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Abstract

Several authors have investigated conditions for a binary block design, D, to be max-

imally robust such that every eventual design obtained from D by eliminating r[υ] − 1

blocks, is connected, where r[υ] is the smallest treatment replication. Four new results for

the maximal robustness of D with superior properties are given. An extension of these

results to widen the assessment of robustness of the planned design is also presented.
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1. Introduction

The consequences of a disconnected block design may be so severe that the original

aims of the experiment will be spoiled: pairwise treatment contrasts will be inestimable

and it will not be possible to test the usual null hypothesis that all treatments have the

same effect. Researchers have investigated methods for guarding against a disconnected

design because of observation loss during the experiment; see the survey of methods given

by Godolphin (2004, 2006) which considers cases where it is not possible to anticipate

beforehand which observations may be missing. However, there are several experiments

where the loss of a whole block is more likely than the loss of an individual observation; for

example if the experimental units are the leaves on a plant then any damage to the plant

will invalidate the block. Ghosh (1982) considered this problem of robustness against the
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unavailability of data for a balanced incomplete block design (BIBD) and Ghosh et al.

(1983) extended this to m-associate partial BIBDs. Baksalary and Tabis (1987) derived

a condition for an arbitrary binary block design to be maximally robust against the

unavailability of data which is expressed solely in terms of the design parameters. These

authors and also Sathe and Satam (1992) gave further conditions for maximal robustness

that require the additional knowledge of how treatments are allocated to blocks. Related

work is due to Bhaumik and Whittinghill (1991) and Morgan and Parvu (2008), who

considered the optimality and relative efficiency of eventual designs which are obtained

after the loss of a fixed number of blocks when the planned design is a BIBD.

The purpose of this paper is to show that the Baksalary-Tabis and the Sathe-Satam

approaches do not take full account of the information given by basic design parameters,

thus implying that stronger conditions exist. New conditions for a binary block design

to be maximally robust are given which either improve on the Baksalary-Tabis and

Sathe-Satam conditions or coincide with them. Like the Baksalary-Tabis conditions,

the results are easy to apply and can be used before a decision on the design for the

experiment is made. Furthermore, these conditions can be widened to assess designs

for their robustness against the loss of a specified number of blocks without necessarily

being maximally robust. A number of illustrative examples are presented.

2. Baksalary-Tabis and Sathe-Satam conditions

The notation of Baksalary and Tabis (1987) is adopted here. Let D = BD(υ, b, n, N)

denote a binary block design on υ treatments applied to n experimental units arranged

in b blocks with υ × b treatment-block incidence matrix N . The block sizes and the

treatment replication numbers are given, respectively, by

k[1] ≥ k[2] ≥ · · · ≥ k[b] and r[1] ≥ r[2] ≥ · · · ≥ r[υ]. (2.1)

Consider an eventual design, D# = BD(υ, b−r[υ]+1, n#, N#) which is realized after

the loss of r[υ] − 1 blocks from D. Ghosh (1982) has defined D to be maximally robust

against the unavailability of data and with respect to estimability of treatment contrasts

if D# is connected irrespective of the choice of blocks removed from D. In this paper, a
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design D having the property detailed by Ghosh will be described as being ‘maximally

robust to loss of blocks’: this alternative phrase being considered more descriptive given

the numerous approaches to dealing with potential observation loss since 1982. The

following theorem, derived by Baksalary and Tabis (1987) gives a sufficient condition for

the maximal robustness of a block design in terms of block sizes of the design.

Theorem 1. For a binary design, D, the condition

k[r[υ]] + k[b] > υ. (2.2)

is sufficient for D to be maximally robust to loss of blocks and with respect to estimability
of treatment contrasts.

Suppose that K is the vector of block sizes, Kδ is the diagonal matrix with successive

elements of K on the diagonal and K−δ is the inverse of Kδ. Let κ∗ denote the smallest

off-diagonal element of NK−δN ′ and let λ∗ be the smallest off-diagonal element of NN ′.

Two further sufficient conditions for the maximal robustness of D are given by Baksalary

and Tabis (1987) in terms of κ∗ and λ∗. We cite this result in the improved form due to

Sathe and Satam (1992), which requires the terms

p
(

k[j], ρ
)

=
k[j]{ρ}

(

k[j] − k[j]{ρ}
)

k[j]
and q

(

k[j], ρ
)

= k[j] p
(

k[j], ρ
)

, (2.3)

where k[j]{ρ} = min
{

Int
(

1
2
k[j]

)

, ρ
}

and Int
(

1
2
k[j]

)

denotes the integer part of 1
2
k[j].

Theorem 2. Let D = BD(υ, b, n, N) be a binary block design and let κ∗ and λ∗ be the
minimal concurrencies defined above. Then each of the two conditions

(i) κ∗ >

∑r[υ]−1

j=1 p
(

k[j], k[b]
)

k[b](υ − k[b])
and (ii) λ∗ >

∑r[υ]−1

j=1 q
(

k[j], k[b]
)

k[b](υ − k[b])
(2.4)

is sufficient for D to be maximally robust to loss of blocks and with respect to estimability
of treatment contrasts.

3. Conditions for Maximal Robustness in terms of Basic Design Parameters

Two conditions for maximal robustness to loss of blocks are derived that improve on

or complement the condition of Theorem 1. This is possible because the Baksalary-Tabis

argument leading to condition (2.2) makes use of available information on block sizes

but does not take full account of the distribution of treatment replication numbers which

also affects the connectivity of D#. Two preliminary lemmas are required.

3



Lemma 1. Let x0 = 1 and for each m = 1, 2, . . . define

xm = r[υ−ym+1] − r[υ] + 1, and ym = k[b−xm−1+1]. (3.1)

Then x0, x1, x2, . . . and y1, y2, . . . are monotonically nondecreasing sequences of integers
which terminate at the stop values x# and y#, respectively, where 1 ≤ x# ≤ r[1]− r[υ]+1
and k[b] ≤ y# ≤ k[1].

Proof: From (2.1) x1 − x0 = r[υ−y1+1] − r[υ] ≥ 0 and y2 − y1 = k[b−x1+1] − k[b] ≥ 0 and

a simple induction argument shows that x0, x1, x2, . . . and y1, y2, . . . are monotonically

nondecreasing sequences of positive integers. Stop values for the sequences are attained

if there is a value for m such that xm+1 = xm or ym+1 = ym; then x# = xm and y# = ym.

Otherwise the stop values are y# = k[1] and x# = r[1] − r[υ] + 1, which follow because

υ− ym + 1 ≥ 1 for each m, since for a binary design the block-size ym cannot be greater

than υ, and b− xm−1 + 1 ≥ 1 follows for any m from the constraint 1 ≤ r[m] ≤ b.

Now consider a design D# which is obtained after the loss of an arbitrary set of

r[υ] − 1 blocks from D. The next result gives lower bounds for the number of blocks and

for the number of treatments occurring in these blocks for any subset of blocks from D#

that can be regarded as a sub-design of D.

Lemma 2. Suppose that S is a nonempty subset of the blocks of D# with the property
that any treatment which occurs in a block belonging to S has all of its replicates occurring
in blocks contained in S. Then the number of blocks in S is at least as large as x# and
the number of treatments occurring in the blocks belonging to S is at least as large as y#.

Proof: The largest block in the set S has size at least as large as y1 = k[b]. Since this

is a block of D it must contain a treatment replicated at least r[υ−k[b]+1] times in D.

Therefore this treatment is replicated at least x1 = r[υ−k[b]+1] − r[υ] +1 times in S, hence

S contains at least x1 blocks. But this implies that the largest block in S has size at

least as large as y2 = k[b−x1+1] experimental units; and this shows in turn that S contains

at least x2 = r[υ−y2+1] − r[υ] + 1 blocks. Continuing this argument iteratively shows that

there is a treatment in a block belonging to S which is replicated at least x# times and

the largest block in S has size at least as large as y# = k[b−x#+1]. Lemma 2 follows.

Theorem 3. The design D is maximally robust to loss of blocks and with respect to
estimability of treatment contrasts provided that

k[r[υ]] + k[b−x#+1] > υ. (3.2)
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Proof: Assume that D# is a disconnected design. It follows from the P -process of

Godolphin (2004) that the blocks of D# can be arranged in two nonempty sets S1 and

S2 such that no treatment allocated to blocks in S1 occurs in any of the blocks in S2.

Let S1 contain the largest block of D# which has block-size no smaller than k[r[υ]] so the

blocks in S1 contain at least k[r[υ]] treatments. By Lemma 2, the blocks of S2 contain

at least y# = k[b−x#+1] treatments, which implies that k[r[υ]] + k[b−x#+1] ≤ υ. Condition

(3.2) ensures that the original assumption is invalid, i.e. D# is a connected design.

That the condition (3.2) can provide a significant improvement on condition (2.2) is

apparent from the following examples.

Example 1 Twelve treatments are allocated to 39 units arranged in six blocks with

sizes k[1] = 9, k[2] = 8, k[3] = 7, k[4] = 6, k[5] = 5 and k[6] = 4; treatment replications are

r[i] = 4 (i = 1, . . . , 6), r[i] = 3 (i = 7, 8, 9) and r[i] = 2 (i = 10, 11, 12). Then k[r[υ]]+k[b] =

k[2] + k[6] = 12 so condition (2.2) fails. However x1 = r[9] − r[12] + 1 = 2, y2 = k[5] = 5,

x2 = r[8] − r[12] + 1 = 2, therefore x# = 2 so k[r[υ]] + k[b−x#+1] = k[2] + k[5] = 13 > υ, i.e.

condition (3.2) is satisfied and we conclude that the design is maximally robust.

Example 2 A design D for six treatments allocated to 120 units arranged in 40 blocks

consists of a combination of four designs: a BIBD(5, 10, 20, N1) design for five treatments

in ten blocks of size 2 with incidence matrix N1 (10 blocks of size 2); BIBD(5, 10, 30, N2)

and BIBD(5, 10, 30, N3) designs (20 blocks of size 3); a reinforced BIBD in the sense of

Notz et al. (1994), i.e. a BIBD(5, 10, 30, N4) plus an added sixth treatment in each block

(10 blocks of size 4). The replication numbers are r[i] = 22 for 1 ≤ i ≤ 5 and r[6] = 10.

Thus k[r[υ]] + k[b] = k[10] + k[40] = 6 so condition (2.2) fails. However y1 = k[40] hence

x1 = r[6−k[40]+1] − r[6] + 1 = r[5] − r[6] + 1 = 13; also x2 = 13 = x# so condition (3.2)

is satisfied, i.e. k[10] + k[40−13+1] = 7 > υ. The design is shown to be maximally robust

although the Baksalary-Tabis condition does not detect this.

It is clear that the argument based on the P -process in the proof of Lemma 2 can

be amended so that the roles of block sizes and treatment replication numbers are inter-

changed. The following result provides a criterion which complements condition (3.2).

Theorem 4. The design D is maximally robust to loss of blocks and with respect to
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estimability of treatment contrasts provided that

r[1] + r[υ−y#+1] > b+ r[υ] − 1. (3.3)

Proof: Assume that D# is disconnected and, as in Theorem 3, let the blocks of

D# be arranged in two sets S1 and S2 such that there is no overlap of treatments

occurring in blocks of S1 with those occurring in blocks of S2. Let the treatment

with largest replication number, which is at least as large as r[1] − r[υ] + 1, occur

in a block of S1. Thus S1 contains at least r[1] − r[υ] + 1 blocks. By Lemma 2 S2

contains at least r[υ−y#+1] − r[υ] + 1 blocks. This gives a contradiction if the sum

of blocks in these two sets is larger than the total number of blocks in D#, i.e.
(

r[1] − r[υ] + 1
)

+
(

r[υ−y#+1] − r[υ] + 1
)

> b− r[υ] + 1,

which is condition (3.3).

Although the inequalities (3.2) and (3.3) are obtained from the same information in

the form of design parameters consisting of block sizes and replication numbers, these

two conditions do sometimes perform differently. In particular, condition (3.3) fails to

show that the designs in Examples 1 and 2 are maximally robust, unlike condition (3.2).

The following two examples show that (3.3) can succeed where (3.2) does not.

Example 3 Eight treatments are allocated to 52 units arranged in ten blocks with sizes

k[i] = 8 (i = 1, 2, 3) and k[i] = 4 (4 ≤ i ≤ 10); treatment replications are r[1] = 9,

r[i] = 7 (2 ≤ i ≤ 4), r[i] = 6 (5 ≤ i ≤ 7) and r[8] = 4. Condition (3.2) fails for this

design D. However y1 = k[10] = 4, x1 = r[υ−y1+1] − r[υ] + 1 = r[5] − r[8] + 1 = 3 and

y2 = k[b−x1+1] = k[8] = 4; therefore y# = 4 so that r[1]+r[υ−y#+1] = 15 and b+r[υ]−1 = 13;

i.e. condition (3.3) is valid in this case and D is maximally robust.

Example 4 Let D consist of b blocks of size k0 containing υ−1 treatments with common

replication number r0 together with a control treatment which occurs in every block. It

is evident from the P -process that if blocks are lost from D then the eventual design

will be connected, as long as υ treatments occur in it, since all remaining blocks contain

the control. In particular, the design is maximally robust although this property is not

established from condition (2.2) or from (3.2) if k0 ≤ υ
2
. For this design D condition

(3.3) is r[1] + r[υ−k0+1] = b + r0 > b + r0 − 1 = b + r[υ] − 1, confirming D is maximally
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robust.

An immediate corollary of Theorem 4 states that the condition

r[1] + r[υ−k[b]+1] > b+ r[υ] − 1. (3.4)

is sufficient for D to be maximally robust to loss of blocks and with respect to estima-

bility of treatment contrasts. Conditions (3.3) and (3.4) do not appear to be mentioned

in the literature although they provide useful and simple preliminary checks for max-

imal robustness by using just the information on block sizes and replication numbers.

Naturally, (3.3) is preferred to (3.4) in general.

4. Conditions for Maximal Robustness using Minimal Concurrence

Baksalary and Tabis (1987) and Sathe and Satam (1992) have given further conditions

for maximal robustness to loss of blocks and with respect to estimability of treatment

contrasts which take account of the design configuration for D in terms of the incidence

matrix N , as summarized by Theorem 2. Conditions (2.4) (i) and (ii) focus attention on

the weighted minimal concurrence and the minimal concurrence by utilizing κ∗ and λ∗,

the smallest off-diagonal elements of NK−δN ′ and NN ′ respectively. In this section it is

shown, firstly, that improvements to the conditions of Theorem 2 are made by effectively

reducing the bounds which κ∗ and λ∗ need to attain in order to establish that the design

is maximally robust. It is helpful to note the following lemma which is a stand-alone

result of considerable interest in its own right.

Lemma 3. Let xm and ym be defined by (3.1) with stop values x# and y# respectively.
If either (i) x# > 1

2

(

b− r[υ] + 1
)

, or (ii) y# > 1
2
υ, then D is maximally robust to loss of

blocks and with respect to estimability of treatment contrasts.

Proof: Lemma 2 shows that either of conditions (i) or (ii) is sufficient to deny the

existence of two sets of blocks of D# such that treatments occurring in blocks from one

set do not overlap with treatments occurring in blocks from the other.

It is clear that further investigation of conditions for maximal robustness of D is only

required if the stop values x# and y# for this design are sufficiently small so that both

conditions of Lemma 3 fail. Such designs are not uncommon, however; for instance,
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neither of the conditions of the Lemma are satisfied by any of Examples 1, 2 or 3. In

what follows it is assumed that conditions (i) and (ii) of Lemma 3 do not apply.

Theorem 5. Let D = BD(υ, b, n, N) be a binary block design and let κ∗ and λ∗ be
defined as in Theorem 2. Let x0 = 1 and for each m = 1, 2, . . . define xm and ym by
(3.1) and let x# and y# be the respective stop values. Then any one of the two conditions

(i) κ∗ >

∑r[υ]−1

j=1 p
(

k[j], y#
)

y# (υ − y#)
and (ii) λ∗ >

∑r[υ]−1

j=1 q
(

k[j], y#
)

y# (υ − y#)
, (4.1)

is sufficient for D to be maximally robust to loss of blocks and with respect to estimability
of treatment contrasts, with p(., .) and q(., .) defined by (2.3). Furthermore, the bounds
in (i) and (ii) coincide with or are lower than the corresponding bounds in Theorem 2.

Proof: Assume that D# is disconnected and, therefore, that the blocks of D# are

arranged in nonempty sets S1 and S2 such that the treatments which occur in the blocks

in S1 do not occur in any of the blocks in S2. From the proof of Theorem 3 it follows

that the blocks of S1 contain at least k[r[υ]] treatments and that the blocks of S2 contain

at least y# = k[b−x#+1] treatments. Thus suppose that υ0 treatments occur in blocks in

one set and υ − υ0 treatments occur in blocks in the other, where 0 < υ0 ≤
1
2
υ. Then

0 ≤ k[b] ≤ y# ≤ υ0 ≤
1
2
υ. (4.2)

Furthermore it follows easily from Result 2 of Sathe and Satam (1992, p.97) that

p
(

k[j],m2

)

m2(υ −m2)
≤

p
(

k[j],m1

)

m1(υ −m1)
, (4.3)

whenever m1, m2 are integers satisfying 0 < m1 < m2 ≤ Int
(

1
2
υ
)

. Applying (4.3) to the

inequalities (4.2), we have

∑r[υ]−1

j=1 p
(

k[j], υ0
)

υ0(υ − υ0)
≤

∑r[υ]−1

j=1 p
(

k[j], y#
)

y#(υ − y#)
≤

∑r[υ]−1

j=1 p
(

k[j], k[b]
)

k[b](υ − k[b])
. (4.4)

Now since D# is disconnected by assumption it follows from a result of Sathe and Satam

(1992, p.95) that the term κ∗ satisfies the inequality

κ∗ ≤

∑r[υ]−1

j=1 p
(

k[j], v0
)

v0(υ − v0)
. (4.5)
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However, υ0 is unknown so a bound for the right hand side of (4.5) is required. The

upper bound of Sathe and Satam (1992) is the final term on the right side of (4.4); but

the upper bound given by the central term in (4.4) will either coincide with or be smaller

than the Sathe-Satam bound. The result (i) of the Theorem follows. The result (ii) of

the Theorem is derived in a similar way.

When determining the properties of a suggested design D, the evaluation of the stop

values x# and y# from (3.1) is a recommended preliminary step. If D is maximally

robust but x# and y# are such that conditions (i) and (ii) of Lemma 3 do not apply, it is

possible that either condition of Theorem 5 may detect this property even though both

conditions of Theorem 2 do not. This is illustrated by the following example.

Example 5 Let D be a cyclic design consisting of 10 treatments, arranged in 12 blocks

of size five and two further blocks of size four:

1 2 3 4 5 6 7 8 9 10 1 2 3 4

2 3 4 5 6 7 8 9 10 1 2 3 4 5

3 4 5 6 7 8 9 10 1 2 3 4 5 6

6 7 8 9 10 1 2 3 4 5 6 7 8 9

7 8 9 10 1 2 3 4 5 6 7 8

where columns show the blocks. In this case the terms x# = x2 = r[6] − r[10] +1 = 3 and

y# = y2 = k[12] = 5. The upper bound on the right hand side of equation (4.1) (i) is given

by
{

4 p(5, 5)
}

/(5 × 5) = 24
125

. Since k[b] = 4 then the corresponding bound on the right

hand side of equation (2.4) (i) is
{

4 p(5, 4)
}

/(4 × 6) = 1
5
. The value for the weighted

minimal concurrence κ∗ is 1
5
so condition (4.1) (i) shows that design D is maximally

robust but the Sathe-Satam condition (2.4) (i) does not.

The bound on the right side of (4.1) (ii) is given by
{

4 q(5, 5)
}

/25 = 24
25

and the

bound on the right side of (2.4) (ii) is
{

4 q(5, 4)
}

/24 = 1. The minimal concurrence λ∗

is unity which confirms that D is maximally robust but, as in the previous case, this is

not picked up by the Sathe-Satam condition (2.4) (ii).

If for some design D the x, y sequence (3.1) does not advance beyond y# = k[b] then

it may be possible to strengthen conditions (4.1) which coincide with conditions (2.4).
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Sathe and Satam (1992, Corollary 1) point out that inequalities (2.4) can be improved

if λ∗, the maximum concurrence between any pair of treatments, is suitably small, i.e.

λ∗ < r[υ] − ω + 1, (4.6)

where ω is the maximum number of identical blocks of size k[b]. However, it is often the

case that (4.6) itself can be sharpened by using an argument which is similar to that of

Lemma 2. To see this we require the following result.

Lemma 4. Suppose that S is a nonempty subset of the blocks of D# with the property
that any treatment which occurs in a block belonging to S has all of its replicates occurring
in blocks belonging to S. If the condition

λ∗ < r[υ−k[b]+1] + r[υ−k[b]+2] − r[υ] − ω + 1, (4.7)

is satisfied then the blocks of S contain at least k[b] + 1 treatments.

Proof: The blocks of S must contain at least k[b] treatments. Assume that they contain

exactly k[b] treatments; then S must consist of identical blocks of size k[b], hence no more

than ω blocks are contained in S.

Consider any two treatments belonging to the blocks of S; note that two such treat-

ments exist since k[b] ≥ 2. The total number of blocks in D containing one or both of

these treatments is at least equal to r[υ−k[b]+1] + r[υ−k[b]+2] − λ∗ and the number of blocks

in S containing one or both of these treatments cannot be smaller than this quantity by

an amount bigger than r[υ] − 1. Therefore a necessary condition for the blocks of S to

contain exactly k[b] treatments is given by

r[υ−k[b]+1] + r[υ−k[b]+2] − λ∗ − r[υ] + 1 ≤ ω,

and the contradiction of (4.7) establishes the lemma.

The sensitivity of condition (4.7) compared to (4.6) is measured by the difference

r[υ−k[b]+1] + r[υ−k[b]+2] − 2r[υ],

which is strictly positive when at most k[b] − 1 treatments have the minimal replication

number r[υ] and may be large for some designs compared to the maximum concurrence

λ∗. The following result is an immediate consequence of Lemma 4 and Theorem 5.
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Theorem 6. Let D = BD(υ, b, n, N) be a binary block design such that (4.7) is satisfied
and let κ∗ and λ∗ be defined as in Theorem 2. Then any one of the two conditions

(i) κ∗ >

∑r[υ]−1

j=1 p
(

k[j], k[b] + 1
)

(k[b] + 1) (υ − k[b] − 1)
and (ii) λ∗ >

∑r[υ]−1

j=1 q
(

k[j], k[b] + 1
)

(k[b] + 1) (υ − k[b] − 1)
, (4.8)

is sufficient for D to be maximally robust to loss of blocks and with respect to estimability
of treatment contrasts, with p(., .) and q(., .) defined by (2.3).

We complete this section with examples to illustrate a number of points.

Example 6 To see that conditions (i) and (ii) are not equivalent for each of Theorems

2, 5 and 6, consider an equi-replicate variance balanced design D with r[υ] = 5. This

design has eight treatments arranged in eight blocks of size four and four blocks of size

two, given in Table 1 of Gupta and Jones (1983, p. 436):

1 1 1 1 2 2 3 4 1 2 3 4

2 2 3 4 3 5 5 5 5 6 7 8

3 7 6 6 4 7 6 6

4 8 8 7 5 8 8 7

where columns show the blocks. The concurrencies are κ∗ = 1
2
, λ∗ = 1 and λ∗ = 2.

The design D is maximally robust since condition (i) of Theorems 2 and 5 is satisfied,

i.e. κ∗ > 1
3
, although condition (ii) is λ∗ > 4

3
which fails for this design. In this case

y# = 2 = k[b] and condition (4.7) is λ∗ < 5 so Theorem 6 applies; however conditions (i)

and (ii) are κ∗ >
4
15

and λ∗ >
16
15
, i.e. again one condition is satisfied but not the other.

Example 7 A regular group divisible design D for six treatments consists of twenty

blocks of size three, given by

1 1 1 1 2 2 2 3 3 1 1 1 1 1 1 2 2 2 2 2

2 2 4 5 3 4 5 4 4 3 3 3 3 3 3 4 4 4 4 4

3 4 6 6 6 5 6 5 6 5 5 5 5 5 5 6 6 6 6 6

where columns show the blocks. This design is cited as R53 on page 190 of Clatworthy

(1973). None of the conditions of Theorems 1 to 5 are satisfied for design D, although

several bounds are attained but not surpassed. For instance:
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condition (3.2) is not valid since k[r[υ]] + k[b−x#+1] = 3 + 3 and υ = 6;

Lemma 2 (ii) is not valid since y# = 3 and 1
2
υ = 3;

condition (4.1) (i) is not valid since
∑r[υ]−1

j=1 p
(

k[j], y#
)

/{y# (υ−y#)} = 2
3
and κ∗ =

2
3
;

condition (4.1) (ii) is not valid since
∑r[υ]−1

j=1 q
(

k[j], y#
)

/{y# (υ−y#)} = 2 and λ∗ = 2.

Furthermore the maximum concurrence is λ∗ = 7 but the bound given by inequality

(4.7) of Lemma 4 has value 5 so Theorem 6 cannot apply. Therefore maximal robustness

is not established for this design. Notwithstanding the lack of evidence, however, Sathe

and Satam (1992) do infer that the design cited as R53 is maximally robust.

To see by inspection that the Sathe-Satam conjecture is incorrect it suffices to lose

r[υ] − 1 = 9 blocks and leave an eventual design D# which is disconnected. Let the first

nine blocks in the displayed design be removed. The remaining blocks split into two sets

S1 and S2 such that the six blocks of S1 contain all odd-numbered treatments and the

five blocks of S2 contain all even-numbered treatments. Hence R53 is not maximally

robust. This example illustrates that the conditions of the theorems in this note appear

to be sensitive to detecting maximal robustness, at least for some designs.

Examples 8a and 8b Let the design Da consist of ten treatments arranged in twenty

blocks of size four:

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

2 3 4 5 1 3 4 5 1 2 2 3 4 5 1 3 4 5 1 2

6 7 8 9 10 6 7 8 9 10 6 8 9 10 7 6 8 9 10 7

7 8 9 10 6 8 9 10 6 7 8 9 10 7 6 9 10 7 6 8

where columns show the blocks. This design represents two isomorphic copies of the

singular group divisible design cited as S9 on page 108 of Clatworthy (1973). It is not

surprising to find that Da is maximally robust, indeed both conditions of Theorem 5 are

satisfied. Suppose, however, that another design Db is used which differs from Da in that

the penultimate block (4, 1, 10, 6)′ is replaced by (4, 2, 10, 8)′. It is interesting to ask if

this minor amendment implies a different robustness status for Db.

It turns out that none of the conditions of Theorems 1 to 5 are satisfied for Db. In

particular the bounds for conditions (4.1) (i) and (ii) of 1
4
and 1 are attained, but not
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surpassed, by concurrencies κ∗ and λ∗ respectively. Moreover, the maximum concurrence

λ∗ = 7 and the bounds given by inequalities (4.6) and (4.7) are 7 and 9 respectively, so

Theorem 6 applies. The bounds for conditions (4.8) (i) and (ii) of 6
25

and 24
25

are surpassed

by concurrencies κ∗ and λ∗ respectively, implying that design Db is maximally robust.

Note that condition (4.7) of Lemma 4 has a key part to play in this conclusion since the

Sathe-Satam condition (4.6) on its own does not show that Theorem 6 is admissible.

5. Further Developments

Key issues requiring decisions by the statistical team responsible for design selection

should include robustness considerations if, as is often the case, there is a possibility of

observation loss during the experiment. Block sizes and treatment replication numbers

affect the vulnerability of a planned experiment where the loss of whole blocks is thought

to be a possibility. Theorems 3 and 4 and Lemma 3 provide basic conditions for maximal

robustness which depend, in general, on the evaluation of x# and y# from Lemma 2

using only the information which is available on block sizes and replication numbers. In

particular, if the block sizes are suitably large then any binary design which is arranged

in blocks of these sizes will be maximally robust, whatever the configuration.

If experimental constraints do not allow for block sizes or treatment replications which

satisfy these basic conditions, then other factors are required to discriminate between

possible competing designs for the experiment. Godolphin (2006) pointed out that block

designs that are equally efficient are not necessarily equally vulnerable to observation

loss, and a similar conclusion can be anticipated if there is a tendency for whole blocks to

be invalidated. It is sensible to concentrate on the concurrence or weighted concurrence

between any pair of treatments and compare κ∗ or λ∗ with the bounds given in Theorems

5 or 6. For a proper design, where all block sizes are the same, conditions (i) and (ii) of

Theorems 5 or 6 are equivalent and this situation is conveniently summarized in Table 1.

For values of υ ranging from 4 to 12 and for all block sizes satisfying 2 ≤ k ≤ υ
2
, Table 1

specifies the minimal concurrence sufficient to ensure maximal robustness of the design

for a range of values of the smallest treatment replication from r[υ] = 2 up to r[υ] = 20.

Note that Table 1 can also be used for designs with variable block sizes. If a design D
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r[υ]
υ k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4 2 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5

5 2 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4

6 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3
3 1 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 5 5

7 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
3 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4

8 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
3 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3
4 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5

9 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
3 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3
4 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

10 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
3 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
4 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4
5 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5

11 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
3 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
4 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3
5 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

12 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
4 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3
5 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4
6 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5

Table 1: Minimum values of λ∗ to ensure maximal robustness of a proper design; υ = number of
treatments, k = common block size and r[υ] = smallest replication number.
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has block sizes given by (2.1) then it is straightforward to see that D will be maximally

robust if the minimum concurrence λ∗ is at least as large as the value indicated in Table 1,

with k[1] replacing k in the table. This is particularly helpful if the entries in the table are

the same for each block-size; for example, if D has nine treatments arranged in blocks of

size 2, 3 and 4, with minimal replication number r[υ] = 4, and if every pair of treatments

occurs in a block at least once then D is maximally robust. Otherwise, the entry in the

table for the largest block-size applies; for example, if υ = 8, r[υ] = 5 and the two block

sizes are k[1] = 4 and k[8] = 2 then the table shows that a value of 2 for the smallest

concurrence λ∗ is sufficient for maximal robustness. However, in these circumstances

an improved condition may be identified by other results of section 4; for example, the

variance balanced design D of Example 6 has parameters υ = 8, r[υ] = 5, k[1] = 4 and

k[8] = 2 but D is maximally robust, even though λ∗ = 1, as verified by the condition on

weighted concurrencies.

A useful extension of the theorems established in this paper is that they can be

widened to provide conditions for assessing robustness of designs to the loss of b∗ blocks,

where b∗ is smaller than r[υ] − 1. These conditions will have particular value in experi-

mental situations where the smallest replication number, r[υ], is relatively large and the

loss of as many as r[υ] − 1 blocks would be considered a remote possibility; in such cases

it may be more relevant to consider the consequences of the loss of smaller numbers of

blocks. The authors are grateful to a referee for the suggestion that the results in this

paper can be generalized to cover the concept of the robustness of a design against the

loss of b∗ blocks, for any specified b∗ such that 1 ≤ b∗ ≤ r[υ] − 1. This generalization

requires an adjustment to the definitions of xm and ym given in Lemma 1. Let x0,b∗ = 1

and for each m = 1, 2, . . . define

xm,b∗ = r[υ−ym,b∗+1] − b∗, and ym,b∗ = k[b−xm−1,b∗+1]. (5.1)

The argument of Lemma 1 shows that {xm,b∗} and {ym,b∗} are monotonically nonde-

creasing sequences of integers which terminate at the stop values x#,b∗ and y#,b∗ , where

1 ≤ x#,b∗ ≤ r[1]−b∗ and k[b] ≤ y#,b∗ ≤ k[1]. Let D#,b∗ denote an eventual design obtained

by the loss of any b∗ blocks from D. The argument of Lemma 2 establishes that if S is

a nonempty subset of the blocks of D#,b∗ with the property that any treatment which
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occurs in a block belonging to S has all of its replicates occurring in blocks contained in

S, then S contains at least x#,b∗ blocks and at least y#,b∗ treatments. Theorems 3 to 6

and Lemma 3 can then be extended to cover the loss of b∗ blocks, with b∗ = r[υ] − 1 as a

particular case, by replacing x#, y# with x#,b∗ , y#,b∗ and r[υ]− 1 with b∗, as necessary.

For example, Theorem 5 can be generalized as follows:

Theorem 7. Let D = BD(υ, b, n, N) be a binary block design and let κ∗ and λ∗ be
defined as in Theorem 2. Let x0,b∗ = 1 and for each m = 1, 2, . . . define xm,b∗ and ym,b∗

by (5.1) and let x#,b∗ and y#,b∗ be the respective stop values. Then any one of the two
conditions

(i) κ∗ >

∑b∗
j=1 p

(

k[j], y#,b∗

)

y#,b∗ (υ − y#,b∗)
and (ii) λ∗ >

∑b∗
j=1 q

(

k[j], y#,b∗

)

y#,b∗ (υ − y#,b∗)
, (5.2)

is sufficient for D to be robust against the loss of b∗ blocks and with respect to the
estimability of treatment contrasts, with p(., .) and q(., .) defined by (2.3).

Example 7 (revisited) Consider again the regular group divisible design for six treat-

ments arranged in twenty blocks of size three, cited as R53 by Clatworthy (1973). In

this case r[υ] = 10 and it is shown that this design is not robust to the loss of 9 blocks,

i.e. it is not maximally robust. Suppose however that b∗ = 8 and that x#,8, y#,8 are

defined by (5.1). It follows that

∑8
j=1 p

(

k[j], y#,8

)

y#,8 (υ − y#,8)
=

16

27
<

2

3
= κ∗.

Hence from Theorem 7 (i) it is established that any eventual design, D#,8, formed by the

removal of 8 blocks is connected. The same conclusion is also reached after examining

condition (ii) of Theorem 7. It follows that the Clatworthy design R53 is robust to the

loss of up to 8 blocks, although this design is not maximally robust.
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