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ABSTRACT

We are all living in the era of globalization and, like it or not, it is going to change the way we practice
epidemiology, the kinds of questions we ask, and the methods we use to answer them. However, the
methods, and ways of thinking about the health of populations, that will be required for epidemiology in
the 21st century are in some instances quite different from the standard epidemiological techniques that are
taught in most textbooks and courses today. As we develop epidemiological methods for addressing the
scientific and public health problems of the 21st century, it is important that we consider, once again, the
distinction between the analysis of variance and the analysis of causes. This has primarily been considered
with respect to genetic research, and also with regards to the problems of making comparisons between
different populations and environments at the same point in time. It has not been considered in depth with
regards to the issues of conducting epidemiologic research in a world that is changing over time. In this
paper, I first consider the statistical and scientific issues involved in the distinction between the analysis of
variance and the analysis of causes. I then discuss some examples of the implications of this distinction for
the theory and practice of epidemiology in a changing world, particularly with regards to risk factors that
become ubiquitous over time. Sometimes the most important causes of disease are invisible because they
are everywhere.



INTRODUCTION

We are all living in the era of globalization and, like it or not, it is going to change the way we practice
epidemiology, the kinds of questions we ask, and the methods we use to answer them1. The methods that
will be required for epidemiology in the 21st century are likely to be quite different from the standard
epidemiological techniques that are taught in most textbooks and courses today2 3. As we develop
epidemiological methods for addressing the scientific and public health problems of the 21st century, it is
important that we consider, once again, the distinction between the analysis of variance and the analysis of
causes. This issue, which is important in statistical, aetiological, and public health terms, has received
further attention and debate in the International Journal of Epidemiology4-8 as a result of the reprinting of
Lewontin’s classic 1974 paper9 (Int J Epidemiol 2006; 35: 520-525). It has primarily been considered with
respect to genetic research, although it was also considered indirectly with regards to non-genetic causes of
chronic disease in Rose’s seminal 1985 paper10, which was also reprinted in the International Journal of
Epidemiology11-15 (Int J Epidemiol 2001; 30: 427-432). These two papers explore the same phenomena
from different starting points and perspectives. In both instances, they clearly demonstrate that the major
determinants of population variation in a disease, may not be the main causes of the disease. Nevertheless,
although this distinction has been explored to some extent with regards to the problems of making
comparisons between different populations and environments at the same point in time, it has not been
considered in depth with regards to the issues of conducting epidemiologic research into non-genetic
factors, or gene-environment interactions, in a world that is changing over time. In particular, if the
environment (global, local, social, physical) is changing over time, then the relative population importance
of various risk factors may change in a non-intuitive manner, and a risk factor may become relatively more
important as a cause of disease, and have an increased population attributable risk, while explaining less of
the population variation in the disease.

In this paper, I therefore first briefly consider the statistical and scientific issues involved in the
distinction between the analysis of variance and the analysis of causes. I then discuss some
specific examples where this distinction is important. Finally, I discuss the implications of this
distinction for the theory and practice of epidemiology in a changing world.

THE ANALYSIS OF VARIANCE AND THE ANALYSIS OF CAUSES

The assessment of the relative importance of different risk factors for disease, particularly with regards to
genetic and environmental risk factors (nature vs nurture), has been an ongoing source of debate. In his
classic 1974 paper9, Lewontin showed that estimates of the percentage of population variation that is
explained by heritability, are not generalizable, since they depend on the distribution of genes and
environmental factors in a particular environment. This is one example of a more general phenomenon, in
that the percentage of population variation explained is not a valid or generalizable effect measure16.
Greenland et al17 18 have examined this issue in depth, and give a number of examples of hypothetical
studies in which the relative risk for an exposure-disease association is the same in two populations, but the
percentage of population variation explained by the exposure (the square of the correlation coefficient) is
different.

To consider An example that Rose previously used with respect to geographical populations19,
table 1 shows data on smoking and lung cancer in a hypothetical population in two different time periods.
In time period 1, 50% are smokers, whereas in time period 2, 90% are smokers. The incidence of lung
cancer in smokers (2,000 per 10,000), the incidence of lung cancer in non-smokers (200 per 10,000), and
the relative risks (10.0) are identical in the two time periods. However, the proportion of population
variation in lung cancer explained is 8.4% in time period 1 and only 2.0% in time period 2,;in contrast,
smoking accounts for 82% of lung cancer cases in period 1 and 89% in period 2.



These differences occur because of the differences in smoking prevalence in the two time
periods, which produce the non-intuitive finding that the proportion of population variation in lung
cancer explained by smoking is much lower in the time period in which more people smoke, and
in which smoking accounts for a higher proportion of lung cancer cases. More generally, in a time
period in which there is a wide range in smoking frequency (ranging from zero to several packs a
day) smoking would explain a high proportion of the variation in lung cancer incidence rates. In
another time period with little variation in smoking frequency (e.g. if almost everyone smoked a
pack a day), the relative risk for smoking and lung cancer would still be the same (i.e. 10 times),
but the proportion of population variation explained would be very low.

This problem of non-generalizability of the proportion of variation explained also applies when the
exposure and/or outcome variables are continuous, even if they are jointly normally distributed18.
The problems of non-generalizability also apply to correlation coefficients and standardized regression
coefficients16. In contrast, measures such as the incidence rate ratio (for a dichotomous exposure and
outcome) or the regression coefficient(s) (for a continuous exposure and outcome) are in principle valid
and generalizable effect measures16; . These statements should be qualified by noting that all effect
measures, including the relative risk, are only generalizable provided that we are prepared to assume that
there is no confounding or other bias, and that the distribution of effect modifiers is the same in the two
populations or time periods being compared; however, the percentage of population variation explained has
the additional problem that it is not generalizable if the prevalence of exposure is different in the two time
periods. A further implication is that comparing proportions of population variation explained, for two
different risk factors for disease, tells us nothing about which risk factor is the more important cause of
disease, in terms of relative risk, absolute risk, or population attributable risk.

A related issue is that it is meaningless to attempt to partition variation into the percentage
explained by various risk factors. In particular, it is invalid to partition the population variation of a
disease into the percentage explained by genetics (nature) and the percentage explained by the
environment (nurture) because their effects are non-additive (in fact, their joint effect is more than
additive):

“For example, if two men lay bricks to build a wall, we may quite fairly measure their
contribution by counting the number laid by each; but if one mixes the mortar and the
other lays the bricks, it would be absurd to measure their relative quantitative
contributions by measuring the volume of bricks and of mortar. It is obviously even more
absurd to … ascribe so many inches of a man’s height to his genes and so many to his
environment.” 9

EXAMPLE: PHENYLKETONURIA (PKU)

These issues have been discussed in the epidemiological context in Rothman’s theory of sufficient and
component causes, using the example of phenylketonuria (PKU)20. Although Rothman’s approach is
simplistic (in particular, it assumes that the exposures and outcome are all dichotomous), it can be used to
illustrate some basic concepts about causation, and to distinguish it from variation. Briefly, PKU is a
classic "genetic" disease which can be detected with a simple blood test at birth. PKU occurs due to a
combination of the presence of the PKU gene, and a diet high in phenylalanine. Each of these factors (the
PKU gene and a high-phenylalanine diet) are necessary but not sufficient causes of the disease, but
together they are sufficient causes, i.e. the causal constellation which involves both of these ‘exposures’ is
a sufficient causal constellation.

We live on a planet where almost everyone has a high phenylalanine diet, whereas only a small
proportion of people have the PKU gene (figure 2). Thus, the disease appears to be almost



entirely genetic, since almost everyone who has the gene develops the disease. Thus, virtually
100% of the population variation is explained by genetics, and almost none of it is explained by
diet. Nevertheless, changing the gene is currently impractical, and the solution (once the problem
has been identified) is to change the diet for the first few years of life. Thus, PKU is regarded as a
classically genetic disease, but the intervention is environmental. This is because PKU is
caused by the joint effect of the gene and the high-phenylalanine diet. In fact, 100% of cases of PKU are
caused by the gene (and essentially its heritability is 100%), since 100% of cases could in theory be
prevented by eliminating the gene from the population. However, 100% of cases can also be prevented by
reducing phenylalanine in the diet. Thus, the variation is almost 100% genetic and almost 0%
environmental (dietary) - these two figures, by definition, sum to 100%. However, the causation is 100%
genetic and 100% environmental, and these two figures necessarily sum to more than 100%.

In contrast, figure 3 shows a hypothetical planet in which everyone has the PKU gene, but there
is considerable variation in dietary phenylalamine intake. On this planet, any infant with a high
phenylalamine diet would develop PKU, whereas infants with a low phenylalamine diet would not;
thus, PKU would appear to be a nutritional disease with no genetic component (its heritability
would be zero). Now, the variation would be almost 100% environmental and almost 0% genetic.
Nevertheless, the causation would still be 100% genetic and 100% environmental.

On the other hand, figure 4 shows a planet in which there is variation in both the gene and the
diet. Now, the variation would be about 50% environmental and about 50% genetic. Nevertheless, the
causation would still be 100% genetic and 100% environmental.

These three examples, one of which approximates the real situation on planet earth and two of
which are hypothetical, illustrate that the amount of population variation due to a particular factor
can vary wildly between populations (or planets), even though it is an equally important cause in
each situation. Once again, the proportion of population variation explained is not generalizable,
and is not a valid effect measure16. In fact, almost every disease is 100% genetic and 100%
environmental, but the proportion of population variation due to genetics or environment (which
necessarily add up to 100%) will vary widely between populations.

We live on a planet which is changing over time, and in which genetic factors are changing
slowly, whereas environmental changes can be more rapid. This can mean that we can change
from one situation (e.g. figure 4) to another (e.g. figure 2) fairly rapidly, and this can produce
dramatic non-intuitive changes in the apparent relative importance of genetic and environmental
risk factors.

EXAMPLE: GENES, EXERCISE, ENERGY INTAKE AND OBESITY

I will now consider a more complex example, which has multiple risk factors, both genetic and non-
genetic, which are changing over time. Much has been written about the causes of the apparent global
epidemic of obesity21, which seems to even be occurring in our pets22, with considerable dispute as to
whether there is23, or is not24, an epidemic, and what the major causes (if any) may be25. I do not intend to
replicate these debates here. Rather, I will use a hypothetical example, loosely based on the current debates
about obesity, to illustrate the potential difficulties of determining the major causes of a disease/condition
in a world which is changing over time.

Briefly, and very simplistically, people become obese because they consume more energy (in the
form of food/drink) than they expend (in the form of exercise)25. This process is mediated by
individual metabolism which is strongly affected by genetics. There has been considerable debate about the
relative importance of these factors. Clearly, genetic factors play a role, but they cannot alone account for



the dramatic increases in obesity in recent decades because these have occurred too rapidly to be due to
genetic changes. Thus, the changes in the prevalence of obesity over time must primarily be due to
environmental changes. There has been considerable debate as to whether changes in diet or exercise are
more important in this regard. Clearly they are both important and they interact with each other (a decrease
in energy intake may be offset by a decrease in energy expenditure). One argument, among many, has been
that energy intake has increased relatively little, whereas energy expenditure has decreased markedly
because of changes in the urban environment; these include urban design, safety concerns (which
discourage walking), the rise of the car, and the near demise of public transport, as well as the many labour
saving devices that now permeate daily life26. We have (largely unintentionally) produced a society in
which exercise is no longer an integral part of daily life, either at work27 or outside of work26. Now,
exercise is something that we choose to do by going to the gym (figure 5), or by engaging in other physical
activity. Obviously, whether we choose to do this is strongly affected by a large number of societal and
individual factors including the availability of facilities, income, having the necessary time, and having the
ability and motivation to exercise in this way26.

Figure 6 (simplistically) illustrates the former situation in which exercise was, for most people, an
integral part of daily life, and there was a wide variation in exercise levels in the population. If we
assume simplistically that having (unknown) “obesity genes” and “not exercising” are each
necessary causes of obesity, and that their combination is a sufficient cause, then obesity was
100% genetic and 100% environmental, but the population variation was (hypothetically) about
50% for each.

Figure 7 (once again very simplistically) illustrates the situation that we have moved towards, in
which there is much less population variation in exercise levels. In this scenario, the main change
has been in exercise levels, but because of this change, exercise explains less of the population
variation, and a greater percentage than previously is explained by genetics. The ultimate example of this
hypothetical scenario is twin studies. Twins are perfectly matched on birth cohort, so experience the same
changes in environment over time. It follows that environmental factors account for little of the variation in
disease risk between twins, whereas genetic factors account for about two-thirds of the variation28 29. Thus
twin studies show very high heritability for obesity, even though time trend studies show that
environmental factors are of overwhelming importance28. If everyone lives in the same obesogenic
environment, then it is individual genetic susceptibility that determines which individuals become obese
and which don’t. Thus, factors at the individual level (i.e. genetics) appear to be more important than
factors at the environmental level since there is so little variation at the environmental level.

Figures 8 and 9 illustrate similar issues with regards to different individual-level risk factors,
namely exercise and energy intake. In this scenario, we have moved from a situation where there
was substantial variation in both factors (figure 8) to one in which exercise levels have reduced,
and there is correspondingly less population variation. In both situations, obesity occurs because
of an imbalance between energy intake and energy expenditure (in genetically susceptible
people). Thus, each factor is necessary, but not sufficient, for obesity to occur, e.g. lack of
exercise is necessary, but is not sufficient, because it may be countered by low energy intake. It
is the combination of the two factors that results in obesity. Thus, in both situations obesity is
100% attributable to low exercise and 100% attributable to high energy intake. However, the
reductions in exercise over time, which under this scenario are the main reason for the obesity
epidemic, result in the paradoxical situation where exercise accounts for a smaller proportion of
the population variation, and energy intake appears to have become relatively more important. It
is therefore crucial that cross-sectional data on population variation in disease are interpreted
carefully and appropriately in order to avoid incorrect policy decisions. In particular, if changes
over time are ignored, and the environment at a particular point in time is regarded as ‘fixed’,
then macro-level measures such as the provision of public transport, safe cities, etc26 will not be



considered, and there will be an inappropriate focus on changing the behaviour of individuals2, rather than
a more balanced approach which involves interventions both at the population and individual levels.

DISCUSSION: VARIATION, CAUSATION AND UBIQUITOUS RISK FACTORS

Are these scenarios realistic? Of course this is debatable, but they do offer simplistic hypothetical examples
of how changes in a risk factor over time (e.g. exercise) can cause an epidemic of disease, but can also
paradoxically make the risk factor appear less important, in terms of the population variation, even though
it remains of crucial importance, in terms of causation. Rose10 lists other similar examples of ubiquitous
risk factors, including softness of the public water supply in Scotland and cardiovascular disease rates,
dietary fat and coronary heart disease, and diet and blood pressure and overweight; further examples are
added by Khaw and Marmot in the recently published new edition of Rose’s book19. Rose, Khaw and
Marmot19 thus note that entire populations may be exposed to a particular risk factor and there is usually a
continuum of disease risk (rather than a clear distinction between the "sick" and the "healthy") across the
population. Small improvements in the health of a "sick population" may be more effective than attempts
to treat or prevent illness in "sick individuals”10 19. However, before such public health measures are
adopted, the important near-ubiquitous risk factors must first be identified.

In this context, a distinction should be drawn between Rose’s10 formulation of this problem, and
that presented here. Rose10 argues that when a risk factor is ubiquitous in a population, it may
strongly influence the population incidence of a disease, but may not identify high-risk individuals
within a population. This is technically correct, e.g. in a society where everyone smokes, smoking
will not identify high risk individuals for lung cancer. However, Rose goes further than this to
argue that “the determinants of individual cases, and the determinants of incidence rate” may be
different10. He thus moves from an argument about methods of identifying high risk cases, to an
argument about the causes of high risk cases. This has been quoted by most commentators on
Rose’s paper11 12 14 15 to argue that the causes of incidence are not necessarily the same as the
causes of cases. Some commentators14 have taken this distinction further and also argued that the
causes of incidence are necessarily “upstream” in Rose’s formulation whereas the causes of cases
are more “proximal”. Although the distinction between “upstream” and “downstream”,
“proximal” or “distal” causes or various levels of causation is important10 30-32, it is not essential to
the issues discussed in this paper. In fact, the examples discussed in this paper, mostly involving
relative “proximal” causes, illustrate that the causes of incidence are also the causes of individual
cases. For example, in a population where everyone smokes, smoking is a cause both of the
population incidence of lung cancer and of individual cases. The important distinction is not
between the causes of incidence and the causes of cases (all of the ubiquitous risk factors
considered here are causes of individual cases); rather it is between the causes of incidence and
the causes of population variation. In particular, a near-ubiquitous risk factor (e.g. smoking, high
cholesterol) can be an important cause of incidence, and of individual cases, but may explain little
of the population variation and may not be a useful means of identifying high risk individuals
within a particular population (this is essentially the point that Rose was making, but the
distinction was perhaps less clear than it could have been due to his use of the word “determinant”
in the latter context).

So can the role of near-ubiquitous risk factors be studied and their importance for disease causation
quantified? Yes they can, but it’s not easy, and they can’t always be studied with our “standard” methods
such as randomized controlled trials, cohort studies or case-control studies.



Firstly, it may be possible to identify important risk factors by comparisons between populations
or comparisons over time. For example, there are substantial variations in levels of exercise even
between various “Western” countries, with the lowest levels being observed in the USA, and the
highest levels in countries such as The Netherlands26. Many of the recent discoveries on the causes of
cancer (including dietary factors and colon cancer, HBV and liver cancer, aflatoxins and liver cancer,
human papilloma virus and cervical cancer) have their origins, directly or indirectly, in the systematic
international comparisons of cancer incidence conducted in the 1950s and 1960s33. These suggested
hypotheses concerning the possible causes of the international patterns, which were investigated in more
depth in further studies. In some instances these hypotheses were consistent with biological knowledge at
the time, but in other instances they were new and striking, and might not have been proposed, or
investigated further, if the population level analyses had not been done.

More recently, a huge amount of funding has been spent on studying the “known” causes of
asthma in affluent countries (e.g. air pollution, allergen exposure), and it is only now that
standardized studies are revealing major international differences in asthma prevalence that are
not explained by these “established” risk factors34 35. This has cast doubt on the “orthodox” theory in
which allergen exposure in infancy produces atopic sensitization and that continued exposure results in
asthma. The striking time trends in asthma prevalence also cast doubt in claims that asthma is a “genetic
disease” since it is strongly heritable36. Instead, attention is increasingly focusing on the possibility that
other factors in utero and in infancy may “programme” the immune system in a manner which increases
the risk of developing asthma and allergy36 37. Thus, the increases in asthma prevalence may be unrelated
to allergen exposure, but rather may reflect changes in immune function as a result of the “cleaner”
environment that occurs with Westernization. This evidence from epidemiological studies is now
supported by clinical and immunological studies, and is producing a major shift in etiologic thinking and
new research initiatives at the population, individual and micro levels. These developments may have
occurred anyway, but have been greatly enhanced by the epidemiological evidence from international
comparisons38.

Thus, comparisons between populations, and comparisons over time, have played a major role in
generating hypotheses and identifying important population risk factors for disease. They play a
particularly important role when important risk factors are ubiquitous, or nearly ubiquitous, in
particular countries, or in particular time periods. Of course, such studies are fraught with
difficulties because of problems of “the ecologic fallacy”39. Thus, ecologic studies provide virtually no
evidence as to causation. On the other hand, they may be the best way (or the only way) to identify the
major population-level determinants of disease, which can then be studied in depth using other study
designs. Thus, while ecologic studies are not sufficient in themselves for identifying risk factors or
establishing causation, they are an essential  part of a wider scientific process40. In this context, it is
important to emphasize that the appropriateness of any research methodology depends on the phenomenon
under study: its magnitude, the setting, the current state of theory and knowledge, the availability of valid
measurement tools, and the proposed uses of the information to be gathered. The appropriateness of a
research method in epidemiology is determined by the nature of the problem under consideration, the
community resources and skills available and the prevailing norms and values at the national, regional or
local level41. If we want to discover (or at least generate hypotheses about) the major population-level
determinants of disease, then ecologic studies will play an essential role in those process, despite their
methodological limitations.

Secondly, once a particular hypothesis has been proposed, studies can be conducted within
particular countries, even if there is little variation in exposure to a particular risk factor. For
example, suppose we have two countries, in one of which 50% of the population are smokers,
and in the other 95% are smokers. The percentage of population variation explained will be
different in the two countries, and will in fact be greater in the country in which only 50% smoke.



However, the incidence rate ratio comparing smokers and non-smokers, and the dose-response
curve, will be about the same in the two countries (i.e. about a 10-fold risk for smoking a pack a
day for many years). Thus, it is still possible in principle to identify the major risk factors for
disease, provided that there is at least some population variation. However, the problem is that
too often the major population risk factors will not be hypothesized (and therefore will not be
studied) when they are ubiquitous. In particular, lack of exercise has become such a pervasive
aspect of daily life that it requires a historical perspective to realize how much daily life has
changed, and that what appears ‘normal’ now would have been far from normal 50 years ago26.

So it is possible to study near-ubiquitous risk factors, some of which may be major causes of
disease at the population level. However, as illustrated in this paper, a factor that discourages the
investigation of near-ubiquitous risk factors is the continued misuse of measures such as the
percentage of population variation explained to identify the ‘major’ risk factors for disease,
genetic or non-genetic. As Stephen Rose notes6 “the practical relevance of claiming that some
character in the environment is 80% heritable provides no guidance for how to respond – except in a purely
ideological way”. However “in the years since 1974 many researchers have not heeded Lewontin’s
suggestion to ‘stop the endless search for better methods of estimating useless quantities’… heritability
estimates have continued to fuel policy and popular debates”7. In fact, Lewontin argues that to some extent
things have got worse with the revolution in studies at the level of DNA and RNA which have provided ‘a
powerful reinforcement of the erroneous notion that variation in phenotype is entirely the consequence of
genetic variation… If the ANOVA did nothing else it created a mindset that was much closer to the truth
than the naïve current prejudice that DNA has in it all the information necessary to specify the
organism.”5 Unfortunately, confusion between the analysis of variance and the analysis of causes is not
unique to genetic research, and has also influenced other areas of epidemiology. These issues are likely to
become, if anything, more important in the 21st century, as we increasingly see global changes in the
environment, with major effects on human health42 43.

If we are to move beyond being “prisoners of the proximate”32, and to move “upstream”31 41 to address the
major population-determinants of health, this requires us to move beyond studying variation to studying
causation. The most important population-level determinants of disease may vary little within a particular
population or time period, and therefore may not be easily identifiable with our “standard” epidemiological
methods. “Inferior” methods such as ecologic studies may play an important role in the cycle of hypothesis
generation and testing40 and more complex methods which do not fit neatly into the randomized controlled
trial paradigm may also be valuable44. Thus, it is unscientific to claim that some study designs are
inherently better than others, as if any single study could produce “the answer” to any scientific or public
health question. It’s important that, instead, epidemiological research is viewed as a process, in which all of
the different study designs may play a role, depending on the scientific and public health questions under
study. In turn, it is important that this research process takes into account the changes in populations over
time, which may result in important risk factors becoming ubiquitous. Sometimes the most important
causes of disease are invisible because they are everywhere.
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Table 1: Hypothetical example of the effect(s) of smoking on lung cancer in two different
time periods

                                                     Time period 1               Time period 2
                                                ------------------------      -----------------
                                                Smoking                     Smoking
                                                Yes      No                      Yes       No
                                                     ------------------------       -----------------

Lung                  Yes      1000      100       1800     20
Cancer No        4000     4900      7200     980

---------------------------------------------------------------------------------
                                                Total   5000      5000     9000     1000
---------------------------------------------------------------------------------
Incidence rate (per 10,000)                    2000     200       2000     200
---------------------------------------------------------------------------------
Risk ratio                                                              10.0                   10.0
Correlation                                                           0.29                   0.14
% variance explained                                          8.4%                  2.0%
Population Attributable Fraction (PAF)           82%                   89%
---------------------------------------------------------------------------------



Figure 1: Measures of variation and measures of causation for smoking and lung
cancer, by prevalence of smoking



Figure 2: Causation and variation in phenylketonuria (PKU) on planet earth: the
roles of genes and diet

NB: The shaded area is where most people “live”; the upper right hand internal box is the area in
which people get PKU



Figure 3: Causation and variation in phenylketonuria (PKU) on a planet far away:
the roles of genes and diet

NB: The shaded area is where most people “live”; the upper right hand internal box is the area in
which people get PKU



Figure 4: Causation and variation in phenylketonuria (PKU) on another planet far
away: the roles of genes and diet

NB: The shaded area is where most people “live”; the upper right hand internal box is the area in
which people get PKU



Figure 5: Exercise has become a matter of choice rather than a part of daily life



Figure 6: Causation and variance in obesity in the past: the roles of genes and
exercise

NB: The shaded area is where most people “live”; the upper right hand internal box is the area in
which people develop obesity



Figure 7: Causation and variance in obesity in the present: the roles of genes and
exercise

NB: The shaded area is where most people “live”; the upper right hand internal box is the area in
which people develop obesity



Figure 8: Causation and variance in obesity in the past: the roles of energy intake
and exercise

NB: The shaded area is where most people “live”; the upper right hand internal box is the area in
which people develop obesity



Figure 9: Causation and variance in obesity in the present: the roles of energy
intake and exercise

NB: The shaded area is where most people “live”; the upper right hand internal box is the area in
which people develop obesity


