For example, close 

contact and mixing patterns between household members may produce small scale 

clustering of infection with added stochastic variability, while shared risk factors and 

similar exposures may induce spatial dependency over larger scales [102].  

These differences in scale give rise to the third key concept, which is the distinction 

between  first order (large scale, deterministic spatial trends) and second order (small 

scale and stochastic) spatial effects [103]. First order trends, for example a north-south 

gradient in the prevalence of infection, may arise from climatic influences and can easily 

be modelled and accounted for by standard regression techniques. Second order effects 

arise from autocorrelation and represent the tendency for neighbouring values to be more 

similar in their deviation from the global mean. The presence of second order effects 

violate assumptions of independence between observations and are the main focus of any 

spatial analysis [174]. The categorization of first order and second order effects will 

change according to the scale of the analysis – for example, variation that appears as a 
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trend at small spatial scales may be seen as second order variation on a larger scale 

[102,173]. Essentially, if the range of spatial variation is outside the range of the study 

area, then it appears as a large scale trend. Most spatial analyses should focus on first 

quantifying any trends in the global mean and then investigate autocorrelation in the 

residuals [103].  

Finally, the concepts of stationarity and isotropy are conditions in which spatial patterns 

of disease are i) constant in space and ii) non-directional. Many measures and tests of 

spatial autocorrelation are “global”, in the sense that they assume a single dominant 

spatial structure that exists over the whole area (i.e. the mean and covariance function do 

not depend on location).  Where this assumption does not hold true, it implies that the 

mean or covariance of two variables does not only depend on distance but also on their 

location in space (a non-stationary process) and relative orientation (an anisotropic 

process). While a non-stationary field (or spatial trend) can be included through 

quantification of first-order trends through regression analyses, non-stationary covariance 

may be incorporated by local estimation of the spatial structure or various smoothing 

approaches [175,176].  

 

1.6.2 Spatial analyses in trachoma 

The use of spatially explicit methods in trachoma research has mainly focused on spatial 

point patterns of infection potentially reflecting transmission between households 

[106,177] and communities [104], or micro-epidemiological studies mapping infection or 

disease in a community in relation to water sources [178,179]. A small study by Bailey et 

al. (1989) found that amongst 15 sleeping rooms in 6 compounds,  cases of active 

trachoma showed no evidence of spatial aggregation within households, when comparing 

the interpoint distance between rooms with a higher modified chi-square statistic and 

using Monte Carlo simulations to randomly reallocate cases and establish a null 
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distribution [106]. A more recent study by Broman et al. (2006) found evidence of 

clustering of infection but not active trachoma up to 1.3 km in Maindi in Kongwa, 

Tanzania, using the k-function, which is based on the magnitude of difference between 

observed and expected cases over a given distance [177]. In contrast to these two studies, 

Polack et al. (2005) used spatial scan statistics to identify three clusters of elevated risk of 

active trachoma within a different community in Tanzania, the largest of which had a 

radius of 283 meters.  These studies use point-process models to quantify patterns of 

clustering and on such a small scale, the potential effects of stochastic variation are high.  

There are limited examples of larger scale analyses that have used continuous spatial 

statistics to quantify associations with trachoma. Recent work by Clements et al. (2010) 

[158] predicted the prevalence of active trachoma in Southern Sudan using a Bayesian 

model that included a geostatistical random effect to account for small scale residual 

spatial clustering (~8 km) after accounting for the effects of rainfall and land cover. 

Another study which controlled for many factors at the individual, household, caretaker 

and village levels  found no evidence of residual autocorrelation using a conditional 

autoregressive (CAR) spatial structure defining neighbours within 128 km [152]. 

 

1.6.3 Bayesian hierarchical models 

In a standard regression model, a common aim is to model the mean outcome as a function 

of predictor variables. We recognize that not all results will fit on regression line, thus an 

error term is added to capture this variation. Consideration of this error term and its 

covariance matrix leads to formulation of more complex models, which are better suited to 

data that are naturally grouped at multiple levels (ie individuals into households, 

households in clusters, clusters in districts, etc.) or are more similar in space. Survey data 

are often structured this way, and it is well recognised that units of measurement that 

come from a group may be more similar than those from different groups, leading to 

correlation in their error term (or residual variance). Adjusting for this clustering is 
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important, as it impacts on the standard error estimated from regression. Although 

adjustment for clustering at the household and/or community level is recommended 

[180], and commonly done in analyses of trachoma risk using robust standard errors 

[181], General Estimating Equations [49] or mixed models incorporating random effects 

[127], some residual error may be spatially correlated at larger scales. For example, if a 

relevant risk factor is not included in the analysis of survey data, and that risk factor is 

spatially structured over the survey area, the assumption of independence will also be 

violated and the standard errors affected. Thus, the presence of spatial autocorrelation in 

the residuals should always be assessed and, where necessary, modelled in order to 

account for residual spatially-structured variation. 

Bayesian hierarchical models provide a convenient framework for development of 

spatially structured multilevel models, as they allow incorporation of covariates and 

assessment of variance at different levels. Bayesian estimation offers a number of practical 

and computational advantages to traditional, frequentist statistics [182]. First, there are 

not closed form solutions for generalised linear mixed models, and frequentist estimation 

involves various numerical approximation methods. In contrast, Bayesian methods 

assume parameters are variable, and not fixed, and use Markov chain Monte Carlo (MCMC) 

algorithms to repeatedly generate random samples from a target distribution, conditional 

on the data. When these simulation chains have converged to the target distribution, they 

no longer depend on the starting point, and are randomly sampling within a defined 

distribution that can then be used for parameter estimation [183]. Second, in multilevel 

models where there are fewer observations at higher levels, the standard errors may not 

be very accurate, while Bayesian estimates obtained from MCMC procedures are more 

robust.  Finally, Bayesian approaches have the advantage of allowing access to the 

posterior distribution for useful summary statistics and can incorporate prior information 

with the empirical data for a flexible decision framework. This is particularly useful for 

disease mapping, where we may be more interested in the model’s ability to predict 
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whether the prevalence exceeds a particular threshold relevant to mapping or control 

[184].  

 

1.6.4 Applications in disease control 

Bayesian model-based geostatistics have been applied to predict the spatiotemporal risk 

of disease by incorporating traditional modelling techniques and spatial analysis within a 

Bayesian framework, generating predictions at unsurveyed locations which allow for 

underlying uncertainties associated with each stage to be propagated in the final 

estimates. This approach has been used to model spatial patterns of disease risk at 

national and regional scales for a number of diseases, including soil-transmitted helminths 

(STH), malaria and schistosomiasis [185-187].  These predictions use associations with 

risk factors at multiple levels, including climatic covariates which may have a role in 

determining vector density, water availability or behavioural patterns, as well as variation 

in village, household and individual-level risk factors[188-191]. Although a Bayesian 

geostatistical approach is increasingly used to inform planning of large-scale helminth 

control programmes [185,187], the potential applications for trachoma have not yet been 

fully evaluated and only explored in two studies [152,191].  

In addition, spatially continuous estimates of risk generated through disease mapping can 

then be used as a platform upon which to evaluate alternative sampling designs through 

computer simulation, as demonstrated by Sturrock et al. (2010) [100] who used data on 

the prevalence of STH from East Africa to compare alternative sampling strategies in 

Kenya. The potential of this simulation approach in identifying alternative methods for 

trachoma surveys warrants further investigation. 
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1.7 Aims, objectives and thesis outline 

1.7.1 Thesis aims and objectives 

The two aims of my thesis are to i) use existing data to define and quantify the spatial 

distribution and disease burden of trachoma and ii) to investigate the spatial 

heterogeneity of trachoma and underlying risk factors at different spatial scales. 

Addressing these aims would have the practical consequence of providing empirical and 

predictive maps of trachoma to inform estimates of disease burden and evidence-based 

choice of survey designs. This aim will be achieved through the following specific 

objectives: 

1. To define the spatial distribution of active trachoma and trichiasis using existing survey 

data and identify current mapping gaps 

2. To quantify the global disease burden of trachoma for 1990 and 2010, using data on the 

spatial distribution of trachoma and trachomatous blindness  

3. To identify individual and cluster-level factors underlying spatial patterns of trichiasis 

risk in Nigeria and explore the relative importance of variation at different scales 

4. To identify cluster-level factors underlying spatial patterns of active trachoma in Kenya, 

and evaluate the potential use of geostatistical risk mapping to predict the distribution of 

trachoma. 

5. To use computerised simulations to evaluate Integrated Threshold Mapping as an 

alternative trachoma survey design to cluster randomised surveys  
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1.7.2 Thesis outline 

Chapter 2 describes the assembly of a global database of trachoma prevalence surveys and 

the current distribution of disease. These data are subsequently used in Chapters 3 

through 5 to define disease burden and for more detailed epidemiological analyses, 

investigating potential spatial correlates and the utility of predictive risk mapping.  

Chapter 3 uses available data to define the burden of trachoma in Africa, in terms of 

trichiasis and trachomatous blindness. Chapter 4 uses a multilevel modelling approach to 

explore the respective roles of individual, socio-demographic, and environmental factors 

on trichiasis prevalence and the relative importance of variation in risk at different levels. 

Chapter 5 uses a similar approach to identify spatial correlates of the risk of active 

trachoma at the cluster level and validate a predictive model. To evaluate the use of a 

novel survey methodology, Chapter 6 compares the performance of Integrated Threshold 

Mapping to cluster randomised sampling according to standard treatment thresholds. 

Finally, Chapter 7 discusses the main findings and highlights the important issues that 

have arisen from this work. 
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2.1 Overview 

In order to effectively target trachoma control efforts and define the burden of disease, the 

geographic distribution of trachoma within countries must be known. As a first step in 

defining this distribution, existing surveys may be collated and mapped to describe global 

geographical trends in endemicity and identify gaps where data are lacking.  

This section describes the assembly of a database and maps for a Global Atlas of Trachoma 

(GAT), which have been made freely available online at www.trachomaatlas.org since 

2011. The first global trachoma atlas was developed in 2005 by the International Centre 

for Eye Health at the London School of Hygiene and Tropical Medicine (LSHTM) and the 

Programme for the Prevention of Blindness and Deafness at the WHO [70]. As part of a 

recent collaboration between LSHTM and the International Trachoma Initiative (ITI), this 

atlas was updated to reflect the availability of new survey data and changing burden of 

trachoma. Iterations of these data have been used at the global level by the International 

Task Force for Disease Eradication [192] and the International Coalition for Trachoma 

Control [193]. As the coordinator of the GAT during its development, I conducted the 

literature review, developed the initial atlas in 2011 and was responsible for the analysis 

presented in this chapter and published paper [194]. Data collected in the GAT directly 

informs the analysis of the burden of disease presented in Chapter 3.  

 

2.2 Introduction 

While the global distribution of trachoma has evolved over time in response to population 

movements, socioeconomic development and control measures, it continues to be an 

important cause of blindness in many countries in Africa, Asia and the Americas. Recent 
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estimates have suggested trachoma accounts for 3.6% of the global burden of blindness 

[2]. The most important limitation of our understanding of the distribution of trachoma, 

identified in the last review of the global distribution of trachoma in 2005, is the paucity of 

data in many endemic countries [70]. Since that time, international political support for 

the global elimination of trachoma as a public health problem has increased, with 

commensurate scale up of mapping activities and funding for national trachoma control 

programmes. Targeting available resources cost-effectively requires an understanding of 

the known geographic distribution of trachoma at sub-national levels and identification of 

gaps in survey data where further mapping is required.  

The aim of this chapter is to describe the global geographical distribution and population 

at risk of trachoma using existing data from the GAT. Specifically, the methods of data 

assembly and mapping will be described and data then used to define the current 

geographical distribution, calculate the population at risk of TF and TT, and estimate 

numbers requiring treatment. Ongoing trachoma mapping efforts and remaining areas 

requiring further surveys will also be discussed. 

 

2.3 Methods for assembly of a Global Atlas of Trachoma 

2.3.1 Overview of the Global Atlas 

The GAT adopted an identification and data assembly strategy similar to other mapping 

initiatives, including those for malaria [195], helminth infections [196-198] and human 

African trypanosomiasis [199].  In brief, epidemiological data on the burden of trachoma 

were identified through structured searches of published and unpublished literature, with 

a number of inclusion rules applied to identified information.  Data were then abstracted 

into a standardised database and mapped using geographical information systems (GIS) 

software.  
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2.3.2 Identification of survey data 

To assemble a global database of trachoma risk, survey data were identified through a 

combination of: (i) searches of electronic bibliographic databases; (ii) review of 

programmatic data submitted to ITI; (iii) manual searches of local archives and WHO 

GET2020 documents; and (iv) direct contact with programme managers and researchers. 

These searches, conducted in 2010 and annually thereafter, build on an earlier effort in 

2005 as part of a collaboration between the International Centre for Eye Health at the 

LSHTM and the Programme for the Prevention of Blindness and Deafness at the WHO, to 

develop a first global atlas of trachoma [70]. The online bibliographic databases PubMed 

[200] and Embase [201] were searched to identify relevant studies, using the Medical 

Subject Headings “trachoma”, “trichiasis”, and “Chlamydia trachomatis”. These searches 

were restricted to surveys conducted after 1980 for trichiasis and 1988 for active 

trachoma. The latter restriction was applied because 1987 is when the new simplified 

grading system for trachoma was introduced [26]. Authors were contacted if additional 

information was required on survey design or indicators collected. Countries for which no 

up-to-date information was available from the literature, GET 2020 country data forms, or 

submitted to ITI, were contacted on an individual basis for local knowledge and 

clarification.  As a whole, these data are unpublished and use the standardised survey 

methodologies recommended by WHO. Work initially focused on the 55 countries classed 

in 2004 as trachoma endemic by WHO: 36 of which are in Africa, six in the Middle East, 10 

in Asia and the Western Pacific and three in Latin America [202]. There are currently no 

reliable data indicating the status of trachoma in Iraq, Libya, Namibia or Zimbabwe, and 

these countries were also excluded from the most recent WHO update on GET2020 [203]. 

These countries were therefore not included in the analysis. The aim was also to collect 

the most contemporary data possible in order to inform current control efforts. Literature 

searches are conducted annually (most recently in September, 2012), and additional data 

submitted directly to ITI by national trachoma program managers are routinely used to 
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update the database and resulting prevalence maps. Data available as of September, 2012, 

were used in the preparation of this chapter. 

 

2.3.3 Data selection and entry 

The title and abstract of each source of information were reviewed and evaluated against a 

number of pre-defined inclusion and exclusion criteria. Only cross-sectional population 

based prevalence surveys were included as measures of trachoma prevalence, while TRAs 

were used to indicate the presence or absence of trachoma where no prevalence data were 

available.  Data were excluded if based on hospital or clinic surveys, or surveys among 

sub-populations such as among refugee populations.  Where multiple surveys were 

available from the same district but surveyed at different times, they were included as 

separate entries and coded as “current” or “historical” in order to ensure that only the 

most recent data are used to estimate the current burden of disease. Estimates of disease 

prevalence were typically available at the district level as this is the administrative unit at 

which control is implemented. Where estimates were representative of point locations or 

the result of a non-random selection of communities within a district, data were only used 

to provide information on the presence of trachoma. Abstracted data included details on 

the source of the data, location of survey (including geographical co-ordinates for cluster 

data when available), survey year, characteristics of the surveyed population, survey 

methodology, the numbers of children aged 1-9 years and adults aged over 14 years 

examined, the number of children graded positive for TF and the number of adults graded 

positive for TT. Any variation in clinical indicator or age group was also recorded in the 

database. A unique identifier linked each record in a bibliographic database to the survey 

data and to an electronic copy of the source when this could be obtained.  
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2.3.4 Mapping  

All data were entered into a standardized Microsoft Access 2007 geodatabase (Microsoft  

Corporation, Redmond, WA, USA), which is linked to a geographic information system 

(GIS). Data can be queried to produce custom tables, thus allowing simple and rapid 

generation of country and regional maps using Arc GIS 10.1 (ESRI, Redlands, CA, USA).  

Data were assigned wherever possible to the second administrative level (e.g., district 

level), which has direct relevance to implementation of trachoma control. However, data 

from some older surveys and hyperendemic areas are available at the first administrative 

level (e.g., province, region), and data were assigned accordingly. The most recent data are 

displayed on the main maps.  Where historical data are also available they are displayed 

on separate maps online.  

Prevalence data were banded into categories corresponding to current intervention 

guidelines for TF and TT (Table 2.1).  TRA data were categorized into three bands for 

active trachoma (No active trachoma found, <10% and ≥10% of children aged 1-9 years 

examined found positive) and two bands for trichiasis corresponding to UIG targets 

(prevalence of TT unknown to the health system of <0.1% or ≥0.1% of the total 

population). Geographical boundaries used for mapping were derived from: (i) the United 

Nations Second Administrative Level Boundaries data set project 

(http://www.unsalb.org/); (ii) Global Administrative Areas (http://www.gadm.org/); and 

(iii) shapefiles created specifically for this project from maps provided by programme 

managers. Updated district-level maps were launched in 2011 on an open-access website 

(www.trachomaatlas.org).  
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Table 2.1 Endemicity classes for implementation of SAFE based on trachomatous inflammation–
follicular (TF) and trichiasis (TT) 

TF Prevalence 
 

Classification Implementation 
<5% Non-endemic No need for implementation of AFE 
≥5% and <10% Hypo-endemic Mapping, F and E can be applied, focal A 
≥10% and <30% Meso-endemic AFE at district level (≥3 years then review) 
≥30% Hyper-endemic AFE at district level (≥5 years then review) 
TT Prevalence 

 
 Classification  

<0.1% UIG achieved  
≥0.1% UIG not yet achieved 
   
 

2.3.5 Analysis 

The characteristics of all surveys that met the inclusion criteria were summarized by 

country according to data source, time period, and survey methodology. Districts and 

regions were categorized as suspected endemic or assigned to a prevalence category using 

the most current PBPS data representative at this level. Districts were classified as 

'suspected endemic' or 'suspected non-endemic' based on information from TRA surveys, 

point locations, reported cases or anecdotal information from national programs. Surveys 

which only collected data on one clinical sign were also used to inform this classification 

(i.e. a district known to be endemic for TF was classified as ‘suspected endemic’ for TT 

where no other data were available). Note that, in some cases, identified districts may not 

include all endemic or non-endemic areas within a country, but their classification does 

reflect available evidence supporting the presence of trachoma.  

A total of 24 district-level surveys of TT were conducted in populations aged 40 or 50 

years and over. Based on a review of age-stratified TT prevalence ratios from published 

and unpublished data, a conversion factor of 0.54 was applied to estimate the 

corresponding prevalence in adults aged ≥ 15 years.  

Survey data at the region and district level were presented separately in this analysis, with 

district defined here as the unit of implementation typically used for SAFE control 

activities. While this is usually the second administrative unit within a country, in some 
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cases these are distinct health districts (Burkina Faso and Cameroon), third administrative 

areas (Ethiopia) or first administrative areas (Chad, CAR, Guinea-Bissau, Iran, Oman and 

the Pacific Islands). This was based on the aim to present data most relevant to current 

guidelines relating to the implementation of SAFE control strategies. In Australia, the most 

reliable prevalence data come from the National Indigenous Eye Health Survey, as 

opposed to routinely collected surveillance data, which provides prevalence estimates in 

populations classified by the 2006 Remoteness Structure [204,205].   

Estimates of the current population at-risk were calculated for each country using district-

level population estimates and summarised by endemicity class. In this chapter, 

“population at-risk” is defined as the total population living in districts that fall within a 

given endemicity category. Population figures for 2012 in Africa were derived from the 

Afripop project, which provided a continental 1 km gridded population map produced 

using projected population census data for 2010 and settlement extents 

(www.afripop.org). Population estimates for the remaining endemic countries were 

derived from the Gridded Population of the World, Version 3 data set (GPWv3) at the same 

resolution. All estimates were projected to 2012 using country-specific growth rates from 

the United Nations World Population Prospects [206,207]. This map was overlaid with 

district classification to allow summation and mapping of the population in each category 

of risk. Districts which had TRA data were classified as known non-endemic (if the survey 

found an absence of TF/TT) or suspected endemic (if clinical signs were found). Where 

PBPS data were available, prevalence estimates were used to classify districts according to 

endemicity classes (Table 2.1). Estimates of total population were used for all countries 

with the exception of Australia and Brazil. In these countries, indigenous population 

census figures were used to correspond with available prevalence estimates and present 

more accurate estimates of the population at risk in these countries. 
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2.5 Results 

2.5.1 Survey database and geographical coverage 

A total of 266 unique surveys with data on either active trachoma or trichiasis met GAT 

inclusion criteria.  These included data from CRS (193), ASTRA (1), TRA (30), ITM (2), 

screening (3) and surveys at single sites (35) from 50 countries globally classified as 

endemic. Prevalence data on active trachoma were available in 40 countries and data on 

TT in 39. In total, there are 2131 records included in the database representing surveys 

conducted between 1985 and 2012, 1631 of which provide implementation unit-level 

estimates of prevalence (usually district-level) and an additional 80 records that provide 

region–level estimates. The remaining 420 records were TRAs, site-specific surveys or 

those of unclear methodology, which were used only to provide information on the 

presence or absence of trachoma at the district level. The primary source of included 

survey data was direct contact with national control programmes and academic 

researchers (70%), followed by peer-reviewed publications (15%) and unpublished 

reports or theses (15%). These sources of data were found to vary considerably by 

country, with a good deal of overlap between sources in countries with established control 

programmes (Table 2.3). 

The majority of available prevalence data (70%) are from African countries, with a lesser 

proportion coming from countries in the Middle East (2%), Latin America (18%) and the 

Asian and Western Pacific (10%).  Geographical coverage of survey data, however, is 

highly variable within regions and endemic countries outside of Africa tend to have a 

patchier, more focal distribution both of trachoma and supporting data. The number of 

surveys available has consistently increased over the last two decades, as highlighted in 

Figure 2.1 which presents the total number of PBPS surveys conducted by year for each 

geographic region.  This figure reflects international support and progress of established 

national control programmes in sub-Saharan Africa in recent years, and also the historical 
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focus on trachoma in a number of Asian, Latin American and Middle Eastern countries 

such as Mexico, Myanmar, Oman and Vietnam. 

 

Table 2.2 Countries for which no trachoma data were identified for the current atlas 

Africa Middle East Asia & Western 
Pacific 

Latin America 

Benin  Papua New Guinea Guatemala 
Botswana  Lao People’s   

Democratic Republic 
 

Somalia    
Zimbabwe    
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Table 2.3 Total number of district-level population based prevalence surveys (PBPS), trachoma rapid 
assessments (TRA) and site-specific surveys in the database, summarised by source of data 

Country 

Total 
Number 
Surveys Number TRA 

Number 
PBPS Number Othera 

Primary Source   n (%) 
Direct 

contactb 
Published 

Papers Reports 
Africa 
Algeria 1 0 1 0 0 1 (100) 

 Benin 0 0 0 0 0 0 0 
Botswana 0 0 0 0 0 0 0 
Burkina Faso 108 0 108 0 101 (94) 0 7 (6) 
Burundi 23 0 23 0 10 (43) 13 (57) 0 
Cameroon 41 0 41 0 40 (98) 1 (2) 0 
CAR 10 1 9 0 2 (20) 1 (10) 7 (70) 
Chad 8 0 8 0 0 5 (63) 3 (38) 
Cote d' Ivoire 6 0 6 0 0 0 6 (100) 
Djibouti 4 0 0 4 0 4 (100) 0 
Egypt 5 1 2 2 0 5 (100) 0 
Eritrea 36 0 36 0 36 (100) 0 0 
Ethiopia 138 0 138 0 90 (65) 21 (15) 27 (20) 
Ghanad 62 1 61 0 0 61 (98) 1 (2) 
Guinea 20 5 15 0 0 0 20 (100) 
Guinea Bissau 9 0 9 0 9 (100) 0 0 
Kenya 32 2 30 0 29 (91) 0 3 (9) 
Malawi 5 0 5 0 1 (20) 4 (80) 0 
Mali 62 1 61 0 29 (47) 24 (39) 9 (15) 
Mauritania 64 2 62 0 64 (100) 0 0 
Moroccod 13 0 13 0 13 (100) 0 0 
Mozambique 6 0 6 0 3 (50) 0 3 (50) 
Niger 53 6 47 0 53 (100) 0 0 
Nigeria 282 87 195 0 157 (56) 19 (7) 106 (38) 
Senegal 11 0 10 1 11 (100) 0 0 
Somalia 0 0 0 0 0 0 0 
South Sudan 43 13 30 0 24 (56) 17 (40) 2 (5) 
Sudan 93 0 92 1 92 (99) 1 (1) 0 
Tanzania 66 0 66 0 58 (88) 8 (12) 0 
The Gambia 46 0 46 0 30 (65) 16 (35) 0 
Togo 31 0 28 3 3 (10) 28 (90) 0 
Uganda 38 0 38 0 38 (100) 0 0 
Zambia 26 0 26 0 8 (31) 0 18 (69) 
Total 1342 119 1212 11 901 (67.1) 229 (17.1) 212 (15.8) 
Middle East 
Irand 4 4 0 0 4 (100) 0 0 
Omand 29 0 28 1 10 19 0 
Yemen 14 10 4 0 0 10 (71) 4 (29) 
Total 49 14 32 1 14 (28.6) 29 (59.2) 4 (8.2) 
Asia and Western Pacific 
Afghanistan 8 5 0 3 3 (38) 0 5 (63) 
Australiac 36 0 0 36 0 22 (61) 14 (39) 
Cambodia 22 22 0 0 19 (86) 0 3 (14) 
China 3 0 1 2 0 3 (100) 0 
Fiji 1 1 0 0 0 1 (100) 0 
India 21 14 1 6 0 5 (24) 16 (76) 
Kiribati 2 2 0 0 0 2 (100) 0 
Laos 0 0 0 0 0 0 0 
Myanmard 29 6 23 0 17 (59) 1 (3) 11 (38) 
Nepal 77 39 38 0 74 (96) 0 3 (4) 
Pakistan 70 36 33 1 35 (50) 1 (1) 34 (49) 
Papua New 
Guinea 0 0 0 0 0 0 0 
Solomon 
Islands 8 3 5 0 5 (63) 3 (4) 0 
Vanuatu 2 2 0 0 0 2 (100) 0 
Viet Nam 127 0 64 63 127 (100) 0 0 
Total 406 130 165 111 280 (69) 40 (9.9) 86 (21.1) 

   
 

    
   

 
    

   
 

    
   

 
    

   
 

    

   
 

   

 
 

   
 

    68 
 



Chapter 2: The Global Distribution of Trachoma 

Table 2.3 continued 

 
Total 

Number 
Surveys Number TRA 

Number 
PBPS 

Number 
Othera 

Primary Source   n (%) 

Country 
Direct 

contactb 
Published 

Papers Reports 
Americas 
Brazil 334 0 300 34 300 (89) 29 (7) 5 (1) 
Guatemala 0 0 0 0 0 0 0 
Mexico 2 0 2 0 0 0 2 (100) 
Total 336 0 302 34 300 (89.3) 29 (8.6) 7 (2.1) 

Total 2131 263 1711 157 1495 (70.2) 
327 

(15.3) 309 (14.5) 
a Site specific surveys or those in which the sampling methodology was unclear and have been used to provide 
evidence of suspected endemicity where no district level PBPS or TRA were available; b Direct contact includes 
contact with National Control Programmes, NGOs and academic researchers; c Annual Surveillance Reports are 
published by the National Trachoma Surveillance and Reporting Unit in Australia, only screening data from 2012 
are included here and data from the National Indigenous Eye Health Survey; d Reported as achieved elimination 
targets [203] 

 

 

 

 

Figure 2.1 The number of population-based prevalence surveys identified by year and region 
globally, 1985-2013. In Africa, the graphs show a shift in survey activities from North Africa to 
other endemic areas, with a recent increase in the number of surveys conducted since 2005 in sub-
Saharan Africa. 
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Africa 

A total of 167 unique surveys with data on either active trachoma or trichiasis met GAT 

inclusion criteria.  These included data from CRS (152), ASTRA (1), TRA (9), ITM (2) and 

surveys at single sites (3) from 31 of the 33 countries in Africa classified as endemic. 

Prevalence data on active trachoma were available in 29 countries and data on TT in 25.  

In total, there are 1342 records included in the database representing surveys conducted 

between 1985 and 2012, 1212 of which provide implementation unit-level estimates of 

prevalence (usually district-level) and an additional 79 records that provide region–level 

estimates. The remaining 10 records were site-specific surveys or those of unclear 

methodology, which were used to provide information on the presence or absence of 

trachoma at the district level. 

The primary source of included survey data was direct contact with national control 

programmes and academic researchers (67%), followed by peer-reviewed publications 

(17%) and unpublished reports or theses (16%). These sources of data were found to vary 

considerably by country with a good deal of overlap between sources in countries with 

established control programmes (Table 2.3). The number of surveys available has 

consistently increased over the last two decades, as highlighted in Figure 2.1 which 

presents the total number of PBPS surveys conducted by year for each region of Africa.  

Surveys in north Africa and the Middle East were conducted earlier than other regions, 

mainly reflecting active control programmes in Morocco and some earlier surveys in 

Egypt. While west Africa has some historical surveys, recent survey activities are 

increasingly focused in this region and in east Africa. 

The 33 African countries endemic for trachoma consist of 5308 districts. Of these, 1095 

(20.6%) districts had representative TF data collected through PBPSs, 1024 (19.3%) with 

PBPS prevalence estimates for TT (Tables 2.4 & 2.7), and data from TRA surveys for an 

additional 101 districts. While the majority of data collected at the first administrative 

level are outdated and have been replaced by more recent second administrative level 
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surveys, Tables 2.5 and 2.8 present current data on TF and TT available at this level. Only 

5 first administrative level units have trachoma prevalence data that are being used 

programmatically. At the time of writing, 38% of the trachoma endemic countries in Africa 

have more than 50% of their districts mapped by PBPS and this number is even higher 

when excluding districts presumed to be non-endemic from the denominator, as 

illustrated in Figure 2.2. These data reflect a rise in the number of large-scale national or 

regional surveys taking place in recent years (e.g. in Republic of Sudan and South Sudan) 

as well as conduct of pre-and post-implementation surveys in the context of large-scale 

control programmes in several countries. Since 2007, surveys have been conducted in a 

number of countries that previously had no data, including Burundi, Cameroon, Central 

African Republic, Cote d’Ivoire, Eritrea, Rwanda, Uganda and Zambia. While a number of 

other countries have seen a rise in survey activities during this period (e.g. Ethiopia, 

Guinea Bissau, Nigeria, Republic of Sudan, South Sudan, Tanzania, Togo and Zambia), 

prevalence estimates are still lacking in Algeria, Chad and Djibouti and no data are 

currently available for Benin, Botswana, or Somalia (Tables 2.3). 

 

Figure 2.2 Proportion of districts surveyed by population based prevalence surveys between 1985 
and 2012 in Africa. Bar plots exclude non-endemic areas from the denominator where information 
on suspected endemicity is available for the entire country, while numbers indicate the proportion 
of all districts surveyed. The graph highlights progress in mapping many endemic countries in east 
and west sub-Saharan Africa and the need for additional surveys in many countries in Africa. 
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Middle East 

A total of 8 unique surveys with data on either active trachoma or trichiasis met GAT 

inclusion criteria.  These included data from CRS (5), TRA (2), and screening of children 

(1) from the 3 countries in the Middle East classified as endemic. Prevalence data on active 

trachoma and trichiasis were available only in Oman and Yemen.  In total, there are 49 

records included in the database representing surveys conducted between 1985 and 2012, 

34 of which provide estimates of prevalence at the implementation unit. An additional 15 

records were site-specific surveys, TRAs or those of unclear methodology, which were 

used to provide information on the presence or absence of trachoma at the district level. 

The majority (59%) of these data are from published sources, which is much higher than 

other regions and mainly reflects research linked with the national trachoma control 

programme in Oman.  

The 3 Middle Eastern countries currently classified as endemic for trachoma consist of 55 

health districts. Of these, 16 (29.0%) districts had representative TF data collected 

through PBPSs, 12 (21.8%) with PBPS prevalence estimates for TT (Tables 2.5 & 2.8), and 

data from TRA surveys for an additional 12 districts. Oman has complete geographical 

coverage of survey and/or screening data, reported achievement of the intervention 

targets for the elimination of blinding trachoma in 2012 and was the first country in which 

verification was carried out [203]. TRA and limited prevalence surveys have indicated that 

trachoma may be highly endemic in Yemen while TRA data from 2004 suggest it may not 

be a public health problem in Iran. 

 

Asia and Western Pacific 

A total of 67 unique surveys from Asia or the Western Pacific regions had data on either 

active trachoma or trichiasis and met GAT inclusion criteria.  These included data from 

CRS (30), TRA (19), and screening in indigenous populations or specific sites (16) from 14 
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countries in Asia and the Western Pacific. Prevalence data on active trachoma were 

available in 7 countries and data on TT in 6.  In total, there are 406 records included in the 

database representing surveys conducted between 1985 and 2012, 164 of which provide 

implementation unit-level estimates of prevalence (usually district-level) and an 

additional record that provides region–level estimates. A further 241 records were site-

specific surveys, TRAs or those of unclear methodology, which were used to provide 

information on the presence or absence of trachoma at the district level. 

There are 15 countries in Asia or the Western Pacific classified as endemic for trachoma, 

which consist of 2,448 health districts. Of these, 118 (4.8%) districts had representative 

TF data collected through PBPSs, 95 (3.9%) with PBPS prevalence estimates for TT 

(Tables 2.5 & 2.8), and data from TRA surveys for an additional 131 districts. The greatest 

coverage of data are in Nepal and Pakistan, which have completed extensive TRAs and 

PBPS. The large number of districts in China, India and Vietnam partly account for the low 

geographical coverage observed in this region. 

 

Latin America 

A total of 24 unique surveys with data on either active trachoma or trichiasis met GAT 

inclusion criteria.  These included data from CRS (6), screening (1) and surveys at single 

sites (17) from 2 of the 3 countries in Latin America currently classified as endemic. 

Prevalence data or data from regular screening for active trachoma and trichiasis were 

available in Brazil and Mexico, but data are lacking for Guatemala.  In total, there are 336 

records included in the database representing surveys conducted between 1985 and 2012, 

302 of which provide implementation unit-level estimates of prevalence or screening 

(usually district-level). The remaining 34 records were site-specific surveys or those of 

unclear methodology. 

Of the three countries currently classed as endemic in Latin America, a minority (5%) of 

the 5,616 districts have TF survey data and only three districts have TT data (Tables 2.5 & 
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2.8). However, only one (surveyed) state in Mexico is classified as endemic and the final 

assessment for achieved elimination is pending [203,208]. Brazil has a long history of 

trachoma and survey data are patchy both geographically and temporally, with school 

surveys used for assessment of TF and TT data coming from limited surveys in indigenous 

populations 

 

 

Figure 2.3 Proportion of districts surveyed by population based prevalence surveys between 1985 
and 2012 in non-African regions. Bar plots exclude non-endemic areas from the denominator 
where information on suspected endemicity is available for the entire country, while numbers 
indicate the proportion of all districts surveyed. The graph reflects post-control surveys and 
surveillance activities in Oman, Australia, Myanmar and Mexico but also highlights the dearth of 
information in many of these countries. 

.   
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2.5.2 Distribution of trachoma and population at risk 

Globally, the distribution of trachoma varies markedly between regions, which has 

important implications for estimates of the population at risk of disease. Active and 

chronic disease remain highly endemic in much of sub-Saharan Africa, while their 

distribution is much patchier outside of Africa. While in some countries, such as Myanmar, 

Oman and Vietnam, effective control programmes have contributed to a general reduction 

in the prevalence of disease, there continues to be a backlog of trichiasis in areas of high 

historical endemicity. In other countries throughout Asia, the Western Pacific and Latin 

America, lower levels of endemicity are often correlated with socioeconomic development. 

However, as seen in Australia, Brazil, China and India, pockets of active disease may 

persist amongst the poorest and most marginalised communities and mirror inequities in 

access to water and sanitation. Empirically defining the distribution of trachoma in these 

countries presents a substantial challenge in generating reliable estimates of the 

population at risk. 

In the remainder of this chapter, I will present data to show that globally, 141 million 

individuals live in areas confirmed empirically to be trachoma endemic (based on district-

level prevalence of TF in 1-9 year-olds greater than 5%).  African countries account for the 

vast majority (92%) of the population known to live in these areas and over 93% of the 

population living in meso- and hyper-endemic areas. While available data in Asia supports 

lower levels of endemicity, the large population and gaps in PBPS data continues to limit 

the reliability of estimates of the population at risk. This is reflected in the staggering 

figure of nearly 1.3 billion individuals living in areas suspected to be endemic. The number 

of individuals affected by trachoma is likely to be far lower, as it is expected to have a focal 

distribution throughout China and India. However, the lack of data in these countries 

precludes any more refined estimates of risk. 
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The global distribution of trichiasis (Tables 2.7 & 2.9) reflects both the known distribution 

of trachoma as well as areas where trachoma was historically a public health problem and 

a backlog of cases remain.  

 

Africa 

The geographical distribution of trachoma in Africa varies between regions. Trachoma is 

believed to be endemic in 33 of the 56 countries in Africa, which are mainly located in east 

and west sub-Saharan Africa, north Africa and a few endemic coastal countries in central 

Africa (Figure 2.2).  

Based on available data, the highest prevalence of active trachoma and trichiasis remains 

in the Sahel area of west Africa and Savannah areas of east and central Africa (Tables 2.4, 

2.6, 2.7 & 2.9). A high proportion of surveyed districts are hyper-endemic (defined as TF 

prevalence in 1-9 year-olds of ≥30%) in South Sudan (83%), Ethiopia (64%), Guinea 

(50%), Uganda (37%), Chad (38%), CAR (38%) and Tanzania (32%), but large areas 

suspected to be endemic remain unmapped in each of these countries. West African 

countries have been the focus of a number of national surveys in the last decade (Figure 

2.1) providing both pre- and post-intervention data for a high proportion of districts in 

Burkina Faso, The Gambia, Ghana, Mali and Mauritania.  Many countries in Central Africa 

continue to lack data, making estimation of the burden in this region difficult. Based on 

survey data currently included in the atlas and population estimates, an estimated 129.4 

million people live in areas that are confirmed empirically to be trachoma endemic (based 

on district-level prevalence of TF in 1-9 year-olds greater than 5%) and a further 155 

million in areas suspected to be endemic (Table 2.4).  The latter is likely to be a 

conservative estimate, as it only includes areas classed as suspected endemic based on 

available TRA or anecdotal information about cases presenting to the health care system. 
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A substantial burden of disease is likely in Ethiopia and Nigeria due to their large 

populations in areas of high endemicity (Table 2.4).  

As a direct consequence of repeated infections, the burden of TT follows similar 

geographical trends to TF within Africa. However, there is a significant backlog of TT 

surgeries remaining in countries with historically high endemicity levels (Tables 2.6 & 

2.9). These countries include Ghana and Morocco which, despite success in reducing the 

burden of active disease, continue to have a high burden of TT arising from both prevalent 

and incident cases.  

 

Middle East 

Although trachoma was historically present in Saudi Arabia and Tunisia, and represented 

a significant public health problem in much of the Middle East and North Africa, there is 

evidence that it is no longer widely endemic in this region. Both Oman and Iran have 

already been certified as non-endemic by the WHO [203], based on PBPS in the case of 

Oman and information from cause of blindness surveys and primary health services in 

Iran [209]. The backlog of trichiasis reflects high levels of historical endemicity, although 

there is a low proportion of unmanaged cases in these countries [210]. There remains a 

lack of information on the distribution of trachoma in Yemen (Figure 2.4A), as available 

prevalence estimates are outdated (2001). 

 

Asia and Western Pacific 

Within Asia, trachoma is reported to occur in Afghanistan, Pakistan, India, Myanmar and 

Nepal [202,208,209,211] (Figure 4c). However, the distribution of trachoma and 

availability of data is patchy in this region and epidemiological data are limited, 

particularly for Afghanistan, India and Myanmar. In India, trachoma has been found by 
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TRA in some areas in the north and east, but recent PBPS data exist only in Bulandshahar 

and indicates a low prevalence of disease. Historically, trachoma has been a public health 

problem in rural central Myanmar but recently WHO has certified that the country has 

reached the elimination targets [203]. In contrast, Nepal has conducted extensive surveys 

of suspected endemic areas in the last ten years, and made encouraging progress in 

control. In 2005, Nepal had information for 9 (12%) of its 75 districts (all from PBPS). This 

has now increased to 53 districts: 27 (36%) of which are prevalence estimates from PBPS 

and 38 additional districts with TRA data. Pakistan is currently conducting extensive PBPS 

in all districts, and has completed two of the three phases of the survey to date, showing 

the majority of districts to be non-endemic. 

Within the Western Pacific Region, the geographical distribution of active trachoma and 

trichiasis is well known only in Vietnam, and in Australia, where the disease is limited to 

Aboriginal communities (Figure 2.4C). There is some evidence that trachoma may be a 

public health problem in some communities in the Pacific Islands of Vanuatu, Fiji, Kiribati, 

and Solomon Islands, and TRAs have also found trachoma in Cambodia [212]. There is a 

lack of recent survey data for China although active trachoma has been reported to be 

present in several small, surveys in Beijing and Guangxi, and trichiasis has been reported 

in Hainan Province and Beijing [92,213-215]. No data could be identified for Lao People’s 

Democratic Republic and Papua New Guinea. 

 

Latin America 

Only three countries in the Americas are thought to be trachoma endemic: Brazil, Mexico 

and Guatemala. National school surveys and PBPS among indigenous communities in 

Brazil suggest that a high prevalence of trachoma remains in northern areas of Brazil and 

focal populations (Figure 4B).   Active trachoma is widely reported as eliminated from 

Chiapas, the last endemic region in Mexico, although it has yet to be certified as meeting its 
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elimination targets [203,208]. Some evidence exists to support ongoing transmission of C 

trachomatis in rural areas of Chiapas and other states in Mexico as recently as 2004 [216]. 

No data are currently available for Guatemala, although surveys were reported in 2012 

and two districts found to be endemic [208,217]. A number of countries border highly 

endemic areas in Brazil, including Bolivia, Peru, Colombia and Venezuala, and imply that 

trachoma may be endemic in some areas. Recent surveys have found evidence of C 

trachomatis infection and later stages of disease sequelae in indigenous communities in 

Colombia, suggesting sustained transmission over a long period of time [218]. 
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Figure 2.4 Empirical prevalence of A) trachomatous inflammation–follicular (TF) and B) 
trachomatous trichiasis (TT) and C) areas of suspected and presumed endemicity in Africa between 
1985-2012. Population based prevalence surveys generated data for 1095 districts and 24 regions, 
while trachoma rapid assessment (TRA) surveys provided information on endemicity for 101 
additional districts. 
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Figure 2.5 Empirical prevalence of i) trachomatous inflammation–follicular (TF), ii) trachomatous 
trichiasis (TT) and iii) areas of suspected and presumed endemicity in A) the Middle East, B) Asia 
and Western Pacific and C) Latin America between 1985-2012. Population based prevalence 
surveys generated data for 417 health districts and 3 regions in India, while trachoma rapid 
assessments (TRAs) and surveys in specific sites provided information on endemicity for 169 
additional districts. 
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Table 2.4 Population in endemic categories of trachomatous inflammation–follicular (TF) and availability of district-level data from population-based prevalence surveys (PBPS) in Africa in children aged 1-9 years 

Country 

Total 
Number 
districts 

Total Pop 
(000s) 

Total 
Surveyed 
districts 
n   (%) 

Suspected Endemic 
Prevalence of TF from PBPSb 

<5% 5-9.9% 10-29.9% >30% 
         Districts  
    n              (%)a 

Pop 
(000s) 

        Districts  
   n            (%) 

Pop 
(000s) 

Districts  
    n              (%) 

Pop 
(000s) 

Districts  
     n             (%) 

Pop 
(000s) 

Districts  
      n               (%) 

Pop 
(000s) 

Algeria 1,592 36,507 1 (0.1) 
   

0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 1 (100) 33 
Benin 77 9,307 0  (0.0) 6 (7.8) 2,192 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 
Botswana 25 1,877 0 (0.0) 3 (12.0) 338 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 
Burkina Faso 63 16,806 63 (100) 0 (0.0) 0 24 (38.1) 7,497 16 (25.4) 3,805 23 (36.5) 5,504 0 (0.0) 0 
Burundi 139 9,681 23 (16.5) 0 (0.0) 0 11 (47.8) 2,263 8 (34.8) 1,210 4 (17.4) 965 0 (0.0) 0 
Cameroon 178 20,416 41 (23.0) 8 (5.8) 948 20 (48.8) 1,157 4 (9.8) 434 15 (36.6) 1,544 2 (4.9) 72 
CARc 17 4,540 8 (47.1) 1 (11.1) 194 0 (0.0) 0 2 (25.0) 1,853 3 (37.5) 749 3 (37.5) 596 
Chadc 14 12,113 8 (57.1) 5 (83.3) 4,320 0 (0.0) 0 0 (0.0) 0 5 (62.5) 3,958 3 (37.5) 3,533 
Cote d' Ivoire 58 19,790 6 (10.3) 

   
5 (83.3) 1,594 1 (16.7) 306 0 (0.0) 0 0 (0.0) 0 

Djibouti 11 791 0 (0.0) 0 0.0 0 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 
Egyptg 26 80,095 2 (7.7) 3 (12.5) 11,704 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 2 (100) 8,226 
Eritrea 58 5,485 36 (62.1) 11 (50.0) 731 19 (52.8) 2,013 8 (22.2) 968 8 (22.2) 984 1 (2.8) 92 
Ethiopiad 928 86,132 229 f (24.8) 470 (67.3) 32,586 2 (0.9) 257 4 (1.7) 562 78 (33.9) 11,212 145 (63.5) 18,840 
Ghana 143 25,305 35 (24.5) 0 (0.0) 0 35 (100.0) 4,366 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 
Guinea 38 10,957 10 (26.3) 5 (17.9) 785 0 (0.0) 0 0 (0.0) 0 5 (50.0) 1,577 5 (50.0) 1,029 
Guinea Bissauc 9 1,646 9 (100) 0 (0.0) 0 0 (0.0) 0 1 (11.1) 229 7 (77.8) 1,152 1 (11.1) 213 
Kenya 75 38,862 25 (33.3) 0 (0.0) 0 6 (24.0) 1,344 6 (24.0) 1,855 10 (40.0) 1,991 3 (12.0) 346 
Malawi 32 14,460 3 (9.4) 5 (17.2) 2,609 0 (0.0) 0 0 (0.0) 0 3 (100) 1,290 0 (0.0) 0 
Mali 55 15,864 53 (96.4) 0 (0.0) 0 32 (60.4) 9,147 11 (20.8) 3,454 10 (18.9) 1,317 0 (0.0) 0 
Mauritania 46 4,260 31 (67.4) 0 (0.0) 0 20 (64.5) 1,137 8 (25.8) 299 2 (6.5) 20 1 (3.2) 764 
Morocco 46e 31,954 4 (8.7) 0 (0.0) 0 4 (100) 1,719 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 
Mozambique 132 22,467 0 f (0.0) 106 (80.3) 16,580 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 
Niger 43 16,196 33 (76.7) 5 (50.0) 1,233 10 (30.3) 4,375 3 (9.1) 1,111 14 (42.4) 5,942 6 (18.2) 3,097 
Nigeria 774 160,067 176 (22.7) 224 (37.5) 46,132 53 (30.1) 10,039 39 (22.2) 6,945 66 (37.5) 14,644 18 (10.2) 3,569 
Senegal 44 12,034 0f (0.0) 

   
0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 

Somalia 74 8,958 0 (0.0) 
   

0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 
South Sudan 99 9,606 23 (23.2) 31 (40.8) 3,523 3 (13.0) 194 0 (0.0) 0 1 (4.3) 150 19 (82.6) 1,931 
Sudan 142 32,376 88 (62.0) 39 (72.2) 7,266 73 (83.0) 18,634 12 (13.6) 3,206 3 (3.4) 381 0 (0.0) 0 
Tanzania 120 43,494 54 (45.0) 45 (68.2) 17,976 6 (11.1) 2,445 6 (11.1) 2,196 25 (46.3) 7,464 17 (31.5) 4,027 
The Gambia 43 1,719 41 (95.3) 0 (0.0) 0 21 (51.2) 617 13 (31.7) 569 7 (17.5) 139 0 (0.0) 0 
Togo 30 5,944 28 (93.3) 0 (0.0) 0 28 (100) 5,649 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 
Uganda 112 32,415 38 (33.9) 8 (10.8) 1,899 1 (2.6) 1,753 3 (7.9) 1,289 20 (52.6) 5,450 14 (36.8) 3,848 
Zambia 65 12,004 26 (40.0) 28 (71.8) 4,072 5 (19.2) 522 5 (19.2) 781 14 (53.8) 1,697 2 (7.7) 304 
Total 5,308 804,128 1095 (20.6) 1,003 23.8 155,086 378 (34.5) 76,722 150 (13.7) 31,072 323 (29.5) 62,596 244 (22.3) 35,749 
a Proportion of unsurveyed districts that are suspected endemic b proportion of known endemic districts falling into each category of endemicity c Unit of implementation (health district) is defined as the first administrative level d Third administrative level 
(wereda) is the implementation unit, but some zonal data are included in this table and used to inform SAFE implementation e Five districts were historically endemic in Morocco f Regional data available in Table 5 g Data in Egypt were collected at the 
governorate (regional) level, there have been no recent surveys at finer spatial scales and no alternative public health districts have been defined 
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Table 2.5 Population in each endemic category of trachomatous inflammation–follicular (TF) and availability of current district level data from population based prevalence surveys (PBPS) in the Middle East, Asia 
and Western Pacific and Latin America, in children aged 1-9 years. 

 

Country 

Total 
Number 
districts 

Total 
Pop 

(000s) 

Total 
Surveyed districts 

n   (%) 

Suspected Endemic 
Prevalence of TF from PBPSb 

<5% 5-9.9% 10-29.9% >30% 

         Districts  
    n              (%)a Pop (000s) 

        Districts  
   n            (%) 

Pop 
(000s) 

Districts  
    n              (%) 

Pop 
(000s) 

Districts  
     n             (%) 

Pop 
(000s) 

Districts  
      n               (%) 

Pop 
(00
0s) 

Middle East 
Iranc,i 25 82,370 0 (0.0) 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 
Omanc,h,i 12 3,561 12 (100) 0 (0.0) 0 12 (100) 3,556 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 
Yemen c 18 28,330 4 (22.2) 4 (28.6) 6,003 0 (0.0) 0 0 (0.0) 0 2 (50.0) 882 2 (50.0) 759 
Total 55 114,261 16 (29.0) 4 (10.3) 6,003 12 (75.0) 3,556 0 (0.0) 0 2 (12.5) 882 2 (12.5) 759 
Asia and Western Pacific 
Afghanistan 329 33,296 0 (0.0) 60 (9.1) 6,339 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 
Australiaj, e 5 519 5 (100) 0 (0.0) 0 4 (80.0) 436 1 (20.0) 83 0 (0.0) 0 0 (0.0) 0 
Cambodia 187    17,067 0 (0.0) 59 (31.6) 5394 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 
China 344 1,352,277 0 (0.0) 134 (39.0) 51923 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 
Fiji 15 838 0 (0.0) 3 (20.0) 341 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 
India 565 1,185,067 1 (0.2) 414 (25.0) 980,185 1 (100) 3,395 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 
Kiribatik - 101 0 (0.0) 1 (100) 101 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 
Myanmari 62 53,102 11 (17.7) 0 (0.0) 0 9 (81.8) 12,469 1 (9.0) 822 1 (9.0) 2,022 0 (0.0) 0 
Nepal 75 30,865 27 (36.0) 15 (43.8) 4,551 14 (51.9) 3330 5 (18.5) 1037 7 (25.9) 2738 1 (3.7) 284 
Pakistan 131 192,888 29 (22.1) 21 (20.5) 44,984 28 (96.6) 52,518 0 (0.0) 0 1 (3.4) 619 0 (0.0) 0 
Papua New 
Guinea 86 7,350 0 (0.0) 

   
0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 

Solomon 
Islands c 8 567 3 (37.5) 3 (60.0) 131 0 (0.0) 0 0 (0.0) 0 3 (0.0) 242 0 (0.0) 0 
Vanuatu 6 229 0 (0.0) 2 (33.3) 115 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 
Viet Nam 635 88,412 42 (6.6) 

   
31 (73.8) 5,089 10 (23.8) 1,737 1 (2.4) 174 0 (0.0) 0 

Total 2,448 2,962,578 118 (4.8) 712 (30.6) 1,094,064 87 (73.7) 77237 8 (6.8) 3,679 13 (11.0) 5795 1 (0.8) 284 
Americas 
Brazil h 5,229 844 282 (5.4) 530 (10.7) 93 174 (61.7) 71 61 (21.6) 12 37 (13.1) 13 10 (3.5) 3 
Guatemala 354 15,386 0 (0.0) 40 (11.3) 861 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 
Mexicoc 33 115,068 1 d (0.0) 0 (0.0) 0 1 (100) 4,730 0 (0.0) 0 0 (0.0) 0 0 (0.0) 0 
Total 5,616 131,298 283 (5.0) 570 (10.7) 954 175 (61.8) 4,801 61 (21.6) 12 37 (13.1) 13 10 (3.5) 3 
a Proportion of unsurveyed districts that are suspected endemic b proportion of known endemic districts falling into each category of endemicity c Unit of implementation (health district) is defined as the first administrative level d Number of 
districts considered to be endemic e National survey g Data in Egypt were collected at the governorate (regional) level, there have been no recent surveys at finer spatial scales and no alternative public health districts have been defined h 

Surveillance data in primary school children and prevalence surveys in focal, indigenous communities. Population data correspond to  indigenous population figures calculated from the 2010 census (regional proportions) I WHO have certified as 
reaching elimination targets j Districts represent remoteness areas, corresponding to prevalence data from the National Indigenous Eye Health Survey [204], and indigenous population figures calculated from the 2006 census (regional 
proportions) 
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Table 2.6 Availability of current region level trachomatous inflammation–follicular (TF) data from population based prevalence surveys (PBPS) in children aged 1-9 years. 

Country 
Total number 

regions 

Total 
Pop 

(000s) 

Regions with current regional-level PBPS 

Prevalence of TF from PBPS 

<5% 5-9.9% 10-29.9% >30% 

Regions n (%) Pop (000s) 
Regions  
n     (%) Pop (000s) 

Regions  
n    (%) Pop (000s) 

Regions  
n    (%) Pop (000s) 

Regions  
n    (%) Pop (000s) 

Africa 

Ethiopia 11 86,132 11 (100) 82,835 5 (45.5) 6,400 0 (0.0) 0 5 (45.5) 55,192 1 (9.0) 21,243 

Mozambiquea 11 22,467 3 (27.3) 4,435 0 (0.0) 0 0 (0.0) 0 2 (66.7) 3,141 1b (33.3) 1,294 

Senegal 14 12,034 10 (71.4) 11,107 3 (30.0) 3,560 4 (40.0) 3,632 3 (30.0) 3,916 0 (0.0) 0 

Asia and Western Pacific 

India 35 1,185,067 3 
 

282,776 1 
 

58,859 2 
 

223,916 0 
 

0 0 
 

0 
a Two surveys in Mozambique were conducted  in “super” districts consisting of larger, aggregated geographical areas. An average value has been used for this analysis. 
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Table 2.7 District estimates in each endemic category of trichaisis (TT) and availability of current district level 
data from population based prevalence surveys (PBPS) in  Africa in adults aged greater than 15 years. 

 

  

Country 
Total Number 

districts 

Total 
Pop 

(000s) 

Total 
Surveyed districts 

n                (%)  

Suspected Endemic Surveyed by PBPSb 

<0.1% ≥ 0.1% 
Districts   

     n             (%)a Pop (000s) Districts  
  n             (%)           

 
 

Districts  
  n              (%)           

 
 

Algeria 1,592 36,507 0 (0.0) 1 (0.1) 33 0 (0.0) 0 (0.0) 
Benin 77 9,307 0 (0.0) 6 (7.8) 2,192 0 (0.0) 0 (0.0) 
Botswana 25 1,877 0 (0.0) 3 (12.0) 338 0 (0.0) 0 (0.0) 
Burkina Faso 63 16,806 63 (100) 0 (0.0) 0 6 (9.5) 57 (90.5) 
Burundi 139 9,681 0 (0.0) 4 (2.9) 965 0 (0.0) 0 (0.0) 
Cameroon 178 20,416 41 (23.0) 8 (5.8) 948 15 (36.6) 26 (63.4) 
CARc 17 4,540 9 (52.9) 1 (12.5) 194 1 (11.1) 8 (88.9) 
Chadc 14 12,113 8 (57.1) 5 (83.3) 4,320 0 (0.0) 8 (100) 
Cote d’ Ivoire 58 19,790 6 (10.3) 

   
4 (66.7) 2 (33.3) 

Djiboutig 11 791 0 (0.0) 4 (36.4) 580 0 (0.0) 0 (0.0)  
Egypth 26 80,095 2 (7.7) 3 (12.5) 11,704 0 (0.0) 2 (100) 
Eritrea 58 5,485 36 (62.1) 11 (50.0) 731 14 (38.9) 22 (61.1) 
Ethiopiad 928 86,132 202 (21.8) 470 (64.7) 32,586 1 (0.5) 201 (99.5) 
Ghana 143 25,305 35 (24.5) 0 (0.0) 0 15 (42.9) 20 (57.1) 
Guinea 38 10,957 15 (39.5) 0 (0.0) 0 0 (0.0) 15 (100) 
Guinea Bissauc 9 1,646 9 (100) 0 (0.0) 0 0 (0.0) 9 (100) 
Kenya 75 38,862 13 (17.3) 7 (11.3) 258 0 (0.0) 13 (100) 
Malawi 32 14,460 3 (9.4) 5 (17.2) 2,609 0 (0.0) 3 (100) 
Mali 55 15,864 53 (96.4) 0 (0.0) 0 2 (3.8) 51 (96.2) 
Mauritania 46 4,260 31 (67.4) 0 (0.0) 0 12 (38.7) 19 (61.3) 
Moroccoe 46 31,954 5 (10.9) 0 (0.0) 0 0 (0.0) 5 (100) 
Mozambique 132 22,467 0 (0.0) 106 (85.3) 16,580 0 (0.0) 0 (0.0) 
Niger 43 16,196 33 (76.7) 2 (20.0) 137 6 (18.2) 27 (81.8) 
Nigeria 774 160,067 175 (22.6) 230 (38.4) 47,072 26 (14.9) 149 (85.1) 
Senegal 44 12,034 0 (0.0) 1 (2.3) 283 0 (0.0) 0 (0.0) 
Somalia 74 8,958 0 (0.0) 

   
0 (0.0) 0 (0.0) 

South Sudan 99 9,606 17 (17.2) 40 (48.8) 4,160 0 (0.0) 17 (100) 
Sudan 142 32,376 87 (61.3) 39 (70.9) 7,266 23 (26.4) 64 (73.6) 
Tanzania 120 43,494 55 (45.8) 45 (69.2) 17,976 3 (5.5) 52 (94.5) 
The Gambia 43 1,719 39 (90.7) 0 (0.0) 0 38 (97.4) 1 (0.0) 
Togo 30 5,944 28 (93.3) 0 (0.0) 0 25 (89.3) 3 (10.7) 
Uganda 112 32,415 35 (31.3) 9 (11.7) 2,113 0 (0.0) 35 (100) 
Zambia 65 12,004 24 (36.9) 27 (65.9) 3,871 4 (16.7) 20 (83.3) 

Total 5,308 804,128 1,024 (19.3) 1,027 (24.0)  156,915 195 (20.1) 829 (88.6) 
a Proportion of unsurveyed districts that are suspected endemic b Proportion of known endemic districts falling into each category of 
endemicity c Unit of implementation (health district) is defined as the first administrative level d Third administrative level (wereda) is the 
implementation unit, but some zonal data are included in this table and used to inform SAFE implementation e National survey f Regional data 
available in Table 6 g TT estimates are in the whole population (0-99 years)h Data in Egypt were collected at the governorate (regional) level, 
there have been no recent surveys at finer spatial scales and no alternative public health districts have been defined. 
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Table 2.8 District estimates in each endemic category of trichaisis (TT) and availability of current district level 
data from population based prevalence surveys (PBPS) in  Middle East, Asia and Western Pacific and Latin 
America in adults aged greater than 15 years. 

 

 

Table 2.9 Availability of current region level trachomatous trichiasis (TT) data from population based 
prevalence surveys (PBPS) in adults aged greater than 15 years. 

  

Country 

Total 
Number 
districts 

Total 
Pop 

(000s) 

Total 
Surveyed districts 

n                (%)  

Suspected Endemic Surveyed by PBPSb 

<0.1% ≥ 0.1% 
Districts   

     n             
a 

Pop (000s) Districts  
  n             (%)           

 
 

Districts  
  n              (%)           

 
 

Middle East 
Iran c,d 25 82,370 0 (0.0) 0 (0.0) 0 0 (0.0) 0 (0.0) 
Oman c,d,e 12 3,561 8f (100) 0 (0.0) 0 8 (100) 0 (0.0) 
Yemen c, 18 28,330 4 (22.2) 4 (28.6) 6,003 0 (0.0) 4 (100) 
Total 55 114,261 12 (21.8) 4 (9.3) 6,003 8 (66.7) 4 (33.3) 
Asia and Western Pacific 
Afghanistan 329 33,296 0 (0.0) 57 (17.3) 5880 0 (0.0) 0 (0.0) 
Australiah 5 519 5 (100) 0 (0.0) 0 2 

 
3 

 Cambodia 187 17,067 0 (0.0) 43 (23.0) 3754 0 (0.0) 0 (0.0) 
China 344 1,352,277 0 (0.0) 134 (39.0) 51923 0 (0.0) 0 (0.0) 
Fiji 15 838 0 (0.0) 

   
0 (0.0) 0 (0.0) 

India 565 1,185,067 0 (0.0) 343 (60.7) 760,437 0 (0.0) 0 (0.0) 
Kiribati - 101 0 (0.0) 1 (100) 101 0 (0.0) 0 (0.0) 
Myanmar 62 53,102 6 (9.7) 0 (0.0) 0 0 (0.0) 6 (100) 
Nepal 75 30,865 26 (34.7) 0 (0.0) 0 3 (11.5) 23 (88.5) 
Pakistan 131 192,888 29 (22.1) 

   
27 (93.1) 2 (6.9) 

Papua New 
 

86 7,350 0 (0.0) 
   

0 (0.0) 0 (0.0) 
Solomon Islandsc 8 567 1 (12.5) 4 (57.1) 251 1 (100) 0 (0.0) 
Vanuatu 6 229 0 (0.0) 2 (33.3) 115 0 (0.0) 0 (0.0) 
Viet Nam 635 88,412 28 (4.4) 

   
3 (10.7) 25 (89.3) 

Total 2,448 2,962,578 95 (3.9) 584 (24.8) 822,461 36 (37.9) 59 (62.1) 
Americas 
Brazilg,i 5229 844 2 (0.0) 530 (10.1) 93 1 (0.0) 1 (0.0) 
Guatemala 354 15,386 0 (0.0) 40 (0.0) 861 0 (0.0) 0 (0.0) 
Mexicoc 33 115,068 1f (100) 0 (0.0) 0 1 (100) 0 (0.0) 
Total 5616 131,298 3 (0.0) 570 (10.2) 954 2 (66.7) 1 (33.3) 
a Proportion of unsurveyed districts that are suspected endemic b Proportion of known endemic districts falling into each category of 
endemicity c Unit of implementation (health district) is defined as the first administrative level d WHO have certified as reaching elimination 
targets e TT cases refer to unmanaged/new cases f Number of districts considered to be endemic g Surveys restricted to indigenous 
populations, of varying representativeness h Districts represent remoteness areas, corresponding to prevalence data from the National 
Indigenous Eye Health Survey [204], and indigenous population figures calculated from the 2006 census i  TT estimates are in the whole 
population (0-99 years) 
 

Country 

Total 
number 
regions 

Total 
Pop 

(000s) 

Regions with current 
regional-level PBPS 

Prevalence of TT from PBPS 

<0.1% ≥0.1% 
Regions n 

(%) 
Pop 

(000s) 
Regions 

 n                (%) 
Regions 

 n                  (%) 
Africa 

Senegal 14 12,034 9 (64.3) 11,108 0 (0.0) 9 (100) 
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2.5.3 Future mapping needs 

Available data suggest that most highly endemic countries are in Africa, and mapping 

efforts should target gaps in these countries in order to scale up SAFE interventions in 

time to reach elimination targets. In many countries, particularly Central African Republic, 

Ethiopia, South Sudan, Tanzania and Zambia, there remain a large proportion of 

unmapped districts that are suspected to be endemic based on higher-level (i.e. first 

administrative level) prevalence surveys, health systems data or rapid assessments.  

Based on median TF prevalence in 1-9 year-olds of >20% in surveyed districts (where 

more time may be needed for control activities to reduce disease prevalence to below 

elimination thresholds), countries which should be prioritized to finish mapping include 

Chad, Egypt (based on limited and outdated data at the regional level), Ethiopia, Guinea, 

Mozambique, Nigeria, South Sudan, Tanzania, Uganda and Zambia. Several other countries 

with ongoing control programmes, including Cameroon, Kenya, and Malawi, have few 

remaining unmapped districts that are suspected to be endemic for trachoma and 

mapping could be completed within a shorter time frame (Table 2.4). 

Globally, approximately a fourth (25.7%) of surveyed districts fall in the 5-10% TF 

prevalence category which indicates that they may require higher resolution mapping at 

the subdistrict level to target MDA to disease foci. As trachoma has a patchier distribution 

in many Asian and Latin American countries, higher resolution mapping of areas 

suspected to be endemic in these countries may be warranted. In addition, those countries 

in Asia, the Western Pacific and Latin America with a more focal distribution of trachoma 

may present an opportunity to eliminate trachoma in a shorter time frame.  
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2.6 Discussion 

With prevalence estimates available for at least parts of 40 trachoma endemic countries 

globally and for 12.6% of all districts in these countries, the GAT represents the most 

comprehensive resource on the geographical distribution of trachoma and an important 

planning tool for efforts to finalise the global trachoma map and target interventions to 

priority districts. Globally, trachoma continues to be a significant public health problem in 

many parts of the world, with important regional differences in data availability and 

endemicity patterns. Variation in risk of trachoma both within and between countries and 

sub-national administrative areas has been linked to socioeconomic factors that are 

associated with transmission through hygienic behaviours and sanitation, as well as 

varying climatic conditions [152,157,158,219]. Based on the current data and population 

estimates, an estimated 141 million people live in trachoma endemic areas (TF prevalence 

greater than 5% in children) and a further 1.3 billion in areas suspected to be endemic. 

Current data from the GAT confirm that countries with the highest burden of active 

trachoma and trichiasis remain in the Sahel and Savannah areas of Africa, and the majority 

of individuals at risk (129.4 million known and 155 million suspected) are in Africa. These 

figures correspond to 98 million people who live in areas of Africa where the prevalence of 

active trachoma is known to be greater than 10% and currently require access to the SAFE 

strategy including annual MDA with azithromycin, and a further 31 million people where 

treatment may need to be targeted at the subdistrict level (Table 2.4).  

The reduction of trachoma in a number of countries in the past decade has been attributed 

both to successful control programmes, as well as rapid socioeconomic development. Well 

established control programmes in several west and north African countries and outside 

of Africa are likely to have had an impact on the burden of trachoma in the last decade, 

with successes in control activities documented in Burkina Faso, The Gambia [220], Ghana 

[221,222], Mali [223-225], Mauritania [202], Mexico [208], Morocco [226], Myanmar 

[209], and Oman [227]. The Gambia, Ghana, Iran, Morocco, Myanmar and Oman have now 
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reported achievement of trachoma elimination targets and trachoma is generally believed 

to be no longer a public health concern in these countries [203]. While the global map of 

trachoma endemicity may be shrinking, information continues to be scarce in many 

countries which are assumed to have a lower burden of disease (such as in China, India, 

Latin America, and the Pacific Islands) and entirely lacking for others (Botswana, Djibouti 

and Somalia). While endemicity is highest in Africa and more widespread, trachoma 

continues to be reported in marginalised populations and small foci in many Asian and 

Latin American countries experiencing rapid development, such as China, Brazil and India. 

The absence of reliable PBPS data continues to limit efforts to describe the geographical 

distribution of trachoma and accurately estimate population at risk in these countries. 

Areas suspected to be endemic in India and China alone adds as many as 1 billion 

individuals to the population suspected to be at risk, although the numbers affected are 

likely to be far lower due to the focal distribution of trachoma reported in these countries. 

In addition, estimates of population at risk presented in this chapter do not include 

populations of countries currently classified as endemic, but for which no data are 

currently available (i.e. Botswana, Djibouti, Guatemala, Iran and Somalia). 

It should be recognised that data included in GAT vary in quality and methodology, which 

limit the comparability of the data. The methods used to collect data (sample size, age 

groups and sampling method) vary and data are collected over a range of years, in which 

potential socioeconomic changes could introduce further variation. While differences in 

the age groups surveyed for TT have been adjusted for, older data may not represent 

current levels of endemicity where mass antibiotic treatments, TT surgery campaigns and 

secular trends have had an impact on the prevalence of trachoma. Information on 

treatment and maps of antibiotic and surgical interventions are available on a partner 

website developed by the International Coalition for Trachoma Control 

(http://www.trachomacoalition.org/). In practice, these detailed data are assessed 

contextually and used alongside treatment data to make mapping decisions within a 

country. Prevalence estimates are rarely reported with confidence intervals, limiting our 
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ability to assess their precision. Generally, precision for TT prevalence estimates is likely 

to be low as surveys are usually powered only to provide estimates for active trachoma. 

While much of the available survey data have helped to inform trachoma control activities, 

some survey data have not been used to inform control due to limited resources, outdated 

prevalence data or use of unreliable sampling methodologies. Where prevalence data are 

felt to be unusable because of their age or the methods used for their collection, the 

corresponding areas will need to be resurveyed. The wide prevalence bands used to 

display these data minimizes the effect of this imprecision and of variation in survey 

methodologies.  

Variation in the geographical scale at which surveys are conducted introduces a further 

level of complexity. While the unit of implementation is defined by WHO as the district 

(which generally corresponds to the second administrative level), in some cases the region 

(first administrative level) is used instead. Recent recommendations allow data from 

larger geographic areas (e.g. regions) to justify programme launch in areas where local 

knowledge or higher level data demonstrate that trachoma is widespread and highly 

endemic, as was the case in Unity state of South Sudan and Amhara region in Ethiopia 

[228,229]. Much historical data in west Africa are representative at regional level and thus 

not directly comparable to district level data. Future work could include methods, such as 

small area estimation, to estimate uncertainty and provide realistic confidence intervals 

for population estimates [230]. 

A closely related issue is the focal distribution of trachoma, which varies with individual 

and community-level risk factors [127,152,179,231]. Displaying data aggregated at higher 

administrative levels belies the small scale spatial heterogeneity of clinical disease and the 

true population at risk, implying that higher resolution mapping is required to accurately 

capture patterns of risk. However, geographical analyses are currently lacking to 

demonstrate: i) how the spatial heterogeneity of trachoma changes over the course of a 

control programme, ii) the relative importance of hotspots for elimination of blinding 
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trachoma and iii) the optimal spatial resolution of survey data to inform decision-making. 

It is likely that some areas of countries currently regarded as non-endemic may have small 

pockets of transmission occurring, such as areas in DRC bordering CAR, South Sudan and 

Zambia, and areas bordering Brazil (Bolivia, Colombia, Peru and Venezuela). In addition, 

the inclusion of urban areas into estimates of the population at risk is contentious, as they 

are commonly perceived as having lower risk of trachoma and are generally excluded 

from the sampling frame of population-based prevalence surveys. However, these urban 

populations are typically defined locally and thus vary between countries and districts. 

Urban populations were included in estimates of the population at risk, due to i) a lack of 

reliable evidence that there is no risk of trachoma in urban areas and ii) the absence of a 

comparable definition of urban with which to identify these populations. However, in 

contexts where non-surveyed urban populations have a different risk of trachoma, this 

decision will result in an under- or over-estimation of the population at risk.  

Information from this analysis highlights a number of important next steps for defining 

the burden of trachoma to inform programmatic action. First, a number of countries have 

both a high prevalence of active trachoma in mapped areas and a large proportion of 

unmapped districts that are suspected to be endemic.  These countries include Central 

African Republic, Ethiopia, Nigeria, South Sudan and Tanzania. Second, Chad, Guinea, 

Mozambique, and Uganda are likely to have sizeable areas of high endemicity contributing 

to the current magnitude of the burden of trachoma in Africa.  Generation of baseline data 

where required, and commencement of interventions in these countries should be 

accelerated. Third, prioritising countries that have large populations in highly endemic 

areas, such as Ethiopia, and Nigeria, will have a greater impact on the overall burden of 

disease within the programmatic timeframe. Egypt also may be prioritised, based on this 

rationale, due to the high endemicity of trachoma found in populous areas by earlier 

regional surveys and a lack of data excluding other geographical areas. Targeting future 

survey activities to areas which are likely to be highly endemic will allow the initiation of 

control activities in those areas in which control of trachoma is likely to take the longest.  
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In addition, 13.7% of surveyed districts lie in the 5-10% prevalence category and may 

require higher resolution mapping at the subdistrict level to target MDA to disease foci 

(Table 3). Countries in Latin America may represent a easy elimination target where it is 

found in pockets of endemicity and indigenous populations, however the full extent of 

distribution of disease must be better defined [232]. In these and other countries reported 

to have a focal distribution of disease, such as China and India, strategies must be decided 

to reliably define the distribution of disease. This presents significant challenges due to the 

geographical and population size of these countries. Increasingly, data collected in these 

and other developing countries come from surveillance in school children and disease 

reporting systems. While countries with established and equitable health care and 

education systems are able to provide more sensitive reports of trachoma endemicity, 

other countries may struggle to provide conclusive evidence on the absence of disease.  

Finally, scaling up surgical interventions for TT alongside MDA poses an important 

challenge in reducing the burden of disease and is increasingly perceived as a limiting 

factor in meeting UIG targets. There is a substantial backlog of surgeries in countries with 

historically high endemicity rates. While the incidence of TT will decrease over time along 

with the number of cases of active disease, the reduction of TT cases should be the first 

main goal of control programmes and necessitates scaling up of surgical services in order 

to meet UIG targets. This presents a number of logistical challenges and demands on 

human resources; requiring considerable investment in health infrastructure and training 

in order to identify TT cases and optimise surgical outcomes in order to achieve a 

sustainable impact.  

In conclusion, the data presented in this chapter highlight the heterogeneous global 

distribution of trachoma both within countries and between countries and regions. This 

variation will have profound impact on projected estimates of the burden of trachoma, 

which typically are based on very limited data on the prevalence of trachomatous 

blindness and heavily extrapolated within geographic regions. Therefore, the following 
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chapter explores the use of TT data presented in this chapter to inform more robust 

estimates of the actual burden of disease. Subsequent chapters will investigate the 

correlates of TT and TF at country scales and the potential of risk mapping.  
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Chapter 3: The disease burden of trachoma in Africa 

 

3.1 Overview 

The previous chapter described the current global distribution of trachoma using data 

from the Global Atlas of Trachoma (GAT). As well as demonstrating a high prevalence of 

active and chronic stages of disease in Africa, the GAT highlights substantial increases in 

the availability of epidemiological data over the last decade. While detailed estimates of 

the prevalence of trachoma and population living in areas known to be endemic are 

essential for targeting control activities, summary estimates at national scales are 

important for large-scale planning. Comparable estimates of the burden of disease which 

incorporate the disability associated with disease processes may be used to prioritise 

countries, provide a comparable measure to other diseases, track changes in burden over 

time and to justify requests for and allocation of resources against competing priorities. 

This chapter presents work on a new methodology using data from the GAT to estimate 

the burden of trachoma in Africa, where current initiatives are being focused and 

information is needed most. The GAT represents a rapidly growing source of information 

on the distribution and prevalence of trichiasis, which is a direct mechanical cause of 

visual impairment. I conducted the literature review and was responsible for the analysis 

presented in this chapter. Estimates of trachomatous blindness and low vision generated 

using this methodology were used by the Vision Loss Expert Group to inform the Global 

Burden of Disease 2010 project [71]. 

 

3.2  Introduction 

While the burden of a disease is often measured by the numbers of individuals in a 

particular health state, such indicators only provide information on the magnitude of the 
94 

 



Chapter 3: The disease burden of trachoma in Africa 

health problem without quantifying the additional burden due to associated functional 

limitations. Summary measures that combine information on resultant morbidity, 

mortality and economic losses have the benefit of capturing different aspects of the 

disability associated with a disease process in a single indicator, thus providing a 

framework to compare the burden of different disease states between countries. 

Disability-adjusted life years (DALYs) are one such summary measure that combines 

information on morbidity and mortality in order to quantify the years of full health lost to 

a disease at a given time point. Health metrics such as these are increasingly required by 

donors and implementing organisations for improved decision making and to 

demonstrate quantifiable results and programme performance [233,234].  

Estimation of the burden of disease due to trachoma is defined by the numbers of cases of 

blindness and low vision attributed to trachoma and the resulting disability associated 

with this vision loss [79-82,235]. In later stages of clinical trachoma, trichiasis develops 

and the lashes turn inwards to touch the cornea. This abrasion provides an important 

mechanical cause of progressive vision loss, although other factors such as secondary 

bacterial and fungal infections and ocular dryness are speculated to contribute to this 

process [18,19].  While blindness and low vision are disabling sequelae with well 

recognized physical, social and economic repercussions, any functional limitations and 

discomfort due to trichiasis are not well defined. Trichiasis, occurring with or without 

concurrent visual impairment, has not been previously been included as a cause of 

disability in burden of disease estimates [79-82,235]. However, a study by Frick et al. 

(2001) in rural Tanzania provided evidence that trichiasis was associated with excess 

functional limitations in daily activities of afflicted individuals, regardless of vision status 

[83]. In addition, ocular pain and photophobia associated with this condition may cause 

further mental distress and social consequences not captured by the disability assigned to 

vision loss. The higher prevalence of trichiasis and younger age distribution of this 

condition suggests that it could have an important contribution to the overall disease 

burden of trachoma. 
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A seminal effort to define the global prevalence of trachomatous blindness was provided 

by Ranson and Evans (1996) for the 1990 GBD study [79,235], which has informed 

subsequent estimation strategies [80-82].  Unfortunately, epidemiological data on the 

prevalence of trachomatous blindness are geographically and temporally limited and 

national surveys on causes of blindness are even scarcer. This lack of data has been 

overcome by either i) extrapolating the results of existing national causal blindness 

surveys to all endemic countries within a world region [80,235] or ii) modeling national 

data using information on Gross Domestic Product (GDP) to provide estimates for 

countries that are lacking blindness data and those without data at multiple time points 

[82].  

In order to capture all available information on the burden of trachoma, this chapter 

presents a comprehensive framework to model the prevalence of trachomatous blindness, 

using population-based estimates of the prevalence of trichiasis within countries where 

national blindness surveys were not available. In addition, the burden contributed by 

trichaisis was evaluated and a sensitivity analysis conducted to estimate the impact of 

different assumptions used in the modelling process. 

 

3.3 Methods for estimating the burden of trachoma in Africa 

3.3.1 Overview 

Data on the prevalence of trichiasis in Africa were extracted from the GAT, as summarised 

in the previous chapter. Age-standardised and matched data were used to model the 

relationship between trichiasis and trachomatous blindess, and trachomatous blindness 

and low vision. Trichiasis prevalence data were then used to predict the burden of 

trachomatous blindness where national prevalence estimates were lacking as outlined in 

Figure 3.1. Models were developed within a Bayesian framework that incorporated age-

prevalence curves for each health state and published estimates of the difference in risk 
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between males and females. Age and sex-specific estimates of the burden of trachomatous 

trichiasis, trachomatous low vision and trachomatous blindness were estimated in each 

endemic country and corresponding DALYs for each condition. A sensitivity analysis was 

conducted in order to vary assumptions around the method of extrapolating data where 

within-country geographical coverage was low, and to estimate the impact of the disability 

weight assigned to disease sequelae. 

 

 

Figure 3.1 Decision algorithm used to determine the prevalence of trachomatous blindness for each 
district in suspected endemic countries. NB: Trichiasis data from Chad, Morocco and The Gambia 
provided separate estimates for 2010 in addition to those 5 countries shown here.  
TB: trachomatous blindness; TT: trichiasis 

 

 

3.3.2 Disease definition and health states 

Based on the natural history of disease (reviewed in Chapter 1.2.2), the disabling sequelae 

of trachoma include low vision and blindness. In causal blindness surveys these two states 

are attributed to trachoma based on an ophthalmic examination of individuals with 
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impaired vision (typically defined as a Snellen visual acuity below 6/18). The operational 

definition of trachoma as a cause of blindness are typically based on the WHO/PBL coding 

instructions for eye examination,  which diagnose the condition based on the presence of 

central scarring with trichiasis/entropian, conjunctival scarring, pannus or Herbert’s pits 

[77]. In practice, an element of subjectivity is present in identifying the principal cause of 

vision loss, particularly where multiple causes of blindness are present or diagnostic 

criteria vary between studies. While the WHO guidelines are most commonly used, studies 

may extend diagnostic criteria for trachomatous low vision to include a history of 

trichiasis [236]. 

Table 3.1 lists the case definitions set out by the WHO’s International Statistical 

Classification of Diseases and corresponding disability weights for low vision and 

blindness proposed in the recent GBD Disability Weights Study [75,237]. In this analysis, 

we explore the additional burden caused by trichiasis in Africa, with or without 

concurrent loss of vision. The disability weight for trichiasis was set as 0.034, which is half 

of the weight proposed in a recent study by Gouda et al. (2012), in reference to earlier 

weights for vision loss used in WHO’s 2004 Global Burden of Disease Study [238].  

  

Table 3.1 GBD cause category, disabling sequelae, case definition and disability weights for 
trachoma (adapted from Salomon et al. (2013) [237] & Gouda et al. (2012) [238]. 

GBD 
cause/sequelae 

Case definition Disability weight  

Trachoma (W031)   

Blindness Best corrected visual acuity in the better eye 
of less than 3/60 due to corneal opacity as a 
result of trachoma. 

0.195 

Low vision Best corrected visual acuity in the better eye 
of less than 6/18 but better than or equal to 
3/60 due to corneal opacity as a result of 
trachoma. 

0.112 

Trichiasis At least one eyelash rubs on the eyeball or 
evidence of recent removal of in-turned 
eyelashes 

0.034 
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3.3.4 Data Assembly 

Literature review 

A full systematic literature review was carried out in August 2011 and updated in July 

2013 to identify published and unpublished blindness studies providing estimates of the 

prevalence of trachomatous blindness. Searches were focused on the list of 33 African 

countries classified as known or suspected endemic for trachoma, as outlined in the 

previous chapter. Sources included i) electronic bibliographic databases (including 

PubMED and EMBASE), ii) references from earlier global burden reviews [79-82,235] and 

iii) the global vision database [239]. Electronic search terms used in combination with the 

name of the country included either of the two keywords “trachoma” or “cause” and one of 

the following keywords: “low vision”, “blindness” and “visual impairment”. References 

were screened and retained where i) surveys were conducted after 1980, ii) papers used 

the definitions of blindness and low vision presented in Table 3.1 and iii) prevalence 

estimates were derived from population-based samples. Surveys that met the initial 

inclusion criteria included population based causal blindness studies and rapid 

assessment of avoidable blindness (RAAB) surveys [74].  

Only studies which estimated the prevalence of trachomatous blindness using a national 

sampling frame were included in the prevalence calculations (Appendix 3.1). Sub-national 

surveys reporting both trachomatous blindness and trachomatous low vision, or 

trachomatous blindness and trichiasis, were also retained for modeling these associations 

(Appendix 3.2). Data on the level of the survey (national, sub-national, local), location, 

year, age range of surveyed individuals, numbers of individuals examined, numbers 

positive for each outcome and mean prevalence were extracted from each included study. 

For studies where only older populations were sampled, estimates were adjusted to 

include all age groups using the age-weighting method described in Appendix 3.3 and 

country- and age-specific demographics.  
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Prevalence data 

Endemic countries were classified according to the 5 epidemiological regions used by the 

GBD 2010 within Africa [71]. A summary of all available data on blindness and trichiasis 

from population-based prevalence surveys (PBPS) that were used to calculate estimates 

are detailed by country in Appendix 3.4. Empirical estimates of low vision and blindness 

attributed to trachoma are available from a limited number of national causal blindness 

surveys (Appendix 3.1). Where these data were available at a country level, they were 

adjusted if necessary and applied to country-level population figures to directly inform 

estimates of burden. A single national blindness survey was available for 8 of the 33 

countries classed as endemic (Benin, Botswana, Chad, Eritrea, Ethiopia, Morocco, Nigeria, 

The Gambia).  

Where national blindness estimates were not identified, provincial or district estimates of 

trichiasis from the GAT informed the analysis and were applied to the district-level 

population, as outlined in the algorithm provided in Figure 3.1.  Available data in Africa 

used for these estimates (also reviewed in the previous chapter) and country-specific 

decisions are documented in Appendix 3.4. Data on the prevalence of trichiasis were used 

to estimate trachomatous blindness in 22 countries lacking national blindness data. 

Trichiasis data were also used to model the prevalence of trachomatous blindness in 2010 

in Chad, The Gambia, and Morocco, where more recent trichiasis survey data were 

available.  

 

Extrapolation of data in time and space 

Burden estimates were defined for two time periods: 1990 and 2010. As multiple causal 

blindness and trachoma surveys are typically only available in the context of national 

trachoma control programmes, data were limited in both time and space for many 

countries (Appendix 3.4). Separate estimates for the two time periods could be calculated 
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for eight countries: three of which had an older national blindness survey and more recent 

(or post-intervention) trichiasis data (Chad, The Gambia, Morocco) and five which had 

comprehensive pre and post intervention data by PBPS at the district level (Burkina Faso, 

Ghana, Mali, Mauritania, Niger). Two further countries (Kenya and Tanzania) had limited 

post-intervention data for some districts and so had slightly different data for the two time 

periods. Prevalence estimates for the remaining countries are based on all available data.  

Where population-based prevalence estimates were lacking, the population of a district 

was excluded if trachoma rapid assessments did not find trachoma in the area or it was 

suspected to be non-endemic based on hospital data. Districts where trachoma had been 

found by rapid assessment or were lacking information were assigned a population-

weighted average prevalence value following the protocol for the base case outlined in 

Table 3.2. Where geographic coverage of population-based prevalence data was high 

(>50%) within a country, the median prevalence within countries was extrapolated to 

areas lacking data. In countries with less than 50% geographical coverage of data, regional 

prevalence averages were extrapolated to areas with no data. Figure 3.2 summarizes the 

proportion of districts for each country for which prevalence data were available, were 

classed as non-endemic or were based on extrapolated data.  
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Figure 3.2 Bar plot of proportion of districts where trachomatous trichiasis (TT) data are available 
in 1990 (top) and 2010 (bottom), classed as non-endemic or extrapolated using the base case 
scenario described in Table 3.2. Data used are fully described in Appendix 3.4 and “extrapolated” 
trachomatous blindness (TB) data are modelled from TT data. NB: Burundi was excluded from the 
graph as it was assigned a prevalence of zero based on evidence that it is non-endemic. 

 

In this chapter, estimates are based solely on available empirical data and were not 

modeled further at the country level to incorporate temporal trends. Although most of 

these countries have not implemented large-scale control, some North African countries in 

particular may have experienced a secular decline. A temporal trend was not included 

based on the rationale that 1) secular changes captured by changes in country-level 

indicators (such as Gross Domestic Product (GDP) or Joint-Monitoring Programme 

indicators) are likely to be inequitable within African countries and may overestimate 

changes in endemic areas and 2) trachomatous blindness (even more than trichiasis) 

results from repeated episodes of active disease experienced over 20-30 years and these 

sequelae tend to “backlog”. In addition, surgical intervention for trichiasis has made slow 

gains compared to MDA of antibiotics and post-operative recurrence of eyelash 

102 
 



Chapter 3: The disease burden of trachoma in Africa 

malposition is common, with some evidence that there will continue to be incident cases 

even after ocular chlamydial infection has been eliminated [240].  

 

Demographic data 

District-level population figures were derived from the Afripop project, which provided a 

continental 1 km gridded population map produced using projected population census 

data for 2010 and settlement extents (www.afripop.org). These estimates were adjusted 

by a correction factor to be consistent with the official population estimates for 1990 and 

2010 provided by the Institute of Health Metrics (IHME) for the GBD 2010. Detailed 

demographic ratios on the proportion of the population within each age category were 

also derived from this source.  

 

3.3.4 Modelling 

Age- and sex- prevalence of TT and TB 

Clear age-prevalence relationships are observed both for trachomatous blindness and 

trichiasis. Even in hyper-endemic areas, trachomatous blindness is rarely observed in 

individuals under the age of 15 years and the burden of disability increases with age [241]. 

Ranson and Evans (1996) estimated approximately 80% of the burden in adults over 60 

years of age, 18% in individuals aged 45-59 years and 2% in those aged 15-44 years [79]. 

Subsequent efforts to quantify the burden of trachoma have assumed the same 

distribution. For this analysis, disaggregated data from published and unpublished studies 

were used to model the age-distribution of the burden of trichiasis (12 studies), 

trachomatous blindness (4 studies) and low vision (2 studies). These models were used to 

standardize survey data using methods detailed in Appendix 3.3, and calculate age-specific 

prevalence estimates within the Bayesian framework. Although the age-prevalence profile 

is expected to vary with trachoma endemicity, there were insufficient data to characterize 
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age-prevalence profiles of trachomatous blindness in different endemic contexts. 

Estimates were set to zero for low vision in ages 0-4 years and for trachomatous blindness 

in ages 0-4 and 5-14 years. This was done to ensure that no positive cases were predicted, 

based on the near-absence of these conditions in these age groups even in highly endemic 

areas [241]. 

Previous estimates have assumed that women account for 75% of trachomatous trichiasis 

and used a male-to-female ratio of 1:3 [82]. More recently, a comprehensive meta-analysis 

by Cromwell et al. (2009) [113] reviewed this assumption, and reported an overall odds 

ratio of trichiasis in women compared with men of 1.82 (95% CI 1.61-2.07). This ratio was 

used to inform sex-specific prevalence estimates for trachomatous blindness in the 

following analysis, by incorporating an informative prior. Males and females were 

assumed to have the same age-distribution of each sequelae. 

Prevalence of TT and trachomatous blindness 

The relationship between trichiasis and trachomatous blindness was quantified using 23 

blindness surveys that were spatio-temporally matched at the corresponding 

administrative level (usually district) to i) trichiasis data collected during the same survey 

or ii) data available in the GAT (Appendix 3.2). 

The mean prevalence of trachomatous blindness was modeled using a generalized linear 

Poisson regression model, using a log link, within a Bayesian framework. By including an 

offset term equal to the population, Poisson models are appropriate for modelling rates 

and particularly suitable where the underlying mean is low (allowing a skewed 

distribution) and events to take positive, integer values. A number of covariates were 

evaluated as possible explanatory factors for observed variation, including: GBD region, 

GDP, mortality rate, the presence of an established trachoma control programme and the 

year of the survey. Unfortunately, the majority of these variables are only available at the 

national level and thus may not be well matched to the study. The Poisson distribution 
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assumes the variance of response to be equal to its mean, whereas data are frequently 

found to be overdispersed (more variable) than this allows. The presence of 

overdispersion was formally tested using a goodness of fit chi-squared statistic based on 

the residual deviance divided by the degrees of freedom. The final model included 

trichaisis prevalence as a log-transformed continuous fixed-effect and a random effect 

(𝑅𝐸) added to allow for observed extra-Poisson variation between studies. The mean 

prevalence of blindness (𝑡𝑏_𝛾𝑖) was predicted as follows from counts (𝑌𝑖) arising from 

examined individuals (𝑜𝑓𝑓𝑠𝑒𝑡𝑖) in each of i districts, where 𝛼 is the intercept and 𝛽1 is the 

coefficient for trichiasis: 

(i) 𝑌𝑖~𝑃𝑜𝑖𝑠(𝑡𝑏_𝛾𝑖) 

(ii) log( 𝑡𝑏_𝛾𝑖) = 𝛼 +   𝛽1 x  log ( 𝑡𝑡_𝛾𝑖) + log(𝑜𝑓𝑓𝑠𝑒𝑡𝑖) +  𝑅𝐸𝑖   

 

Predictive models were based on the mean district prevalence (𝑡𝑡_𝛾𝑖) in each of the i 

districts, which incorporated uncertainty associated with sampling error around the mean 

estimate by modeling it within a binomial distribution based on the number of examined 

individuals (𝑆𝑎𝑚𝑝𝑙𝑒) and the number of TT positive individuals (𝑡𝑡_𝑝𝑜𝑠).  

 

(iii) 𝑡𝑡_𝑝𝑜𝑠𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑡𝑡_𝛾𝑖  , 𝑆𝑎𝑚𝑝𝑙𝑒𝑖) 
 

Where the sample size was unknown, district estimates from PBPS were assigned a higher 

sample size (the average sample size within a given country) and a progressively lower 

weight was assigned to areas where data were extrapolated, reflecting our growing 

uncertainty in areas with no PBPS data. Areas known to be trachoma endemic by TRA or 

classified non-endemic based on hospital data were assigned a sample size of 500 and 

areas with no information a sample size of 100.  
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Trachomatous blindness and low vision 

Low vision was modeled similarly, using the observed relationship between trachomatous 

blindness and low vision. This was quantified using 29 studies which had measured the 

prevalence of both trachomatous blindness and associated low vision, also detailed in 

Appendix 3.2. Estimates were age-standardized and modeled with a generalized linear 

fixed-effects Poisson regression model, using a log link, within a Bayesian framework.  

 

(i) 𝑌𝑖~𝑃𝑜𝑖𝑠(𝑙𝑣_𝛾𝑖) 

(ii) log( 𝑙𝑣_𝛾𝑖) = 𝛼 +  𝛽1 x  log (𝑇𝐵𝑖) +  𝛽2 x  log (𝑇𝐵𝑖)^2 

 

Where (𝑌𝑖) is the count of individuals with low vision in each of i districts, 𝛼 is the 

intercept, 𝛽1 is the coefficient for the logged prevalence of trachomatous blindness 

(log (𝑇𝐵𝑖)), and  𝛽2 is the coefficient for the squared term. Unlike the previous model, the 

Poisson distribution provided an adequate fit to variation in these data. 

 

Country-level estimates 

Median estimates of the prevalence of trachomatous blindness and low vision and their 

corresponding confidence intervals were summarized using either the national blindness 

survey data or the predicted prevalence of trachomatous blindness as detailed in 

Appendix 3.4. Prevalence estimates for each age group were calculated using (i) age 

weightings derived from age-prevalence models described above and (ii) country level 

demographic profiles (Appendix 3.3). In additional to overall prevalence estimates (as 

presented by country in Tables 3.5-3.6), estimates were calculated using a standard based 

on the overall demographic structure in Africa in 1990 to facilitate comparisons between 

time points.  
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All Bayesian analyses described above were conducted in WinBUGS version 1.4 (MRC 

Biostatistics Unit, Cambridge and Imperial College, London, UK) using the “RtoWinBUGs” 

package in R version 2,10,1.  

 

3.3.5 Estimation of DALYs 

DALYs are calculated from adding years of life lost to premature mortality (YLLs) to a 

weighted estimate of years of life lived with disability (YLDs) [71]. As trachoma does not 

have any YLLs attributed to it, it is simply calculated using YLDs. The most recent GBD 

2010 study revised their previous methodology to compute YLDs as the number of 

prevalent cases of each sequela multiplied by the relevant disability weight, without any 

age weighting or discounting. The same prevalence based approach was used in this 

analysis, and DALYs were calculated using the equation: 

 𝑃𝑌𝐿𝐷 = 𝐷𝑊 𝑥 𝑝 
 

Where PYLD is the prevalence YLD for a specific disease state, DW is the disability weight 

and p is the number of prevalent cases per capita.  

 

3.3.5 Sensitivity analysis 

The impact of extrapolating data within countries and regions was varied in a sensitivity 

analysis, summarised in Table 3.2. Scenario 1 includes only known PBPS data in all 

countries, so that areas lacking data were assumed to have a trichiasis prevalence (and 

blindness prevalence) of zero. All countries with no data and areas within countries with 

less than 50% geographical coverage (including areas classified as non-endemic) were 

assigned a regional average of trichiasis prevalence data in Scenario 2 or a country 

average in Scenario 3.   
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Table 3.2 Sensitivity analyses varying method of data extrapolation to areas lacking data in i) 
countries with no data, ii) countries with limited geographical coverage including non-endemic 
areas (less than 50%) and iii) those with geographical coverage over 50% 

  Sensitivity Analyses 
Country Base casea Scenario 1 Scenario 2a Scenario 3a 
Countries with no data  
Algeria Average: NA/ME Assumed 0 Average: NA/ME Average: NA/ME 
Djibouti (2010) Average: NA/ME Assumed 0 Average: NA/ME Average: NA/ME 
Mozambique Average: SSAS Assumed 0 Average: SSAS Average: SSAS 
Somalia Average: SSAE Assumed 0 Average: SSAE Average: SSAE 
Countries with < 50% geographical coverage  
Djibouti Average: NA/ME Assumed 0 Average: NA/ME Country Average 
Egypt Average: NA/ME Assumed 0 Average: NA/ME Country Average 
Guinea Average: SSAW Assumed 0 Average: SSAW Country Average 
Malawi Average: SSAE Assumed 0 Average: SSAE Country Average 
South Sudan Average: SSAE Assumed 0 Average: SSAE Country Average 
Zambia Average: SSAE Assumed 0 Average: SSAE Country Average 
Countries with ≥ 50% geographical coverage  
Sub-national areas 
w/no data 

Country Average Assumed 0 Corresponding 
Regional Average 

Country Average 

a Regional averages: North Africa/Middle East (NA/ME);  Sub-Saharan Africa West (SSAW); Sub-Saharan Africa 
East (SSAE); Sub-Saharan Africa Central (SSAC); Sub-Saharan Africa Southern (SSAS), 
 

Disability weights were also varied when calculating DALYs (Table 3.3). The initial value 

used corresponded to that assigned in the disability weights measurement study for the 

GBD 2010 [237]. These are approximately a third of weights assigned in previous 

iterations of the GBD, and thus were used as a lower bound to evaluate the impact of 

changing weights. Upper estimates for trachomatous blindness and low vision weights 

correspond to those used 2000 GBD study [82].  Trichiasis was assigned an upper 

disability weight corresponding to that recently suggested by Gouda et al. (2012) in 

proportion to the GBD 2000 weights [238].  

Table 3.3 Disability weights associated with visual impairment attributed to trachoma and 
trichiasis, derived from the Global Burden of Disease (GBD) study 2010 and upper estimates 
corresponding to the GBD 2000 study [82,237,238]. 
 Disability Weights 
Sequelae GBD 2010 Current analysis Sensitivity Analysis 
Blindness 0.195  0.195 0.6 
Low Visiona 0.112  0.112 0.245 
Trichiasis - 0.034 0.068 
a Mean of weights for moderate and severe low vision 
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3.4 Results 

Age-prevalence curves 

Results from models of the age distribution of the burden of trichiasis, trachomatous 

blindness and low vision were consistent with our understanding of disease progression 

(Figure 3.3). While the burden of all disease sequelae increased with age, the risk of 

trachomatous blindness was relatively low in individuals under age 30 years and 

increased steeply after the age of 40 years, compared to trichiasis and low vision. This 

resulted in a higher proportion of the burden of blindness in older age groups compared to 

earlier stages of disease (Figure 3.3; Table 3.4). The relatively narrow confidence intervals 

for trichiasis reflect the greater availability of age-stratified prevalence data for this 

condition compared to trachomatous blindness and, particularly, low vision.  

 

 

 

 

Age Group 
(years) 

Proportion of burden (%) 
TT LV TB 

0-4 
0.72 

(0.59, 0.89) 0 0 

5-14 
1.36 

(1.18, 1.58) 
0.52 

(0.24, 0.95) 0 

15-29 
3.50 

(3.22, 3.81) 
2.24 

(1.50, 3.16) 
0.61 

(0.35, 1.0) 

30-44 
8.95 

(8.42, 9.50) 
8.63 

(6.73, 10.74) 
3.64 

(2.60, 4.90) 

45-59 
18.61 

(17.78, 19.46) 
21.23 

(17.87, 25.31) 
14.36 

(11.38, 17.49) 

60-69 
29.14 

(28.68, 29.58) 
31.74 

(30.23, 33.60) 
32.18 

(29.20, 34.19) 

70 plus 
37.7 

(36.18, 39.31) 
35.26 

(28.70, 41.45) 
49.17 

(43.13, 55.67) 

Total 100 100 100 

 

Figure 3.3 and Table 3.4 Calculated estimates of the proportion of the burden of trichiasis (TT), 
trachomatous low vision (LV) and trachomatous blindness (TB) in each age group, with 
corresponding confidence intervals around each point, connected by lines.  
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Models 

The prevalence of trachomatous blindness increased non-linearly with the (log-

transformed) prevalence of trichiasis (Figure 3.4). There was some indication that areas 

with an established control programme had a lower risk of trachomatous blindness 

associated with a given level of trichiasis. However, this association dropped out after 

allowing for extra-Poisson variability observed in the model, by addition of a normally 

distributed random effect. 

Similarly, the prevalence of low vision increased non-linearly with the (log-transformed) 

prevalence of trachomatous blindness so that there was a low vision prevalence of 1.4 per 

1000 when the prevalence of blindness was 1 per 1000, but was much higher in areas 

where blindness was highly prevalent (>2 per 1000) (Figure 3.4). There was substantial 

variation in this relationship however, which was not found to be associated with region, 

presence of an established control programme or year the survey was conducted.  

 

  

Figure 3.4 Poisson regression models of the prevalence of trachomatous blindness (left) from 
trichiasis data and low vision (right) from blindness data. Lines represent the mean estimate, while 
shaded areas depict associated uncertainty in the model. Input data are detailed in Appendix 3.2. 
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Burden of disease 

The age-standardised prevalence of trichiasis, trachomatous low vision and trachomatous 

blindness in Africa was estimated as 0.72 (per 100), 1.44 (per 1000) and 0.68 (per 1000) 

in 1990. In 2010, these estimates had decreased to 0.65 (per 100), 1.12 (per 1000) and 

0.55 (per 1000). The changes in prevalence may in part reflect the impact of established 

control programmes, particularly those West African countries with pre- and post-

intervention trichiasis data or blindness surveys available. These countries include 

Burkina Faso, Chad, Ghana, Mali, Mauritania, Niger, Morocco and The Gambia, which in 

turn influence regional estimates extrapolated to countries with low geographical 

coverage of data. Figure 3.5 highlights changes in the prevalence of the three age-

standardised sequelae between different regions and heterogeneity between endemic 

countries.    
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Figure 3.5 Age-standardised prevalence rates for trichiasis, trachomatous low vision and 
trachomatous blindness in trachoma-endemic countries in Africa for 1990 and 2010. Results 
particularly highlight a decline in prevalence in West African countries, which may in part be due to 
well-established trachoma control programmes in these countries. 
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The un-standardised all-ages prevalence estimates, presented in Tables 3.5-3.6, strongly 

reflect underlying demographic changes within countries between the two periods. The 

estimated 20-34% drop in the prevalence of these conditions by 2010 partly reflects real 

changes in empirical trichiasis and trachomatous blindness data, as discussed above. 

However, in the majority of countries, changes in prevalence are simply due to differences 

in the proportion of the population in older age categories and/or gender composition. 

While the population in Africa has aged overall, some countries (including many highly 

endemic countries) have experienced large population increases in lower-prevalence age 

groups which reduces the overall prevalence estimate (Figure 3.6). In addition, changes in 

the gender ratio in different age groups may reflect trends in mortality or employment 

migration. 

 

 

 
Figure 3.6 Changes in the proportion of the population in three major age categories between 1990 
and 2010 
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Estimates of numbers affected and associated DALYs have increased from 1990 to 2010, 

due to the rapid population growth in much of Africa. There were an estimated 383,000 

cases of trachomatous blindness and 642,000 cases of low vision in Africa due to trachoma 

in 1990, compared to 405,000 cases of trachomatous blindness and 655,000  cases of low 

vision in 2010. DALY estimates mirror these patterns (as they are calculated directly from 

prevalent cases), as detailed by country for 1990 (Table 3.5) and 2010 (Table 3.6). Again, 

while the total estimated DALYs have increased from 269,000 in 1990 to 310,000 in 2010, 

this masks a decrease in DALYs in those countries with established control programmes. 

Approximately half (45%) of estimated DALYs in this analysis are attributed to trichaisis, 

with the higher prevalence and increased burden in more populous younger age groups 

outweighing the low disability weight assigned to this condition. 
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Table 3.5 Country-level estimates of the prevalence, numbers affected and disability-adjusted life years (DALYs) for each disease sequelae: trachomatous trichiasis (TT), trachomatous 
blindness (TB) and low vision (LV) in 1990 

Country 
Pop 

(000s) 
Median Prevalencea   (95% BCI) Numbers (000s)   (95% BCI) DALYs (000s)   (95% BCI) 

Total DALYs 
% 

Total TT (per 100) LV (per 1000) TB (per 1000) TT LV TB TT LV TB 
North Africa 

Algeria 25283 
0.48  

(0.41,0.55) 
0.86  

(0.49, 2.09) 
0.44  

(0.29, 0.750) 
121  

(105, 139) 
22  

(12, 53) 
11  

(7, 19) 
4.1  

(3.6, 4.7) 
2.4  

(1.4, 5.9) 
2.2 

(1.4, 3.7) 
8.8 

(6.6, 13.8) 3.3 

Egyptb 55137 
0.81   

(0.54, 1.18) 
2.01  

(0.69, 8.92) 
0.88  

(0.38, 2.31) 
447  

(295, 650) 
111  

(38, 492) 
49  

(21, 127) 
15.2  

(10.0, 22.1) 
12.4  

(4.3, 55.1) 
9.5 

(4.1, 25.0) 
38.0 

(20.2, 95.7) 14.1 

Morocco 24808 
0.10  

(0.01,0.23) 
0.08  

(0.02, 0.22) 
0.46  

(0.14, 1.09) 
25  

(3, 57) 
2  

(1, 6) 
11  

(3, 27) 
0.9  

(0.1, 1.9) 
0.2  

(0.1, 0.6) 
2.2 

(0.7, 5.3) 
3.4 

(1.4, 6.8) 1.3 

Totalc 109812 
0.54 

(0.37, 0.77) 
1.22 

(0.46, 5.01) 
0.65 

(0.29, 1.58) 
593 

(403, 845) 
134 

(51, 550) 
71 

(32, 173) 
20.2 

(13.7, 28.7) 
15.1 

(5.7, 61.6) 
13.9 

(6.2, 34.0) 
50.1 

(28.2, 116.2) 18.6 
Sub-Saharan Africa, Central 

CAR 3008 
0.45   

(0.34, 0.61) 
0.43  

(0.21, 1.46) 
0.28  

(0.15, 0.64) 
14  

(10, 18) 
1  

(1, 4) 
1  

(1, 1.9) 
0.5  

(0.3, 0.6) 
0.1  

(0.1, 0.5) 
0.2  

(0.1, 0.4) 
0.8  

(0.5, 1.5) 0.3 

Totalc 55164 
0.03 

(0.02, 0.03) 
0.02 

(0.02, 0.07) 
0.02 

(0.02, 0.04) 
14 

(10, 18) 
1  

(1, 4) 
1 

(1, 2) 
0.5  

(0.3, 0.6) 
0.1  

(0.1, 0.5) 
0.2  

(0.1, 0.4) 
0.8 

(0.5, 1.5) 0.3 
Sub-Saharan Africa, East 

Burundi 5692 
0.00  

(0.00, 0.00) 
0.00  

(0.00, 0.04) 
0.00  

(0.00, 0.00) 
0  

(0, 0) 
0  

(0, 0) 
0  

(0, 0) 
0.0  

(0.0, 0.0) 
0.0  

(0.0, 0.0) 
0.0  

(0.0, 0.0) 
0.0  

(0.0, 0.0) 0.0 

Djiboutib 561 
0.70   

(0.42, 1.05) 
1.02  

(0.29, 5.45) 
0.55 

(0.20, 1.98) 
4  

(2, 6) 
1  

(0, 3) 
0  

(0, 1) 
0.1  

(0.1, 0.2) 
0.1  

(0.0, 0.3) 
0.1  

(0.0, 0.2) 
0.3  

(0.1, 0.7) 0.1 

Eritrea 3158 
0.62  

 (0.40, 0.88) 
0.12  

(0.03, 0.36) 
0.14  

(0.04, 0.34) 
19  

(13, 28) 
0  

(0, 1) 
0  

(0, 1) 
0.7  

(0.4, 0.9) 
0.0  

(0.0, 0.1) 
0.1  

(0.0, 0.2) 
0.8  

(0.6, 1.1) 0.3 

Ethiopia 51148 
1.35   

(1.16, 1.54) 
0.43  

(0.30, 0.64) 
1.63  

(1.27, 2.08) 
689  

(595, 789) 
22  

(15, 33) 
84  

(65, 106) 
23.4  

(20.2, 26.8) 
2.4  

(1.7, 3.6) 
16.4  

(12.7, 20.9) 
42.4  

(37.1, 48.0) 15.7 

Kenya 23447 
0.17   

(0.16, 0.19) 
0.53  

(0.20, 2.65) 
0.20  

(0.11, 0.61) 
41  

(37, 46) 
13  

(5, 62) 
5  

(3, 14) 
1.4  

(1.3, 1.5) 
1.4  

(0.5, 7.0) 
0.9  

(0.5, 2.8) 
3.7  

(2.4, 11.2) 1.4 

Malawib 9446 
0.65  

 (0.37, 1.01) 
1.27  

(0.39, 5.61) 
0.61  

(0.25, 1.71) 
62  

(35, 95) 
12  

(4, 53) 
6  

(2, 16) 
2.1  

(1.2, 3.2) 
1.3  

(0.4, 5.9) 
1.1  

(0.5, 3.2) 
4.6  

(2.3, 11.8) 1.7 

Mozambiqued 13544 
0.92  

 (0.78, 1.15) 
1.58  

(0.83, 4.96) 
0.83  

(0.51, 168) 
126  

(105, 156) 
21  

(11, 67) 
11  

(7, 23) 
4.2  

(3.6, 5.3) 
2.4 

(1.3, 7.5) 
2.2  

(1.4, 4.5) 
8.9  

(6.5, 16.4) 3.3 

Somaliad 6717 
0.84   

(0.57, 1.19) 
2.03  

(0.84, 7.50) 
0.88  

(0.45, 2.10) 
57  

(38, 80) 
13  

(6, 50) 
6  

(3, 14) 
1.9  

(1.3, 2.7) 
1.5  

(0.6, 5.6) 
1.2  

(0.6, 2.8) 
4.7  

(2.6, 10.5) 1.7 

South Sudanb 4755 
1.82  

 (1.65, 2.01) 
10.66  

(4.1, 32.3) 
2.92  

(1.50, 8.25) 
87  

(79, 96) 
51  

(20, 153) 
14  

(7, 39) 
2.9  

(2.7, 3.3) 
5.7  

(2.2, 17.2) 
2.7  

(1.4, 7.7) 
11.4  

(6.6, 27.1) 4.2 

Sudan 21178 
0.36  

 (0.31, 0.44) 
0.54  

(0.26, 1.91) 
0.28  

(0.17, 0.59) 
77  

(65, 93) 
12  

(6, 41) 
6  

(4, 13) 
2.6  

(2.2, 3.2) 
1.3  

(0.6, 4.5) 
1.2  

(0.7, 2.5) 
5.2  

(3.7, 9.8) 1.9 
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Tanzania 25494 
0.80   

(0.74, 0.86) 
2.00  

(1.01, 6.13) 
0.84  

(0.53, 1.77) 
204  

(189, 220) 
51  

(26, 156) 
22 

(14, 45) 
6.9  

(6.4, 7.5) 
5.7  

(2.9, 17.5) 
4.2  

(2.6, 8.8) 
16.9  

(12.4, 32.8) 6.3 

Uganda 17841 
0.73   

(0.59, 0.90) 
4.37 

 (1.42, 13.71) 
1.19  

(0.54, 3.73) 
131  

(105, 160) 
78  

(25, 245) 
21  

(10, 67) 
4.4  

(3.6, 5.4) 
8.7  

(2.8, 27.4) 
4.2  

(1.9, 13.0) 
17.5  

(8.9, 45.4) 6.5 

Zambiab 8122 
0.73   

(0.54, 0.97) 
1.41  

(0.65, 5.23) 
0.69  

(0.38, 1.59) 
60  

(44, 78) 
11  

(5, 43) 
6  

(3, 13) 
2.0  

(1.5, 2.7) 
1.3  

(0.6, 4.8) 
1.1  

(0.6,2.5) 
4.4  

(2.9, 9.4) 1.6 

Totalc 212013 
0.73 

(0.62, 0.87) 
1.34 

(0.58, 4.28) 
0.85 

(0.55, 1.66) 
1554 

(1307,1846) 
285 

(122, 907) 
180 

(117, 352) 
52.8 

(44.4, 62.8) 
31.9 

(13.7, 101.6) 
35.3 

(22.9, 69.1) 
120.8 

(86.0, 224.3) 44.9 

Sub-Saharan Africa, Southern 

Botswana 1367 
1.21   

(0.40, 3.80) 
0.11 (0.04, 

0.22) 
0.44  

(0.20, 0.78) 
17  

(6, 52) 
0  

(0, 0) 
1  

(0, 1) 
0.6  

(0.2, 1.8) 
0.0  

(0.0, 0.0) 
0.1  

(0.1, 0.2) 
0.7  

(0.3, 1.9) 0.3 

Totalc 52315 
0.03 

(0.01, 0.10) 
0.00 

(0.00, 0.00) 
0.02 

(0.00, 0.02) 
17  

(6, 52) 
0 

(0, 0) 
1 

(0, 1) 
0.6  

(0.2, 1.8) 
0.0  

(0.0, 0.0) 
0.1  

(0.1, 0.2) 
0.7 

(0.3, 1.9) 0.3 

Sub-Saharan Africa, West 

Benin 5179 
0.99   

(0.28, 3.35 ) 
0.16  

(0.07, 0.34) 
0.21  

(0.03, 0.69) 
51  

(15, 174) 
1  

(0, 2) 
1  

(0, 4) 
1.7  

(0.5, 5.9) 
0.1  

(0.0, 0.2) 
0.2  

(0.0, 0.7) 
2.1  

(0.7, 6.5) 0.8 

Burkina Faso 8871 
3.24   

(3.07, 3.41) 
13.54  

(5.8, 43.3) 
4.52  

(2.51, 10.40) 
287  

(273, 302) 
120  

(52, 385) 
40  

(22, 92) 
9.8  

(9.3, 10.3) 
13.4  

(5.8, 43.2) 
7.9  

(4.4, 18.1) 
31.1  

(19.9, 72.6) 11.6 

Cameroon 12239 
0.12   

(0.10, 0.13) 
0.23  

(0.09, 1.12) 
0.11  

(0.05, 0.29) 
14  

(13, 16) 
3  

(1, 14) 
1  

(1, 3) 
0.5  

(0.4, 0.5) 
0.3  

(0.1, 1.5) 
0.3  

(0.1, 0.7) 
1.1  

(0.7, 2.7) 0.4 

Chad 6113 
1.32   

(0.87, 1.98) 
1.79  

(1.04, 3.09) 
5.21  

(3.62, 7.45) 
80  

(53, 121) 
11  

(6, 19) 
32  

(22, 45) 
2.7  

(1.8, 4.1) 
1.2  

(0.7, 2.1) 
6.2  

(4.3, 8.9) 
10.3  

(7.6, 14.0) 3.8 

Cote d’Ivoireb 12780 
0.02   

(0.01, 0.03) 
0.01  

(0.00, 0.04) 
0.01  

(0.0, 0.02) 
2  

(1, 4) 
0  

(0, 1) 
0  

(0, 0) 
0.1  

(0.0, 0.1) 
0.0  

(0.0, 0.1) 
0.0  

(0.0, 0.1) 
0.1  

(0.1, 0.2) 0.0 

Ghana 15579 
0.11   

(0.10, 0.12) 
0.24  

(0.09, 1.30) 
0.10  

(0.05, 0.29) 
17  

(15, 19) 
4  

(1, 20) 
2  

(1, 5) 
0.6  

(0.5, 0.6) 
0.4  

(0.2,2.3) 
0.3  

(0.2, 0.9) 
1.3  

(0.9, 3.8) 0.5 

Guinea 6033 
0.87   

(0.61, 1.18) 
2.13  

(0.86, 9.17) 
0.93 

(0.47, 2.46) 
53  

(37, 71) 
13  

(5, 55) 
6  

(3, 15) 
1.8  

(1.3, 2.4) 
1.4  

(0.6, 6.2) 
1.1  

(0.6, 2.9) 
4.4  

(2.5, 11.4) 1.6 
Guinea 
Bissau 1017 

1.14   
(0.81, 1.86) 

2.88  
(1.18, 14.39) 

1.21  
(0.61, 3.96) 

12  
(8, 19) 

3  
(1,15) 

1  
(1, 4) 

0.4  
(0.3, 0.6) 

0.3  
(0.1, 1.6) 

0.2  
(0.1, 0.8) 

1.0 
(0.6, 3.0) 0.4 

Mali 7669 
1.49   

(1.34, 1.65) 
2.95  

(1.47, 8.81) 
1.43  

(0.86, 2.73) 
114  

(103, 126) 
23  

(11, 68) 
11  

(7, 21) 
3.9  

(3.5, 4.3) 
2.5  

(1.3, 7.6) 
2.2  

(1.3, 4.1) 
8.6  

(6.3, 15.8) 3.2 

Mauritania 1945 
0.10   

(0.03, 0.24) 
0.16  

(0.03, 1.02) 
0.09  

(0.02, 0.30) 
2  

(1, 5) 
0  

(0, 2) 
0  

(0, 1) 
0.1  

(0.0, 0.2) 
0.0  

(0.0, 0.2) 
0.0  

(0.0, 0.1) 
0.1  

(0.0, 0.5) 0.1 

Niger 7822 
0.54   

(0.33, 0.78) 
1.40  

(0.41, 6.88) 
0.58  

(0.24, 1.66) 
42  

(26, 61) 
11  

(3, 54) 
5  

(2, 13) 
1.4  

(0.9, 2.1) 
1.2  

(0.4, 6.0) 
0.9  

(0.4, 2.5) 
3.6  

(1.7, 10.2) 1.3 
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Table 3.5 continued 

Nigeria 94454 
0.61   

(0.58, 0.63) 
0.14  

(0.07, 0.29) 
0.23  

(0.15, 0.33) 
575  

(552, 597) 
13  

(6, 25) 
22  

(14, 31) 
19.6  

(18.8, 20.3) 
1.5  

(0.7, 2.8) 
4.2  

(2.7, 6.1) 
25.4  

(23.4, 27.5) 9.4 

Senegal 7896 
1.24   

(1.08, 1.43) 
2.44  

(1.09, 8.20) 
1.18  

(0.66, 2.44) 
98  

(85, 113) 
19  

(9, 65) 
9  

(5, 19) 
3.3  

(2.9, 3.8) 
2.2  

(1.0, 7.2) 
1.8  

(1.0, 3.8) 
7.4  

(5.1, 14.4) 2.7 

The Gambia 962 
0.70   

(0.38, 1.23) 
0.31  

(0.14, 0.63) 
1.29  

(0.67, 2.13) 
7  

(4, 12) 
0  

(0, 1) 
1 

(1, 2) 
0.2  

(0.1, 0.4) 
0.0  

(0.0, 0.1) 
0.2  

(0.1, 0.4) 
0.5  

(0.3, 0.8) 0.2 

Togo 3961 
0.08   

(0.05, 0.12) 
0.03  

(0.01, 0.09) 
0.02  

(0.01, 0.07) 
3  

(2, 5) 
0  

(0, 0) 
0 

(0, 0) 
0.1  

(0.1, 0.2) 
0.0  

(0.0, 0.03) 
0.0  

(0.0, 0.1) 
0.1  

(0.1, 0.2) 0.1 

Totalc 199217 
0.68 

(0.60, 0.82) 
1.11 

(0.49, 3.64) 
0.66 

(0.39, 1.29) 
1357 

(1187, 1643) 
221 

(97, 725) 
131 

(78, 256) 
46.1 

(40.4, 55.9) 
24.8 

(10.9, 81.2) 
25.6 

(15.3, 50.1) 
97.1 

(69.8, 183.6) 36.1 

Grand Total 628521 
0.56 

(0.46, 0.70) 
1.02 

(0.43 3.48) 
0.61 

(0.36, 1.25) 
3534 

(2912, 4405) 
642 

(271, 2187) 
383 

(227, 785) 
120.2 

(99.0, 149.8) 
71.9 

(30.3, 244.9) 
75.1 

(44.5, 153.8) 
269 

(184.9, 527.5) 100 
a Prevalence rates are per 100 (TT) or per 1000 (TB and LV) b Areas lacking data were assigned the regional mean (as opposed to country average) c Regional totals correspond to all countries in the region, assuming a prevalence 
of zero in all non-endemic countries d No TT data, presented estimates correspond to regional average from existing survey data 
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Table 3.6 Country-level estimates of the prevalence, numbers affected and  disability-adjusted life years (DALYs) for each disease sequelae: trachomatous trichiasis (TT), trachomatous 
blindness (TB) and low vision (LV) in 2010 

Country 
Pop 

(000s) 
Median Prevalencea   (95% BCI) Numbers (000s)   (95% BCI) DALYs (000s)   (95% BCI) 

Total DALYs 
% 

Total TT (per 100) LV (per 1000) TB (per 1000) TT LV TB TT LV TB 
North Africa 

Algeria 35423 
0.68 

(0.63, 0.75) 
0.89 

(0.52, 1.86) 
0.52 

(0.35, 0.89) 
242 

(221, 264) 
32 

(18, 66) 
19 

(12, 31) 
8.2 

(7.5, 9.0) 
3.5 

(2.1, 7.4) 3.6 (2.4, 6.1) 
15.4 

(12.5, 22.4) 5.0 

Egypt 79537 
1.05 

(0.76, 1.39) 
2.13 

(0.75, 8.77) 
1.01 

(0.46, 2.53) 
838 

(602, 1102) 
169 

(60, 698) 
80 

(37, 201) 
28.5 

(20.5, 37.5) 
18.9 

(6.7, 78.1) 
15.7 

(7.2, 39.4) 
63.6 

(38.0, 143.7) 20.5 

Morocco 32381 
0.05 

(0.00, 0.11) 
0.05 

(0.00, 0.37) 
0.03 

(0.00, 0.16) 
15 

(1, 36) 
2 

(0, 12) 
1 

(0, 5) 
0.5 

(0.0, 1.2) 
0.2 

(0.0, 1.3) 
0.2 

(0.0, 1.0) 
0.9 

(0.1, 3.3) 0.3 

Totalb 154401 
0.71 

(0.53, 0.91) 
1.31 

(0.51, 5.03) 
0.64 

(0.32, 1.54) 
1095 

(824, 1402) 
202 

(79, 776) 
99 

(49, 237) 
37.2 

(28.0, 47.7) 
22.6 

(8.7, 86.9) 
19.5 

(9.6, 46.5) 
79.9 

(50.6, 169.4) 25.8 
Sub-Saharan Africa, Central 

CAR 4592 
0.34 

(0.263, 0.43) 
0.34 

(0.17, 0.95) 
0.22 

(0.12, 0.46) 
16 

(12, 20) 
2 

(1, 4) 
1 

(1, 2) 
0.5 

(0.4, 0.7) 
0.2 

(0.1, 0.5) 
0.2 

(0.1, 0.4) 
0.9 

(0.6, 1.5) 0.3 

Totalb 98041 
0.02 

(0.01, 0.02) 
0.02 

(0.01, 0.04) 
0.01 

(0.01, 0.02) 
16 

(12, 20) 
2 

(1, 4) 
1 

(1, 2) 
0.5 

(0.4, 0.7) 
0.2 

(0.1, 0.5) 
0.2 

(0.1, 0.4) 
0.9 

(0.6, 1.5) 0.3 
Sub-Saharan Africa, East 

Burundi 9553 
0.00 

(0.00, 0.00) 
0.00 

(0.00, 0.01) 
0.00 

(0.00, 0.00) 
0 

(0, 0) 
0 

(0, 0) 
0 

(0, 0) 
0.0 

(0.0, 0.0) 
0.0 

(0.0, 0.0) 
0.0 

(0.0, 0.0) 
0.0 

(0.0, 0.0) 0.0 

Djibouti 877 
0.66 

(0.28, 1.19) 
0.75 

(0.21, 4.27) 
0.46 

(0.14, 1.90) 
6 

(3, 10) 
1 

(0, 4) 
0 

(0, 2) 
0.2 

(0.1, 0.4) 
0.1 

(0.0, 0.4) 
0.1 

(0.0, 0.3) 
0.4 

(0.1,1.0) 0.1 

Eritrea 5323 
0.43 

(0.32, 0.55) 
0.12 

(0.02, 0.32) 
0.07 

(0.02, 0.17) 
23 

(17, 29) 
1 

(0, 2) 
0 

(0, 1) 
0.8 

(0.6, 1.0) 
0.1 

(0.0, 0.2) 
0.1 

(0.0, 0.2) 
0.9 

(0.7, 1.2) 0.3 

Ethiopia 89566 
1.05 

(0.89, 1.23) 
0.44 

(0.31, 0.68) 
1.25 

(0.96, 1.60) 
936 

(800, 1100) 
40 

(27, 61) 
112 

(86, 143) 
31.8 

(27.3, 37.4) 
4.5 

(3.1, 6.9) 
22.0 

(16.9, 28.0) 
58.8 

(51.5, 66.8) 19.0 

Kenya 40645 
0.14 

(0.12, 0.17) 
0.37 

(0.13, 1.58) 
0.15 

(0.07, 0.40) 
59 

(50, 67) 
15 

(5, 64) 
6 

(3, 16) 
2.0 

(1.7, 2.3) 
1.7 

(0.6, 7.2) 
1.2 

(0.6, 3.2) 
4.9 

(3.0, 12.5) 1.6 

Malawi 15037 
0.47 

(0.32, 0.69) 
0.65 

(0.26, 2.60) 
0.37 

(0.17, 0.98) 
70 

(48, 104) 
10 

(4, 40) 
6 

(3, 15) 
2.4 

(1.6, 3.5) 
1.1 

(0.4, 4.4) 
1.1 

(0.5, 2.9) 
4.6 

(2.6, 10.3) 1.5 

Mozambiquec 22635 
0.63 

(0.52, 0.77) 
0.93 

(0.49, 2.23) 
0.51 

(0.32, 0.96) 
143 

(118, 173) 
21 

(11, 50) 
12 

(7, 22) 
4.8 

(4.0, 5.9) 
2.4 

(1.2, 5.6) 
2.3 

(1.4, 4.3) 
9.5 

(7.1, 15.5) 3.1 
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Somaliac 9486 
0.48 

(0.36, 0.63) 
0.76 

(0.37, 2.23) 
0.41 

(0.23, 0.87) 
46 

(34, 60) 
7 

(4, 21) 
4 

(2, 8) 
1.6 

(1.2, 2.0) 
0.8 

(0.4, 2.4) 
0.8 

(0.4, 1.6) 
3.2 

(2.1, 5.7) 1.0 

South Sudan 7561 
1.76 

(1.64, 1.89) 
9.03 

(2.91, 24.02) 
2.71 

(1.25, 6.44) 
133 

(124, 143) 
68 

(22, 182) 
21 

(9, 49) 
4.5 

(4.2, 4.8) 
7.6 

(2.5, 20.3) 
4.0 

(1.9, 9.5) 
16.2 

(8.9, 34.3) 5.2 

Sudan 33670 
0.37 

(0.31, 0.43) 
0.53 

(0.26, 1.56) 
0.28 

(0.17, 0.61) 
124 

(103, 146) 
17 

(9, 52) 
10 

(6, 21) 
4.2 

(3.5, 4.9) 
2.0 

(1.0, 5.9) 
1.9 

(1.1, 4.0) 
8.1 

(6.0, 14.1) 2.6 

Tanzania 43542 
0.67 

(0.62, 0.73) 
1.43 

(0.70, 3.61) 
0.65 

(0.40, 1.21) 
292 

(269, 319) 
62 

(31, 157) 
28 

(17, 53) 
9.9 

(9.1, 10.9) 
7.0 

(3.4, 17.6) 
5.6 

(3.4, 10.3) 
22.6 

(16.5, 37.9) 7.3 

Uganda 34040 
0.52 

(0.44, 0.60) 
2.49 

(0.82, 7.17) 
0.77 

(0.35, 2.09) 
176 

(151, 203) 
85 

(28, 244) 
26 

(12, 71) 
6.0 

(5.1, 6.9) 
9.5 

(3.4, 17.6) 
5.1 

(2.3, 13.9) 
20.7 

(11.1, 46.4) 6.7 

Zambia 12625 
0.51 

(0.41, 0.64) 
0.74 

(0.34, 2.13) 
0.41 

(0.23, 0.84) 
65 

(51, 81) 
9 

(4, 27) 
5 

(3, 11) 
2.2 

(1.7, 2.8) 
1.0 

(0.5, 3.0) 
1.0 

(0.6, 2.1) 
4.3 

(2.9, 7.7) 1.4 

Totalb 358652 
0.58 

(0.49, 0.68) 
0.93 

(0.40, 2.52) 
0.64 

(0.42, 1.14) 
2071 

(1768, 2435) 
337 

(145, 904) 
230 

(149, 410) 
70.4 

(60.1, 82.8) 
37.7 

(16.3, 101.2) 
45.1 

(29.2, 80.3) 
154.2 

(112.7, 253.5) 49.7 
Sub-Saharan Africa, Southern 

Botswana 1953 
1.38 

(0.43, 4.75) 
0.18 

(0.08, 0.41) 
0.52 

(0.25, 0.97) 
27 

(8, 93) 
0 

(0, 1) 
1 

(0, 2) 
0.9 

(0.3, 3.2) 
0.0 

(0.0, 0.1) 
0.2 

(0.1, 0.4) 
1.2 

(0.5, 3.4) 0.4 

Totalb 70352 
0.04 

(0.01, 0.13) 
0.00 

(0.00, 0.01) 
0.01 

(0.00, 0.02) 
27 

(8, 93) 
0 

(0, 1) 
1 

(0, 2) 
0.9 

(0.3, 3.2) 
0.0 

(0.0, 0.1) 
0.2 

(0.1, 0.4) 
1.2 

(0.5, 3.4) 0.4 
Sub-Saharan Africa, West 

Benin 9872 
0.99 

(0.27, 3.13) 
0.17 

(0.07, 0.34) 
0.16 

(0.03, 0.50) 
97 

(27, 309) 
2 

(1, 3) 
2 

(0, 5) 
3.3 

(0.9, 10.5) 
0.2 

(0.1, 0.4) 
0.3 

(0.0, 1.0) 
3.9 

(1.3, 11.1) 1.2 

Burkina Faso 16097 
0.17 

(0.15, 0.18) 
0.13 

(0.07, 0.31) 
0.09 

(0.05, 0.18) 
27 

(25, 30) 
1 

(1, 5) 
1 

(1, 3) 
0.9 

(0.3, 3.2) 
0.2 

(0.1, 0.6) 
0.3 

(0.2, 0.6) 
1.4 

(1.2, 2.0) 0.5 

Cameroon 19662 
0.09 

(0.07, 0.10) 
0.17 

(0.06, 0.75) 
0.08 

(0.04, 0.22) 
17 

(15, 20) 
3 

(1, 15) 
2 

(1, 4) 
0.6 

(0.8, 1.0) 
0.4 

(0.1, 1.7) 
0.3 

(0.1, 0.8) 
1.3 

(0.8, 3.1) 0.4 

Chad 11715 
0.84 

(0.61, 1.12) 
1.73 

(0.65, 6.30) 
0.81 

(0.38, 2.01) 
99 

(72, 132) 
20 

(8, 74) 
10 

(4, 24) 
3.3 

(2.4, 4.5) 
2.3 

(0.9, 8.3) 
1.9 

(0.9, 4.6) 
7.5 

(4.4, 16.8) 2.4 

Cote d’Ivoire 20375 
0.02 

(0.01, 0.04) 
0.01 

(0.00, 0.06) 
0.01 

(0.00, 0.03) 
4 

(2, 8) 
0 

(0, 1) 
0 

(0, 1) 
0.1 

(0.0, 0.3) 
0.0 

(0.0, 0.1) 
0.0 

(0.0, 0.1) 
0.2 

(0.1, 0.5) 0.1 

Ghana 24890 
0.02 

(0.01, 0.02) 
0.01 

(0.00, 0.03) 
0.01 

(0.00, 0.02) 
4 

(4, 5) 
0 

(0, 1) 
0 

(0, 0) 
0.1 

(0.1, 0.2) 
0.0 

(0.0, 0.1) 
0.0 

(0.0, 0.1) 
0.2 

(0.2, 0.3) 0.1 

Guinea 10028 
0.53 

(0.39, 0.68) 
0.88 

(0.38, 2.85) 
0.45 

(0.24, 1.01) 
53 

(39, 68) 
9 

(4, 29) 
4 

(3, 4) 
1.8 

(1.3, 2.3) 
1.0 

(0.4, 3.2) 
0.9 

(0.5, 2.0) 
3.7 

(2.4, 7.2) 1.2 
Guinea 
Bissau 1853 

0.73 
(0.53, 1.05) 

1.60 
(0.65, 5.50) 

0.71 
(0.36, 1.82) 

14 
(10, 19) 

3 
(1, 10) 

1 
(1, 3) 

0.5 
(0.3, 0.7) 

0.3 
(0.1, 1.1) 

0.3 
(0.1, 0.7) 

1.1 
(0.7, 2.4) 0.3 
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Table 3.6 continued 

 
 

Mali 13506 
0.49 

(0.44, 0.56) 
0.63 

(0.29, 1.96) 
0.36 

(0.21, 0.76) 
67 

(59, 76) 
9 

(4, 27) 
5 

(3, 10) 
2.3 

(2.0, 2.6) 
1.0 

(0.4, 3.0) 
1.0 

(0.5, 2.0) 
4.2 

(3.1, 7.3) 1.4 

Mauritania 3363 
0.10 

(0.05, 0.20) 
0.10 

(0.03, 0.34) 
0.06 

(0.02, 0.17) 
4 

(2, 7) 
0 

(0, 1) 
0 

(0, 1) 
0.1 

(0.1, 0.2) 
0.0 

(0.0, 0.1) 
0.0 

(0.0, 0.1) 
0.2 

(0.1, 0.4) 0.1 

Niger 15791 
0.40 

(0.27, 0.55) 
0.82 

(0.29, 3.55) 
0.38 

(0.17, 1.01) 
64 

(43, 87) 
13 

(5, 56) 
6 

(3, 16) 
2.2 

(1.4, 3.0) 
1.5 

(0.5, 6.3) 
1.2 

(0.5, 3.1) 
4.9 

(2.7, 11.6) 1.6 

Nigeria 158313 
0.47 

(0.45, 0.49) 
0.15 

(0.07, 0.27) 
0.17 

(0.11, 0.24) 
748 

(714, 780) 
23 

(12, 43) 
27 

(18, 39) 
25.4 

(24, 27) 
2.6 

(1.3, 4.8) 
5.2 

(3.5, 7.6) 
33.4 

(30.7, 36.6) 10.8 

Senegal 13311 
1.22 

(1.07, 1.37) 
2.24 

(1.06, 5.96) 
1.12 

(0.64, 2.18) 
162 

(143, 182) 
30 

(14, 79) 
15 

(9, 29) 
5.5 

(4.9, 6.2) 
3.3 

(1.6, 8.9) 
2.9 

(1.7, 5.7) 
11.7 

(8.5, 20.1) 3.8 

The Gambia 1845 
0.01 

(0.00, 0.12) 
0.01 

(0.00, 0.09) 
0.00 

(0.00, 0.05) 
0 

(0, 2) 
0 

(0, 0) 
0 

(0, 0) 
0.0 

(0.0, 0.1) 
0.0 

(0.0, 0.0) 
0.0 

(0.0, 0.0) 
0.0 

(0.0, 0.0) 0.0 

Togo 7122 
0.07 

(0.04, 0.10) 
0.03 

(0.01, 0.09) 
0.02 

(0.01, 0.07) 
5 

(3, 7) 
0 

(0, 1) 
0 

(0, 1) 
0.2 

(0.1, 0.3) 
0.0 

(0.0, 0.1) 
0.0 

(0.0, 0.1) 
0.2 

(0.1, 0.4) 0.1 

Totalb 338971 
0.40 

(0.34, 0.51) 
0.33 

(0.15, 1.02) 
0.22 

(0.12, 0.43) 
1363 

(1153, 1730) 
114 

(50, 345) 
73 

(41, 145) 
46.3 

(39.2, 58.8) 
12.8 

(5.6, 38.6) 
14. 4 

(8.1, 28.5) 
73.9 

(56.2, 119.9) 23.8 

Grand Total  1020417 
0.45 

(0.37, 0.56) 
0.64 

(0.27, 1.99) 
0.40 

(0.31, 0.60) 
4572 

(3766, 5680) 
655 

(274, 2029) 
412 

(312, 612) 
155.5 

(128.0, 
 

73.4 
(30.7, 227.3) 

79.4 
(47.1, 156.1) 

310 
(220.6, 547.9) 100 

a Prevalence rates are per 100 (TT) or per 1000 (TB and LV) b Areas lacking data were assigned the regional mean (as opposed to country average) c Regional totals correspond to all countries in the region, assuming a prevalence 
of zero in all non-endemic countries d No TT data, presented estimates correspond to regional average from existing survey data 

120 
 



 
Chapter 3: The disease burden of trachoma in Africa 

 
As illustrated in Figure 3.7, a substantial proportion of the estimated burden of disease is 

in Egypt, Ethiopia and Nigeria. While data in the latter two countries are robust, data from 

Egypt are geographically limited, and much of the projected burden is due to a greater life 

expectancy and increased populations in older age groups. As a result, these estimates are 

particularly sensitive to the method of extrapolation, as presented in the next section. 

 

 

Figure 3.7 Disability-adjusted life year (DALY) estimates in 1990 and 2010 in 33 African countries 
for trachomatous trichiasis (TT), trachomatous low vision (LV) and trachomatous blindness (TB) 

 

Finally, age- and sex-specific estimates are presented by region in Tables 3.7-3.8. A higher 

proportion of DALYs (66%) are in females and age-specific burden estimates clearly 

reflect both the modelled age-prevalence distribution of trachomatous sequelae and 

differences in the underlying population distribution between regions.   
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Table 3.7 Regional estimates of the population and  total disability-adjusted life years (DALYs) attributed to trachoma by gender and age in 1990 
 

 

 

  

 
North Africa Sub-Saharan Africa, Central Sub-Saharan Africa, East Sub-Saharan Africa, Southern Sub-Saharan Africa, West Total 

Factor 
Pop 

(000) 
DALYs 
(000) 

Prop. 
DALY 

Pop 
(000) 

DALYs 
(000) 

Prop. 
DALY 

Pop 
(000) 

DALYs 
(000) 

Prop. 
DALY 

Pop 
(000) 

DALYs 
(000) 

Prop. 
DALY 

Pop 
(000) 

DALYs 
(000) 

Prop. 
DALY 

DALYs 
(000) 

Gender  

Male 55288 
17.1 

(10.0, 40.2) 35 27156 
0.2 

(0.2, 0.5) 32 104997 
41.7 

(31.5, 71.0) 34 25833 
0.2 

(0.1, 0.7) 32 99293 
33.6 

(25.3, 57.7) 34 
92.8 

(67.0, 170.0) 

Female 54524 
32.4 

(18.9, 76.4) 65 28008 
0.5 

(0.3, 1.0) 68 107016 
81.3 

(62.1, 136.0) 66 26482 
0.5 

(0.2, 1.4) 68 99924 
65.5 

(50.2, 109.5) 66 
180.2 

(131.7, 324.2) 
Age  

0-4 16158 
0.3 

(0.2, 0.5) 1 10445 
0.0 

(0.0, 0.0) 1 39040 
1.3 

(1.0, 1.6) 1 7595 
0.0 

(0.0, 0.0) 2 36978 
1.1 

(0.9, 1.4) 1 
2.7 

(2.0, 3.5) 

5-14 29097 
1.5 

(1.0, 2.8) 3 15216 
0.0 

(0.0, 0.0) 4 58932 
4.5 

(3.6, 6.7) 4 13726 
0.0 

(0.0, 0.1) 6 54628 
3.8 

(3.0, 5.8) 4 
9.9 

(7.6, 15.6) 

15-29 29731 
4.4 

(3.1, 8.0) 9 14372 
0.1 

(0.1, 0.1) 10 56269 
12.9 

(10.7, 18.4) 11 14727 
0.1 

(0.0, 0.3) 15 51422 
10.3 

(8.7, 15.1) 10 
27.1 

(22.5, 42.0) 

30-44 18175 
10.2 

(6.5, 22.4) 21 8060 
0.2 

(0.1, 0.3) 20 31309 
25.9  (20.4, 

43.8) 21 8853 
0.2 

(0.1, 0.5) 24 29619 
19.2 

(15.3, 31.2) 19 
55.6 

(42.4, 98.2) 

45-59 10125 
14.9 

(9.1, 34.2) 30 4548 
0.2 

(0.1, 0.4) 29 16921 
37.0 

(28.5, 62.0) 30 4782 
0.2 

(0.1, 0.5) 26 16859 
27.9 

(21.7, 45.8) 28 
80.2 

(59.5, 142.9) 

60-69 4111 
10.5 

(6.4, 23.6) 21 1650 
0.2 

(0.1, 0.3) 20 6239 
23.6 

(18.4, 40.2) 19 1687 
0.1 

(0.1, 0.3) 16 6238 
19.1 

(14.8, 32.2) 19 
53.5 

(39.7, 96.6) 

70plus 2415 
8.0 

(4.9, 17.5) 16 873 
0.1 

(0.1, 0.2) 16 3303 
16.7 

(12.7, 27.8) 14 945 
0.1 

(0.1, 0.2) 11 3473 
16.7 

(12.6, 30.0) 17 
41.6 

(30.3, 75.8) 
 

Total 109812 
49.8 

(31.4, 107.8) 100 55164 
0.8 

(0.5, 1.4) 100 212013 
121.5  

(97,198) 100 52315 
0.7 

(0.3, 1.9) 100 199217 
98.4 

(78.9, 158.8) 100 
271 

(209, 468) 
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Table 3. 8 Regional estimates of the population and total disability-adjusted life years (DALYs) attributed to trachoma by gender and age in 2010 

 North Africa Sub-Saharan Africa, Central Sub-Saharan Africa, East Sub-Saharan Africa, Southern Sub-Saharan Africa, West Total 

Factor 
Pop 

(000) 
DALYs 
(000) 

Prop. 
DALY 

Pop 
(000) 

DALYs 
(000) 

Prop. 
DALY 

Pop 
(000) 

DALYs 
(000) 

Prop. 
DALY 

Pop 
(000) 

DALYs 
(000) 

Prop. 
DALY 

Pop 
(000) 

DALYs 
(000) 

Prop. 
DALY 

DALYs 
(000) 

Gender  

Male 77207 
27.2 

(16.9, 61.0) 34 48552 
0.3 

(0.2, 0.5) 32 178459 
53.1 

(39.5, 78.9) 34 34729 
0.4 

(0.1, 1.2) 33 169797 
25.9 

(20.8, 36.8) 34 
106.9 

(77.6, 178.3) 

Female 77194 
52.6 

(32.5, 114.9) 66 49489 
0.62 

(0.4, 1.1) 68 180193 
103.8  

(79.5,151.6) 66 35623 
0.8 

(0.3, 2.4) 67 169174 
49.3 

(40.7, 69.7) 66 
207.0 

(153.4, 339.6) 
Age  

0-4 16252 
0.4 

(0.2, 0.5) 0 18500 
0.0 

(0.0, 0.0) 1 58986 
1.3 

(1.1, 1.9) 1 7765 
0.0 

(0.0, 0.0) 1 54793 
0.9 

(0.7, 1.3) 1 
2.6 

(2.0, 3.8) 

5-14 29949 
1.6 

(1.1, 2.6) 2 27060 
0.0 

(0.0, 0.0) 4 96420 
5.5 

(4.4, 7.4) 4 15361 
0.0 

(0.0, 0.1) 3 89968 
3.2 

(2.6, 4.1) 4 
10.3 

(8.2, 14.3) 

15-29 44658 
6.5 

(4.7, 10.6) 8 26709 
0.1 

(0.1, 0.2) 12 102008 
16.9 

(14.2, 22.1) 11 21521 
0.2 

(0.1, 0.5) 14 96304 
9.4 

(8.1, 11.4) 12 
33.0 

(27.2, 44.8) 

30-44 31226 
15.5 

(10.5, 31.8) 19 14358 
0.2 

(0.1, 0.3) 20 55577 
33.6 

(26.7, 49.0) 22 12938 
0.3 

(0.1, 0.8) 22 52614 
16.3 

(13.9, 21.0) 22 
65.8 

(51.3, 102.8) 

45-59 20555 
26.4 

(17.0, 57.4) 33 7325 
0.3 

(0.2, 0.4) 28 29017 
45.4 

(35.6, 66.3) 29 7904 
0.3 

(0.1, 1.0) 29 28714 
21.5 

(17.9, 28.8) 29 
93.9 

(70.9, 153.9) 

60-69 6897 
15.6 

(9.9,  33.9) 20 2607 
0.2 

(0.1, 0.3) 18 10359 
29.3 

(23.0, 42.6) 19 2963 
0.2 

(0.1, 0.5) 16 10223 
13.0 

(10.8, 17.5) 17 
58.2 

(43.9, 94.8) 

70plus 4864 
13.6 

(8.8, 28.4) 17 1482 
0.2 

(0.1, 0.3) 17 6285 
23.0 

(17.2, 33.7) 15 1900 
0.2 

(0.1, 0.4) 14 6357 
11.1 

(9.0, 14.9) 15 
48.0 

(35.3, 77.7) 
 

Total 109812 
79.6 

(53.3, 160.7) 100 55164 
0.9 

(0.6, 1.5) 100 212013 
155.1 

(126, 219) 100 52315 
1.2 

(0.5, 3.4) 100 199217 
75.3 

(64.8, 97.4) 100 
312 

(245, 482) 
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Sensitivity analyses 

Although Bayesian credible intervals reported alongside mean estimates capture 

underlying uncertainty in sample sizes and modelled relationships, they do not provide 

information on how extrapolation methods impact resulting estimates. The results from 

the sensitivity analyses highlighted the importance of this issue and the unreliability of 

estimates based off country averages where geographical coverage is low and/or likely to 

be unrepresentative. Scenario 3 extrapolated existing data within all countries, as opposed 

to using regional averages where data were geographically limited, and effectively 

doubled estimates (Table 3.9). This problem was particularly obvious in certain countries, 

such as Egypt, where subnational data are limited, highly endemic and the population is 

rapidly aging.  

The choice of disability weights also had a clear impact on DALY estimates, particularly for 

trichiasis and low vision due to their higher prevalence in younger (and more populous) 

age groups. Using disability weights from the previous GBD 2000 study increased the 

estimated total DALYs more than two-fold, from 273,000 to 735,000 in 1990 and 314,000 

to 796,000 in 2010.  

 

Figure 3.8  Percent change in  disability-adjusted life year (DALY) estimates from base case using 
different methods of extrapolation in 1990 (A) and 2010 (B) 
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Table 3.9 Estimated  disability-adjusted life years (DALYs) by region using  existing data only (Scenario 1), extrapolation of regional averages to all subnational areas 
lacking data (Scenario 2), and extrapolation of country averages to all subnational areas (Scenario 3) 

Region 

1990 2010 

Base Case 

Sensitivity Analysis 

Base Case 

Sensitivity Analysis 

Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 

DALYs 
% 

total DALYs 
% 

total DALYs 
% 

total DALYs 
% 

total DALYs 
% 

total DALYs 
% 

total DALYs 
% 

total DALYs 
% 

total 

North Africa 49.8 
(31.4, 107.8) 16.9 23.7 

(12.2, 82.7) 13.9 49.5 
(28.1, 117.8) 19.0 214.0 

(106.8, 568.0) 49.4 79.6 
(53.3, 160.7) 24.3 35.4 

(16.6, 150.0) 18.5 82.5 
(51.6, 212.8) 26.7 426.5 

(231, 1201) 62.5 

                 
Sub-Saharan 

Africa, Central 
0.8 

(0.5, 1.4) 0.3 0.4 
(0.3, 0.8) 0.3 0.8 

(0.5, 1.5) 0.3 0.8 
(0.5, 1.5) 0.2 0.9 

(0.6, 1.5) 0.3 0.5 
(0.4, 0.9) 0.3 0.9 

(0.6, 1.6) 0.3 0.9 
(0.6, 1.6) 0.1 

                 
Sub-Saharan 
Africa, East 

121.5  
(98,198) 44.8 76.2 

(52.4, 174.4) 44.6 121.4 
(89.6, 186.8) 46.7 124.7 

(89.9, 215.8) 28.8 155.1 
(126, 219) 51.4 101.8 

(69.1, 205.1) 53.3 156.9 
(118, 278) 50.8 175.3 

(128, 315) 25.7 

                 
Sub-Saharan 

Africa, Southern 
0.7 

(0.3, 1.9) 0.3 0.7 
(0.2, 2.2) 0.4 0.7 

(0.2, 2.1) 0.3 0.7 
(0.2, 2.2) 0.2 1.2 

(0.5, 3.4) 0.5 1.1 
(0.4, 3.4) 0.6 1.1 

(0.4, 3.5) 0.4 1.2 
(0.4, 3.1) 0.2 

                 
Sub-Saharan 
Africa, West 

98.4 
(78.9, 158.8) 36.3 69.7 

(51.5, 147.4) 40.8 88.1 
(67.9, 139.3) 33.9 92.4 

(71.0, 143.8) 21.3 75.3 
(64.8, 97.4) 23.6 52.5 

(41.0, 86.3) 27.5 67.8 
(54.5, 103.3) 22.0 78.4 

(62.9, 122.3) 11.5 

                 

Total 
271 

(208, 467) 100 170.8 
(117, 407) 100 260.5 

(186, 447) 100 433 
(269, 931) 100 312 

(245, 482) 100 191.3 
(127, 445) 100 309 

(225, 599) 100 682.2 
(422,1642) 100 
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3.6 Discussion 

Based on the methodology presented this chapter, trachomatous blindness and low vision 

were responsible for an estimated 147,000 DALYs in Africa in 1990 and 152,800 in 2010. 

The additional burden contributed by trichiasis only, regardless of vision status, add a 

further 155,500 DALYs to the 2010 estimates. The majority of the DALYs associated with 

trachoma (63%) are, as expected, among individuals aged over 45 years, due to disease 

sequelae arising as a result of cumulative episodes of active infection over time. The 

relatively large burden accounted for by trichiasis and low vision, despite their lower 

disability weight, may be attributed to the younger age-prevalence profiles of these 

conditions compared to trachomatous blindness. A higher proportion (66%) of DALYs 

were experienced by females, who tend to make up a larger proportion of the population 

(particularly in older age groups) and who experience a higher risk of trachoma [113]. The 

key advantages of the methodology used in this chapter are fourfold: i) it provides a 

substantially broader evidence base from which to generate estimates, ii) it explicitly 

allows within and between country variation in risk to be incorporated into overall 

burden estimates, iii) estimates can be easily refined as new data become available with 

scale up of trachoma mapping activities and post-intervention surveys and iv) it provides 

a framework in which sub-national trichiasis data might, in the future, be predicted from 

socioeconomic or environmental covariates. 

DALY estimates are similar to those presented in the GBD 2010, which calculated 50,000 

DALYs for trachomatous blindness within Africa in 1990 (compared to 75,100) and 68,000 

in 2010 (compared to 79,400) [71]. DALY estimates for low vision are higher in this 

analysis, due to the different age distribution used to calculate prevalent cases. The 

methodology used for the GBD 2010 estimates was based on that presented here. 

However, country-level prevalence estimates were further modelled as causal blindness 

fractions by the Vision Loss Expert Group to ensure that cause-specific estimates fit within 

the all-cause blindness prevalence “envelope”. Furthermore, country-level models were 
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fitted with a regional temporal trend, informed by the average year that surveys were 

conducted, in order to predict separate estimates for all countries at both time points.  On 

the whole, earlier estimates generated by Ranson & Evans (1996) [235], Frick et al. (2003) 

[80] and the 2000 GBD study [82] have generated much higher estimates of the number of 

cases and associated DALYs, in the order of 1-2 million DALYs. However, in addition to a 

higher disability weight used for these calculations, these studies have relied on rather 

broad modelling assumptions based on limited empirical data, mainly generated in the 

1980s. These methods included i) extrapolating very few national estimates to all 

countries within a region or ii) modelling regional estimates for different time points using 

national GDP indicators and very limited national and sub-national blindness survey data.  

As might be expected, the rapidly changing demographic profiles in many African 

countries have an important impact on overall prevalence of these sequelae and burden 

estimates. In some countries, particularly North Africa and Southern Africa, the population 

structure has aged between 1990 and 2010. In these contexts, the overall prevalence and 

burden will increase assuming a constant age-specific prevalence. In other countries 

where the population has grown with minimal gains in life expectancy, the overall 

prevalence will decrease while the burden will increase, in terms of numbers affected and 

DALYs. An important consideration, is whether younger populations in these countries 

will be at risk of developing disease sequelae in 20-30 years time. The answer is probably 

yes, in the absence of successful interventions, in countries which remain undeveloped or 

have significant inequities in development, and where endemicity of active disease 

remains high.  Unfortunately, information tends to be scarcer in these contexts than in 

countries which are rapidly experiencing development or that have established control 

programmes (such as Oman, Morocco, Mali, and Burkina Faso). Other countries, however, 

are making progress in reducing the burden of trachomatous sequlae which is to some 

degree masked by these demographic changes and better seen by looking at age-specific 

or age-standardised rates. The estimates presented in this chapter suggest a decline in 

estimated DALYs in west Sub-Saharan Africa from 98,000 to 75,000 between 1990 and 
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2010 (Tables 3.5 & 3.6), which may be attributed to large-scale implementation of control 

in many of these countries.  

A key finding of this analysis was the sensitivity of estimates to the method of 

extrapolation and choice of disability weight. While relatively minor changes were 

observed by basing estimates on known data or regional extrapolations, the sensitivity 

analysis highlighted the unreliability of estimates based on country averages where 

geographical coverage is low and/or likely to be unrepresentative. Future work should 

focus on identifying optimal methods of extrapolating reliable data, possibly modelling 

trichiasis data using sub-national socioeconomic or environmental data. Also, as no 

discounting was applied in this analysis the reported DALYs are directly proportional to 

the number of prevalent cases and the disability weight. Since discounting, which devalues 

future health states,  was not included into the 2010 GDB study, the choice of disability 

weight and number of prevalent cases at a given time point are the sole inputs into DALYs 

for trachoma and have an important impact on resulting estimates. Assigned weights for 

blindness and low vision from the GBD 2010 were half of those used previously, which has 

already generated substantial debate [72,242]. Valuation of these health states pose a 

challenge, however, and developing countries are generally underrepresented in valuation 

studies [237]. Finally, the DALYs attributed to trachoma are only calculated from YLDs, 

despite an increased risk of mortality associated with blindness and low vision. A study in 

Africa found the standardized mortality rate to be 3.8 times higher among females who 

were blind and 2.5 times higher in blind males compared to those with normal vision 

[243]. Low vision was associated with 1.5 times the risk of mortality in females and 1.4 

times higher in males. 

It is important to recognize a number of limitations around the data used to inform this 

analysis as well as model assumptions, which will have an important impact on resulting 

estimates. First, variation in risk of trachoma (and disabling sequelae) between and within 

countries is a hallmark of the disease. This will limit the representativeness of available 
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data, from both causal blindness surveys within Africa and sub-national trachoma surveys, 

when extrapolated to the broader region or country. National causal blindness surveys 

may be targeted to areas that are either expected to bear a high burden of these conditions 

or conducted in countries with well-established blindness programmes (such as Morocco, 

the Gambia, and Botswana).  It is also likely that areas expected to be trachoma endemic 

are surveyed first by control programmes and may introduce a positive bias when there is 

poor geographical coverage within a country, overestimating the prevalence of trichiasis 

and trachomatous blindness. This bias was minimized by using information from TRA to 

exclude the population in districts where trachoma has not been found to be a public 

health problem or are suspected to be nonendemic based on hospital data. Second, data 

which are derived from causal blindness surveys may provide relatively imprecise 

estimates for trachomatous blindness as sample size estimation is based on the total 

expected prevalence of blindness at the national level. Third, trachomatous corneal 

opacity (CO) often coexists with other conditions (glaucoma for example), particularly in 

elderly populations. Where the cause of blindness is assigned to another coexisting 

condition, estimates will underestimate the visual impairment due to trachoma. Fourth, 

there are limited data to inform models and assess the impact of potential explanatory 

factors on observed relationships. Longitudinal studies in the Gambia suggest conjunctival 

inflammation (with or without associated infection), frequency of epilation, ocular dryness 

and secondary infections may influence rates of progressive TT [18,19]. Thus, improved 

models might incorporate information on endemicity of active infection and associated 

contextual factors which may influence disease progression and explain variation between 

studies.  Fifth, it is likely that urban populations will have a lower risk of trichiasis and 

trachomatous blindness compared to rural populations. While the sampling strategy for 

national causal blindness surveys typically use a probability proportional to size design, 

allowing a representative national sample, trachoma surveys often exclude urban 

populations from the sampling frame and so may overestimate the risk in urban areas. 

129 
 



Chapter 3: The disease burden of trachoma in Africa 
 
Finally, the geographical level of input data has an important impact on resulting 

prevalence estimates, due to the non-linearity of these models. Countries with data at a 

smaller scale (i.e. district) will provide more information on variation in risk within a 

country than those countries which have an average value assigned to all districts within a 

larger area. As a consequence, countries with more extreme district-level TT values from 

the positive tail of the distribution (such as South Sudan or Uganda) will predict very high 

estimates of district-level trachomatous blindness and result in higher overall estimates 

compared to countries with a more moderate distribution of risk (Zambia) or where data 

are at the region (Chad) or national (Morocco) level. Ideally, when estimates are available 

only for higher geographical areas (such as province or country) it would be preferable to 

assume that district-level prevalence estimates arise from a defined distribution. 

Unfortunately, without incorporating this within an informative spatial (such as a 

conditional-autoregressive model) or multilevel modelling framework that is able to draw 

information from surrounding districts, assigning these estimates at random is likely to 

increase uncertainty in the resulting estimates due to variation in the underlying 

population distribution. 

Unlike previous estimates, this approach did not incorporate a temporal trend or assume 

that changes in the GDP over time will be reflected in the prevalence of trachomatous 

blindness. While secular changes and 

socioeconomic improvements are 

certainly associated with a decline in 

the burden of trachoma, national 

changes in GDP may occur more 

quickly than a corresponding 

improvement in socioeconomic status 

and sanitation in populations at risk or 

subsequent impact on trachomatous sequelae, which tend to “backlog”. Empirically, the 

relationship between GDP and national trachomatous blindness estimates was found to be 

Figure 3.9 Percent change in national GDP between 1990 and 
2010 in trachoma endemic countries. NB: no data available for 
South Sudan 
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highly variable and, as illustrated in Figure 3.9, changes in GDP between 1990 and 2010 do 

not correspond well to demographic changes observed in Figure 3.6 or heterogeneity 

between countries in terms of control activities, water availability and personal hygiene in 

trachoma endemic areas. While there has been strong economic growth in Africa over the 

last decade, there are a number of reasons why it might be a poor indicator for poverty 

reduction. One reason is that GDP includes sectors outside of household income, such as 

government and external balances, which usually grow faster. Second, corresponding 

increases are not necessarily seen all along the income distribution due to high levels of 

inequality within countries, which in some cases have increased along with national GDP 

[244].   

Implementation of the A, F and E components of the SAFE strategy should decrease rates 

of blindness over a longer time period, as transmission decreases and the cumulative 

effect of repeated infection on the incidence of trichiasis and visual impairment is relieved. 

Surgical correction of trichiasis will have a direct impact on trachomatous blindness rates, 

however surgical intervention for trichiasis has made slow gains compared to MDA of 

antibiotics and up to 40% of trichaisis recurs within four years of primary correction 

[245]. Development of more sophisticated modelling techniques, possibly incorporating 

mathematical modelling, may allow for estimation of the variable impact of control 

activities and secular changes on transmission of C trachomatis and disease progression.  

This chapter proposes a framework to utilise available trichiasis data from the GAT to 

estimate the burden of trachoma where national trachomatous blindness estimates are 

lacking. This approach is particularly timely as the global mapping of trachoma is scaled 

up and high resolution pre- and post-intervention data are increasingly available to 

monitor the changing burden of disease. As discussed above, models should continue to be 

refined in order to capture the variable impact of control and, importantly, alternative 

extrapolation methods should be explored to address gaps in geographical coverage of 

existing data.  The next chapter will explore associations between climatic and 
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environmental factors and large-scale patterns of trichiasis risk that may inform potential 

risk mapping to refine future estimates of the burden of trachoma.  
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Chapter 4: Multilevel analysis of trachomatous trichiasis and corneal 

opacity in Nigeria: the role of environmental risk factors on the 

distribution of disease 

 

4.1 Overview 

As highlighted in chapters 2 and 3, a continuing limitation of efforts to quantify the burden 

of trachoma in terms of long term disease sequelae, including trachomatous trichiasis (TT) 

and vision loss, is the sparseness of data in space and time. The method by which existing 

data are extrapolated has a profound impact on resulting estimates. The distribution of 

trachoma is noted to be spatially heterogeneous, with large-scale trends observed across 

countries (Chapter 2; [194]) and more local variation within areas.  However, relative 

contributions of individual and cluster-level risk factors to the geographic distribution of 

disease remain largely unknown. Better identification of determinants of TT within 

countries and geographic regions may provide a basis for more reliable extrapolation of 

data and refined estimation of the burden of disease. 

This chapter uses multilevel modelling to quantify the relationship between climatic 

factors and TT and/or corneal opacity (CO) due to trachoma in Nigeria using data from the 

2007 National Blindness and Visual Impairment Survey. This chapter aims to establish the 

importance of large scale geographical risk factors for later stages of trachoma, adjusting 

for individual-level risk factors, in order to highlight the potential use of risk mapping to 

improve estimation of the burden of disease at large scales. The next chapter will 

investigate geographic risk factors for active disease (TF), using nationwide data from 

Kenya.  
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4.2 Introduction 

Although a number of studies have identified risk factors that are responsible for 

clustering of trachoma within villages, households [97,106,108,179] and individuals [246], 

only a few studies have quantified associations at larger scales. Anecdotally, trachoma is 

believed to be a greater public health risk in dry, dusty and hot settings. Climatic variables 

are postulated to indirectly influence the transmission of trachoma through the following 

mechanisms: low rainfall which leads to reduced access or use of water for washing faces; 

higher temperatures which may influence the distribution and activity of the putative 

vector Musca sorbens; and climatic conditions that favour drying of faeces, the fly’s 

preferred breeding site [135,139,142,143]. In addition, there may be a potential role for 

ocular dryness or environmental irritants to contribute to progression of chronic disease, 

by aggravating scarring processes [18,19,154,247].  

However, robust studies investigating relationships between detailed epidemiological 

observations and environmental determinants are scarce. Existing studies, recently 

reviewed in full by Ramesh et al. (2013) [161], provide some support for a role of 

temperature and rainfall in the distribution of trachoma [152,153,157,158], as well as 

altitude (which might be a proxy for temperature) [159,178,248]. However, most studies 

are limited by lack of control for individual level factors [158,159,249], and in particular 

variation in socioeconomic factors  [250]. In practice, it is difficult to disentangle the 

effects of risk factors of trachoma at different spatial levels, due to a complex interplay 

between large-scale factors such as climate, and mediating factors at smaller scales, like 

water availability and sanitation at the household level and individual behaviours, 

including household water use and personal hygiene [131,132,178].  

Bayesian hierarchical models (BHM) are a robust and well established methodology for 

modelling data that are naturally grouped and identifying risk factors at different scales 

[251]. This approach can be expanded to incorporate information on residual underlying 

spatial patterns, thus explicitly addressing any remaining spatial correlation between 
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observations [252].  Previous studies have used this approach to identify risk factors at 

multiple hierarchical levels for various tropical diseases, using data from school-based and 

community surveys, including malaria [253], soil-transmitted helminths [190,254], 

schistosomiasis [255,256] and trachoma [152].  A common application in multilevel 

models is to then apportion the variance in the response according to the different levels 

of the data, referred to as the variance partition coefficient (VPC) [257,258]. These 

methods offer a robust and flexible approach to modelling prevalence data routinely 

collected as part of disease control programmes in developing countries. 

Nigeria is a populous country with over 160 million people, comprising approximately 

20% of the total population in Africa [259]. There are diverse climatic conditions across 

the country, and three broad ecological zones: the southern rainforest zone, the central 

Guinea Savannah zone and the semi-arid northern Sudan Savannah [260]. Trachoma is a 

significant public health problem in the north of the country and currently only 43% of 

districts suspected to be endemic have been surveyed by population based prevalence 

surveys [261]. The 2007 National Blindness and Visual Impairment Survey was conducted 

in Nigeria to provide evidence on the prevalence and causes of blindness at the national 

level in order to inform policy and planning for the elimination of avoidable blindness 

[262].  During this survey, participants were assessed for presence of TT and CO, 

providing a unique opportunity to describe the distribution of later stages of trachoma in 

relation to underlying risk factors in Nigerian adults. 

This chapter uses geostatistical BHMs to quantify the relationship between climatic factors 

and trachomatous trichiasis or corneal opacity (TT/CO) amongst adults in Nigeria, while 

accounting for the effects of risk factors at other levels and any residual spatial correlation.   
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4.3 Methods 

4.3.1 Overview 

Available data included field collected data at the individual level and remotely sensed or 

interpolated environmental variables at the cluster level. An exploratory principal 

components analysis was conducted on all climatic variables with a correlation coefficient 

≥0.70, in order to explore covariance and variance between factors and ultimately inform 

dataset reduction and model building. 

 All field collected data were used with a reduced set of environmental covariates to build 

hierarchical multivariate regression models for the presence or absence of TT or CO 

(Table 4.1). Model-building took a spatially explicit approach and evaluated the addition of 

geostatistical random effects to account for any residual spatially-structured clustering. 

 

4.3.2 Data  

National Blindness Survey 

Data were collected over a 30-month period from January 2005 to July 2007. The 

framework of this study has been fully described elsewhere [263]. Briefly, a multistage 

stratified cluster random sampling strategy with probability proportional to size was 

employed to generate a nationally representative sample of adults aged 40 years and 

above. A total of 50 adults were enumerated in each of 305 clusters, using a random walk 

procedure from the centre. Visual acuity (VA) was assessed and all participants had a basic 

eye examination by a qualified Nigerian ophthalmologist. The presence or absence of TT 

and CO were recorded based on diagnoses using the WHO simplified grading scheme [26]. 

In addition, a questionnaire was administered to collect demographic and socioeconomic 

indicators for each participant. 
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The majority (80%) of clusters had a specific longitude and latitude recorded by GPS 

during the survey. The remaining 20% of the clusters were geolocated to a specific 

location using a variety of electronic gazetters (7%) or the centroid of the corresponding 

LGA (13%). One cluster could not be geolocated to a unique location and was therefore 

excluded from the subsequent analysis. 

 

Environmental and Climatic Data 

Environmental variables were selected based on their potential relevance to active 

transmission, through water availability or the physiology and behaviour of M sorbens, or 

progression of disease. Gridded data were obtained from a variety of sources, fully 

detailed in Appendix 4.1. These variables included interpolated or satellite data on annual 

climate trends (mean annual precipitation, land surface temperature, mean annual 

temperature, annual aridity index and potential evapo-transpiration (PET)), enhanced 

vegetation index (EVI, sometimes used as a surrogate for rainfall) and extreme or 

potentially limiting climatic factors (maximum temperature in the warmest month, 

precipitation of driest month). Long-term averages of these indices were considered 

appropriate as later stages of trachoma represent the cumulative effects of repeated 

episodes of active disease over 20-30 years. Other environmental factors included altitude, 

urbanisation category, landcover type, population density, distance to nearest waterbody 

and livestock density. Information on gridded environmental and climatic variables was 

extracted for each point location in R version 2,10,1.  
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4.3.3 Data categorization 

Field Collected data 

Age was classified into ten year age bands, based on the nonlinear relationship observed 

with TT/CO and to minimise the effect of reporting biases. Occupation, literacy, water 

source and latrine type are all characteristics that capture various dimensions of an 

individual’s socioeconomic status (SES) [264] and potentially influence transmission of 

Chlamydia trachomatis, through overcrowding, water availability and usage, waste 

disposal and hygienic behaviours. Occupational category was recoded to distinguish 

professionals, semi-skilled workers and unemployed. Literacy was kept as three 

categories: literate, semi-literate and illiterate. Presence of a latrine has been associated 

with lower density of M sorbens and fly-eye contact [97,143,144,147] and latrine type was 

categorized as flush toilet, pit latrine or bush for this analysis. Water source was recoded 

as a binary variable in two ways: 1) to reflect an individuals’ access to an improved water 

source, using definitions provided by the Joint Monitoring Programme for Water Supply 

and Sanitation [265], and 2) to reflect distance and availability of water by categorising 

water sources located within the household or yard separately from wells, boreholes, 

bought and surface water. 

 

Environmental data 

Global land cover was recoded in this analysis to distinguish savannah and grassland 

areas, which have previously been associated with a higher risk of trachoma in Nigeria and 

South Sudan [158,249]. Categorical variables were generated for each environmental 

variable. Variables were first classified into quartiles and the relationship with the cluster-

level prevalence of TT/CO observed using box-plots and scatter plots. Where there was a 

clear pattern in the risk of TT/CO across the factor values, variables were reclassified 

accordingly, otherwise categories were based off of quartiles. All continuous 
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environmental and climatic data were standardised to improve convergence of the 

models.  

 

4.3.4 Exploratory principal components analysis 

As noted in similar analyses, multicollinearity between environmental variables 

commonly presents a challenge in model-building [153]. A principal components analysis 

(PCA), presented in Appendix 4.2, was used to explore the underlying structure of climatic 

variables, in terms of variance and covariance, and inform reduction of the dimensionality 

of the dataset for subsequent model building strategies [266].  Principal components were 

not used directly in the model, as they are less interpretable. However, collinear pairs of 

climatic variables from each grouping identified in the PCA were added through sequential 

regression, which aims to create a new explanatory variable by removing common 

variation from variables deemed to be less important [267,268]. This approach involves 

determining a sequence of importance for the explanatory variables, which in this case 

was constructed from the literature and PCA. As the literature provides the strongest 

evidence base for an association between precipitation and trachoma, this was considered 

the principal climatic factor in the regression [152,158,161].  

 

4.3.4 Modelling 

Model building 

Initially a non-spatial, frequentist approach was used to select candidate variables for 

Bayesian spatial models, using binomial logistic regression models with a cluster-level 

random effect. Univariate analyses of each field-collected variable and the reduced set of 

environmental variables were conducted to identify initial covariates associated with 

TT/CO and bivariate analysis used to explore relationships with potential confounders or 
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correlated variables. Univariate models were fitted with continuous and categorical 

variables in turn, and the variable with the lowest Akaike information criterion (AIC) 

retained for the modelling process. If included categorically, a model including the 

categorical variable was compared to one fitted with a quadratic term in addition to the 

continuous variable. 

 Initial covariate selection used a forward stepwise procedure for each of the two levels 

(individual and cluster) in order to develop a multivariate multilevel model, keeping 

variables with a p-value of 0.1 or less.  As explained above, precipitation was the first 

climatic variable to be added into the model. After accounting for the common variation 

captured by this variable, collinear climatic variables were regressed against it and 

residuals included as new variables that are conditional on precipitation. Non-linear 

associations between environmental covariates and the outcome were explored by adding 

a squared term and assessing model fit. As the majority (79%) of households had only one 

(39%) or two (40%) individuals included in this study, resulting model instability led to 

the exclusion of any household level random effect. 

 

Bayesian models 

Final equivalent Bayesian models were then developed, incorporating a geostatistical 

random effect.  Models took the form: 

 

𝑌𝑖𝑗~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖�𝑝𝑖𝑗� 

𝑙𝑜𝑔𝑖𝑡�𝑝𝑖𝑗� = 𝛼 + �𝛽𝑔

𝑛

𝑔=1

× 𝑥𝑖𝑗 + �𝛽ℎ

𝑛

ℎ=1

× 𝑥𝑗 + 𝑣𝑗 + 𝑢𝑗 

 

Where 𝑌𝑖𝑗  is the infection status of individual 𝑖 in cluster j, 𝑝𝑖𝑗  is the probability of a 

positive response, α is the intercept, ∑ 𝛽𝑔𝑛
𝑔=1 × 𝑥𝑖𝑗  is a vector of g independent variables at 
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the individual level measured in the field multiplied by their coefficient 𝛽𝑔, ∑ 𝛽ℎ𝑛
ℎ=1 × 𝑥𝑗 is 

a vector of h independent variables at the cluster level multiplied by their coefficient 𝛽ℎ, 𝑣𝑗 

is a non-spatial random effect (NSRE) and  𝑢𝑗 is a spatial random effect (SRE) at the cluster 

level. Non-informative priors were specified for the intercept (uniform prior with bounds -

∞,∞) and the coefficients (normal prior with mean=0 and precision, the inverse of 

variance = 1 × 10−6). NSREs were incorporated into all models, in order to allow residual 

variation to have uncorrelated and correlated components. The SRE models any residual 

correlation that is spatially structured using an isotropic, stationary exponential decay 

function: 𝑓(𝑑𝑎𝑏;𝜙) = exp[−(𝜙𝑑𝑎𝑏)] where 𝑑𝑎𝑏 is the straight-line distance between pairs 

of points a and b, and 𝜙 is the rate of decline of spatial correlation. The NSRE had a non-

informative priors imposed on its variance (uniform distribution with delimiting values of 

0.01 and 100).  

Non-spatial model residuals were used to construct semi-variograms, which are 

introduced in Appendix 4.3. Semi-variograms were visually inspected for spatial structure 

and non-stationarity, and spatially structured correlation was incorporated by inclusion of 

location-specific geostatistical random effects in the northern and southern states. A burn 

in of 20,000 iterations was allowed, followed by 10,000 iterations where values for 

monitored variables were stored and thinned by 10. Diagnostic tests for convergence of 

the monitored variables were undertaken, including visual examination of history and 

density plots. The runs were also assessed for evidence of autocorrelation. Model 

performance was assessed by comparing deviance information criteria (DIC).  

Residuals were checked for normalcy and a sensitivity analyses was run, excluding sites 

which were geolocated to the local government area (LGA) centre and might introduce 

error. All analyses were run from R in WinBUGS 1.4 (MRC Biostatistics Unit, Cambridge 

and Imperial College London, UK), using the package ‘R2WinBUGS’. 
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4.3.5 Variance components 

There is no simple way to measure variance partition coefficient (VPC) for discrete 

response multilevel models, as the variance at the two levels are measured on different 

scales and dependent on individual level predictor variables. We used a simulation 

approach implemented in R 2,10,1 to estimate the VPC introduced by Goldstein et al. 

[257], which approximates the variance at each level from a large number of simulations 

based on the variance in the second-level random effect, beta values from the non-spatial 

model and average values for each coefficient.  

 

4.4 Results 

Raw data 

Complete geolocated survey data were available for 304 clusters, corresponding to 8,621 

households with 13,543 individuals aged 40 years and above with information on the 

absence/presence of TT and CO. Overall, 198 (Adjusted prevalence: 1.45%) individuals 

were diagnosed with either TT or CO, and only two individuals had clinical signs of CO 

without concurrent TT. Figure 4.1 presents the distribution of TT/CO among adults aged 

40 years and above within clusters (ranging from 0 to 28.9%) and highlights the greater 

burden of trachoma in the northern areas of Nigeria.  

Summary characteristics of the study population are described in Table 4.2 and reflect 

socioeconomic trends across the country. Overall, only 10% of participants used a flush 

toilet although 64% had access to a pit latrine, and over half (56%) of the participants 

could not read. Northern zones had higher illiteracy (62.5%) and unemployment (19.6%) 

compared to the south (49.3% and 12.6%). Although fewer people had access to a flush 

toilet in the northern zones (4.4%) than southern zones (17.5%), open defecation was also 

reported less in northern zones (20.9%) compared to the south (31.3%).  
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Figure 4.1 Prevalence of trichiasis (TT) or corneal opacity (CO) in adults over 40 years in Nigeria 
from 304 clusters, 2005-2007. Higher prevalence clusters are predominantly in northern areas of 
Nigeria. 

 

Table 4.1 Summary statistics of the reduced set of climatic and environmental covariates included 
in model building 
Variable Median (range) a SD 
Climate   

Land surface temperature (LST) (°C) 31.7  (22.5, 42.8) 5.0 
Mean annual temperature (°C) 26.4  (21.8, 28.7) 1.0 
Mean annual precipitation (mm) 1284.0 (407.0, 3833) 639.2 

Environmental   
Altitude (meters) 270.5 (4.0, 1287.0) 226.1 
Savannah or grasslandsb 17.0 % - 
Ruminant density (animals per 5km cell) 68.1 (0, 1051.4) 144.8 
Cost-distance to road network 1387.5 (0, 22842.7) 2983.3 
Urban classification 27.3% urban - 
Population density 285.0 (8.0, 27982.0) 2570.4 
Enhanced vegetation index (EVI)c 1218.0  (88.1, 1500.8) 270.8 

SE: standard deviation; °C: degrees Celsius; mm: millimetres; km: kilometer 
a Proportion of sites for binary variables (Savannah/Grasslands and Urban classification); 
b Reclassified from global land cover; c Fourier transformed data 
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Table 4.2 Descriptive statistics of the 13,543 individuals included in the 2007 National Blindness 
and Visual Impairment Survey 

  

Exploratory analysis 

All field collected variables and environmental covariates were strongly associated with 

the presence of TT/CO in univariate logistic regression models, with the exception of mean 

annual temperature, as summarised in Table 4.3.  Correlation was observed between a 

number of variables related to SES, including occupation, water availability, literacy and 

latrine type. Literacy was associated both with occupation (p<0.0001) and gender 

(p<0.0001). Women with a lower literacy status had a higher risk of TT/CO, partly 

accounting for the increased risk observed in illiterate individuals. A geographic north-

south trend in risk of trichiasis was apparent across the country, and the unbounded semi-

variogram for the raw TT/CO prevalence supported the presence of spatial 

autocorrelation in the distribution of disease (Figure 4.2A). 

The results from the PCA, fully detailed in Appendix 4.2, identified five key groupings of 

variability in climatic covariates, from each of which a single variable was retained. Mean 

annual precipitation and land surface temperature were retained from the two contrasting 

Statistic Number (%) 
Total number individuals 13,543 
Gender                                         Female 7,317   (54.0) 
Age group:                                  40-50 years 5,821   (43.0) 
                                                       50-60  years 3,371   (24.9) 
                                                       60-70  years  2,600   (19.2) 
                                                       70-80  years 1,312     (9.7) 
                                                       >80  years 439         (3.2) 
Literacy:                                      Easily 2,925   (21.6) 
                                                       With difficulty 2,983   (22.0) 
                                                       Not at all 7,635   (56.4) 
Occupation:                                Professional 1,317      (9.7) 
                                                       Semi Skilled 10,013 (73.9) 
                                                       Unemployed 2,213    (16.3) 
Latrine type:                              Flush 1,415    (10.4) 
                                                       Pit Latrine 8,648    (63.9) 
                                                       Bush 3,480    (25.7) 
Improved water source:        Unimproved 3,802    (28.1) 
                                                       Improved 9,741    (71.9) 
Proximate water source:       Wells/boreholes/surface water 8,188    (60.5) 
                                                       Within street or household 5,355    (39.5) 
TT and/or CO 198        (1.45) 
TT: trachomatous trichiasis; CO:  trachomatous corneal opacity  
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groups from the first component. Mean annual temperature and altitude (identified in the 

PCA as a second collinear pair contributing to climatic variation) and EVI were also 

retained for further analyses with all other uncorrelated environmental indices. Summary 

statistics for these variables are presented in Table 4.1. During model building, the 

residual variation in EVI was initially significant after accounting for collinear effects of 

precipitation and LST and the residual effect of LST, but dropped out after accounting for 

urban classification.  
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Table 4.3  Univariate associations with variables in 304 clusters of 13,543 individuals aged ≥40 in 
Nigeria, 2005-2007 

Variables  Group OR   (p-value) 
Field-collected 
variables 

Individual level   
   

 Age group:                                    40-50  years 1 
  50-60  years 1.68  (0.02) 
  60-70  years 4.00  (<0.0001) 
  70-80  years 4.65  (<0.0001) 
  80+  years 5.30  (<0.0001) 
    
 Gender Female 2.61  (<0.0001) 
    
 Literacy Easily 1 
  Difficult 4.11  (<0.0001) 
  Not at all 2.06  (0.03) 
 Improved water source Unimproved 1 
  Improved 1.40  (0.421) 
 Proximate water source Village or further 1 
  Within street or 

household 
0.95  (0.86) 

 Occupation Professional 1 
  Semi Skilled 11.44  (0.03) 
  Unemployed 35.55  (0.002) 
 Cluster level   
Climatic 
covariates 

Mean annual precipitation (mm)  0.997  (<0.0001) 

 Monthly Average land surface 
temperature (LST) 

 1.358  (<0.0001) 

 Mean annual temperature (°C)  1.01  (0.59) 
Environmental  Altitude (meters)   <200 1          
covariates  200 – 499 14.41  (<0.0001) 
  500 + 5.64    (<0.0001) 
 Enhanced vegetation index (EVI) ≥ 0.35 1    
  0.25-0.34 6.66    (0.001) 
  0.15-0.24 26.00  (<0.0001) 
  < 0.15 4.53    (0.01) 
 Land cover type Other 1 
  Savannah/ 

Grasslands 2.70  (<0.0001) 

 Urban classification Rural 1 
  Urban 0.27  (<0.0001) 
 Distance to surface water (km)  1.18  (<0.0001) 
 Population density   (per 5km cell)  0.99  (<0.0001) 
 Ruminant density     (per 5km cell)  1.003  (0.02) 
All associations adjusted for clustering within villages 
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Geostatistical risk model 

Model results are reported in Table 4.4 and retained both individual and cluster-level 

covariates. The final model reported is Model 4.2, which is non-spatial and includes age, 

gender, and occupation as well as mean annual precipitation, residual variation in LST, 

mean annual temperature and urban classification. Risk of TT/CO increased with age and 

was higher in women than men (OR 2.46, 95% BCI 1.82 – 3.39). Socioeconomic status, as 

measured by occupation, was also associated with an increased risk of trichiasis. Despite 

wide confidence intervals, there was evidence that individuals employed in a professional 

capacity had the lowest risk of trichiasis while unemployed were at highest risk (OR 16.71, 

95% BCI 3.23 – 556.1).  

Increased precipitation was associated with a lower risk of TT/CO in Nigeria (OR 0.17, 

95% BCI 0.06 – 0.33), and higher residual LST was uniquely associated with an increased 

risk of TT/CO (OR 2.95 95% BCI 1.36 – 6.85) additional to any contribution made through 

variation that is shared with precipitation. Although not identified as a risk factor in the 

univariate analyses, increased mean annual air temperature was associated with lower 

risk of TT/CO after controlling for the effects of other environmental factors. This variable 

was kept in the model based on the lower DIC. Finally, the odds of TT/CO were lower in 

urban areas (OR 0.27 95% BCI 0.13 – 0.52), after controlling for individual level risk 

factors. Approximation of the VPC using a simulation approach suggested that 14% of the 

total variation (based on a null model) was attributed to the cluster level. After inclusion 

of both individual and cluster-level risk, 0.7% of the overall residual variation was at the 

higher level.  

Although the results from the non-spatial model are reported here, there was evidence of 

large scale spatial trends as well as local clustering of TT/CO risk in Nigeria. The semi-

variogram of the Pearson’s residuals from Model 1 indicated that, compared to the null 

model, the addition of covariates decreased the proportion of variation that was spatially 

structured and controlled for large-scale trends (Figure 4.2). This spatial structure varied 

147 
 



Chapter 4: Multilevel analysis of trichiasis and corneal opacity in Nigeria 

between regions (non-stationarity), with a higher proportion of residual variation in the 

north showing spatial structure (Figure 4.3). Graphs and maps of the residuals from the 

non-spatial Model 2 suggested that residual variation was localised in a large cluster of 

higher risk in the north (Figure 4.4).  These residuals are presumably due to presence of 

unknown, spatially structured risk factors that are not included in the model or spatially 

varying relationships with identified risk factors. Inclusion of separate random effects for 

the north and south had the effect of reducing overall residual error in the model, as 

indicated by the reduction in the non-spatial random effect and narrower confidence 

intervals (Model 3: Table 4.4 and Figure 4.4).  However, addition of these terms also 

reduced observed associations with residual LST and mean annual air temperature, and 

widened their confidence intervals. This finding suggests that while these environmental 

factors may be associated with the distribution of risk in the north, they do not explain all 

observed clustering and are made redundant by inclusion of a spatial random effect.  The 

range of spatial autocorrelation can be calculated by 3/φ and is thus 3.26 decimal degrees 

(approximately 365 km) in the north. Residual variation in the south was more likely to be 

aspatial and due to individual level factors.
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Table 4.4 Random-effects models for trachomatous trichiasis or corneal opacity in adults over 40 years in Nigeria 

Variable Null Model 1 a 
OR (95% BCI) 

Null Model 2 b 
OR (95% BCI) 

Model 1a 
OR (95% BCI) 

Model 2 a 
OR (95% BCI) 

Model 3b 

OR (95% BCI) 
Age:               40-49 years   - - - 
                       50-59 years   1.78 (1.27, 2.52)* 1.86 (1.33, 2.71)* 1.90 (1.30, 2.81)* 
                       60-69 years   3.99 (2.87, 5.85)* 4.48 (3.18,6.34)* 4.54 (3.17, 6.55)* 
                       70-79 years   4.30 (2.68, 6.61)* 4.78 (3.13, 7.43)* 5.17 (3.25, 8.05)* 
                       80 plus years   3.70 (1.76,7.36)* 5.24 (2.51, 10.67)* 5.62 (2.63, 10.98)* 
Gender:          Male   - - - 
                        Female   2.23 (1.61, 3.01)* 2.46 (1.82, 3.39)* 2.55 (1.89, 3.51)* 
Occupation:  professionals   - - - 
                        semi/skilled   9.80  (2.09, 161.27)* 10.83 (2.18, 359.4)* 15.39 (3.18, 116.1)* 
                        unemployed   17.84 (3.89, 286.20)* 16.71(3.23, 556.1)* 21.63 (4.34, 173.2)* 
Mean annual precipitation    0.17 (0.10, 0.26)* 0.21 (0.11, 0.38)* 
Residual LST    2.95 (1.36, 6.85)* 1.91 (0.79, 5.08) 
                         Squared term    0.21 (0.07,0.58)* 0.19 (0.05, 0.63)* 
Mean annual temperature    0.89 (0.69, 1.14) 0.91 (0.62, 1.37) 
                         Squared term    0.75 (0.62, 0.87)* 0.83 (0.67, 1.02) 
Urban classification    0.27 (0.13, 0.52)* 0.34 (0.17, 0.61)* 
 Beta coefficient  

(95% BCI) 
Beta  coefficient  
(95% BCI) 

Beta  coefficient  
(95% BCI) 

Beta  coefficient  
(95% BCI) 

Beta  coefficient  
(95% CI) 

Intercept -5.86 (-6.47, -5.36) -5.43 (-6.58, -4.35) -9.71(-12.54, -7.97) -9.19 (-12.55, -7.47) -9.90 (-12.1, -8.29) 
σ2 4.04 (2.56, 6.20) 0.52 (0.23, 1.04) 4.66 (3.35, 6.55) 1.53 (0.98, 2.41) 0.006 (0.00, 0.41) 
Spatial southern φ  [range in km]  0.22 (0.05, 0.55) [1527]   59.13 (22.2, 94.19) [6] 
Spatial southern σ2  5.72 (1.13, 19.41)   1.27 (0.24, 4.18) 
Spatial northern φ  [range in km]     0.92 (0.23, 2.42) [365] 
Spatial  northern σ2     2.55 (1.18, 8.00) 
      
DIC 1658 1610 1533 1490 1483 
OR: odds ratio; BCI: Bayesian credible interval; DIC: deviance information criterion (smaller DICs indicate better model fit);  φ = rate of decay of spatial correlation;  σ2 =  variance of random 
effect a Non-spatial random effect only; b Including separate spatial random effect for the north and the south of Nigeria 
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Figure 4.2 Semi-variograms related to risk mapping models for presence of trachomatous trichiasis 
(TT) or corneal opacity (CO) in adults over 40 years, Nigeria, 2005-2007. There is evidence of 
spatial structure and the suggestion of large scale trends in risk of TT/CO both in the raw data (A) 
and graphs of Pearson’s residuals from model 2 including individual and cluster-level covariates 
(B). 

 

 

 

Figure 4.3 Semi-variograms model the spatial structure of TT/CO present in residuals from 
nonspatial Model 2 separately in northern (A) and southern (B) regions of Nigeria. While there is 
no evidence of spatial structure in the residuals from southern Nigeria, the semi-variance (or 
difference) in risk is observed to increase with distance in northern Nigeria. Of key interest is the 
ratio of sill to nugget variance, which provides information on how spatially structured the variance 
in prevalence is. In northern Nigeria the ratio is 2.07, suggesting that just over half of residual 
variance is spatially structured in the North. This structure may be due to dependency on unknown 
risk factors which are locally clustered in these areas or non-stationarity in relationships between 
observed risk factors and disease. 
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Figure 4.4 Residual error from non-spatial Model 2 (A, B) and spatial Model 3 (C). Mapped residuals 
with 95% Bayesian Credible Interval (BCI) above zero indicate that areas of high residual risk are 
localised in northern Nigeria, with a large cluster present encompassing southern Jigawa, eastern 
Kano and northern Bauchi states. 
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4.5 Discussion 

The present study provides evidence that both individual-level risk factors and broader 

climatic conditions are associated with later stages of trachoma in adults over the age of 

40 years in Nigeria, using uniquely detailed national survey data. The hierarchical 

approach used in this analysis has the advantage of incorporating risk factors at multiple 

levels and explicitly modelling residual spatial correlation in TT/CO that could affect the 

standard errors of estimates of association. A number of well-established individual risk 

factors for trichiasis were identified that included age, gender and occupation, as well as 

large-scale climatic and environmental factors (precipitation, residual LST, temperature 

and urban classification) that explained further variation in risk across the country. After 

adjusting for these factors, there is evidence that additional, unknown spatial risk factors 

in northern Nigeria underlie observed disease clustering.  

Individual-level factors found to be associated with trichiasis are consistent with our 

general understanding of trachoma epidemiology. These associations replicate those 

previously found in a number of studies in Nigeria [269], other countries in sub-Saharan 

Africa [157,228,250] and trachoma endemic areas worldwide [210,270,271]. The risk of 

TT increases with age due to cumulative scarring caused by repeated infection over an 

individual’s life, while the higher risk in females is commonly attributed to close contact 

with children and greater exposure to infection with the causative agent [5,113]. 

Occupation is a characteristic that captures various dimensions of an individual’s SES and 

may be linked to underlying risk factors for infection, including hygienic behaviours, use of 

water, waste disposal, overcrowding or other conditions that encourage the proliferation 

of flies or increased transmission through contact and fomites. A lower score on various 

socioeconomic measures has also been associated with a greater risk of trachoma in 

previous studies, including occupation [59], illiteracy or lack of formal schooling  

[271,272] and living standards measures, but not uniformly across all settings [166]. 

Variation in relevant socioeconomic measures between settings may reflect differences in 

152 
 



Chapter 4: Multilevel analysis of trichiasis and corneal opacity in Nigeria 

underlying transmission dynamics, equity in access to treatment and surgical 

interventions, as well as reliability of the measures themselves. After accounting for these 

risk factors, living in urban areas remained associated with a lower risk of trichiasis. This 

finding supports anecdotal evidence underlying current trachoma survey strategies that 

preferentially select rural clusters, and may reflect reduced access to health services or 

increased contact with livestock and flies associated with rural lifestyles.  

After controlling for individual-level risk factors, lower precipitation, higher land surface 

temperatures and lower mean annual temperatures were associated with a higher risk of 

TT in Nigeria. On this scale, climatic factors may influence transmission dynamics through 

hygienic behaviours related to perceived water availability, actual water availability or as 

determinants of fly physiology and behaviour [131,132,135,160,178,273]. Shared 

variation in precipitation and LST accounted for the most climatic variation (Appendix 

4.2), and might be interpreted as variation common to different measures of climatic 

water availability. Higher residual LST, after removing collinear variation with 

precipitation, was independently associated with a further increased risk of TT/CO. These 

findings are consistent with previous analyses associating a higher risk of active trachoma 

with higher aridity and lower rainfall [154-158]. The higher risk of TT/CO associated with 

lower air temperatures (or higher altitudes) seems counter-intuitive, however this 

association has been reported in previous studies with limited control for potentially 

confounding variables [153,250].  Lower meterological temperatures are hypothesized to 

have an biological effect on the life span of the punitive fly vector, M sorbens, which has 

been shown to live from 12 days at 32° C to 35 days at 24°C [273]. It is expected that 

TT/CO in adults who are ≥40 years old at the time of the survey mainly reflects exposure 

to factors influencing transmission 30-40 years ago (assuming little population movement 

across clusters/climatic gradients). However, it is also possible that certain climatic 

factors may also influence the development of trachomatous scarring and hence TT/CO.  

Ongoing active disease and eye irritants like ocular dryness may be associated with drier 

climatic conditions and contribute to chronic conjunctival inflammation. This in turn has 
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been associated with a higher risk of TT and faster progression to later disease stages 

[18,19,154,247]. 

Despite strong links between water availability and transmission of trachoma, there are a 

number of potential reasons why household water source was not identified as a risk 

factor in this analysis. First, domestic water consumption and, importantly, its allocation 

for hygienic purposes will mediate any relationship between water availability and 

trachoma [132]. This is difficult to measure and while distance to water [116,126,178] and 

type of source [274] have been associated with trachoma in some studies, they are at best 

proxy measures of household and individual water use. It is likely that our classifications 

of water source were not able to capture these directly relevant measures. In addition, a 

study on water use patterns in Tanzania highlighted the importance of perceived water 

availability and its impact on water usage, rather than availability itself [131]. It is possible 

that perceptions around water availability are partly driven by climatic experiences and 

thus may influence subsequent behaviours, including allocation within the household. 

Second, this survey was done over 30 months and limited evidence suggests that the water 

source reported as “main” may vary seasonally in Nigeria [275]. Consequently, any 

observed relationship between distance and usage may be stronger in the dry season. 

Third, individual occupation as a socioeconomic measure may have captured any effect of 

water source, as those with higher incomes had improved water access. And finally, while 

water is likely to be associated with transmission, trichiasis prevalence may more strongly 

reflect historical transmission levels prior to any recent interventions or secular trends. In 

support of this hypothesis was our finding that an improved water source was associated 

with an increase in the unadjusted odds of disease in the driest areas, potentially reflecting 

targeting of water interventions to the driest areas in the last 20-30 years.   

One of the strengths of this analysis lies in its explicit recognition of the hierarchical 

structure of the data and ability to incorporate residual spatial variation.  After accounting 

for risk factors at the individual and cluster level, there was evidence that TT/CO was 
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spatially structured over a large (365 km) range in the north. This is likely to be due to a 

large cluster of residual risk, focused around southern Jigawa, eastern Kano and northern 

Bauchi states. Approximation of the VPC using a simulation approach suggested that 14% 

of the total variation was attributed to the cluster level. After accounting for risk factors at 

both levels, this was reduced to less than 1%. This suggests that risk of TT/CO is more 

variable within clusters than between clusters, and is consistent with the natural history 

of trachoma which requires repeated infections of C trachomatous, observed to cluster 

within households [106,250] and individuals [112].  In contrast, a recent study by Hagi et 

al. attributed nearly 40% of observed variation in active trachoma to the village level 

[152]. It is not clear what approach was used for this estimate, thus it may not be directly 

comparable to estimates from this study, but a higher proportion of variation between 

villages may reflect the importance of environmental factors on transmission dynamics via 

flies and water availability. The influence of these factors may give a relatively 

homogenous “spread” of active disease risk across a community, whereas clustering of TT 

may reflect the importance of individual-level risk factors which influence the 

predisposition to infection, duration of infection, or immunological response to infection 

over longer periods of time. 

Despite the robust approach used to model these data, there are a number of limitations 

inherent in the data and methods. First, as anticipated, strong collinearity in both 

environmental and socioeconomic variables across the country placed limitations on our 

ability to disentangle their independent effects. Observed associations with climatic 

factors may reflect uncontrolled socioeconomic factors, as rural populations are likely to 

be dependent on agro-ecological conditions for crop and livestock productivity. Second, 

this survey was cross-sectional and TT is a condition that represents the cumulative effect 

of many infections over time. Thus potential decadal climate variability, migration during 

an individual’s adult life or variation in other risk factors for TF between the period of 

exposure and time of survey limits any inferences of causality. Expected associations may 

be masked, or even reversed in some cases, where access to the SAFE strategy (including 
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surgery and environmental improvement) has been implemented in high transmission 

areas. No information was available on coverage of the SAFE strategy in the years leading 

up to the survey, but anecdotal evidence suggests that the SAFE strategy was not widely 

implemented within Nigeria at this time. And finally, not all points were able to be 

geolocated and any errors in geolocation could introduce misclassification at the cluster-

level.  

For the first time, we have quantified associations between environmental factors and risk 

of TT/CO in Nigeria while accounting for the effects of individual-level risk factors and 

residual spatial structure. While the results indicate that individual-level factors are an 

important source of variation, individuals living in drier and rural areas of Nigeria were at 

greater risk of chronic disease stages.  This supports anecdotal evidence associating 

limited water availability with trachoma although other mechanisms may also be 

important, such as the effect of temperature on the abundance, breeding potential and 

activity of M sorbens [276]. Findings from this study may help to more reliably extrapolate 

trichiasis data within countries and regions and refine estimates of the burden of disease, 

although further work is required to investigate associations at larger scales.  

As discussed in this chapter, one pathway through which climatic and environmental 

factors may influence the risk of TT is through their impact on transmission pathways of C 

trachomatis and active disease. A more proximate requirement for national programmes is 

to identify areas which should be prioritised for disease mapping or, even more 

importantly, can be reliably excluded from these activities. The next chapter extends the 

use of multilevel modelling and spatial analyses to investigate variation in the risk of 

active trachoma in Kenya and evaluate the potential for developing predictive risk maps.
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Chapter 5: Analysis of spatial patterns and risk factors for active 

trachoma in Kenya 

 

5.1 Overview 

The previous chapter provided evidence that the distribution of trichiasis within Nigeria is 

associated with well-established individual risk factors, as well as larger-scale factors that 

vary between communities. Geostatistical models such as these could potentially inform 

predictive models to refine estimates of the burden of disease at larger scales. Hierarchical 

models of active trachoma in Mali have found that cluster-level environmental factors 

explained a relatively high proportion (36.7%) of the overall variation in risk [152]. 

Quantification of associations at this level and characterisation of heterogeneity in risk 

will not only add to our epidemiological understanding of patterns of disease, but might 

provide a basis for targeting surveys or surveillance and optimising their design.  

This chapter will use disaggregated, cluster-level data on the prevalence of active 

trachoma in Kenya to i) explore whether socioeconomic and environmental/climatic 

factors are associated with patterns of disease in endemic areas, ii) to investigate spatial 

heterogeneity of active trachoma between and within districts and iii) evaluate the 

potential for developing a spatial risk map of active trachoma in Kenya.  This approach 

may offer insight into the spatial epidemiology of trachoma in Kenya, with implications for 

current mapping strategies and future surveillance of disease.  
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5.2  Introduction  

Epidemiological investigations of trachoma have associated numerous socioeconomic and 

environmental factors with risk of active disease and infection, mainly linking exposures 

to hypothetical transmission pathways through water availability, crowding and fly 

density [54]. While the majority of studies have mainly focused on small scale (individual 

or household-level) risk factors, a few studies have characterised heterogeneity in the 

distribution of disease over larger scales [152,157,158]. As reviewed in Chapter 1, 

patterns of disease arise due to underlying exposures to Chlamydia trachomatis, which are 

in turn mediated by influences acting at different levels, including individual (e.g. genetic, 

behavioural) and household/familial factors (e.g. socio-economic and behavioural) 

through to large scale environmental factors.   

Trachoma prevalence data are typically presented at the district level, which does not 

allow appreciation of the variation within districts and spatial patterns of risk that may 

cross administrative boundaries. While spatial heterogeneity in disease risk is of interest 

in informing survey design, a better understanding of risk factors associated with the 

distribution of disease may help to target future surveys or surveillance. In response to 

recent elimination targets requiring the prevalence of active disease to be below 5% in all 

subdistricts [3], national control programmes may be prompted to reconsider surveying 

areas which were initially classified as non-endemic. A more systematic approach making 

use of disaggregated data may help in identifying areas at high risk and target future 

surveys. Geographic data on a number of potential risk factors for trachoma are 

increasingly available at sub-national scales, including data on poverty and socioeconomic 

risk factors from census surveys, multiple-indicator cluster surveys (MICS), and 

demographic health surveys (DHS), as well as remotely sensed environmental and climatic 

data. As well as defining large-scale geographical trends in disease prevalence, higher 

resolution spatial data for both disease prevalence and underlying risk factors may also 

aid in the identification of hotspots or areas at higher risk of disease recrudescence.  As 
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introduced in Chapter 1, predictive disease risk mapping is a well-established tool for a 

broad range of tropical and non-tropical infectious diseases [170,187,277] and has 

previously been used to predict the risk of TF in South Sudan based on strong associations 

with water availability and land cover [158]. Although both risk factors and the reliability 

of predictive maps are likely to vary by country, these methods could offer a more 

systematic approach to prioritise baseline surveys or potentially target future surveillance 

strategies.  

The aims of this chapter are to identify potential risk factors for active trachoma within 

surveyed districts in Kenya, describe spatial heterogeneity in its distribution and evaluate 

the potential use of predictive risk maps in this context. The data, comprised of all of 

cluster level prevalence data from surveys conducted by the Kenya National Trachoma 

Control Programme, are representative of areas suspected to be endemic within Kenya.  

 

5.3 Methods 

5.3.1 Trachoma and its control in Kenya 

The Kenya National Trachoma Control Programme (KNTCP) was officially launched in 

2007 alongside the Kenya National Plan for Elimination of Trachoma by 2015 (KNPET 

2008-2015). Surveys conducted by the KNTCP have been targeted to areas suspected to be 

at highest risk of trachoma, based on the evidence and assumptions described in the 

following paragraph (Figure 5.1; Table 5.1). The first surveys were carried out in 2004, in 

six districts suspected to be endemic for trachoma in the Rift Valley Province [278], 

followed by surveys in Turkana district and Eastern Province. As of 2012 baseline 

mapping using population-based prevalence surveys (PBPS) or trachoma rapid 

assessments (TRA) had been completed in all 17 districts classified as “endemic”.  

Trachoma is commonly associated with rural pastoralists in Kenya, and targeted partly 

based on historical surveys which found a high prevalence of blinding trachoma in 
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Turkana [279] and Samburu [280], and others that informed the presumptive exclusion of 

areas in central Kenya and along the Eastern coast [156]. Surveyed districts lie primarily 

in the north-west lowlands and the south-central plains of Kenya, and comprise many (but 

not all) of those areas classified as arid and semi-arid lands (ASAL) which have significant 

pastoralist populations. ASAL areas account for 80% of the land in Kenya, tend to be rural 

and are generally characterised by low rainfall in arid (150-450 mm) and semi-arid (500-

850 mm) districts. As might be expected, the poorest communities are found in these 

sparsely populated arid zones, mainly in the north, while areas of high agricultural 

potential in central and western Kenya are densely populated [281]. The exclusion of arid 

pastoralist districts within North Eastern Province and inner Coast Province from 

trachoma survey activities was based on the belief that it does not constitute a public 

health problem in these areas due to religious hygienic practices. 

  

160 
 



Chapter 5: Analysis of spatial patterns and risk factors for active trachoma in Kenya 

 

Figure 5.1 & Table 5.1 Districts classified as suspected endemic for trachoma and surveyed by the 
Kenyan National Trachoma Control Programme (KNTCP) using population-based prevalence 
surveys (PBPS) or trachoma rapid assessment (TRA) between 2004 and 2012. 

Province District Baseline surveya ASAL Classificationb 

Rift Valley Baringo 2004; PBPS; district 50-85% ASAL 
Rift Valley Kajiado 2004; PBPS; district 85-100% ASAL 
Rift Valley Laikipia 2007; PBPS; district 50-85% ASAL 
Rift Valley Narok 2004; PBPS; district 30-50% ASAL 
Rift Valley Samburu 2004; PBPS; district 85-100% ASAL 
Rift Valley Transmara 2004; PBPS; district 30-50% ASAL 
Rift Valley Turkana 2010; PBPS; segmented 100% ASAL 
Rift Valley West Pokot 2004; PBPS; district 50-85% ASAL 
Eastern Isiolo 2011; PBPS; segmented 100% ASAL 
Eastern Kitui 2012; PBPS; segmented 85-100% ASAL 
Eastern Koibatekc 2011; TRA 85-100% ASAL 
Eastern Mbeere 2012; PBPS; segmented 50-85% ASAL 
Eastern Makuenic 2011; TRA 50-85% ASAL 
Eastern Marsabit 2011; PBPS; segmented 100% ASAL 
Eastern Moyale 2011; PBPS; segmented 100% ASAL 
Eastern Mwingi 2012; PBPS; segmented 50-85% ASAL 
Eastern North Meru 2004; PBPS; district 50-85% ASAL 
a District surveys were based on administrative boundaries while segmented surveys divided districts into smaller 
geographical units based on risk assessments 
b ASAL classification taken from the Draft National Policy for the sustainable development of arid and semi-arid 
lands of Kenya [282] 
c Data are not included in this analysis 
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5.3.2 Survey Background 

Surveys in Kenya have followed similar protocols, with total sample size calculated as 

recommended in the programme managers guide based on an expected prevalence of 10% 

and absolute precision of 0.04 [56]. Sublocations are used as the cluster unit and twenty 

are selected per evaluation unit using a systematic sampling method with probability 

proportional to size (PPS) [278].  All sublocations were surveyed by selecting two villages 

(or more) in each sublocation and, splitting the required sample size between these 

villages, using a compact-segment sampling method to select a sufficient number of 

households [278]. 

Since 2010, the evaluation unit has changed from the district (as determined by the 2007 

administrative boundaries) to segmented “trachoma districts”, of 100,000-200,000 people 

each. Trachoma districts correspond to divisions (sub-districts) aggregated according to 

scores from a pre-survey trachoma risk assessment, with the aim of creating more 

homogenous districts and increasing statistical precision of resulting prevalence estimates 

[87]. The level of risk was quantified by a summary score for each division, based on five 

key parameters (Table 5.2). Parameters were focused on socioeconomic and water 

indicators and were completed for each division by key informants, who were typically 

eye care or public health officers.  

As of March 2013, Kenya’s national re-administration has created 47 county governments 

based on the 1992 second level administrative divisions, and no longer uses former 

provinces or districts. The KNTCP classifies 12 of these 47 counties as trachoma endemic 

and will continue to base future evaluation units on segments defined in baseline surveys. 
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Table 5.2 Outline of parameters included on the risk assessment form used between 2010-2012 to 
aggregate divisions into “trachoma districts” according to similar scores 

 
 

5.3.3 Conceptual framework 

Selection of potential determinants of the risk of active trachoma in Kenya and subsequent 

model building strategies were based on a conceptual framework developed for this 

chapter (Figure 5.2).  Inputs into this framework included risk factors on causal pathways 

reviewed in Chapter 1 and those considered in poverty risk frameworks [156,169,283-

285].  Ultimately, the most proximal factors influencing transmission of C trachomatous 

are likely to be behavioural, as increased face and hand washing, latrine use and lower 

contact are expected to reduce its transmission. These measures are not available for this 

study; however, more distal factors will influence exposures and thus may be associated 

with the distribution of risk in Kenya at larger scales. Access to “Human Resources” (i.e. 

education, health services and water and sanitation), are hypothesised to have the most 

direct effect on these behaviours, but may be mediated by conditioning factors such as 

remoteness to these resources and social values.  Access to these resources is determined 

Parameter Categories Score 

Previous evidence of trachoma 

Borders on an endemic district 1 
Trichiasis (TT) cases reported 2 
Trachoma Rapid Assessment 3 
Population-based Prevalence Survey 4 

Socioeconomic activity of the community 

Majority are settled urban 1 
Majority are settled agricultural 2 
Mixed nomadic herders and settled agricultural 3 
Majority are nomadic herders 4 

Water availability? 

Has piped water in most of the houses 1 
Has constant water supply: 
springs/rivers/dams/boreholes 

2 

Dry less than 6 months in a year 3 
Dry most of the year 4 

Average number of hours most people take to 
fetch water (one round trip)? 

Does not fetch water; piped to every house 1 
Less than one hour 2 
One to two hours 3 
More than two hours 4 

Poverty level of communities 

Whole community is rich 1 
Majority rich; clusters of poor communities 2 
Majority poor 3 
Very poor and receiving famine relief 4 

Low risk: 5-10; Moderate risk: 11-15; High risk: 16-20 
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by income level and equality within a given area, which may also influence crowding and 

subsequent contact patterns.  

Environmental and climatic conditions could potentially effect transmission by influencing 

hygienic behaviours proximally through water availability or, more distally, through 

constraining livelihood and economic opportunities and impacting socioeconomic factors. 

In Kenya, the rural economy depends mainly on smallholder subsistence agriculture, 

which produces 75% of total agriculture output [286]. As might be expected, studies have 

found close links between environmental factors and livelihoods in Kenya, as well as 

poverty and socioeconomic status, due to dependence on agro-ecological conditions for 

crop and livestock productivity [283,284]. As a consequence, the geographical distribution 

of natural resources is likely to be an important determinant of patterns of poverty and 

marginalised populations.  

 

Figure 5.2 Conceptual framework of hypothesized pathways through which socioeconomic and 
environmental factors may determine the risk of trachoma, and mediating factors that may 
influence these pathways. 
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5.3.4 Data  

Field Collected data 

Data used in the this analysis are comprised of cluster-level (i.e. sublocation) baseline 

estimates of the number of children aged 1-9 years and numbers positive for TF, from 

PBPS in 17 districts conducted between 2004-2012 in Kenya. Although sublocations are 

technically small areas, freely available shapefiles dating from 2002 no longer provide a 

good match to the Kenyan Population and Housing Census boundaries. As a consequence, 

many clusters could not be matched to their corresponding sublocation by the KNTCP. 

Instead, 438 cluster were successfully assigned to a point location: either to the longitude 

and latitude of the centroid of the correct sublocation (84%), or, wherever possible, 

mapped to the corresponding town or village of the same name matched by district and 

division (16%). A total of 79 clusters were unable to be georeferenced. 

 

Covariate data 

Selection of covariate data was based on the conceptual framework described in section 

5.3.3 and hypothesised relevance to causal pathways to active trachoma. Variables were 

available at different geographical levels, and so this approach assumes that certain 

aggregate socioeconomic characteristics of an area where a cluster is located (either 

district or constituency) could be contextual determinants of whether a cluster has a 

higher risk of trachoma. The following sections describe covariate data identified for this 

analysis, which include both socioeconomic data (including human resource assets and 

measures of poverty and inequality) as well as environmental and climatic data related to 

livelihoods, water availability and, potentially, fly density. All covariates are fully 

described with the source and resolution of the data in Appendix 5.1. 
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Socioeconomic Data 

Indicators of welfare poverty included in the analyses were poverty incidence and the Gini 

Index. Data were available for each constituency in Kenya, from a small-area estimation 

mapping of household consumption expenditure [287] from the Welfare Monitoring 

Survey [288] conducted in 1997 using census data from the 1999 Population and Housing 

Census [289]. Poverty Incidence (also known as the headcount index) is the proportion of 

the total population in an area whose consumption is below the poverty line, defined as 

KShs 1239 per adult per month.  The Gini Index is a widely used measure of inequality that 

refers to the dispersion of the distribution over the entire consumption aggregate, so that 

zero indicates perfect equality and one hundred indicates perfect inequality [290]. 

Although also a product of the poverty mapping, it is relatively independent of poverty 

headcount measure as it describes the distribution of welfare across the population and is 

not tied to the poverty line. 

District-level indicators of the proportion of households with access to various water and 

sanitation indicators were obtained from predictive models using data from national 

cluster-sample surveys undertaken as part of MICs, DHS, national malaria and AIDs 

indicator surveys (MIS/AIS) and living standard measurement surveys [291]. Access to 

improved drinking water and sanitation were defined using the criteria outlined by the 

the Joint Monitoring Programme for Water Supply and Sanitation (JMP), and are measured 

by reported access and use. Access to improved sanitation facilities were defined as those 

that “hygienically separate human excreta from human contact,” and improved (‘safe’) 

drinking-water sources defined as those that are “protected from outside contamination 

(especially faecal contamination).” In addition, a measure of the proportion of households 

with crowding (greater than 5 individuals per room) and the proportion of households 

reporting open defecation were also used as district-level covariates in this analysis. 

While the above data were only available aggregated at the district or constituency level, 

other indicators directly related to socioeconomic status were available at higher 
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resolutions. The 2007 primary schools database was accessed from Kenya Open Data 

(www.opendata.go.ke) and used to measure access to education in terms of 1) the 

distance to the nearest primary school in kilometres and 2) the number of schools per 

1000 population in each sublocation. In addition, attendance rate statistics collected in the 

Kenya Integrated Household Budget Survey were available at the district level [292]. 

Cattle density was available as a gridded surface from the Food and Agriculture 

Organization’s (FAO) Gridded Livestock Database. However, it is noted that the last areal 

livestock census in Kenya was carried out more than three decades ago and these data are 

likely to be highly unreliable for nomadic populations and heavily extrapolated using 

environmental and climatic data that are also included in this analysis [293]. Finally, the 

distance to small scale irrigation projects, available through the World Resource Institute 

(http://www.wri.org/resources/data-sets/kenya-gis-data), was calculated as a measure of 

potential agricultural productivity and livelihood stability. Indicators on infrastructure 

were calculated including distance to nearest road and nearest major road using 

shapefiles from the Digital Chart of the World (www.diva-gis.org). 

 

Environmental & Climatic Data 

Studies have demonstrated strong geographic associations between environment and 

climatic conditions and livelihoods, as well as trachoma prevalence 

[116,157,158,294,295]. While socioeconomic data are typically only available at an 

aggregated level, these indices are often remotely sensed or available through routine 

collection of data through weather stations. Thus, the resolution of the data is between 1-

10km and estimates may be extracted for each individual location, potentially explaining 

variation within districts. Data are fully described, including source, units and resolution, 

in Appendix 5.1, and included factors associated with water availability identified in the 

last analyses (mean annual rainfall, average and variance of the land surface temperature 

(LST), enhanced vegetation index (EVI; a measure of vegetation), and distance to water 
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bodies), temperature (mean annual temperature and altitude) and other environmental 

factors related to natural resources (altitude, urban extents and land cover).  Mean annual 

rainfall, landcover and urban extents were available for multiple time points and so were 

matched as closely as possible with the year that each survey was conducted to account 

for potential changes over time.  

 

Data extraction 

Data described above were extracted for each survey point using ArcGIS version 10.0 

(Redlands, CA) or R version 3.1.0, using the “maptools” and “raster” packages. The United 

Nations Second Administrative Level Boundaries data set project (SALB; [296]) were used 

to define district boundaries in this analysis, in order to coincide with district level water 

and sanitation indicators. 

 

5.3.5 Categorisation and scaling 

Variables were initially visualised using histograms to check for potential outliers that 

could indicate an error in the data or disproportionately influence the regression. 

Variables were then classified into quartiles and the relationship with TF observed using 

boxplots of the distribution of prevalence of TF within each quartiles and scatter plots. 

Where there was a clear pattern in the risk of TF across the factor values, variables were 

reclassified accordingly, otherwise categories were based off of quartiles. Access to 

improved source of drinking water and access to water within 1km were standardised for 

the analyses (by subtracting the mean and dividing by the standard deviation), as they 

were fit best as continuous variables and had a small scale with relatively limited range. In 

addition, six sites that were classified as peri-urban were reclassified as urban, due to 

insufficient power to look at their effects separately and based on a similar distribution of 

TF observed in urban areas. 
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5.3.6 Analysis 

Tools for the evaluation of spatial heterogeneity 

Spatial heterogeneity was observed and quantified throughout this analysis using three 

approaches: i) semi-variogram analyses, ii) local indicators of spatial association (LISA) 

and iii) hierarchical models allowing variance to be partitioned between levels. These 

represent both spatially explicit (i and ii) and non-spatial (iv) statistical approaches to 

quantifying spatial heterogeneity, defined here as the variation over space of the observed 

values from a spatially continuous process (Kolasa and Rollo 1991). Semi-variograms 

(previously introduced in Appendix 4.3) were used to observe and quantify spatial 

heterogeneity of variance in the data binned by distance lags, while LISAs provided a 

decomposed measure of correlation within a defined spatial range for each location (see 

Box 5.1). In contrast, hierarchical modelling attempts to account for gradient-type 

heterogeneity in the mean by inclusion of risk factors and partitioning residual variation 

between different levels. Thus, remaining variability between and within districts can be 

compared and assessed for evidence of residual spatial autocorrelation.  

 

Univariate models 

Univariate models were run using the “lmer” package in R version 3.1.0, which fit a 

generalised linear mixed effects logistic regression models with a random effect for year 

and district to allow for correlation within these groups. Univariate models were fitted 

with continuous and categorical variables in turn, and the variable with the lowest Akaike 

information criterion (AIC) retained for the modelling process. If included categorically, a 

model including the categorical variable was compared to one fitted with a quadratic term 

in addition to the continuous variable.  
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Box 5.1 Moran’s I and LISA statistics for evaluating global and local 
autocorrelation 

Moran’s I coefficient of autocorrelation is 
a commonly used measure of global 
spatial association and quantifies the 
similarity of an outcome based on a spatial 
relationship within a distance class (i.e. 
first neighbours or distance based). The 
statistic provides a weighted measure 
based on the sum of the cross- products of 
centred pairs of points, and varies from -1 
to 1; where negative values indicate 
negative autocorrelation (i.e. neighboring 
areas have dissimilar values) and positive 
values indicate positive autocorrelation 
(i.e. neighbouring areas have similar 
values).  Moran’s I is used to evaluate 
whether an outcome is clustered in space, 
compared to what would be expected 
under a simulated random distribution, 
and can provide a formal test as to 
whether spatial autocorrelation needs to 
be taken into account in an analysis.  

The statistic takes the form: 

                        𝐼 = 𝑛∑ ∑ 𝑊𝑖𝑗(𝑍𝑖−𝑍�)�𝑍𝑗−𝑍��𝑗𝑖

�∑ ∑ 𝑊𝑖𝑗𝑗𝑖 �∑ (𝑍𝑘−𝑍�)2𝑘
 

Where the cross product of the difference 
between the values (Z) and the mean (�̅�), 
calculated for locations i and j according to 
a weights matrix (𝑊𝑖𝑗), are summed over 
all n locations. 

Moran’s I is a global statistic; i.e. an overall 
indicator of the degree of autocorrelation 
and assumes underlying spatial processes 
do not vary in space. This assumption can 
be explored by: 1) splitting the area into 
smaller segments assumed to have 
constant spatial process (as in Chapter 4), 
2) decomposing global indicators into 
local components and 3) using 
geographically-weighted regression 
models to evaluate variation in 
associations. 

 

Local indicators of spatial association 
(LISAs) are statistics that i) give an 
indication of the extent of spatial 
clustering of similar values around an 
observation and ii) sums to be 
proportional to the global indicator. A 
general formula can be expressed as 
𝐿𝑖 = 𝑓�𝑦𝑖 ,𝑦𝐽𝑖� where f is a function, and 
the 𝑦𝐽𝑖  are the values observed in the 
neighbourhood  𝐽𝑖 of i. 

One LISA is the local Moran’s I test [1], 
which decomposes the overall Moran’s, by 
calculating a measure of similar or 
dissimilar disease frequency values 
around each point. These indicators can be 
graphed and mapped, in order to provide 
evidence of instability in the spatial 
association throughout the study area. In 
the below plot, all locations near the 
centre conform to the global mean. Points 
in the top right quadrant are areas where a 
high prevalence point is surrounded by 
other high prevalence points, and points in 
the bottom left correspond to areas where 
a low prevalence point is surrounded by 
other low prevalence points. Outliers in 
the various quadrants identify points 
where local autocorrelation is stronger 
and may unduly influence the global 
statistic (red and blue). 
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Multivariate models 

Bayesian multivariate logistic regression models were developed in WinBUGs version 14.1 

(MRC Biostatistics Unit, Cambridge and Imperial College London, UK) and run from R 

version 3.1.0, using the package R2WinBUGs. Addition of variables used a stepwise 

variable selection that was informed by the conceptual framework outlined in section 

5.3.3, whereby variables more proximal to disease risk were added first. All variables were 

first tested for collinearity, as this can lead to model instability. Where continuous 

variables provided the best fit and were both highly correlated (i.e. improved water source 

and access within 1km), the variable deemed more proximal or relevant was selected. 

During multivariate modelling, some variables were found to be collinear as categorical 

variables. In this situation, the variable with the stronger association was retained and 

reduced categorisation of the secondary variable explored, based on box plots and scatter 

plots of its relationship with TF to identify alternative thresholds. All continuous variables 

were centred in the final models, to improve convergence within WinBUGS, and all 

variables re-included in the final model in turn and model fit was assessed using the 

deviance information criteria (DIC). 

A binomial model for the number of children diagnosed with TF was fitted as follows: 

 

𝑌𝑖𝑗𝑘  ~ Binomial�𝑛𝑖𝑗𝑘,𝑝𝑖𝑗𝑘� 

logit�𝑝ijk� = (α +  u𝑘) + � βl

N

l=1

Χl,𝑖𝑗𝑘 + � βm

N

m=1

Χm,𝑗𝑘 + � βn

N

n=1

Χn,𝑘 +  ν𝑖𝑗𝑘 +  w𝑖𝑗𝑘  

 

where Υ𝑖𝑗𝑘  is the number graded positive for TF from a sample of n individuals at each of i 

sites (conducted in constituency j and district k). The resulting proportion of children with 

disease, 𝑝𝑖𝑗𝑘  , was modelled using a hierarchical regression model which estimated 

coefficients (β) for predictors at three levels: site level (Χl,𝑖𝑗𝑘), constituency level (Χm,𝑗𝑘) 

and district level (Χn,𝑘).  As shown above, the model included unstructured random effect 

171 
 



Chapter 5: Analysis of spatial patterns and risk factors for active trachoma in Kenya 

(u𝑘) which allowed the district level intercept to vary. Then around the district-level 

intercept, the intercept for each site was allowed to vary by inclusion of unstructured 

(w𝑖𝑗𝑘) and spatially correlated (ν𝑖𝑗𝑘) geostatistical random effects. In addition, a district-

level temporal random effect was used to assess whether allowing for variation in the 

prevalence of TF between different survey time points improved the fit of the model based 

on DIC.  

The model was fitted using Markov chain Monte Carlo (MCMC), and after allowing a burn 

in of 60,000 iterations, the values for the intercept and coefficients were stored for 1,000 

iterations and thinned one in ten. Model convergence was based on visual inspection of 

multiple MCMC chains on time-series plots, checking that the Gelman & Rubin diagnostic is 

between 0.999 and 1.2 (based on an analysis of within and between chain variances for 

each variable) and plots were assessed for autocorrelation, ie a pattern of serial 

correlation in the chain where sequential draws of a parameter were correlated [297,298].  

Non-informative priors were used for α, unstructured random effects and the coefficients 

(normal prior with mean 0 and precision 1x10-6),  the prior distribution of 𝜙  was uniform, 

with an upper and lower bound of 0.05 and 100, and all prior distributions of the random 

effects variances were given uninformative gamma distributions (dgamma(0.001,0.001)). 

Any district level coefficients included as continuous variables from the water and 

sanitation mapping were allowed a degree of uncertainly around the mean, by fitting a 

beta distribution based on the predicted values. 

The residuals from the final non-spatial model were assessed for the presence of residual 

spatial autocorrelation, which can affect standard error estimates. Moran’s I index was 

used to formally test for residual spatial autocorrelation.  This statistic takes the form: 

 

𝐼 =
𝑛∑ ∑ 𝑊𝑖𝑗(𝑍𝑖 − �̅�)�𝑍𝑗 − �̅��𝑗𝑖

�∑ ∑ 𝑊𝑖𝑗𝑗𝑖 �∑ (𝑍𝑘 − �̅�)2𝑘
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Where the cross product of the difference between the values (Z) and the mean (�̅�), 

calculated for locations i and j according to a weights matrix (𝑊𝑖𝑗), are summed over all n 

locations. In this case, a binary weights marix was used based on the minimum distance 

required to allow all points at least one neighbour (56 km). The significance of the 

resulting statistic is assessed using Monte Carlo randomisation within R. Where residual 

spatial correlation was found, the geostatistical random effect was modelled using an 

isotropic, stationary exponential decay function: 𝑓(𝑑𝑎𝑏;𝜙) = exp[−(𝜙𝑑𝑎𝑏)] where 𝑑𝑎𝑏 is 

the straight-line distance between pairs of points a and b, and 𝜙 is the rate of decline of 

spatial correlation.  

 

5.3.7 Model validation 

To evaluate the performance of the final model, the dataset was split into four subsets. 

Each quarter of the data was predicted from the remaining data, and recombined to form 

the validation dataset. This resulted in an observed and predicted value for all 438 survey 

locations, as well as calculation of the predicted probability of the prevalence of TF in a 

given site being greater than 5 and 10%. Prevalence thresholds used were selected based 

on those used to guide start of MDA at the district level (10%) and inform certification of 

trachoma elimination, which are based on a 5% threshold of TF within subdistricts. 

The performance of the predictive model was assessed using the following statistics: 

sensitivity, specificity, and area under the curve (AUC) of the receiver operator 

characteristics (ROC). The ROC plots the sensitivity (true positive fraction) against 1-

specificity (false positive fraction) to illustrate the compromises in discriminatory 

performance by varying probability cut offs for assigning a point as above or below a given 

threshold. The corresponding AUC provides a summary measure of the predictive 

accuracy over all probability cut-off points, commonly using values of <0.7 to indicate poor 

discriminatory performance, 0.7-0.8 acceptable, 0.8-0.9 excellent and >0.9 outstanding 
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performance [299]. Mean error and mean absolute error were used to assess bias and 

accuracy of predictions.  

 

5.3.8 Prediction 

Polygon shapefiles of 6520 sublocations in Kenya were obtained from the Kenya Central 

Bureau of Statistics (CBS) to use for prediction. The mean, minimum and maximum values 

for all gridded data were summarised for each polygon. Sublocations were classified by 

urban and land cover class when more than 50% of the area fell into the relevant category. 

Any sublocations missing covariate data (because of errors in covariate data) were 

assigned an average of those sublocations located within 15km. Nairobi province and 

sublocations that represented other major cities (Kisumu, Mombasa, Nakuru and Eldoret) 

were excluded from the predictive data, as both covariate and trachoma survey data are 

generally representative of rural areas. 

Model parameter estimates were then used to predict the prevalence of TF based on the 

mean values for each variable within each sublocation. Prediction was performed in 

WinBUGs, by calculating the sum of the products of the coefficients and their 

corresponding covariate values for each location. Non-spatial random effects were added 

on to incorporate extra variability and, where residual variation showed spatial 

autocorrelation, an interpolated geostatistical random effect was added. 

Within a Bayesian framework, predictions are in the form of a posterior distribution, 

which consists of the last 1000 samples from a converged model. These represent the 

distribution of the possible values a sublocation can take conditional on the model data, 

and allow estimation of the probability that the prevalence of TF will be greater than a 

specified threshold.  
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5.4 Results 

Distribution of active trachoma and surveyed sites 

Data on the numbers examined and numbers positive for TF were available for 438 

geolocated sites from 19 districts, representing clinical data from 21,003 individuals aged 

between 1 and 9 years. The overall prevalence of active trachoma was 18.8%, however the 

distribution of prevalence values was skewed and overdispersed, with a median of 2.7% 

(range 0-100%) (Figure 5.3A).  

The majority of clusters were identified as rural (91%), were located in arid or semi-arid 

climates (75%) and received less than 800mm of rainfall annually (78%). The sites were 

relatively underserved and remote, with approximately half of the sites in sublocations 

with fewer than one school per 1000 population (48%) and most located more than 30 km 

away from a major road (84%). The median and range values for each covariate are 

included in Appendix 5.2.  

 

Figure 5. 3 The distribution of active trachoma prevalence in 438 sites in Kenya (A) and 
distribution of surveyed sites (B). Grey dots represent un-surveyed sublocations.  
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As might be expected, the uneven geographical distribution of data and relatively high 

endemicity levels reported are a reflection of how surveys have been targeted within 

Kenya and provide an incomplete picture of the distribution of trachoma (Figure 5.3B). 

This introduces certain challenges into the analysis; as estimated parameters (particularly 

the random effects) cannot be assumed to arise from the full distribution within Kenya 

and thus may not be generalisable outside of the study area.  

As a consequence of using PPS to select sublocations, the distribution of surveyed sites is 

noted to follow the population density within districts and thus, provide relatively more 

information on the prevalence of TF in these areas. Areas of higher endemicity are 

observed throughout the northern and central districts of Rift Valley Province and 

bordering areas in Eastern Province. However, the disaggregated data highlight the 

heterogeneity in disease prevalence within districts, some which appears to be spatially 

structured: with a tendency for lower prevalence sites, and particularly absence of disease, 

to cluster along the borders of populous districts classified non-endemic.  

 

Socioeconomic and environmental associations 

Univariate associations 

Correlation was observed between various socioeconomic, environmental and climatic 

variables. District-level estimates of the proportion of households with improved drinking 

water and proportion with improved sanitation were highly correlated (0.73-0.83) 

throughout Kenya and in surveyed districts. As might be expected, various subsets of 

environmental indices were also highly correlated, including aridity, altitude, average LST, 

rainfall and EVI. On the whole, however, patterns of environmental and climatic factors in 

relation to trachoma appear to be more variable in Kenya than in Nigeria, and thus 

reclassifying variables according to box plots was sufficient to avoid multicollinearity.  
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The majority of variables were found to be associated with the risk of TF in univariate 

models, as presented in Table 5.3. For the most part, odds ratios reflected expected 

associations between socioeconomic and environmental variables. A lower risk of disease 

was associated with a higher population density, greater access to education (higher 

number of schools, higher attendance and shorter distance to schools), improved water 

and sanitation, greater infrastructure (closer to major and minor roads) and more fertile, 

wetter environmental conditions (higher rainfall, vegetation and lower LST). This step of 

the analysis highlighted the importance of allowing intercepts to vary at the district level, 

suggesting a high degree of variation between districts and relatively less variation within 

districts associated with certain factors. Unexpectedly, neither poverty incidence nor 

inequality at the constituency level was clearly associated with TF prevalence. This may be 

because these income-based measures are poor predictors of behavioural determinants of 

disease or access to requisite education, water and sanitation in this context.   

 

Multivariate associations 

After including cluster level covariates into the model, there was no evidence of spatial 

structure in the residuals using semi-variogram analyses or Moran’s I as a formal test 

(p=0.41); thus a spatial random effect was not included. The final multivariate model was 

non-spatial and retained covariates at two levels: district and sublocation. Table 5.4 

presents the results from the final Bayesian model, which suggested that eight covariates 

should be retained. District-level mean open defecation was positively associated with the 

prevalence of TF, as was a greater distance to the nearest school, water bodies, nearest 

road, and major roads. The risk of TF was lower in sublocations with more than two 

schools per 1000 population, and was also negatively associated with EVI (greenness) and 

annual mean temperature. Upon inclusion of all covariates and the district level random 

effect, the addition of a temporal random effect did not significantly improve the model 

and so was excluded.  
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Table 5.3 Univariate associations between socioeconomic, environmental and climatic 
variables and active trachoma in 438 clusters in Kenya between 2004 and 2012 

Variable OR (95% CI) 
Socioeconomic   
District level variables  

Access to an improved water source a  
≥ 55% - 
< 55% 7.06 (5.44, 9.18) 

Access to improved sanitation a,b  
≥ 43% - 
< 43% (lowest quartile) 6.91 (5.37, 8.91) 

Open defecationa,c  1.22 (1.10, 1.36) 
Crowded living quarters (>5 per room) 1.39 (1.13, 1.69) 
Average school attendance 0.92 (0.85 – 0.99) 

Constituency level variables  
Poverty Incidence  0.97 (0.92, 1.01) 
Lower Inequality (<= 30%) 0.50 (0.13, 1.90) 

Cluster level variables 
Distance to nearest school (km)  

<1   - 
1 – 1.9  1.28 (1.09, 1.50) 
2.0 – 4.9  2.50 (2.17, 2.81) 
≥ 5 2.23 (1.95, 2.55) 

Schools per 1000 population  
<2.0 - 
≥2.0 0.42 (0.33, 0.52) 

Cattle density (animals per 5km cell)  
0 - 
1 – 9 2.62 (2.12, 3.23) 
10 – 49 1.92 (1.51, 2.46) 
50 - 650 1.21 (0.94, 1.56) 

Distance to small scale irrigation  
0-19 - 
20-39 1.49 (1.34, 1.67) 
40-305 2.02 (1.80, 2.27) 

Environmental  
Urban classification 0.33 (0.26, 0.43) 
Land cover  

Savannah/Grasslands 1.23 (1.1, 1.4) 
Barren/Sparsely vegetated 0.54 (0.4, 0.7) 

Distance to water bodies (km)  
0 – 29 - 
30 – 170 2.15 (1.97, 2.36) 

Distance to road (km)  
0-3.0 - 
≥3.0 1.52 (1.39, 1.67) 

Distance to primary road  
<40 - 
40 – 77 1.87 (1.61, 2.17) 
≥ 77 3.60 (3.05, 4.25) 

Population density  
0 – 12 - 
13-34 0.76 (0.69, 0.83) 
35-110 0.59 (0.52, 0.67) 
111-2550 0.29 (0.25, 0.34) 

Table continued on next page 
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Table 5.3 continued 
Altitude (m)  

214 – 721 - 
722 – 1051 2.84 (2.5, 3.3) 
1052 – 1567 3.83 (3.2, 4.5) 
1568 - 2816 2.31 (1.9, 2.8) 

Enhanced Vegetation Index (EVI)  
≥ 0.35 - 
0.25-0.34 3.75 (3.11, 4.52) 
0.15-0.24 5.69 (4.64, 6.99) 
< 0.15 3.68 (2.89, 4.69) 

Climate  
Variance Land Surface Temperature (LST) (°C)  

1-8 - 
8-12 1.86 (1.66, 2.09) 
13-16 1.68 (1.44, 1.96) 
16-39 0.69 (0.60, 0.80) 

Average Land Surface Temperature (LST) (°C)  
19.0 – 32.5 - 
32.6 – 36.3 1.45 (1.27, 1.66) 
36.4 – 40.7 1.39 (1.21, 1.60) 
40.8 – 52.6 1.13 (0.97, 1.31) 

Mean Annual Temperature (°C)  
12-18 - 
19-21 2.21 (1.93, 2.53) 
22-23 1.47 (1.25, 1.73) 
24-29 0.80 (0.65, 0.98) 

Mean Annual Precipitation (mm)  
< 800 - 
≥ 800 0.39 (0.33, 0.46) 

Annual aridity index  
Humid (>0.65) - 
Dry Sub-Humid (0.5-0.65) 2.93 (2.33, 3.68) 
Semi Arid (0.2-0.5) 4.53 (3.63, 5.65) 
Arid (<0.2) 1.76 (1.34, 2.30) 

°C: Celsius; mm: millimetres; km: kilometers 
a Proportion of households reporting; b Lowest quartile; c Standardised 
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Table 5.4 Multivariate Bayesian non-spatial logistic regression models for active trachoma in 438 
clusters in Kenya between 2004 and 2012 
 Mean OR (95% BCI) 

Variable 
Null 

Model District Model Full Covariates 
Open defecation  1.19 (1.11, 1.29) 1.16 (1.06, 1.26) 
Distance to schools ≥2 km   1.79 (1.06, 2.80) 
>2 schools per 1000 population   0.40 (0.19, 0.79) 
Distance to water body ≥30 km   1.77 (1.08, 2.66) 
Distance to road ≥3 km   1.76 (1.14, 2.6) 
Distance to primary road (km)    

< 40   - 
40-77   4.11 (1.91, 7.97) 
≥ 77   6.17 (2.53, 12.82) 

EVI (measure of greenness)    
≥ 0.35   - 
0.25-0.34   2.70 (1.16, 5.44) 
0.15-0.24   4.42 (1.58, 10.03) 
< 0.15   4.39 (1.15, 11.96) 

Annual Mean Temperature C°   0.86 (0.76, 0.97) 
Squared term   0.97 (0.95, 0.99) 
    

Alpha -3.21  
(-5.11, -0.55) 

-9.15  
(-13.26, -5.97) 

-10.14 
(-14.41, -6.42) 

Cluster σ2 3.24 (2.62, 4.00) 3.26 (2.62, 3.98) 2.43 (1.95, 3.02) 
District σ2 10.07 (4.12, 22.80) 5.22 (2.02, 12.21) 3.69 (1.29, 9.01) 
DIC 1544 1544 1538 
OR – Odds Ratio; BCI – Bayesian Credible Interval; DIC – Deviance Information Criterion 
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Heterogeneity between and within districts 

Inclusion of the district level measure of open defecation removed the large-scale trend 

observed in semi-variogram analysis; suggesting that second order spatial dependency 

was present over a range of approximately 300 km, which was reduced further by 

inclusion of the remaining covariates (Figure 5.4).  

 

 

 

Figure 5.4 Semi-variogram plots of residual variation in TF from regression models in Table 5.4 
including district (A) and cluster-level (B) covariates. Omnidirectional semi-variogram and best-
fitted line of exponential spatial model is presented, with Monte Carlo simulation envelope (dotted 
lines). Note: at the equator, one decimal degree equates to approximately 110 kilometers. 

 

Although formal tests for spatial autocorrelation did not support inclusion of a spatial 

random effect in the final model, local spatial dependency in the residuals was examined 

using a scatterplot of local Moran’s I statistics (Figure 5.5A). This was used to identify 

points which had extreme values of positive (consistent with Low-Low and High-High) or 

negative autocorrelation (High-Low and Low-High) in relation to neighbouring points 

(defined by the minimum distance for at least one nearest neighbour). This plot highlights 

the substantially different levels of association in space compared to the global mean 

(which is close to zero), reinforcing the notion that trachoma has highly variable 
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associations in space. While there were no clear outliers likely to bias global estimates of 

Moran’s I, the results suggest that underlying processes are not stationary, precluding a 

standard geostatistical model.  

 

 

Figure 5.5 Local Moran’s I scatterplot with the global Moran’s I regression line fitted (A) and map of 
clusters with residual values above or below 2 standard deviations away from the origin (B). 
Positive spatial autocorrelation, or clustering of similar values, is indicated by Low-Low (LL) and 
High-High (HH) associations between neighbouring points, while negative spatial autocorrelation 
indicates association of dissimilar values: high values surrounded by low neighbouring values (HL) 
and low values surrounded by high values (LH) associations. 

 

Patterns of local autocorrelation varied widely, with many “hotspots” and “coldspots” 

generated by dispersal patterns as well as areas where positive autocorrelation is present 

(Figure 5.6B).  However, there does seem to be visible clustering present, with high 

prevalence clusters (HH) in north-west Turkana and areas bordering Tanzania radiating 

out towards lower prevalence areas moving closer to central and eastern Kenya.  

A substantial amount of non-spatial residual variation remained in the final multivariate 

model (Figure 5.7). Inspection of the cluster-level residuals suggested that the model 

generally under-predicted the risk of TF, but over-predicted at very low prevalence values. 

As might be expected, high and low site-specific residuals corresponded to “hotspots” of 

disease where the prevalence of TF was substantially higher or lower than the district 
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mean. Overall, these findings highlight the spatial heterogeneity of trachoma in Kenya and 

emphasise the presence of non-stationary processes underlying the observed distribution. 

 

 

 

Model validation 

The non-spatial binomial model was validated in terms of its ability to predict the 

prevalence of TF for the 438 clusters for which there were survey data. The final model 

had a similarly poor sensitivity around both the 5% and 10% thresholds, but the 

specificity was quite high: indicating the model was able to correctly identify the majority 

of clusters where the prevalence was below these thresholds (Table 5.5). The mean error 

suggested a tendency to underestimate prevalence (- 7%) and based on the mean absolute 

error, predictions were out by ± 16%. Based on these poor statistics, a predictive map 

would be unable to distinguish areas of higher risk, which is of key interest to trachoma 

control programmes, and therefore was not developed. 

Figure 5.6 Residual variation from the final multivariate regression model in Table 5.4, captured 
by the unstructured random effect. Points where the 95% credible interval of the random effect is 
below (blue) or above (red) zero are presented. 
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Table 5.5 Validation statistics for the final multivariate model presented in Table 5.4 
 

 

  

 Threshold  Sensitivity Specificity AUC 

Nonspatial 
Binomial 

5%  0.34 

(0.24, 0.42) 

0.86 

(0.78, 0.91) 

0.69 

(0.64, 0.74) 

10%  0.26 

(0.18, 0.34) 

0.91 

(0.84, 0.96) 

0.69 

(0.65, 0.74) 

Mean error -0.07    

Mean absolute error 0.16    

 Correlation 0.28    

AUC – Area under the (ROC) curve. Values in parentheses indicate 95% confidence intervals using a 
50% probability cutoff 
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5.5 Discussion 

Although socioeconomic factors commonly associated with trachoma are assessed 

subjectively and used to inform survey design in Kenya, large scale risk factor studies have 

not been used to support these strategies. Using cluster level data available from all 

baseline surveys, the present analysis used a Bayesian, multi-level modelling approach to 

investigate underlying risk factors and spatial heterogeneity in the distribution of active 

trachoma in Kenya. The results provide strong evidence of spatial variation in disease risk 

in relation to socioeconomic and environmental risk factors; generally supporting the 

notion those populations with lower access to education and located in sparsely vegetated 

and rural areas have a higher prevalence of disease in Kenya. However, the analysis 

identified substantial non-spatial residual variation both between and within districts. 

This suggests that, in this context and with these data, predictions of the risk of disease at 

unsurveyed locations will be unreliable. Generalisation to areas outside of the study area 

is not recommended, due to the high variability of risk between districts and perceived 

differences between surveyed and non-surveyed districts. 

The observation that clusters with a higher prevalence of active trachoma tended to have 

lower measures on socio-economic indicators is broadly consistent with findings from 

previous studies. This analysis found that both district-level (open defecation) and cluster-

level (distance to roads and access to education) socioeconomic factors helped to explain 

the distribution of trachoma within Kenya. The proportion of households reporting open 

defecation within districts helped explain large scale trends observed in semi-variogram 

analysis of the raw data.  A higher mean risk of TF in districts where open defecation is 

common may reflect a higher density of flies and potential transmission of C trachomatis 

within clusters, but may also act as a marker for general trends in socioeconomic status or 

education. Cluster-level socioeconomic factors associated with an increased risk of active 

trachoma included a greater distance to roads and primary roads, as well as lower access 

to education (in terms of number of schools and greater distance to schools). Proximity to 
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a road may allow more livelihood diversity and access to human resources, and has been 

associated with sublocation-level poverty incidence in a meso-scale study in Kajiado 

district as well as over larger scales in Kenya [283,284]. 

The strong associations observed between access to education and active trachoma are 

consistent with the findings from the majority of previous studies conducted at the 

individual level, which observed a negative relationship between various measures of 

household education and trachoma [116,300-302]. One cluster-level study in Niger did 

report a positive association between mean number of years of education completed by 

the head of household and active trachoma in children aged 0-5 years; suggesting that this 

association may vary in different contexts according to cultural and educational 

differences [124]. Recent work by King et al. (2013) in four African countries has 

highlighted the higher risk of trachoma in non-school attending children; who logically 

may cluster in communities that are further away from schools or have few schools in 

their locality [181]. Access to education has also been associated with sublocation-level 

poverty incidence at meso- and macro- scales in Kenya [283,284].  As well as the potential 

impact of education on hygienic behaviours such as hand/face washing and use of 

sanitation facilities, populations with many schools may also have greater access to other 

resources such as better water supplies, sanitation facilities and livelihood opportunities.  

Risk of active trachoma was associated with EVI, annual mean temperature, and distance 

to water bodies in this study. As EVI is a measure of greenness, it is higher in areas with 

more vegetation and reflects differences in rainfall and land-surface temperature, as well 

as land cover. Thus a negative association with TF is consistent with previous studies from 

South Sudan and Mali, which found that active trachoma was more prevalent in areas with 

higher aridity and lower rainfall [157,158]. In addition to its relevance to water 

availability and subsequent use for hygienic purposes, greater aridity and dust in areas 

with low vegetation may contribute to disease by i) drying the conjunctiva and increasing 

susceptibility to infection and/or ii) irritating the eye further and causing more chronic 
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disease conditions [15]. Perhaps more importantly, EVI is closely correlated with the 

population density, irrigation and cattle density in Kenya. This reflects its potential 

relevance to socioeconomic mapping in terms of agricultural productivity and pasture 

potential, which is consistent with a study relating vegetation indices to sublocation-level 

poverty incidence in a district-level study in Kenya [283,284].  The increased risk of TF in 

clusters located at large (over 30 km) distances from water may also reflect lower access 

to water for irrigation and have similar links to agricultural and livestock productivity. 

Finally, after controlling for the above factors, the prevalence of TF was negatively 

associated with the mean annual temperature. As discussed in the previous chapter, 

associations between temperature and active trachoma have been reported in other 

studies [152,153] and may possibly influence the density of flies [135]. 

The high levels of spatial heterogeneity of trachoma prevalence between and within 

endemic districts in Kenya supports widely held beliefs around its distribution within 

countries. A more detailed exploratory spatial analysis of this variation suggested that, 

prior to including cluster-level risk factors, levels of spatial autocorrelation varied across 

Kenya. Based on local Moran’s I, spatial autocorrelation was particularly strong in Turkana 

and southern areas of Kenya near the Tanzanian border.  Although inclusion of cluster-

level covariates accounted for observed spatial dependency, high levels of residual, 

aspatial variation persisted throughout the study area. These findings support the current 

strategy of the KNTCP, which administers a pre-survey risk questionnaire at the sub-

district level in endemic districts to create smaller, more homogenous trachoma districts, 

in order to generate more precise data at finer resolutions. Higher resolution census data 

for more proximate risk factors (including distance to water and crowding at the 

sublocation level) may improve the models and provide a more reliable basis for risk 

mapping within endemic districts. This analysis also highlights the potential use of 

satellite derived data, particularly EVI and distance to roads, in conjunction with data on 

water and sanitation interventions to identify areas with high environmental risk.  
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Much of the residual variation was not observed to be spatially structured, and thus may 

be attributed either to risk factors that are truly aspatial (such as behavioural differences 

that do not also aggregate in space) or variation that is spatially structured at smaller 

scales (i.e. within cluster). This small scale, nonspatial heterogeneity in trachoma 

prevalence presents a constraint on the use of models to predict its distribution in 

unsurveyed areas. The poor predictive ability of the model developed in this chapter 

contrasts with work published by Clements et al. (2010), who used a geostatistical model 

to predict the risk of trachoma in South Sudan with only two covariates: rainfall and 

landcover [158]. Validation statistics of this model found a very high predictive ability to 

discriminate prevalence of active trachoma at the location level relative to thresholds of 

0%, 10%, 40% and 70% (ROC 0.96). This model also under predicted prevalence, but to a 

much lesser degree (mean prediction error: -0.012). There are a number of potential 

reasons why these models may perform so differently. First, South Sudan has a strong 

environmental/climatic gradient across the country, much like Nigeria. In contrast, the 

exploratory PCA using Kenyan environmental data highlighted the more variable climatic 

combinations that exist across the country, which may lead to seasonal variation in water 

availability and different behaviours around water usage. Second, South Sudan is much 

less developed than Kenya and is likely to have less heterogeneity in terms of access to 

education, water and sanitation. Thus, environmental determinants of water availability 

may be the driving factor behind hygienic behaviours. Third, with the exception of 

Western Equatoria, the data used to model trachoma in South Sudan were clustered 

within districts and may not have provided a full distribution of the true variation within 

districts. However, it is also likely that patterns of risk of active trachoma differ between 

countries and its geographic distribution is less likely to follow broad environmental 

trends in countries with more variable socioeconomic conditions. It would be interesting 

to compare the performance of a cluster-level model using the TT data from the previous 

chapter, as one might expect the distribution of trichiasis (and historical TF) in Nigeria to 

reflect environmental drivers of water availability rather than more recent interventions.  
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The most striking discrepancy between districts currently identified as endemic by the 

KNTCP (Figure 5.1) and areas that would be predicted to be at high risk based on 

identified risk factors, are areas in North Eastern Province. This province is highly remote, 

has limited access to education or health facilities, is arid and has little vegetation and is 

populated by nomadic pastoralists; yet reportedly has no trachoma. Anecdotally, this is 

attributed to face washing practices believed to be practiced by the pastoralist Muslim 

Somali inhabitants, however no empirical surveys exist to support this. Regardless of 

whether this is uniformly true throughout the province or is correctly attributed to a 

specific religious/ethnic characteristic, hygienic behavioural factors are likely to be the 

most important determinants of active disease and moderate observed associations in any 

risk factor analysis. As discussed in the previous chapter, allocation of water for hygienic 

purposes depends on having a reliable water source, the ability to transport large enough 

quantities to exceed basic needs, the knowledge of how much water is required and the 

perceived importance of washing [54,125,132,275].  

The assumption that the relationships between risk factors and active trachoma are 

constant in space (stationary) is a strong assumption that probably does not hold true in 

Kenya. A recent study suggested that geographic associations with poverty in Kenya 

varied by province and similar findings might be expected with diseases that have 

complex relationships with behavioural, socioeconomic and environmental factors [283]. 

One extension to this analysis might be the use of geographically weighted regression to 

explore non-stationarity in observed relationships. This technique calculates locally 

weighted regression models using a set of more proximal points, in order to estimate a 

coefficient for each survey site [303], which may be useful for hypothesis formation about 

where behavioural factors strongly moderate observed associations. 

The results from this chapter should be considered in the context of a number of 

limitations of the data used in the models and assumptions behind the modelling process. 

First, as discussed in the methods section, the distribution of the data is heavily biased 
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towards the most trachoma endemic areas in Kenya. This represents the most significant 

limitation of the model, as there is relatively little data in districts where the overall 

prevalence is less than the 10% threshold for mass treatment. This has the effect of 

restricting the range of covariate data in which predictions could be based and potentially 

invalidating any predictions made outside of the surveyed districts, which would be of 

most programmatic use. Second, cluster level surveys are conducted so that they are 

representative of a sublocation (small area) rather than an exact point location. Although 

sublocations do tend to be small (between 5 and 40 km across), this assumption is not 

ideal, as the appropriate measure at this level would be “proportion of the subdistrict 

classified as urban” or “mean distance to a school”. Third, not all data were able to be 

geolocated, particularly those areas in northern Eastern province surveyed most recently. 

As these surveys found disease to be absent in many sublocations, this is likely to have 

contributed to the overprediction observed in these areas.  Finally, there will invariably be 

measurement errors both in covariate data available and diagnosis of TF. These 

misclassifications could influence observed associations and introduce error into 

subsequent predictions. Clinically active follicular trachoma is known to have low 

specificity as a marker of C trachomatis infection, particularly in areas with low levels of 

endemic trachoma and clinical signs may be due to non-chlamydial bacterial pathogens 

[15]. This may contribute to observed “hotspots” in districts which have a very low 

prevalence of disease overall.  

Identified risk factors and small scale heterogeneity in Kenya have a number of 

implications for the design of surveys. First, the prevalence of TF was negatively 

correlated with EVI, which in turn is correlated with population density and potential 

socioeconomic factors. As a consequence, use of PPS to select clusters within districts is 

likely to select more clusters from low-risk areas. Where the aim is a district-level 

population representative prevalence estimate to initiate SAFE implementation, perhaps 

this is not a concern. However, the lower geographic coverage in areas that are more 

remote and rural, may provide unreliable estimates for subdistricts at higher risk and limit 
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inferences around elimination targets. A previous study by Schemann et al. (2002) 

supports this hypothesis, as it found that smaller villages (which using PPS would be less 

likely to be surveyed) were more likely to have a higher prevalence of trachoma in Mali 

[116]. Second, despite the presence of spatial autocorrelation in active trachoma 

prevalence estimates over approximately 300 km, the high levels of non-spatial 

heterogeneity reinforce the need for high resolution and robust survey strategies. Finally, 

the clear negative association between the prevalence of trachoma at the cluster-level and 

access to schools suggests that use of a school-based survey platform may introduce bias 

in certain areas.  

In summary, this chapter illustrates how existing data might be used to identify risk 

factors underlying the distribution of active trachoma and investigate spatial 

heterogeneity between and within districts. Although the high levels of heterogeneity in 

risk preclude use of this model to predict the risk of trachoma, the findings highlight a 

number of implications for survey design. As the need for reliable epidemiological data 

increases with the rapid scale up of trachoma mapping activities in many countries to 

meet elimination targets, alternative survey methodologies have been proposed to fill 

these gaps. The next chapter will compare two trachoma survey methodologies using a 

computerised simulation approach.  
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Chapter 6: Comparing the performance of cluster random sampling 

and Integrated Threshold Mapping for targeting trachoma control, 

using computer simulation 

 

6.1 Overview 

Chapter 5 highlighted the heterogeneity in risk of active trachoma and variable spatial 

structure observed throughout areas classified as endemic in Kenya. These results 

emphasise the importance of reliable data on the prevalence of active trachoma to guide 

programmatic action. Cluster randomized surveys (CRS) are currently recommended for 

baseline and post-intervention surveys and are used to provide district-level prevalence 

estimates of a specified precision. However, this methodology is relatively costly and time-

consuming, particularly when implemented at the required scale to achieve global 

coverage of survey data. While trachoma control programmes currently use a community-

based strategies to implement CRS, other diseases often use school-based survey 

platforms, including soil-transmitted heminths (STH) and schistosomiasis [304,305] and 

malaria [306,307]. The risk of trachoma is widely believed to vary by attendance (and 

enrolment) in trachoma endemic contexts [97,208], which is supported by results from 

the previous chapter. Recently, however, Integrated Threshold Mapping (ITM) has been 

proposed as an integrated and cost-effective means of rapidly surveying trachoma in 

order to classify districts according to treatment thresholds.  

In this chapter, a computerised sampling approach is used to evaluate the equivalence of 

ITM and CRS, and explore the impact of varying key parameters on the performance of 

these sampling methodologies. This chapter has been published in PLOS NTDs: Smith JL, 

Sturrock HJ, Olives C, Solomon AW, Brooker SJ (2013) Comparing the performance of cluster 

random sampling and integrated threshold mapping for targeting trachoma control, using 

computer simulation. PLoS Negl Trop Dis 7: e2389. I conceived the study design, was 
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responsible for the analysis and drafted the manuscript with high level input from the 

other authors.  

 

6.2  Introduction 

Since the establishment in 1998 of the Global Elimination of Trachoma by 2020 

(GET2020) Alliance, an increasing number of endemic countries have implemented 

national programmes in an effort to meet elimination targets. These targets are less than 

one case of trachomatous trichiasis (TT) per 1000 total population unknown to the health 

system, and <5% trachomatous inflammation–follicular (TF) in children aged 1-9 years, at 

the sub-district level [3]. In response to these targets and a need to finalise global mapping 

in time to allow programmatic impact, there has been a renewed interest in developing 

cost-effective mapping strategies and integrating survey and control activities with other 

neglected tropical diseases (NTDs) [153,308-310]. Population-based prevalence surveys 

(PBPS) remain the accepted “gold standard” for estimating the prevalence of trachoma 

within target populations and usually use cluster random sampling (CRS) to select non-

overlapping subpopulations (clusters)[85]. This methodology is relatively expensive, 

however, and there is interest in developing cheaper and more rapid methods as well as 

integrating with other disease surveys [311]. Integrated Threshold Mapping (ITM) is a 

sampling methodology currently being put forward as a cost-effective means of rapidly 

surveying trachoma in remaining unmapped districts and to allow treatment decisions to 

be made and timely scale up of interventions to be achieved [95].  

Both CRS and ITM diagnose trachoma based on the presence of key clinical signs using the 

1987 WHO simplified grading system: TF in children aged 1-9 and TT in adults aged over 

14 [26]. These measures are easily collected in the field and routinely used to inform 

intervention strategies. For example, in districts where the prevalence of TF is greater 
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than 10%, annual mass drug administration (MDA) of azithromycin should be 

implemented (Table 6.1). 

Table 6. 1 Azithromycin treatment strategies and classification at designated TF prevalence 
thresholds [312] 
TF Prevalence (district level) Classification Treatment strategy 
<5% Active trachoma not a public 

health problem 
No MDA 

5-9.9% Hypo-endemic Determine need for MDA at 
sub-district level 

10-29.9% Meso-endemic MDA at district level (≥3 
yearsa) 

>30% Hyper-endemic MDA at district level (≥5 
yearsa) 

a before reassessment to determine whether to stop or continue 
 

 However, ITM differs from the accepted “gold standard” survey methodology in a number 

of important ways (briefly outlined in Table 6.2), including the use of a school-based 

sampling platform for children aged 1-9 years and a different age distribution of 

participants. Differences in selection of participants can have a varying impact on resulting 

prevalence estimates and treatment decisions, depending on how disease is distributed in 

the population.  Age patterns of active trachoma indicate a higher burden in children 

under 10 years, with the highest prevalences found in preschool-aged children in hyper-

endemic areas [220,313]. A recent meta-analysis has reported the risk of TF to be lower in 

children attending school in four African countries [181], supporting widely-held beliefs 

that the risk of trachoma is likely to vary by attendance (and enrolment) in trachoma 

endemic contexts. While CRS takes a community-based sample, that theoretically is 

representative of the true age distribution and prevalence of disease in this population, 

ITM may over- or under-sample certain age groups and introduce a bias if the risk differs 

between enrolled and non-enrolled children. In addition, clustering of active trachoma by 

household has been observed in a number of studies [106,108,179], and the precision of 

estimates from both sampling methodologies are expected to be influenced by this factor. 

A careful evaluation of how participant selection and variation in epidemiological 

parameters impact prevalence estimates and treatment decisions using the two 

methodologies is warranted. 
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Table 6.2 Methodological differences between cluster random sampling (CRS) and Integrated 
Threshold Mapping (ITM) 

 

 

Although ITM was internally validated against CRS during the pilot phase of the 

methodology’s development in Mali and Senegal [95], and used in a nationwide mapping 

of Togo [96], these evaluations were limited by several issues. In Mali and Senegal, only a 

single district was surveyed providing limited evidence in trachoma meso- and hyper-

endemic settings. Furthermore, the CRS sample in these settings was partially comprised 

of existing ITM clusters, which could potentially have biased the CRS estimates and 

resulted in an overly-optimistic assessment of ITM.  Finally, although this methodology 

was used to map trachoma in all districts in Togo, it is a trachoma hypo-endemic country 

and so results could not be generalised to other trachoma endemic contexts.  

Computerised sampling simulations have provided a convenient platform recently to 

evaluate alternative survey designs for tropical diseases including soil-transmitted 

helminthes, trachoma and schistosomiasis [99-101,228]. This approach entails generating 

realistic “gold standard” data for a population that maintains observed disease clustering, 

using epidemiological parameters derived from existing datasets. A survey methodology 

can then be evaluated using these data by selecting participants according to the specified 

sampling protocol and deriving a prevalence estimate.  There are a number of advantages 

to using computerized sampling simulations to compare survey designs, including the 

ability to i) simulate fully enumerated data (allowing estimation of “true” prevalence of 

 CRS ITM 

Platform Community-based 
School-based with younger children 
brought from the community 

Cluster selection 
Probability proportional to 
size or random selection 

Random selection: minimum 2 per 
subdistrict 

Participant selection Household 
Children aged 6-9 at school & 1-5 year old 
children from communities 

Sample size and age 
groups 100 aged 1-9 years 25 aged 1-5 years and 25 aged 6-9 years 
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disease),  ii) incorporate sampling error by repeating simulations a large number of times, 

iii) evaluate performance across a range of endemicity settings and iv) explore how 

variation in factors underlying clustering of disease in communities will influence the 

performance of sampling methodologies. A similar comparison performed empirically 

might be prohibitively expensive to carry out, as it would require at minimum a full census 

survey of a large number of districts across different endemicity settings and 

implementation of each sampling protocol in the field.  

This analysis used computerised sampling simulations to compare the precision and 

accuracy of district level prevalence estimates based on ITM versus CRS. Furthermore, we 

compared the performance of both survey methodologies, in terms of their ability to 

correctly classify districts according to established TF prevalence thresholds and the 

factors that affect the degree of equivalence. Equivalence between the two survey 

methods, under different scenarios, was formally evaluated by testing the null hypothesis 

that ITM yields the same programmatic results compared to CRS. 

 

6.3 Methods 

6.3.1 Overview 

Simulating sampling designs require gold standard data from which to draw samples and 

compare sample estimates. There are no perfect datasets available to conduct this 

analysis, which would necessitate standarised, full census datasets of demographic and 

epidemiological information for multiple districts. An alternative is to simulate these data, 

using parameter estimates from empirical data to generate realistic pseudo gold standard 

data on active trachoma [314,315]. In this study, full census data from a single community 

are used to parameterize disease clustering and, incorporating information on between-

district variation, to ‘expand’ the available dataset and generate data for a large number of 

simulated communities within many districts. 
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6.3.2 Empirical datasets 

Community level dataset 

One dataset used to parameterize this analysis comes from Kahe Village, Rombo District, 

northern Tanzania, which is a single community that consists of 90 local administrative 

units called balozis. A fully enumerated census and survey of trachoma was conducted in 

April to June 2000 by means of a house-to-house survey, using the WHO simplified grading 

system, prior to the initiation of any interventions against trachoma. A single examiner 

collected these data and clinical grading was validated through a live-patient inter-grader 

agreement exercise using an international expert reference grader with an agreement of 

100% for TF. The dataset in total consists of 5748 individuals in 1103 households, with 

between 41-126 individuals and 8-23 households per balozi. The dataset included 

information on the presence or absence of TF in 1831 children aged 1-9 years, where the 

prevalence was 33.4%. Data on school enrolment were also available for a subset (23%) of 

children aged 6-9 years.  

The demographic (age and gender) and household structure present in Kahe was used for 

all simulated communities in the expanded dataset. This dataset was also used to provide 

initial values used to parameterize the models, including the relative risk of TF between 

children aged 1-5 years and 6-9 years and the intra-cluster correlation (ICC) measuring 

the degree of disease clustering within households. The subset of data with information on 

enrolment provided an initial value for the relative risk of TF in children aged 6-9 who 

were enrolled in school to those who did not. In addition, this dataset was used to assess 

whether there was an additional household level risk associated with having a 

schoolgoing/non-schoolgoing sibling and inform the simulation model (results presented 

in Appendix 6). 

 

197 
 



                                                           Chapter 6: Comparison of CRS and ITM for trachoma control 
 
 

District- level dataset 

Data on the prevalence of active trachoma were available for 305 clusters (non-

overlapping sampling populations) from 29 districts in Kenya, surveyed as part of the 

National Trachoma Control Programme between 2004-2012 and included within the 

Global Atlas of Trachoma [278,316]. These data represent available disaggregated data in 

a broadly similar context, and importantly include nearly all endemic districts. These data 

were used to model variation between and within districts (Figure 6.1) in order to inform 

simulation of realistic district and cluster-level prevalence values.  

 

 

Figure 6.1 Histogram of the district variance of TF in Kenya (A) and density functions used to 
simulate data (B).  Variance in the prevalence of active trachoma was quantified within 29 districts 
in Kenya. The mean within-district variance was then used to inform beta density functions for 
simulating cluster-level prevalence values for varying district level prevalence values. 

 

 

6.3.3 Dataset expansion 

The process of expanding the community dataset to simulate realistic data for 100 

communities within each of 100 districts is fully described in Appendix 6. In brief, district 
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level prevalence estimates were generated covering all endemicity classes and used to 

simulate community level estimates of TF in children aged 1-9 years. The burden of TF 

within each simulated community was distributed among the population according to 

parameters initially defined by the above datasets (Table 6.3) in order to maintain disease 

clustering within households and subpopulations. Enrolment is defined as being “officially 

registered in a given educational programme, or stage or module thereof, regardless of 

age” [317], while attendance refers to an individual’s presence at school at a given time. In 

these simulations we have assumed that all enrolled children attend on the day of the 

survey, however recognize that enrolment statistics are typically much higher than 

attendance. Enrolment was varied to assess the impact it has on sampling performance, 

and children identified as “school-going” were allowed to vary during the simulation 

process.   

To avoid basing simulations on data parameterised by single village-level and district level 

datasets, additional pseudo-gold standard datasets were simulated varying each of the 

epidemiological parameters identified in Table 6.3 while holding other factors constant. 

This allowed an exploration of the impact of those parameters on the performance of the 

different sampling methodologies and the robustness of the different sampling approaches 

over other epidemiological settings.  This included varying the level of household 

clustering quantified by the ICC, the relative risk of TF observed between enrolled and 

non-enrolled children, and the relative risk of TF between age group using parameters 

shown in Table 6.3. 
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Table 6.3 Description of key epidemiological parameters used in the simulation model and 
sensitivity analysisa 

 
 

6.3.4 Sampling simulations 

Survey methodologies 

CRS for trachoma uses a standard two-stage or multi-stage design, often comprising a 

random selection of approximately 20 villages (clusters) at the first stage and selection of 

households at the second [56].  Selection of households may be carried out using simple 

random sampling, systematic sampling, the random walk or compact segment sampling. 

The sample size for CRS is calculated by defining parameters which include: expected 

prevalence estimates, acceptable error margin or precision, required confidence level, and 

design effect. In contrast, ITM employs convenience sampling of school children, pre-

school children and women of child-bearing age to estimate the prevalence of trachoma 

[94]. At least two villages are selected per sub-district, with a minimum of 20 villages 

selected per district. In each village, a single school is randomly selected as the testing site. 

Children enrolled at that school are asked to come to the location, and adults from the 

community are also asked to assemble here and bring children aged 1-5 years. Systematic 

Key Parameter Rationale 
Estimation method 
 & Initial Value 

Sensitivity 
Analysis 

1. Age-specific 
prevalence of TF: TF in 
1-5 years versus 6-9 
years 

In order to expand a cluster level 
prevalence estimate in children 
aged 1-9 years to the two age 
groups, need to know RR between 
groups. This will likely vary with 
endemicity. 

Estimated from gold 
standard datasets  
Initial value: 2.0 

Varied parameter: 
1.3, 1.5, 1.8, 1.0, 2.0 
 

2. Risk of TF in enrolled 
children vs non-enrolled 
children 

Likely that enrolled children will 
have lower TF prevalence 

Estimated from gold 
standard datasets  
Initial value: 0.5 

Varied parameter: 
0.25, 0.33, 0.5, 0.75, 
1.0 

3. School attendance 

This will affect the sample size in 
schools of 6-15 year olds and affect 
the impact of parameter 2. 

Ministry of 
Education data 
Initial value: 0.7 

Varied parameter: 
0.4 and 0.7 

4. Clustering within 
households: risk of TF in 
children aged 1-5 years 
with a TF 
positive/negative sibling 

Clustering at the household level 
will mean that children with TF 
positive siblings are more likely to 
have TF 

Estimated from gold 
standard datasets  
Initial value: 0.2 

Varied parameter: 
0.1, 0.2, 0.3, 0.4, 0.5 

TF:  trachomatous inflammation–follicular; RR: relative risk 
aRandom selection of 20 clusters were used in simulations for both methodologies 
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sampling is then used to select 25 children aged 1-5, 25 children aged 6-9 and 50 adult 

women (or 100 adults) aged ≥15 years. 

 

Sampling process 

A computerized simulation approach, using Monte Carlo methods, was used to randomly 

select 20 clusters from each district and sample individuals within each cluster according 

to the protocol for ITM and CRS (Table 6.2). For this analysis, a sample size of 100 

individuals was assumed for CRS and participants selected from a random selection of 

households until the sample size met. It was assumed that children aged 1-5 years that 

would be brought to schools by their mother (or other adult household member) and 

sampled by ITM would be those with school-going siblings aged 6-9 years. We explored 

the impact of this assumption by also sampling a random selection of children in this age 

group. Sampling simulations were repeated 1000 times on each dataset using both 

methodologies. 

 

6.3.5 Analysis 

District-level prevalence estimates generated by the two sampling methodologies were 

used to classify districts according to endemicity class for each simulation, using 

categories corresponding to established treatment thresholds: hypo-endemic (<10%), 

meso-endemic (10-30%) and hyper-endemic (>30%)  (Table 6.1).  The performance of 

each method was then quantified in terms of the proportion of times each district was 

correctly classified over 1000 simulations according to TF treatment thresholds.  
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Operating Characteristic (OC) curve 

Due to the complicated sampling distributions of these methodologies, it is not possible to 

calculate the full theoretical OC curves. However, we can visualize the empirical OC curves 

resulting from these simulation studies, which are generated from the proportion of times 

a district is correctly classified in each endemicity class using the two methodologies, over 

a “range” of district prevalence values.  For each survey method, this allowed us to 

establish the range of district prevalence values in which the probability of correctly 

classifying a district is less than or equal to 0.80. 

 

Equivalency 

Overall agreement in district endemicity classifications by the two methodologies was 

assessed using a weighted kappa-statistic. This statistic provides a measure of agreement 

between the two methods adjusted for chance, where a value of zero indicates agreement 

no better than chance. Weighting is useful when there are more than two ordered 

categories, so that the magnitude of disagreement between categories is allowed to vary 

(i.e., difference between <10% and 10-30% is not as great as that between <10% and 

>30%).  Increasing kappa values correspond to better agreement between the two 

methods, where agreement is often interpreted as slight (<0.2), fair (0.2-0.4), moderate 

(0.4-0.6), substantial  (0.6-0.8) and almost perfect (≥0.8) [318]. 

Equivalence between the two survey methods was formally evaluated by testing the null 

hypothesis that ITM yields the same programmatic results compared to CRS. The 

distribution of the difference in the proportion of correctly classified districts by ITM and 

CRS was generated and the mean and 95% CIs plotted in relation to delta, Δ, a threshold 

corresponding to a predefined level of difference deemed programmatically important. In 

these analyses, delta was initially assumed to be 20%, based on the rationale that this is 

equal to 80% of the simulations being classified the same by ITM and CRS and roughly 
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corresponding to a standard level of acceptable error.  Where the CI fell within this range, 

the survey methods were classified as equivalent for that district, while those that fell 

outside were classified as not equivalent and those that overlapped with the thresholds as 

inconclusive. Districts were stratified by the relative risk of TF and endemicity class to 

evaluate whether the equivalence of the two methodologies varied with these parameters.  
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6.4 Results 

6.4.1 Estimated prevalence 

Overall, the results indicate that ITM under-estimates the true prevalence of TF compared 

to CRS and that the magnitude of difference between estimates from these methodologies 

increases with endemicity. This is illustrated in Figures 6.2 and 6.3, which compare the 

two sampling strategies where all parameters are set to the initial values described in 

Table 6.3. Figure 6.2 presents filled density plots in example hypo-, meso-, and hyper-

endemic districts, where the red line represents the true prevalence value for that district, 

the curves represent the distribution of prevalence estimates from the 1000 simulations 

using the CRS method (grey) and ITM (red). The results suggest that the systematic error 

resulting from school-based sampling is proportional to the prevalence, so that the 

absolute bias increases linearly as the prevalence increases.  

 

 

Figure 6.2 Density plots of prevalence estimates generated by CRS and ITM sampling 
methodologies. Plots are generated using simulated data and present results from a single district 
within each endemicity class.  The red line represents the true district-level prevalence, the curves 
are histograms of values from 1000 simulations using the CRS method (grey) and ITM method 
(red). 
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6.4.2 District-level classification 

Figure 6.3 plots the proportion of times each of 100 districts were correctly classified (of 

1000 simulations) against the district-level true prevalence for each sampling 

methodology, where the relative risk of TF in enrolled and non-enrolled children is equal 

to 0.5 and enrolment rate is 0.7. The green lines correspond to the treatment thresholds 

while the areas shaded red and grey around these thresholds have a “higher” risk of 

misclassification by the corresponding sampling methodology. Within these prevalence 

ranges, districts will be correctly classified less than 80% of the time. Performance of both 

CRS and ITM was lower closer to treatment thresholds. Compared to CRS, where 

misclassification error was fairly symmetrical around treatment thresholds, ITM tended to 

underestimate the prevalence of TF, resulting in a corresponding shift and widening of the 

region where potential error is known to be high. 

 

Figure 6.3 Performance of ITM and CRS compared to true prevalence. The proportion of times each 
of 100 districts were correctly classified by ITM and CRS were compared to true prevalence, where 
the relative risk of TF in enrolled and non-enrolled children is equal to 0.5 and enrolment rate is 
0.7. The green lines correspond to the treatment thresholds and the boxes in red and grey around 
these thresholds to areas of “higher” misclassification, where the districts will be correctly 
classified less than 80% of the time. 
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Using a relative risk of TF in enrolled versus non-enrolled children equal to 0.5, there was 

“almost perfect” agreement (Kappa=0.86) in district-level endemicity classification 

between ITM and CRS overall in the 1000 simulated samples. However, agreement 

between ITM and CRS decreased with increasing endemicity category, with substantial 

agreement found in hypo-endemic districts (Kappa=0.71) and only moderate agreement 

in meso-endemic (Kappa=0.47) and hyper-endemic districts (Kappa=0.41).  

The equivalence analysis in Figure 6.4 illustrates changes in the distribution of the 

difference in the proportion of correctly classified districts by ITM and CRS by endemicity 

class. The results suggest that the two sampling methodologies are equivalent in hypo-

endemic areas but the wider confidence intervals in meso- or hyper-endemic areas 

indicate that they less likely to be equivalent in these settings due to a greater degree of 

bias. 

 

Figure 6.4 Equivalence of ITM compared to CRS by endemicity class. The figure presents the 
difference in the proportion of times ITM correctly classified districts compared to CRS (over 1000 
simulations) by endemicity class in relation to an assumed value (20%) representing an important 
programmatic difference. The blue square is the mean difference in proportions and the lines 
correspond to the difference in the 95% CI. The two methods are deemed equivalent when ITM 
correctly classifies districts differently to CRS no more than 20% of the time. 
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6.4.3 Sensitivity analysis 

Sensitivity analysis of the impact of varying key parameters as shown in Table 6.3 

suggested that the relative risk of TF between enrolled and non-enrolled children and the 

enrolment rate will define the performance of ITM. This is illustrated in Figure 6.5 which 

plots the probability that ITM and CRS will give equivalent results in a district (i.e. the 

probabilities of correctly classifying a district using ITM and CRS differ no more than 0.20) 

given endemicity class and varying these parameters. Where enrollment is set as 0.7 and 

the relative risk is 0.75 or above, there is a high (≥ 80%) probability that ITM and CRS will 

be equivalent across all endemicity classes.  

 

 

Figure 6.5 Equivalence in district classification by ITM and CRS. Equivalence is determined by 
calculating the difference in the probabilities that CRS and ITM will correctly classify a given district 
over 1000 simulations, and estimating whether this difference exceeds a delta equal to 0.2, 
signifying that two methods classify districts differently no more than 20% of the time. The figure 
presents equivalence by endemicity class and relative risk of TF in enrolled and non-enrolled 
children, where enrolment is equal to 0.4 (blue) or 0.7 (green). 
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As enrolment decreases and the difference in risk between enrolled and non-enrolled 

children increases, ITM increasingly misclassifies districts compared to CRS. This effect is 

likely to be greater in meso- and hyper- endemic districts, due to a greater magnitude of 

bias and resulting in misclassification over a wider range of prevalence values around the 

10% and 30% thresholds. The impact on misclassification is also illustrated by Figure 6.6, 

which plots the range of prevalence values where the risk of misclassification using the 

two survey methodologies is greater or equal to 0.20. Classification error associated with 

CRS is symmetrically distributed approximately ±2 percent around each threshold and 

does not vary with these parameters. In contrast, the range of misclassification associated 

with ITM not only increases with a greater difference between enrolled and non-enrolled 

children, but also shifts to include more prevalence values above the threshold. Within this 

range of misclassification, the performance of ITM also decreases as a response to the 

degree of underestimation, so that in certain contexts ITM is unable to correctly classify 

any districts at or slightly above 30% prevalence. Variation in the relative risk of TF 

between age groups and the degree of household clustering defined by the ICC did not 

have an impact on performance.   Evaluation of our assumption that children aged 1-5 

years sampled by ITM were siblings of enrolled children also had no observable impact on 

the performance of ITM.  
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Figure 6.6 Range of true prevalence values with high risk of misclassification by CRS and ITM. 
Range of values in which the risk of misclassifying a district using CRS and ITM sampling 
methodologies is greater or equal to 0.20 around the 10% and 30% thresholds, with the enrolment 
rate equal to 0.7. 
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6.5 Discussion 

Our simulations show that over a range of epidemiological settings, ITM will under-

estimate the true prevalence of TF. The error introduced by ITM also means that districts 

are more prone to misclassification according to treatment thresholds than by CRS. The 

extent of underestimation and misclassification of districts introduced by ITM is 

dependent on three main factors: (i) the district prevalence of TF; (ii) the relative risk of 

TF between enrolled and non-enrolled children within clusters; and (iii) the enrollment 

rate in schools. In general, the overall agreement between the two methods is high, but as 

the difference in risk of TF between enrolled and non-enrolled children becomes more 

pronounced, there is a shift in prevalence estimates corresponding to the magnitude of the 

bias. In these situations, the null hypothesis of programmatic equivalence between the two 

methodologies is not supported.  

Use of a school-based platform is a key methodological difference between CRS and ITM 

and, while the potential pitfalls of this approach are well recognised, the impact of this 

strategy on treatment decisions has not been systematically evaluated until now [85,319]. 

Our simulations highlighted the key influence of the relative risk of TF between enrolled 

and non-enrolled children and the enrollment rate on the performance of ITM. 

Furthermore, we were able to quantify the impact of these parameters on district 

classification over a range of endemicity settings.  In areas where the risk of TF is similar 

between enrolled and non-enrolled children, there is evidence that CRS and ITM will be 

equivalent and classify districts correctly within an acceptable range of difference. Where 

risk is lower in enrolled children, a negative bias is introduced that is proportional to the 

magnitude of the difference in risk and reflected in greater absolute discrepancies 

between the two sampling methodologies as prevalence of TF increases. A lower 

enrolment rate effectively constrains the “sample” of the total population of children aged 

6-9 attending schools and has the effect of increasing uncertainty around the prevalence 

estimate due to the greater effect of a positive child in the sample [320]. Compared to CRS, 
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where misclassification error is fairly symmetrical around treatment thresholds across all 

scenarios, ITM can introduce a bias-dependent right shift and widen the range of 

prevalence values where misclassification error is high. In contrast, varying the relative 

risk of TF between age groups and the average ICC did not have a noticeable impact on 

performance of ITM and CRS at the district level, either in magnitude or shift.   

As a consequence of this potential bias, ITM may be less likely than CRS to misclassify 

areas as greater than 10% or 30% when the true prevalence is below this threshold, but 

more likely to misclassify areas as lower when the true prevalence is higher. 

Misclassification is more comparable between the two methodologies at the 10% 

threshold, particularly when the relative risk between enrolled and non-enrolled children 

is closer to one. At this threshold, the misclassification by ITM would result in resources 

being allocated for further surveys at the subdistrict level instead of implementing MDA 

for the entire district. In practice, the difference in performance is most likely to impact 

interventions around the 30% threshold, where areas misclassified by ITM would be 

treated for three years before an impact survey instead of being treated for five years. 

Districts that fall within areas of high misclassification are of operational interest and the 

optimal choice of survey design is likely to be a function of the cost of the surveys, the 

costs of treatment associated with misclassification around both thresholds and the likely 

impact of treatment decisions on long term transmission dynamics. For example, while a 

particular survey design may be a cost-effective method to classify districts at a given 

round, a more accurate but more expensive survey design may allow quicker elimination 

of the disease leading to cost-savings in the future. Incorporating costs and the impact of 

treatment decisions on transmission was beyond the scope of this paper, but is the focus 

of future study. 

Our use of computerised simulation has a number of advantages over field evaluations of 

trachoma sampling approaches [95,96]. First, whereas inadequate evidence was available 

for meso- and hyperendemic settings, our approach allowed evaluation of ITM and CRS 
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over a range of epidemiological settings. Second, simulations allowed the two sampling 

methodologies to be carried out independently of one another and repeated 1000 times 

for each district, thus accounting for sampling error in our estimates of performance.  

Finally, this approach allows key parameters to be explicitly defined and varied in a 

sensitivity analysis in order to explore their impact on performance in different contexts. 

This aspect of the study is important, as these parameters are likely to vary widely in 

settings where ITM might be used to generate TF prevalence estimates. 

Although our study explored the performance of ITM and CRS in varying contexts, there 

are a number of potential limitations that may limit its generalisability. First, although key 

factors were varied in order to test sampling strategies in different epidemiological 

scenarios, exploring datasets similar to the data from Kahe in Tanzania and from Kenya 

would allow a more realistic range of parameters to be incorporated. In addition, 

parameterisation of the model assumed constant relationships which may be more 

complex in reality. Certain factors, like household clustering of trachoma, may vary 

markedly based on local transmission intensity, however no clear and consistent 

relationship was supported by available data. This may partly be due to random error 

introduced by the clinical sign TF, which is known to be an unreliable marker of C. 

trachomatis infection [7,34]. A better estimation of these parameters, such as the relative 

risk of TF between enrolled and non-enrolled children, based on their relationship with 

endemicity may require collection of new data in the field. Second, these simulations 

sampled participants from a single demographic and household structure based on a 

community from Tanzania. Although the children selected as “enrolled” varied in the 

simulated datasets, it is possible that disease clustering within households might have a 

greater effect in other community structures.  Furthermore, these simulations represent a 

general sampling scenario, and in the field there is more variation in the way that ITM and 

CRS are implemented. (For example, ITM randomly samples two clusters per subdistrict 

with a minimum of 20 per district, so the number of clusters sampled varies indirectly 

with district size [94]. In contrast, the number of clusters sampled by CRS is dependent on 
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population size and is often selected using probability proportional to size in order to 

estimate a reliable district-level prevalence [85].)  While use of a school-based survey 

platform offers a number of operational advantages, it is difficult to justify this approach in 

many contexts. In actual practice, one might expect trachoma “hotspots” to have poorer 

socioeconomic conditions and lower school enrollment, thus limiting the potential use of 

ITM to identify disease foci. More widespread collection of indicators of enrollment and 

attendance as part of trachoma surveys is encouraged in order to inform survey design. In 

addition, there is a lack of guidance on how ITM sampling methods would be 

operationalised in the event of non-response from family members bringing young 

children to the school. If the older children were oversampled, or a smaller sample of older 

children accepted, then ITM would underestimate the prevalence of TF to a greater 

degree.  Finally, both the threshold of “acceptable difference” to be used in the equivalence 

analysis and the thresholds themselves deserve more discussion. To some degree, 

treatment thresholds are imprecise as they are based on unreliable clinical indicators and 

the impact on transmission of misclassifying a district that has a prevalence of 9% versus 

12% is not well defined. As the elimination target for active trachoma is to reduce its 

prevalence to less than 5% in every sub-district, the transmission dynamics around these 

lower thresholds is of crucial interest. The degree of acceptable difference in performance 

between survey designs will depend on these transmission dynamics over the course of a 

control programme, as well as costs associated with misclassification.  

In summary, the results from this chapter strengthen the evidence base around trachoma 

sampling methodologies and demonstrate the advantages of using a simulated approach 

to evaluate different sampling scenarios. To a large extent, the results from these 

simulations reflect a known limitation of school-based sampling: that resulting prevalence 

estimates are unreliable when the enrollment is low and/or the risk of disease in schools 

differs from communities. However, quantification of the performance of ITM at the 

district level in different contexts provides important information for national control 

programmes. In areas where enrolment is known to be very high, and it can be reliably 
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inferred that the bias is minimized, then ITM may provide a rapid, cost-effective 

alternative to CRS [95,321]. In addition to strengthening the evidence base around 

trachoma sampling methodologies, the results from this analysis demonstrate the 

advantages of using a simulated approach to evaluate different sampling scenarios. Future 

work could incorporate costing of different survey approaches and extension to include 

mathematical modeling to simulate the impact of different combinations of control 

interventions on transmission [322]. 
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Chapter 7: Summary and discussion of findings 

 

This thesis has used existing geographical data to define the current distribution of 

trachoma and spatial epidemiology of disease at large scales, with the overall aim of 

informing current disease mapping strategies.  This broader aim was motivated by three 

key requirements in global efforts to eliminate blinding trachoma. First, in order to garner 

support amongst partners, target surveys and achieve maximum impact by 2020, there 

was a need to define the current distribution and burden of trachoma. Second, a better 

understanding of the spatial heterogeneity of trachoma and determinants underlying its 

distribution will add to our epidemiological understanding of the disease and may help 

strengthen the evidence around future survey methodologies. Finally, in order to scale up 

mapping in all endemic districts, the performance of survey designs proposed as an 

alternative to PBPS must undergo robust evaluation. The following chapters aimed to 

address these issues and to provide a basis for these methods in trachoma research. 

 

7.1 Summary of findings 

As a first step, Chapter 2 described the collection of available data used to generate the 

Global Atlas of Trachoma and presented summary statistics of this database along with 

maps of the global distribution. The results from this chapter highlighted the regional 

differences in data availability and endemicity patterns. In Africa alone, an estimated 

129.4 million individuals are in areas known to be trachoma-endemic and a further 155 

million in areas suspected to be endemic. In addition to highlighting the widespread 

endemicity and high burden in Africa, compared to more focal distribution in Asian and 

Latin American countries, the results emphasised the substantial uncertainty in estimates 

introduced by a lack of data in India and China.  This heterogeneous global distribution of 
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both data and disease presents challenges in filling in the gaps using appropriate survey 

methodologies, and will also have an important impact on projected estimates of the 

burden of trachoma which are typically based on limited data and heavily extrapolated 

within geographic regions.  

Chapter 3 built on the data resource presented in Chapter 2, and presented a framework 

for using collated data on the prevalence of trichiasis to model trachomatous vision loss 

where causal blindness data are lacking. DALYs are increasingly used to provide a 

comparable measure to other diseases, track changes in burden over time and justify 

requests for and allocate of resources against competing priorities. The results from this 

chapter emphasised the added burden associated with trichiasis; which added a further 

155,500 DALYs to the 2010 estimates. While there are a number of key advantages 

associated with the methodology used in this chapter, the sensitivity analysis highlighted a 

need to explore alternative extrapolation methods to address gaps in geographical 

coverage of existing data.   

This need was explicitly addressed in Chapter 4, which explored individual and cluster-

level risk factors underlying the distribution of trichiasis and/or corneal opacity in 

Nigeria. This analysis demonstrated associations between a number of well-established 

individual risk factors (age, gender, occupation) and TT/CO, as well as large scale 

environmental factors. Although these associations may indicate that socioeconomic and 

environmental factors could be used to extrapolate existing data, the variance partition 

coefficient suggested that a relatively low proportion of the total variation was at higher 

hierarchical levels (although this is likely to vary locally). After adjusting for these factors, 

there was evidence of a large, local cluster of risk in the north but no residual 

autocorrelation in the south; highlighting variation in spatial dependency across Nigeria.  

A similar risk analyses was carried out with cluster data on active trachoma in Chapter 5, 

representing survey data from all 17 districts currently classified as endemic in Kenya. 

Results showed that large scale deterministic trends were explained by risk factors at the 
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district and cluster level. Based on the higher risk observed in less populated areas and 

local clustering within districts, the use of PPS for trachoma surveys might be questioned 

in the context of elimination targets. While PPS does provide prevalence estimates 

representative of the district population, there is a risk of missing subdistricts with a 

higher prevalence. Although many survey designs create “trachoma districts” based on 

populations of 100,000-200,000, this is not always the case. Districts with a high 

population and resulting poor geographical coverage of rural areas may miss subdistricts 

of higher prevalence; possibly suggesting use of a stratified approach to ensure adequate 

geographical coverage at this level.  

In this chapter, a group of spatially-varying covariates explained large-scale spatial 

patterns in active trachoma in Kenya, leaving independent errors. However, if these model 

covariates were not included, there might still be larger scale autocorrelation that can bias 

regression parameter estimates and cause standard errors to be underestimates, 

potentially leading to incorrect inferences regarding exposure-disease associations [323]. 

In larger scale analyses of trachoma risk, the potential introduction of geographical trends 

introduced by autocorrelation from environmental factors is usually ignored as regression 

methods commonly used for these analyses cannot account for these spatial relationships. 

The results from this thesis suggest that larger scale autocorrelation should be evaluated 

and corrected for where necessary in standard risk factor analyses. 

Collectively, the results in Chapters 4 and 5 support the notion that the risk of trachoma 

exhibits marked spatial heterogeneity and observed patterns of spatial dependency (likely 

generated by underlying associations with risk factors at larger scales) may vary between 

endemic areas. These results emphasised the need for robust and well designed survey 

methodologies to identify areas of high risk. This is particularly important in the current 

context of rapid scale up in mapping activities. Therefore, Chapter 6 systematically 

evaluated the use of ITM compared to CRS using computerised simulations, allowing 

quantification of the impact of varying key parameters. Results suggested that ITM was 
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likely to underestimate the prevalence of trachoma in a range of epidemiological settings, 

reflecting the unreliability of school-based sampling when the attendance is low and/or 

the risk of disease in schools differs from communities. While ITM may provide a cost-

effective means of surveying target populations in settings where school attendance is 

high, generalisation of school attendance rates within large areas may be unreliable. 

Consistent with results from Chapter 3 that suggest that variation in access to education 

was a key determinant of large-scale trends, a school-based platform may be particularly 

problematic for trachoma given that non-attendance is likely to cluster in those 

communities that have fewer schools or are located further from schools.  

 

7.2 Future directions 

The notion of trachoma as a highly heterogeneous disease is supported by the findings 

from this thesis, which has highlighted variability in risk and underlying determinants at 

different scales. In addition to the requirement for reliable survey methods to guide local 

intervention strategies, the results have demonstrated how an understanding of the 

epidemiology and spatial structure of disease in different contexts can inform evaluations 

of alternative survey methodologies.  There are numerous ways in which these methods 

can be refined and potential directions that future analyses might take to further inform 

survey strategies over the course of a control programme. 

District level estimates of trichiasis provide a wider evidence base to estimate the global 

burden of disease; however, results presented in Chapter 3 continue to be limited by 

scarcity of data in time and space. Although the Global Trachoma Mapping Project will fill 

gaps in baseline data, the (variable) success of control programmes currently in place may 

introduce further uncertainty into relationships between TT and trachomatous blindness. 

Future research might i) better quantify how the relationship between TT and 

trachomatous blindness varies in different settings, ii) investigate the impact of control on 
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the age-prevalence distributions of trichiasis and trachomatous blindness, iii) explore 

different methods of extrapolation in space, and iv) investigate whether mathematical 

models might be used to better estimate the changing burden of trachomatous blindness, 

using data on TF and TT as well as country-specific mortality rates. Over these large scales, 

stochastic variation in disease prevalence is expected to be less and thus, district level 

socioeconomic or environmental data may be useful in capturing large-scale trends. 

While country and regional estimates of the burden of disease are the key objectives for 

large-scale priority setting, sub-national estimates of trachoma are directly relevant to 

control programmes. Thus, although the Global Atlas of Trachoma is a useful tool for 

partners, this thesis illustrates the extent to which aggregated data belie the small scale 

heterogeneity of disease and mask important variation within districts. From an 

operational research perspective, disaggregated data are far more valuable for 

investigation of spatial heterogeneity and patterns of risk. Spatial data at multiple scales 

are increasingly available through the use of smartphones for data collection. These data 

may help to define important risk factors underlying the distribution of disease and have a 

number of implications for routine risk factor analyses and design of surveys.  

While variation in risk of trachoma was observed to be spatially structured over a 200-300 

km range, current survey methodologies sample at a fine enough resolution (30 cluster 

per district) to capture variation within this range. However, the results from this thesis 

indicate that the epidemiology and spatial structure of trachoma vary in space; suggesting 

that both survey methods and potential targeting of surveillance should be context 

specific. Future operational research should focus on defining a framework for targeted 

surveillance that may incorporate some of the techniques introduced in this thesis. As 

endemicity decreases, trachoma may become more focal and further study should be 

targeted to local clusters of risk within districts in order to better understand i) important 

local risk factors (i.e. is there more travel between these areas that might pose a future 
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risk of reintroduction; what are the shared risk factors driving high risk in this locality) 

and ii) better target specific interventions (i.e. water availability and behavioural change).  

Evaluation of survey designs in different contexts will become increasingly important in 

the context of elimination, where there is more pressure to integrate surveillance of 

trachoma with other diseases and verify the absence of disease. Smartphone data 

collection has allowed the rapid proliferation of spatial data on disease presence and risk 

factors at different scales, which may offer an opportunity to better parameterise models 

and conduct “context specific” sampling simulations. Included parameters may include 

observed spatial heterogeneity between and within districts, clustering by household and 

various risk factors, and varying endemicity; all of which will influence the optimal spatial 

resolution of surveys and the sampling effort required. In addition, the likely survey and 

treatment costs can be incorporated into sampling simulations, to compare the cost-

effectiveness of different survey designs [100,101]. 

Furthermore, survey simulations could be integrated with mathematical intervention 

models for two key extensions. First, mathematical models could provide a post-

intervention gold standard upon which to conduct sampling simulations where these data 

are lacking. Second, models could be used to explore the implications of the performance 

of different survey designs on long term control outcomes [324]. For example an initial 

survey step could be incorporated into intervention models in order to allow an 

exploration of the implications of the performance of different survey designs on control 

decisions and ultimately on disease transmission.  

In conclusion, this thesis provides the first systematic and detailed investigation into the 

spatial epidemiology of trachoma at different scales. The findings have shown that while 

the distribution of trachoma is associated with a number of spatially-varying risk factors, 

it is highly heterogeneous over multiple scales. Thus, there remains a substantial need to 

ensure that survey designs generate reliable data to allow targeting of interventions at 

appropriate scales over the course of a control programme. The optimal design of 
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trachoma surveys and targeting of interventions will be increasingly important as 

programmes are scaled up to meet the challenge of elimination. 
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Appendix 3.1 

 

Appendix 3.1: National blindness surveys in Africa 

Reference Country 
Survey characteristics 
(Design; year; age) 

Number 
examined 

Crude Prevalence 
(per 1000) 

TB LV 
[1] Benin PBPS; 1990; 0-99 7047 0.18 1.04 

[2] Botswana RAAB; 2007; 50-99 2127 3.76 - 
[3] Chad PBPS; 1985; 0-99 5002 5.26 - 
[4] Eritrea RAAB; 2008; 50-99 3163 0.95 0.63 
[5] Ethiopia PBPS; 2005; 0-99  71066 1.84 2.84 

[6] Morocco PBPS; 1992; 0-99 25061 0.31 - 
[7] Nigeria RAAB; 2005; 40-99 13591 1.76 0.9 

[8] The Gambia PBPS; 1986; 0-99 8174 1.19 - 

[9] The Gambia 
PBPS; 1996; 5-99  
(NOT USED) 13046 0.23 0.69 
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Appendix 3.2 
 

 

Appendix 3.2: Data used to model prevalence of trachomatous 

blindness and low vision 

 
Figure A3.2.1 Plots of the raw and age-adjusted prevalence data for trachomatous trichiasis and 
trachomatous blindness (A) and trachomatous blindness and trachomatous low vision (B) 
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Appendix 3.2 

Table A3.2.1 Characteristics of 23 studies used to model the relationship between trachomatous trichiasis (TT) and trachomatous blindness (TB) 

Reference Country 
Setting 
(coverage; location; data) Notes 

Survey characteristics 
(year; age group; Nex) 

Prevalence (per 100 
TT/1000 TB) 

Crude 
Adjusted 

(≥ 15 years) 
TT TB TT TB TT TB 

[1] Australia National; TB and TT  2008a; ≥ 15 years; 1,189 2008a; ≥ 40 years; 1,189 1.4 1.73 1.4 1.73 

[2] Cameroon 
Sub-national; Far-North; 
TB and LV  2010; ≥ 15 years; 41,533 2010; ≥ 15 years; 41,533 1.02 0.4 1.02 0.4 

[3] Egypt 
Sub-national; Menofiya; TB and 
TT  2000; ≥ 50 years; 2,426 2000; ≥ 50 years; 2,426 6.5 5.3 2.5 2.05 

[4,5] Ethiopia Sub-national; Gurage; matched 
Matched 
to zone 1999; ≥ 15 years; 369 1999; ≥ 40 years; 2,693 5.5 15.4 5.5 6.9 

[6] Ethiopia National; TB and TT  2005; ≥ 15 years; 16,874 2005; 0-99 years; 25,650 3.1 1.84 3.1 3.13 

[7] Gambia National; TB and TT 
Post 
control 1996; ≥ 15 years; 6,647 1996; 0-99 years; 13,046 1.8 0.23 1.8 0.38 

[8,9] Malawi 
Sub-national; Southern 
districts; matched 

Matched 
to zone 2008; ≥ 15 years; 1,135 2009; ≥ 50 years; 3,430 0.6 1.45 0.6 0.52 

[10,11] Mali Sub-national; Segou; matched  1996; ≥ 15 years; 1,630 1990; 0-99 years; 5,871 1.8 2.06 1.8 3.69 

[12,13] Myanmar Sub-national; Monywa; matched 
Post 
control 2004; ≥ 15 years; 1,005 2001; ≥ 50 years; 2,975 1.39 2.89 1.39 1.1 

[13,14] Myanmar Sub-national; Shwebo; matched 
Post 
control 2004; ≥ 15 years; 1,666 2001; ≥ 50 years; 2,997 0.32 0.41 0.32 0.15 

[15] Myanmar 
Sub-national; Mandalay 
Division, Meiktila; TB and TT 

Post 
control 2006; ≥ 40 years; 2,076 2006; ≥ 40 years; 2,076 1.4 1.82 0.7 0.92 

[16,17] Nepal 
Sub-national; Lumbini & Bheri 
zones; matched 

Matched 
to zone 1996; ≥ 15 years; 4,000 1995; ≥ 45 years; 4,602 1.5 1.97 1.5 0.81 

[18,19] Oman National; TB and TT  1997; ≥ 15 years; 4,805 1997; 0-99 years; 1,524 3.5 2.9 3.5 4.53 

[20,21] Oman National; TB and TT 
Post 
control 2005; ≥ 40 years; 2,359 2005; ≥ 40 years; 2,339 4.14 7.27 1.79 3.14 

[22] 
South 
Sudan 

Sub-national; Mankien; TB and 
TT  2005; ≥ 5 years; 2,449 2005; ≥ 5 years; 2,449 9.6 14.47 13.27 20.00 

[23] Sudan Sub-national; Gezira; matched  2008; ≥ 15 years; 5,596 2010; ≥ 50 years; 2,103 0.95 1.5 0.95 0.56 
Table continued on next page 
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Table A3.2.1 continued 
[23] Sudan Sub-national; Kassala; matched  2009; ≥ 15 years; 5,225 2010; ≥ 50 years; 2,050 0.48 0.488 0.48 0.18 

[23,24] Sudan 
Sub-national; North Kordofan; 
matched  2010; ≥ 15 years; 4,924 2010; ≥ 50 years; 2,032 0.08 0 0.08 0 

[24,25] Sudan 
Sub-national; Northern; 
matched  2009; ≥ 15 years; 2,770 2010; ≥ 50 years; 1,998 1.16 0.501 1.16 0.19 

[24,25] Sudan Sub-national; Sinnar; matched  2009; ≥ 15 years; 3,987 2010; ≥ 50 years; 1,938 1.58 0.516 1.58 0.19 

[24,25] Sudan 
Sub-national; White Nile; 
matched  2010; ≥ 15 years; 5,135 2010; ≥ 50 years; 2,097 0.31 0.477 0.31 0.18 

[25,26] Tanzania 
Sub-national; Kilimanjaro; 
matched  2004; ≥ 15 years; 3,393 2007; ≥ 50 years; 3,436 0.8 0.582 0.8 0.21 

[27,28] Vietnam National; TB and TT 
Post 
control 2007; ≥ 50 years; 28,033 2007; ≥ 50 years; 28,033 3.8 0.527 1.45 0.20 

TB: trachomatous blindness; TT: trichiasis; Nex: number examined 
a Indigenous populations 
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Table A3.2.2 Characteristics of 30 studies used to model the relationship between trachomatous blindness and trachomatous low vision 

Reference Country 
Setting 
(coverage; location; data) Notes 

Survey characteristics 
(year; age group; Nex) 

Prevalence (per 1000) 
Crude Adjusted (0-99 years) 

TB LV TB LV 
[1] Australia National; TB and LV  2008a; ≥ 15 years; 1,189 1.73 1.55 0.83 0.79 
[29] China Sub-national; TB and LV  2008; ≥ 50 years; 2,842 0 0 0 0 
[2] Cameroon Sub-national; TB and LV  2010; ≥ 15 years; 41,533 0.4 0.9 0.25 0.54 
[3] Egypt Sub-national; Menofiya; TB and LV  2000; ≥ 50 years; 2,426 5.3 8.6 0.85 1.94 
[30] Eritrea National; TB and LV  2008; ≥ 50 years; 3,163 0.32 0.95 0.10 0.11 
[31] Ethiopia Sub-national; Jimma zone; TB and LV  1995; 0-99 years; 7,423 1.75 1.77 1.75 1.77 
[4] Ethiopia Sub-national; Gurage; TB and LV  1999; ≥ 40 years; 2,693 18.0 20.5 3.30 4.52 
[6] Ethiopia National; TB and LV  2005; 0-99; 30,022 1.84 2.84 1.84 2.84 
[32] Ghana Sub-national;  1991; 1,425 0 0 0 0 
[33] Ghana Sub-national;  2001; 2,298 0 0 0 0 
[34] Gambia National; TB and LV  1996; ≥ 15 years; 13,046 0.23 0.69 0.19 0.57 
[35] India Sub-national; TB and LV  1999; ≥ 50 years; 4,280 1.57 1.22 0.26 0.28 
[35] India Sub-national; TB and LV  2002; ≥ 50 years; 64,343 0.64 0.23 0.11 0.06 
[36] Iran Sub-national; TB and LV  2006; 0-99 years; 6,960 0 0 0 0 
[37] Iran Sub-national; TB and LV  2009; ≥ 50 years; 2,819 0.35 0.35 0.06 0.09 
[38] Kenya Sub-national; TB and LV  2002; ≥ 50 years; 3,503 1.16 2.55 0.13 0.43 
[39] Cambodia Sub-national; TB and LV  1996; 0-99 years; 6,558 0.33 0.46 0.30 0.46 
[40] Mexico Sub-national; TB and LV  2005; ≥ 50 years; 3,780 0 0 0 0 
[15,41] Myanmar Sub-national; TB and LV  2005; ≥ 40 years; 2,076 1.82 1.82 0.54 0.61 
[9] Malawi Sub-national; TB and LV  2010; ≥ 50 years; 3,430 1.45 0.86 0.17 0.15 
[42] Nigeria Sub-national; TB and LV  1988; 5-99 years; 6,381 2.77 5.2 2.25 2.23 
[43] Nigeria National; TB and LV  2007; ≥ 40 years; 13,591 1.76 0.9 0.33 0.20 
[44] Nepal Sub-national; TB and LV  2008; ≥ 50 years; 3,613 0.27 0 0.04 0 
[45] Pakistan National; TB and LV  2004; ≥ 30 years; 16,507 0.003 0.13 0.008 0.04 
[46] PSEb Sub-national; TB and LV  2008; ≥ 50 years; 3,579 0.58 0.32 0.06 0.05 
[38] Rwanda Sub-national; TB and LV  2006; ≥ 50 years; 2,206 0.45 0 0.05 0 
[47] Sudan Sub-national; TB and LV  2005; 5-99 years; 2,499 14.5 44.7 12.3 38.3 
[23,24] Sudan Sub-national; TB and LV  2010; ≥ 50 years; 2,050 0.49 0 0.07 0 
[25,26] Tanzania Sub-national; TB and LV  2007; ≥ 50 years; 3,436 0.58 0.86 0.07 0.16 
TB: trachomatous blindness; LV: trachomatous low vision; Nex: number examined; a Indigenous populations; b Palestinian Occupied Territories 
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Appendix 3.3: Age standardisation of prevalence data 

Overview 

Age standardisation of data was required at three points in the analysis: i) to standardise 

matched prevalence estimates of trachomatous trichiasis (TT) and trachomatous 

blindness to ages ≥15 years to use in the regression model, ii) to standardise 

district/region level TT prevalence data to ages ≥15 years and iii) to generate age and sex-

specific prevalence estimates of trachomatous blindness from model output, accounting 

for variability in the age-prevalence curve. The same methodology was used for each step, 

which accounted for the demographic structure of the country population at 

corresponding years, but the respective analyses were done in R (i. and ii.) and WinBUGS 

(iii.).  

 

Methods 

Age-prevalence curve 

Age stratified data on TT, trachomatous blindness and trachomatous low vision were 

extracted from published and unpublished data and used to model age-prevalence curves. 

Where possible, data were disaggregated into yearly intervals and otherwise age was 

entered as the median of each age category presented. An upper bound of 85 years was 

used to calculate the median for last prevalence category where the range not presented.  

A grouped binomial generalised linear model was used to model the relationship between 

age and prevalence of each disease state in R, using a logit link. This followed the form: 

𝑌~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛,𝜋) 

𝜋 = 𝑎𝑙𝑝ℎ𝑎 +  𝛽1 × 𝑎𝑔𝑒 × 𝛽2 × 𝑎𝑔𝑒2 
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Where 𝑌 is the number of individuals with trachomatous blindness (or trichiasis or low 

vision), from 𝑛 observations with the probability  𝜋 of having trachomatous blindness (or 

trichiasis or low vision). The binomial probability  𝜋 was modelled as a function of age and 

age2 in order to produce parameter estimates for the intercept (alpha), 𝛽1 and 𝛽2.    

Post-hoc, the prevalence of blindness in individuals under the age of 15 years and the 

prevalence of low vision in individuals under the age of 5 years was set to be zero, based 

on a lack of cases even in hyper endemic areas [6].  

 

Age standardisation 

The resulting curve was used to calculate the proportion of the cumulative prevalence in 

each age category (here abbreviated as AR). Along with information on the proportion of 

the population in each category, this can then be used to estimate any age-specific 

prevalence by the following methodology. The age-prevalence curve was used to 

standardise input to population ≥15 years in R to export for WinBUGS models and also 

incorporated into the WinBUGS code to generate final age and sex-specific estimates with 

associated model uncertainty. 

The prevalence in the total population is algebraically equal to the sum of the number of 

cases in each age group divided by the total population: 

𝑃𝑇𝑜𝑡𝑎𝑙 =
∑ 𝑃𝐴𝐴 𝑥 𝑃𝑜𝑝𝐴
𝑃𝑜𝑝𝑇𝑜𝑡𝑎𝑙

 

 

where 𝑃 is the prevalence and 𝑃𝑜𝑝 the population in each of A age groups. Each age-

specific prevalence can be re-defined by using the ratio between the proportion of the 

prevalence in each age category, as estimated from the age-prevalence curve. In this 

example we will use age-categories used by Ranson and Evans, although in practice the 
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equations are adapted according to the age ranges of available prevalence estimates (5+, 

50+, 45+, 40+, 35+, etc).  

It follows that the age specific prevalence in each group can be defined by its relationship 

to another age group, as shown below: 

 

𝑃45−59 ×
𝐴𝑅60𝑝𝑙𝑢𝑠
𝐴𝑅45−59

= 𝑃60𝑝𝑙𝑢𝑠 

𝑃60𝑝𝑙𝑢𝑠 ×
𝐴𝑅45−59
𝐴𝑅60𝑝𝑙𝑢𝑠

= 𝑃45−59 

 

Thus, the age-specific prevalence in all of A age groups (45-59, 15-44, 5-15, 0-4 years) can 

be defined in relation to 𝑃60𝑝𝑙𝑢𝑠: 

 

𝑃𝑇𝑜𝑡𝑎𝑙 =
𝑃60𝑝𝑙𝑢𝑠 × 𝑃𝑜𝑝60𝑝𝑙𝑢𝑠 + ∑ �(𝑃60𝑝𝑙𝑢𝑠 × 𝐴𝑅A

𝐴𝑅60𝑝𝑙𝑢𝑠
) × 𝑃𝑜𝑝A�A

𝑃𝑜𝑝𝑇𝑜𝑡𝑎𝑙
 

Which is equivalent to: 

𝑃𝑇𝑜𝑡𝑎𝑙 =
𝑃60𝑝𝑙𝑢𝑠 × �𝑃𝑜𝑝60𝑝𝑙𝑢𝑠 + ∑ �𝑃𝑜𝑝A × 𝐴𝑅A

𝐴𝑅60𝑝𝑙𝑢𝑠
�A �

𝑃𝑜𝑝𝑇𝑜𝑡𝑎𝑙
 

 

And the equation rearranged as needed to solve for 𝑃𝑇𝑜𝑡𝑎𝑙 or 𝑃60𝑝𝑙𝑢𝑠 : 

𝑃60𝑝𝑙𝑢𝑠 =
𝑃𝑇𝑜𝑡𝑎𝑙 × 𝑃𝑜𝑝𝑇𝑜𝑡𝑎𝑙

𝑃𝑜𝑝60𝑝𝑙𝑢𝑠 + ∑ �𝑃𝑜𝑝A × 𝐴𝑅A
𝐴𝑅60𝑝𝑙𝑢𝑠

�A

 

 

Finally, the age-specific population estimates = 𝑃𝑜𝑝𝑇𝑜𝑡𝑎𝑙 × 𝐷𝐴𝑔𝑒𝑔𝑟𝑜𝑢𝑝 where 

𝐷𝐴𝑔𝑒𝑔𝑟𝑜𝑢𝑝equals the proportion of the population in that age group. Thus, 𝑃𝑜𝑝𝑇𝑜𝑡𝑎𝑙 cancels 

out of the right side of the equation, leaving: 

 

𝑃60𝑝𝑙𝑢𝑠 =
𝑃𝑇𝑜𝑡𝑎𝑙

𝐷60𝑝𝑙𝑢𝑠 + ∑ �𝐷A × 𝐴𝑅A
𝐴𝑅60𝑝𝑙𝑢𝑠

�A
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The resulting prevalence estimate in this age group can then be used to calculate the age-

specific prevalence in other age groups, as shown previously. 

 

Sex-specific prevalence estimates 

Similarly, sex-specific prevalence estimates are calculated for each age group (using 

60plus as an example): 

𝑃60𝑝𝑙𝑢𝑠 ×  𝑃𝑜𝑝60𝑝𝑙𝑢𝑠 = 𝑃𝑚𝑎𝑙𝑒 × 𝑃𝑜𝑝60𝑝𝑙𝑢𝑠 × 𝐷𝑚𝑎𝑙𝑒 + 𝑃𝑓𝑒𝑚𝑎𝑙𝑒 × 𝑃𝑜𝑝60𝑝𝑙𝑢𝑠 × 𝐷𝑓𝑒𝑚𝑎𝑙𝑒 

 

As 𝑃𝑓𝑒𝑚𝑎𝑙𝑒 is equivalent to 𝑃𝑚𝑎𝑙𝑒 × 𝑆𝑒𝑥𝑅𝑎𝑡𝑖𝑜, we can substitute this into the equation and 

solve for 𝑃𝑚𝑎𝑙𝑒: 

𝑃𝑚𝑎𝑙𝑒 =
𝑃60𝑝𝑙𝑢𝑠 × 𝑃𝑜𝑝60𝑝𝑙𝑢𝑠

𝑃𝑜𝑝60𝑝𝑙𝑢𝑠 × 𝐷𝑚𝑎𝑙𝑒 + 𝑆𝑒𝑥𝑅𝑎𝑡𝑖𝑜 × 𝑃𝑜𝑝60𝑝𝑙𝑢𝑠 × 𝐷𝑓𝑒𝑚𝑎𝑙𝑒
 

 

Which reduces to: 

𝑃𝑚𝑎𝑙𝑒 =
𝑃60𝑝𝑙𝑢𝑠 

𝐷𝑚𝑎𝑙𝑒 +  𝑆𝑒𝑥𝑅𝑎𝑡𝑖𝑜 × 𝐷𝑓𝑒𝑚𝑎𝑙𝑒
 

 

 

 

Table A3.3.1 Comparison of the published and modelled estimates of the proportion of the burden 
(cumulative prevalence) of trachomatous blindness  
Published by Ranson & Evans (1996)a Estimated from age-prevalence curveb 

𝐴𝑅60𝑝𝑙𝑢𝑠 = 80 (71,90) 𝐴𝑅60𝑝𝑙𝑢𝑠 = 74.1 (56, 98)  
𝐴𝑅45−59 = 18 (9,23) 𝐴𝑅45−59 = 24.5 (18, 32) 
𝐴𝑅15−44 = 2 (1,4) 𝐴𝑅15−44 = 1.0 (0.5, 1.9)  
𝐴𝑅5−14 = 0 (0,1) 𝐴𝑅5−14 = 0 (0, 0)  
𝐴𝑅10−4 = 0 (0,1) 𝐴𝑅0−4 = 0 (0, 0) 

AR: age distribution of the prevalence of trachomatous blindness 
a Based on four studies with corresponding upper and lower bounds 
b No model uncertainty was incorporated when adjusting input model data for the relationship between trichiasis 
and trachomatous blindness, but ARs were directly estimated within winbugs for final age-specific prevalence 
estimates and so incorporated variability in the age-prevalence curve. 
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Appendix 3.4: Summary of prevalence data used in modelling 

Table A.3.4.1 Data availability from national trachomatous blindness surveys (TB), Rapid Avoidable Blindness Surveys (RAAB) and population-based district-level trichiasis (TT) surveys 
including years of surveys, geographical coverage of prevalence data and proportion of districts classed “non-Endemic” based on TRA or anecdotal evidence. TT data include district or 
regional level data.  
GBD Region Country ISO 1990 2010 Low Vision Notes Trachoma Control 
North Africa / 
Middle East Algeria ALG 

No data: assigned 0 or 
regional average 

No data: assigned 0 or 
regional average Modelled No TT data  

Sub-Saharan Africa, 
West Benin BEN 

TB: 1990 
Coverage: 100% 
Non-endemic: 0% 

TB: 1990 
Coverage: 100% 
Non-endemic: 0% Yes No TT data  

Sub-Saharan Africa, 
Southern Botswana BWA 

RAAB: 1997 
Coverage: 100% 
Non-endemic: 0% 

RAAB: 1997 
Coverage: 100% 
Non-endemic: 0% Modelled No TT data  

Sub-Saharan Africa, 
West Burkina Faso BFA 

TT: 1997 
Coverage: 59%a 

Non-endemic: 0% 

TT: 2007-2012 
Coverage: 100% 
Non-endemic: 0% 
Post-intervention Modelled  SAFE start date: 2007 

Sub-Saharan Africa, 
East Burundi BDI 

TF data only  
Coverage: 0% 
Non-endemic: 100% 

TF data only  
Coverage: 0% 
Non-endemic: 100% Modelled 

Set to zero as only four districts 
classed as endemic for TF (2009-
2010) SAFE start date: 2011 

Sub-Saharan Africa, 
West Cameroon CMR 

TT: 2008-2011 
Coverage: 23% 
Non-endemic: 42% 

TT: 2008-2011 
Coverage: 23% 
Non-endemic: 42% Modelled 

Southern Cameroon is classified 
non-endemic (ie set to zero) SAFE start date: 2011 

Sub-Saharan Africa, 
Central CAR CAF 

TT: 2008-2011 
Coverage: 52.9% 
Non-endemic: 0% 

TT: 2008-2011 
Coverage: 52.9% 
Non-endemic: 0% Modelled   

Sub-Saharan Africa, 
West Chad TCD 

TB: 1985 
Coverage: 100% 
Non-endemic: 0% 

TT: 2002 
Coverage: 57.1% 
Non-endemic: 0% Modelled 

Also had TT data from 2002 for 
57.1% of districts and 7% of 
districts were classified as non-
endemic.  

Sub-Saharan Africa, 
West Cote d’Ivoire CIV 

TT: 2008 
Coverage: 10.3% 
Non-endemic: 72% 

TT: 2008 
Coverage: 10.3% 
Non-endemic: 72% Modelled 

Only northern areas suspected 
endemic, southern areas excluded 
(ie set to zero)  

North Africa / 
Middle East Djibouti DJI 

TT: 1985 
Coverage: 36.4% 
Non-endemic: 0% 

No data: assigned 0 or 
regional average Modelled  

Major SES change, classed 
as suspected endemic now. 

Table continued on next page 
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Table A3.4.1 continued 

North Africa / 
Middle East Egypt EGY 

TT: 1999-2002 
Coverage: 7.7% 
Non-endemic: 0% 

TT: 1999-2002 
Coverage: 7.7% 
Non-endemic: 0% Modelled   

Sub-Saharan Africa, 
East Eritrea ERI 

RAAB: 2008 
Coverage: 100% 
Non-endemic:  

RAAB: 2008 
Coverage: 100% 
Non-endemic:  Yes 

Also have TT data for 62.1% of the 
country from 2006. SAFE start date: 2010 

Sub-Saharan Africa, 
East Ethiopia ETH 

TB: 2005 
Coverage: 100% 
Non-endemic: 

TB: 2005 
Coverage: 100% 
Non-endemic: Yes 

Further to 2005 national survey, 
also have TT data for 100% of the 
country at regional, wereda and 
kebele-levels from 1999-2012. SAFE start date: 2003 

Sub-Saharan Africa, 
West Ghana GHA 

TT: 1997-2003 
Coverage: 18.8% 

Non-endemic: 75% 

TT: 2007-2008 
Coverage: 24.5% 
Non-endemic: 75% 
Post-intervention Modelled  SAFE start date: 1999 

Sub-Saharan Africa, 
West Guinea GIN 

TT: 2001-2002 
Coverage: 39.5% 
Non-endemic: 0% 

TT: 2001-2011 
Coverage: 39.5% 
Non-endemic: 0% Modelled   

Sub-Saharan Africa, 
West Guinea Bissau GNB 

TT:  2005 
Coverage: 100% 
Non-endemic: 

TT: 2005 
Coverage: 100% 
Non-endemic: Modelled  SAFE start date: 2009 

Sub-Saharan Africa, 
East Kenya KEN 

TT: 2004-2012 
Coverage: 17.3% 
Non-endemic: 75.4% 

TT: 2004-2012 
Coverage: 17.3% 
Non-endemic: 75.4% Modelled  SAFE start date: 2007 

Sub-Saharan Africa, 
East Malawi MWI 

TT: 2008-2012 
Coverage: 9.4% 
Non-endemic: 15.6% 

TT: 2008-2012 
Coverage: 9.4% 
Non-endemic: 15.6% Modelled  SAFE start date: 2011 

Sub-Saharan Africa, 
West Mali MLI 

TT: 1996 
Coverage: 100% 
Non-endemic: 

TT: 2008-2010 
Coverage: 100% 
Non-endemic: 
Post-intervention Modelled  SAFE start date: 2000 

Sub-Saharan Africa, 
West Mauritania MRT 

TT: 2000-2005 
Coverage: 100% 
Non-endemic: 

TT: 2004-2011 
Coverage: 67.4% 
Non-endemic: 32.6% Modelled  SAFE start date: 2004 

North Africa / 
Middle East Morocco MAR 

TB: 1992 
Coverage: 100% 
Non-endemic: 

TT: 2003 
Coverage: 8.7% 
Non-endemic: 91.3% Modelled  SAFE start date: 1999 
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Table continued 
Table A3.4.1 continued 
Sub-Saharan Africa, 
Southern Mozambique MOZ 

No data: assigned 0 or 
regional average 

No data: assigned 0 or 
regional average Modelled No TT data  

Sub-Saharan Africa, 
West Niger NER 

TT: 1997-1999 
Coverage: 100% 
Non-endemic: 

TT: 2007-2011 
Coverage: 76.7% 
Non-endemic: 7.0% 
Post-intervention Modelled  SAFE start date: 2002 

Sub-Saharan Africa, 
West Nigeria NGA 

RAAB: 2010 
Coverage: 100% 
Non-endemic:  

RAAB: 2010 
Coverage: 100% 
Non-endemic:  Yes 

Also TT data for 22.6% of the 
country from 2000-2011; 52% 
classified non-endemic SAFE start date: 2010 

Sub-Saharan Africa, 
West Senegal SEN 

TT: 2000-2003 
Coverage: 73.5% 
Non-endemic: 0% 

TT: 2000-2003 
Coverage: 73.5% 
Non-endemic: 0% Modelled  SAFE start date: 2004 

Sub-Saharan Africa, 
East Somalia SOM 

No data: assigned 0 or 
regional average 

No data: assigned 0 or 
regional average Modelled No TT data  

Sub-Saharan Africa, 
East South Sudan SSD 

TT: 1999-2009 
Coverage: 17.2% 
Non-endemic:  0% 

TT: 1999-2009 
Coverage: 17.2% 
Non-endemic:  0% Modelled   

Sub-Saharan Africa, 
East Sudan SDN 

TT: 2005-2010 
Coverage: 61.3% 
Non-endemic: 0% 

TT: 2005-2010 
Coverage: 61.3% 
Non-endemic: 0% Modelled  SAFE start date: 1999 

Sub-Saharan Africa, 
East Tanzania TZA 

TT: 2001-2006 
Coverage: 45.8% 
Non-endemic: 8.3% 

TT: 2004-2009 
Coverage: 45.8% 
Non-endemic: 8.3% Modelled 

A few districts have post-
intervention data SAFE start date: 1999 

Sub-Saharan Africa, 
West The Gambia GMB 

TB: 1986  
Coverage: 100% 
Non-endemic: 

TT: 2006-2009 
Coverage: 90.7% 
Non-endemic: 9.3% 
Post-intervention Modelled  SAFE start date: 2006 

Sub-Saharan Africa, 
West Togo TGO 

TT: 2012 
Coverage: 93.3% 
Non-endemic: 6.7% 

TT: 2012 
Coverage: 93.3% 
Non-endemic: 6.7% Modelled   

Sub-Saharan Africa, 
East Uganda UGA 

TT: 2006-2010 
Coverage: 31.3% 
Non-endemic: 59.8% 

TT: 2006-2010 
Coverage: 31.3% 
Non-endemic: 59.8% Modelled  SAFE start date: 2007 

Sub-Saharan Africa, 
East Zambia ZMB 

TT: 1985-2012 
Coverage: 36.9% 
Non-endemic: 0% 

TT: 1985-2012 
Coverage: 36.9% 
Non-endemic: 0% Modelled  SAFE start date: 2010 

TB: trachomatous blindness; LV: low vision; TT: trachomatous trichiasis; TF: Trachomatous inflammation, follicular 
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Appendix 4.1: Climatic and environmental data 

Table A4.1.1 Description of climatic and environmental variables  
Variable Description and source 
Climate  
Mean annual temperature (°C) Interpolation of average monthly mean annual 

temperature data (~1950-2000) 
Derived: Meteorological stations 
Resolution: 2.5 arc-minute (~5 km) 
Source: WorldClim BioClim variables 

Maximum warmest temperature (°C) Interpolation of average maximum temperature 
in the warmest month (~1950-2000) 
Derived: Meteorological stations 
Resolution: 2.5 arc-minute (~5 km) 
Source: WorldClim BioClim variables 

Mean annual precipitation (mm) Interpolation of average monthly mean annual 
precipitation data (~1950-2000) 
Derived: Meteorological stations 
Resolution: 2.5 arc-minute (~5 km) 
Source: WorldClim BioClim variables 

Precipitation of driest month (mm) Interpolation of average monthly mean annual 
precipitation data (~1950-2000) 
Derived: Meteorological stations 
Resolution: 2.5 arc-minute (~5 km) 
Source: WorldClim BioClim variables 

Annual aridity index Interpolation of mean Annual 
Precipitations/Mean Annual Potential Evapo-
Transpiration (~1950-2000). 
Derived: Meteorological stations (WorldClim) 
 Resolution: 30 arc second (~1 km) 
Source: Consortium for Spatial 
Information (CGIAR-CSI)  Global-Aridity and 
Global-PET Database  [1,2] 

Monthly average potential evapo-
transpiration (PET) (mm/month) 

Interpolation of monthly average measure of the 
amount of evaporation expected if a sufficient 
water source were available. Hargreaves model 
using monthly average geo-datasets of: mean 
temperature, daily temperature range and extra-
terrestrial radiation (~1950-2000) 
Derived: Meteorological stations (WorldClim) 
Resolution: 30 arc second (~1 km) 
Source: Consortium for Spatial 
Information (CGIAR-CSI) Global-Aridity and 
Global-PET Database [1,2] 

Environmental  
Land surface temperature (LST) (°C) Mean annual land surface temperature for the 

years 2005-2007. 
Derived: Satellite remote sensing 
Resolution: 2.5 arc-minute (~5 km) 
Source: Moderate Resolution Imaging 
Spectroradiometer (MODIS) on 
NASA’s Terra satellite 

Table continued 
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Table A4.1.1 continued 
Altitude (meters) Elevation data 

Derived: Radar 
Resolution: 2.5 arc-minute (~5 km) 
Source:  Shuttle Radar Topography Mission 
(SRTM) 

Enhanced vegetation index (EVI) Index of the vegetation signal from surface 
reflectance. 
Derived: Satellite remote sensing 
Resolution: 2.5 arc-minute (~5 km) 
Source: Moderate Resolution Imaging 
Spectroradiometer (MODIS) on 
NASA’s Terra satellite 

Global land cover classificationa Global land cover classification 
Derived: Satellite remote sensing 
Resolution: 2.5 arc-minute (~5 km) 
Source: UN Land Cover Classification System 
(LCCS) using ENVISAT satellite mission's MERIS 
sensor at 5km2 resolution 

Ruminant density (animals per 5km 
cell)  

Predicted distribution of livestock in 2005. 
Derived: Observed livestock statistics and 
environmental variables 
Resolution: 3 arc-minute (~5 km) 
Source: FAO Global Livestock Densities [3] 

Cost-distance to road network Accessibility measure calculated as a cost-
distance surface using a set of topographical 
variables set as constraints to access of the road 
network. 
Derived: Distance to road network, slope, major 
water bodies, streams and land cover 
Resolution: 30 arc second (~1 km) 
Source: Generated for this analysis 

Distance to river or water body Derived: Distance to nearest river or surface 
water body 
Resolution: 2.5 arc-minute (~5 km) 
Source: FAO Rivers and Surface Water Bodies 
database 

Urban classification Gridded database of urban settlements with 
populations greater than 1000 persons. 
Derived: Satellite night-light data and gridded 
population data 
Resolution: 30 arc second (~1 km) 
Source: Global Rural-Urban Mapping 
Project (GRUMP) 

Population density Gridded population data for the year 2010 
Derived: NA 
Resolution: 30 arc second (~1 km) 
Source: SEDAC’s Gridded Population of the World, 
Version 3 data set (GPWv3) 

m: meters; mm: millimetres; C: Celsius; km: kilometers  
aClassified as binary variable indicating savannah/grasslands 
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Figure A4.1.1 Maps of climatic and environmental factors within in Nigeria, as detailed in Table 
A4.1.1. AI: aridity index; PET: potential evapo-transpiration; LST: land-surface temperature; EVI: 
enhanced vegetation index; Prec: precipitation 
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Table A4.1.2 Summary statistics for each climate and environmental  measure from 304 
clusters in Nigeria 
Variable Median (range) SD 
Climate   

Land surface temperature (LST) (°C) 31.7  (22.5, 42.8) 5.0 
Mean annual temperature (°C) 26.4  (21.8, 28.7) 1.0 
Average maximum temperature in the 
warmest month (°C) 

34.6 (30.9, 41.0) 2.7 

Mean annual precipitation (mm) 1284.0 (407.0, 3833) 639.2 
Average precipitation in driest month (mm) 6.0 (0.0, 67.0) 10.3 
Annual aridity index 0.75 (0.19, 2.46) 0.45 
Annual potential evapo-transpiration (PET) 1738.5 (1385.0, 

2157.0) 
193.9 

Environmental   
Altitude (m) 270.5 (4.0, 1287.0) 226.1 
Enhanced vegetation index (EVI) 1218.0  (88.1, 

1500.8) 
270.8 

Global land cover classificationa 17.0 % - 
Ruminant density (animals per 5km cell) 68.1 (0, 1051.4) 144.8 
Cost-distance to road network 1387.5 (0, 22842.7) 2983.3 
Urban classification 27.3 % urban - 
Population density 285.0 (8.0, 27982.0) 2570.4 

m: meters; mm: millimetres; C: Celsius  
aClassified as binary variable indicating savannah/grasslands 
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Appendix 4.2: Principal components analysis & environmental variable 

selection 

Background 

Collinearity is a special case of model non-identifiability, in which two or more highly 

correlated variables are associated with an outcome, causing inflation of the variance of 

regression parameters so that the “true” predictor cannot be identified without further 

information [1,2].  Multicollinearity is a common problem encountered developing models 

using environmental variables [3], and there are a number of approaches in ecological 

analyses to deal with resulting statistical instability. The simplest approach is to drop all 

but one collinear variable and assume that the retained variable captures functionally 

important variation [2]. However, in the absence of a strong evidence base to support this 

selection process, choice of the retained variable may be arbitrary and miss potentially 

important sources of variation in the dataset. While the objective of a principal 

components analsysis (PCA) is often to reduce dimensionality of a dataset by replacing 

correlated variables with a smaller number of uncorrelated variables, this approach can be 

used to help interpret the underlying structure of climatic variables, in terms of variance 

and covariance, and inform subsequent model building strategies [4].  

Multicollinearity was found to be present between all included climatic variables in 

Nigeria to varying degrees, with particularly high (above 0.7) correlation between subsets 

of climatic indices related to precipitation and evaporation, and temperature and altitude. 

This appendix outlines the PCA conducted to support environmental variable selection in 

Nigeria by characterising patterns of variation in the data to support selection of a single 

variable from each identified group.  Correlated predictors were then added into the 

model through sequential regression after identification of a sequence of ecological 
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importance, based on existing studies, in order to calculate the independent contribution 

of each explanatory variable.   

 

Methods 

Data 

Climatic indices were selected as described in the text, with a number of interpolated and 

satellite derived measures used to capture annual mean indices (including temperature, 

precipitation and evaporation trends) and potential environmental extremes 

(precipitation in the driest month and temperature in the hottest month) (Appendix 4.1).  

Enhanced vegetation index (EVI) and altitude were also included in the PCA, as they are 

often used as proxy measures for rainfall and temperature, and a lower prevalence of 

trachoma has been associated with higher altitudes in a number of trachoma studies [5-7]. 

These proxy measures are broad indicators, however, and may also be associated with 

other environmental characteristics (for example land cover and land use).   

 

Analysis 

Principal components (PC) were estimated using the function ‘prcomp’ in the “stats” 

package in R. This function performs a principal components analysis using a singular 

value decomposition on the data matrix, which is conceptually equivalent to doing an 

eigenvalue decomposition on the covariance matrix but numerically more stable [8]. In the 

PCA, variables are re-expressed through linear combinations (rotations) of the original 

variables through the decomposition process. This is accomplished by generating a 

covariance matrix and identifying groups of variables, such that each group is internally 

correlated but less correlated with other variables. Eigenvectors (analogous to singular 

values) are calculated that are perpendicular to observed associations and proportional to 
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the amount of variance explained by the principal component, which is subsequently 

calculated from these lines and the original variables. Each component thus represents an 

independent dimension of variability and together sum to the total variation in the 

variables [9].  

Principal components that explained a significant proportion of the variance in the data 

were identified using the Cattell scree test and the Kaiser rule, which respectively identify 

a point of inflection on a scree plot and eigenvectors greater than one [10,11]. Each 

component was then associated with the outcome using a generalised linear model with 

binomial logit link, adjusted for clustering. Patterns in climatic data were investigated by 

1) examination of which covariates were heavily loading and the relationship (positive or 

negative) of the PC with the outcome, 2) plots of the rotations to visually identify 

groupings exerting similar effects and 3) plots of the component values, to allow 

identification of how PCs work together to aggregate high risk (TT/CO≥1%) clusters.  

Together with evidence from the literature, this analysis informed selection of a single 

climate covariate from each observed grouping. Variables from highly correlated and 

contrasting groups were then included in the model using sequential regression in order 

to identify independent variation associated with explanatory variables. 

 

Results 

There was high correlation between a number of included climatic variables, with linear 

relationships tending to become more variable at lower land surface temperatures and 

moderate meteorological temperatures (Figure A4.2.1, Table A4.2.1). The majority 

(87.4%) of the total variation was captured by the first two PCs, which had eigenvalues 

greater than one (Table A4.2.2) and were below the elbow of the scree plot (Figure 

A4.2.2). All PCs were associated with the cluster level risk of TT/CO through regression. 
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Loadings for each component are displayed in Table A4.2.2 and plots of the loadings for 

the first three components presented in Figure A4.2.3. The first principal component 

explained 67% of the variance, and suggested a contrasting relationship between two 

internally correlated groups of climatic indicators with similar magnitudes of loadings. 

The first group included climatic indices related to rainfall: annual mean precipitation, 

precipitation in the driest month and aridity. The opposing group may also be thought of 

as related to water availability, and included indicators related to evaporation: land-

surface temperature, the maximum temperature in the warmest month, and the potential 

for evapo-transpiration (PET). Altitude and mean annual temperature were internally 

correlated in the dataset with a contrasting relationship, but not highly correlated with 

variables in the above two groups. These variables loaded heavily on the second 

component, which accounted for 20.4% of the total variation. EVI did not group clearly 

with the other variables, although it was correlated with both meteorological temperature 

and rainfall. This suggests that the additional variation that it contributes to the third 

principal component, along with LST, may be related to landcover or urban extents, which 

was investigated during the modelling process. 

The ability of the first three components to aggregate clusters of higher risk (TT/CO ≥ 1%) 

is displayed in Figure A4.2.4, and suggests that variation in these components is important 

to include in the model. 

 

Variable selection 

Mean annual precipitation and land surface temperature were retained from the two 

groups identified from the first component for further analyses, based on previous studies 

of trachoma. As the literature provides the strongest evidence base for an association 

between precipitation and trachoma, mean annual precipitation was considered the 
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principal climatic factor in the regression and represents the shared variation observed in 

the first component [12-14].  

Land-surface temperature was selected from the second group because it is satellite 

derived and may be more reliable than interpolated weather station data. LST was then 

regressed against precipitation and residuals included as new variables that are 

conditional on precipitation.   

Mean annual temperature was prioritised from the second component as 1) it had the 

highest loading on the second component, 2) it was considered to be a more proximal risk 

factor than altitude, and 3) altitude may be associated with other environmental 

characteristics, like land cover.  Any residual effect of altitude was checked by including it 

in the model after regressing it against temperature.  

EVI was regressed against the collinear variables from the first grouping (mean annual 

precipitation and the residuals of LST) to assess whether it accounted for any residual 

variation in the model which may be captured by the third component.  

 

Discussion 

The results from the exploratory PCA allowed identification of four key contrasting groups 

in the first two principal components, which explained approximately 87% of the total 

variation. The first PC accounted for the most variation and might be interpreted as 

variation common to different measures of water availability which formed two 

contrasting groups related to precipitation and evaporation measures. Where mean 

annual precipitation was very low, average precipitation in the driest month tended to 

plateau.  As expected, aridity was highly collinear with mean annual precipitation, which is 

directly used to calculate the index. Similarly, LST and monthly temperature indices are 

commonly used to construct measures of evapo-transpiration, so a degree of collinearity is 

expected. In this case, PET was generated from meteorological data that were not collinear 
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(including mean annual temperature and daily temperature range) and extra terrestrial 

radiation (or solar radiation). Thus, it may be that this radiation accounts for the variation 

PET shares with LST in the first component.   

The second set of variables identified in the PCA were altitude and mean annual 

temperature. These variables were not collinear with the groups from the first PC and so 

were included separately in subsequent model building. Temperature is hypothesized to 

have an effect on the life span of the punitive fly vector, Musca sorbens, which has shown to 

live from 12 days at 32° C to 35 days at 24°C [3,15].  

Unique variation in LST, after accounting for variation captured by the first component, 

was distinguished in the third component along with EVI. These two indices are often 

(inversely) correlated due to reduced spectral emissivity associated with less vegetated 

areas corresponding to higher temperatures [16].  
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Figure A4.2.2 Scatter matrix of climatic and environmental indices  
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Table A4.2.1 Pearson correlation matrix between climatic and environmental indices 

Variable LST Mean 
annual 
rainfall 

Mean annual 
temperature 

Maximum 
temperature 
warmest 
month 

Precipitation 
in driest 
month 

EVI Aridity 
index 

PET Altitude 

LST 1.000 -0.852 0.105 0.904 -0.735 0.422 -0.861 0.910 0.474 
Mean annual 
rainfall 

-
0.852 

1.000 -0.001 -0.799 0.897 -
0.646 

0.995 -
0.814 

-0.545 

Mean annual 
temperature 

0.105 -0.001 1.000 0.362 0.089 -
0.248 

0.002 0.136 -0.711 

Maximum 
temperature 
in warmest 
month 

0.904 -0.799 0.362 1.000 -0.697 0.446 -0.825 0.965 0.291 

Precipitation 
in driest 
month 

-
0.735 

0.897 0.089 -0.697 1.000 -
0.681 

0.916 -
0.749 

-0.606 

EVI 0.422 -0.646 -0.248 0.446 -0.681 1.000 -0.678 0.549 0.578 
Aridity index -

0.861 
0.995 0.002 -0.825 0.916 -

0.678 
1.000 0.851 -0.566 

PET 0.910 -0.814 0.136 0.965 -0.749 0.549 -0.851 1.000 0.481 
Altitude 0.474 -0.545 -0.711 0.291 -0.606 0.578 -0.566 0.481 1.000 
LST: land surface temperature; EVI: enhanced vegetation index; PET: potential evapo-transpiration 
 

 

 

Figure A4.2.3 Scree plot of the variances of the principal components. The “elbow” of the plot 
appears near the third component, suggesting the first two components contribute the most. 

 

 

271 
 



Appendix 4.2 

 

Table A4.2.2 Factor loadings of the principal components indicating correlation between observed 
variables and specific components 

Variable 
Loadings for Principal Components 

1 2 3 4 5 6 7 8 9 
LST -0.368 -0.155 0.401 0.029 0.353 -0.196 0.715 -0.059 -0.013 
Mean Annual 
Rainfall 0.389 0.021 0.089 -0.001 -0.239 0.517 0.245 -0.190 0.046 
Mean Annual 
Temperature 0.014 -0.712 -0.264 0.303 -0.117 0.001 -0.237 0.743 -0.184 
Maximum 
Temperature in 
warmest month -0.356 -0.318 0.156 0.407 -0.402 -0.231 0.252 -0.125 -0.617 
Precipitation in 
driest month 0.371 -0.075 0.206 0.476 0.170 -0.035 0.213 0.031 0.017 
EVI -0.287 0.252 -0.742 0.470 0.648 0.363 -0.186 -0.060 -0.052 
Aridity Index 0.397 0.017 0.099 0.301 -0.243 -0.133 0.260 0.278 0.721 
PET -0.376 -0.158 0.211 0.432 -0.191 -0.236 -0.375 -0.557 0.245 
Altitude -0.258 0.522 0.300 0.133 -0.314 0.659 0.141 -0.021 0.006 
Eigenvalues 6.031 1.833 0.557 0.317 0.129 0.070 0.057 0.004 0.001 
Cum. proportion 
 of variance 0.670 0.874 0.936 0.971 0.985 0.993 0.999 0.999 1.000 
LST: land surface temperature; EVI: enhanced vegetation index; PET: potential evapo-transpiration 

 

 

 

 

Figure A4.2.4 Rotated data for the first three components, contrasting groups which have high 
within-correlation along each component. Data are rotated so that the eigenvectors from each 
component are the axes, which effectively distributes variability more equally between factors. 
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Figure A4.2.5 Calculated principal component (PC) values for each cluster, based on loadings for 
each component. Clusters with a prevalence of trichiasis (TT) >1% are shown in red, highlighting 
the ability of the three components to distinguish areas of higher prevalence.
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Appendix 4.3: Introduction to semi-variogram analysis 

A widely-used approach in the description of spatial structures is semi-variogram analysis. 

This function characterises the spatial autocorrelation structure of a variable by defining 

semi-variance (a measure of expected dissimilarity between a given pair of observations) 

as a function of lag (the distance separating the observation locations). This method is 

used not only as an exploratory technique in spatial analysis, but to formally inform 

parameter estimates for incorporation into geostatistical models. 

 

Estimation of the semi-variogram 

The empirical (or sample) semivariogram is estimated directly from the survey data by 

measuring the mean squared difference of pairs of observations that are separated by a 

lag [1,2]. While this can be plotted as a semi-variogram cloud (i.e. a scatterplot of the 

distance between and variogram ordinate) for every point, more commonly values are 

averaged that fall within a declared bin width in order to provide a smoothed visualisation 

of the underlying covariance structure.  

𝛾(ℎ) =
1

2 𝑊
���𝑍(𝑠𝑖) − 𝑍�𝑠𝑗��

2
�

𝑊

 

Where 𝑍(𝑠𝑖) and 𝑍�𝑠𝑗� are data values at locations  𝑠𝑖 and 𝑠𝑗, for all 𝑊 pairs of points 

separated by the Euclidean distance ℎ. The smaller the variance in the difference, the 

greater the correlation between measurements taken a given distance apart.  

A theoretical semi-variogram can then be fitted to the sample semi-variogram using 

ordinary or weighted-least squares in order to formally describe the structure and 

incorporate spatial dependency into models.  
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Interpretation 

The shape of the semivariogram can provide information about the spatial autocorrelation 

structure and the distance over which such correlation is present, and be used to define 

the covariance structure between points in regression models. In the presence of spatial 

autocorrelation (Figure A4.3.1), the 

semivariogram rises with distance 

over a range, whereupon it plateaus 

to a maximum value termed the sill. 

The range represents the maximum 

distance over which there is 

autocorrelation, while the nugget 

represents the variation that is 

aspatial or measurement error [3]. A 

flat semivariogram indicates the 

absence of spatial structure, while a 

constant rise in semivariance with no plateau suggests the presence of a large scale trend 

(ie spatial autocorrelation at distances larger than the study region).  

As discussed in the introduction, a spatially varying mean can be easily incorporated into 

the analysis by regression. The residuals from this regression can be extracted, and used 

to explore second order spatial autocorrelation. 
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Figure A4.3.1 Semi-variogram plot showing key 
structural elements 
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Appendix A5.1: Description of socioeconomic, environmental and 
climatic variables 
Variable (level) Description and source 
Socioeconomic 
District level variables 
Access to improved water source 
 
 
 

 

District level, year-specific predictions of the 
proportion of households with access to an 
improved water source 
Resolution: Area (district) 
Source: [1] 

Access to water source w/in 1 km 
 
 
 

 

District level, year-specific predictions of the 
proportion of households with access to water 
within 1km 
Resolution: Area (district) 
Source: [1] 

Improved sanitation 
 
 
 

 

District level, year-specific predictions of the 
proportion of households with access to improved 
sanitation 
Resolution: Area (district) 
Source: [1] 

Open defecation 
 
 

 

District level, year-specific predictions of the 
proportion of households reporting open 
defecation 
Resolution: Area (district) 
Source: [1] 

Crowded living quarters 
 
 
 

 

District level, year-specific predictions of the 
proportion of households with more than 5 
individuals per room 
Resolution: Area (district) 
Source: [1] 

Average school attendance 
 
 

 

Net attendance ratio reported for 2005/2006. 
Resolution: Area (district) 
Source: Kenya Open Data (from Kenya Integrated 
Household Budget Survey) 

Constituency level variables 
Poverty Incidence   
 
 
 
 
 

 

Measures of poverty modelled using small area 
estimation techniques with data from the 1997 
Welfare Monitoring Survey and the 1999 
Population and Housing Census 
Resolution: Area (constituency) 
Source: Central Bureau of Statistics and The 
World Bank  [2] 

Gini Index  
 
 
 
 
 

 

Measures of poverty modelled using small area 
estimation techniques with data from the 1997 
Welfare Monitoring Survey and the 1999 
Population and Housing Census 
Resolution: Area (constituency) 
Source: Central Bureau of Statistics and The 
World Bank  [2] 

Table continued 
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Table A5.1 continued 
Cluster level variables 
Distance to nearest primary school 
(km) 
 
 
 

 

Derived: Gridded surface calculated from 2007 
Kenya primary schools database 
Resolution: 30 arc second (~1 km) 
Source: Generated for this analysis from schools 
database at Kenya OpenData 

Schools per 1000 population 
 
 
 
 

 

Derived: Number of primary schools per 1000 
population within each sublocation 
Resolution: Sublocations (small area) 
Source: Generated for this analysis from 2007 
Kenya primary schools database at Kenya 
OpenData and Afripop 2010 

Cattle density (animals per 5km cell) 
 
 
 
 
 

 

Gridded density of cattle, based on the spatial 
disaggregation of sub-national statistical data 
based on empirical relationships with 
environmental variables in similar ag-ecological 
zones. 
Resolution: 2.5 arc-minute (~5 km) 
Source: Food and Agriculture Organization’s 
Gridded Livestock of the World [3]   

Distance to small scale irrigation 
 
 
 

 

Derived: Distance small scale irrigation sites 
Resolution: 30 arc second (~1 km) 
Source: Generated for this analysis from database 
of small irrigation points at World Resources 
Institute [4] http://www.wri.org/resources/data-
sets/kenya-gis-data 

Environmental 
Urban classification 
 
 
 
 

 

Gridded database of urban settlements with 
populations greater than 1000 persons.  
Derived: Satellite night-light data and gridded 
population data 
 Resolution: 30 arc second (~1 km) 
Source: Global Rural-Urban Mapping 
Project (GRUMP) 

Land cover 
 
 
 
 
 
 

 

Land Cover Type 2 (UMD) Annual Averages Data 
Set for Africa averaged each year from 2001 to 
2009. 
Derived: Satellite remote sensing 
 Resolution: 500 m 
Source:  Africa Soil Information Service (AfSIS) 
using the Moderate Resolution Imaging 
Spectroradiometer (MODIS) imagery from the 
National Aeronautics and Space Administration 
(NASA). 

Distance to river or water body 
 
 

 

Derived: Distance to nearest river or surface 
water body 
 Resolution: 2.5 arc-minute (~5 km) 
Source: FAO Rivers and Surface Water Bodies 
database 

Table continued 
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Table A5.1 continued  
Distance to road (km) Accessibility measure calculated as the distance to 

roads. 
 Derived: Digital Chart of the World 
 Resolution: Vector 
Source: DIVA 

Distance to primary road (km) Accessibility measure calculated as the distance to 
major (primary) roads. 
 Derived: Digital Chart of the World 
 Resolution: Vector 
Source: DIVA 

Population density Gridded population data for the year 2010 
Derived: NA 
 Resolution: 30 arc second (~1 km) 
Source: SEDAC’s Gridded Population of the World, 
Version 3 data set (GPWv3) 

Altitude (meters) Elevation data 
Derived: Radar 
 Resolution: 2.5 arc-minute (~5 km) 
Source:  Shuttle Radar Topography Mission 

Enhanced vegetation index (EVI)  Index of the vegetation signal from surface 
reflectance 
Derived: Satellite remote sensing 
 Resolution: 2.5 arc-minute (~5 km) 
Source: Moderate Resolution Imaging 
Spectroradiometer NASA’s Terra satellite 

Climate  
Land surface temperature (LST) (°C) Mean and variance of annual land surface 

temperature for the years 2005-2007. 
Derived: Satellite remote sensing 
 Resolution: 2.5 arc-minute (~5 km) 
Source: Moderate Resolution Imaging 
Spectroradiometer (MODIS) on 
NASA’s Terra satellite 

Mean annual temperature (°C)  Interpolation of average monthly mean annual 
temperature data (~1950-2000) 
Derived: Meteorological stations 
 Resolution: 2.5 arc-minute (~5 km) 
Source: WorldClim BioClim variables 

Mean annual precipitation (mm)  Interpolation of average monthly mean annual 
precipitation data (~1950-2000) 
Derived: Meteorological stations 
 Resolution: 2.5 arc-minute (~5 km) 
Source: WorldClim BioClim variables 

Annual aridity index Interpolation of mean Annual 
Precipitations/Mean Annual Potential Evapo-
Transpiration (~1950-2000). 
Derived: Meteorological stations 
(WorldClim bioclimatic variables) 
 Resolution: 30 arc second (~1 km) 
Source: Consortium for Spatial 
Information (CGIAR-CSI)  Global-Aridity and 
Global-PET Database  [5,6] 

m: meters; mm: millimetres; C: Celsius; km: kilometers  
aClassified as binary variable indicating savannah/grasslands 
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Appendix 5.2: Summary statistics for each covariate 

 Surveyed sites 
Variable Median (range) SD 

Socioeconomic   
Constituency   

Poverty incidence  53.5% (33, 76) 11.8 
Gini Index  33% (29, 42) 2.7 

District: 
Access to improved water source 63.1% (51.4, 88.9) 9.2 
Access to water source w/in 1km 44.0% (29.9, 66.4) 11.4 
Improved sanitation  46.5% (40.5, 81.3) 10.6 
Open defecation  31.9% (16.6, 46.9) 9.8 
Crowded living quarters  (>5 per room) 10.1% (3.6, 19.5) 4.8 
Net attendance  74.3% (44.1, 91.9) 15.9 
Proportion SAC never attended 13.8% (0.0, 47.9) 14.0 

Cluster/Sublocation   
Distance to nearest school (km) 2.2 (0.0, 45.0) 7.1 
Schools per 1000 population 1.0 (0.0, 5.3) 1.0 
Cattle density (animals per 5km cell) 18.0 (0, 650) 71.8 
Distance to small scale irrigation 18.7 (0.0, 305.1) 63.8 

Environmental   
Distance to water bodies (km) 32.6 (0, 169.5) 28.6 
Urban classification 8.3% urban - 
Landcover :              Savannah/grasslands 63.3%  - 

Barren/sparsely vegetated 3.6%  - 
Population density (persons per  1km cell) 34.5 (0, 1463) 225.7 
Distance to road (km) 3.2 (0, 39.1) 6.2 
Distance to major road (km) 77.6 (0, 407.8) 98.0 

Climate   
Altitude (m) 1052 (214, 2816) 535.5 
Enhanced vegetation index (EVI) 0.3  (-0.0, 0.5) 0.1 
Variance land surface temperature (LST) (°C) 13.0  (1.0, 39.0) 6.1 
Average land surface temperature (LST) (°C) 36.4 (19.0, 52.6) 6.4 
Mean annual temperature (°C) 22.0 (12.0, 29.0) 3.5 
Mean annual precipitation (mm) 512.9 (86.9, 1831.7) 351.8 
Annual aridity index 0.4 (0.1, 1.4) 0.2 

m: meters; mm: millimetres; km: kilometres; C: Celsius; SD: standard deviation; SAC: school-age children 
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Appendix 6: Technical notes on data simulation 

 

Parameterisation & expansion of dataset 

Simulated data were parameterised using full census data from Kahe. The relative risk of 

TF between children aged 1-5 and 6-9 years was estimated (RRage = 2.0) from the full 

dataset. Using data from individuals for which enrolment data were available (n=421) the 

relative risk of TF was estimated between enrolled and non-enrolled children aged 6-9 

years (RRenrol = 0.5). In addition, an analysis of variance estimator was used to estimate the 

household intraclass correlation (ICC) present in Kahe, which was equal to 0.26 [1]. 

Initially, the enrolment rate (Renroll) was set as 0.7 and assumed to not cluster within 

households. This assumption was based on results from a logistic regression model 

looking at the effects of these indicators on risk of TF in children aged 6-9 years. This 

model showed that individual level school attendance was the main factor in this context 

(odds ratio=0.52, p= 0.05), and having a school-going sibling was not associated with any 

additional risk (p=0.71). Similarly, in children 1-5 years old, having a school-going sibling 

was not associated with risk of TF after adjusting for household clustering (p=0.13). 

Between and within district variation was estimated by fitting a beta distribution to the 

district-level and cluster-level TF prevalence data, respectively. The average variance and 

simulated mean prevalence were then used to define the sampling distributions for the 

two levels, with the mean of prevalences set as 0.2 at the district-level and equal to the 

simulated district prevalence for the cluster sampling distribution, from which cluster 

prevalence values were randomly drawn.  

The dataset was subsetted, retaining data for the relevant age group (1-9 years). This 

dataset was then replicated to generate identical household and demographic structures 

for the specified number of communities (n) within each of k districts. 
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Simulation of cluster data 

We outline a method in which individual disease status was then simulated for an n x k 

dataset using a methodology based on previous work for generating correlated binary 

random vectors outlined in Olives et al [2]. This approach was modified to use household 

as a grouping factor and simulated data for each subgroup separately, so that each 

subgroup maintained household-level clustering, the specified RRage and RRenrol and 

summed to the overall cluster-level prevalence.  

For each cluster within each district, the enrolment was simulated so that a specified 

proportion of children set by Renroll were randomly selected and assigned as enrolled. TF 

cases were simulated by the two groups (age and enrolment) with the goal of ensuring the 

RRage  of TF in unenrolled and RRenroll in 6-9s was preserved. To do so, we assumed that 

prevalence in enrolled 1-5s was zero (since we assume there are no 1-5s in school) and 

solved the following system of equations for the marginal prevalence of TF by age and 

enrolment: 

1. 𝑃𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝑃(𝑇𝐹|𝐴𝑔𝑒 = 1 − 5,𝐸𝑛𝑟𝑜𝑙𝑙 = 0) ×  𝑃(𝐴𝑔𝑒 = 1 − 5,𝐸𝑛𝑟𝑜𝑙𝑙 = 0) +
 𝑃(𝑇𝐹|𝐴𝑔𝑒 = 6 − 9,𝐸𝑛𝑟𝑜𝑙𝑙 = 0) ×  𝑃(𝐴𝑔𝑒 = 6 − 9,𝐸𝑛𝑟𝑜𝑙𝑙 = 0) +
 𝑃(𝑇𝐹|𝐴𝑔𝑒 = 6 − 9,𝐸𝑛𝑟𝑜𝑙𝑙 = 1) ×  𝑃(𝐴𝑔𝑒 = 6 − 9,𝐸𝑛𝑟𝑜𝑙𝑙 = 1) 

2. 𝑅𝑅𝐴𝑔𝑒 𝑖𝑛 𝑛𝑜𝑛𝑒𝑛𝑟𝑜𝑙𝑙 =
𝑃𝑟(𝑇𝐹|𝐴𝑔𝑒 = 1 − 5,𝐸𝑛𝑟𝑜𝑙𝑙 = 0)/𝑃𝑟(𝑇𝐹|𝐴𝑔𝑒 = 6 − 9,𝐸𝑛𝑟𝑜𝑙𝑙 = 0) 

3. 𝑅𝑅𝐸𝑛𝑟𝑜𝑙𝑙𝑒𝑑 𝑖𝑛 6−9 =
𝑃𝑟(𝑇𝐹|𝐴𝑔𝑒 = 6 − 9,𝐸𝑛𝑟𝑜𝑙𝑙 = 1)/𝑃𝑟(𝑇𝐹|𝐴𝑔𝑒 = 6 − 9,𝐸𝑛𝑟𝑜𝑙𝑙 = 0) 

Once the marginal TF prevalences by age and enrolment were derived, the household ICC 

was introduced by using the methodology outlined in Olives et al [1].  
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