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ABSTRACT

Pathogens such as MERS-CoV, influenza A/H5N1 and influenza A/H7N9 are currently generating sporadic
clusters of spillover human cases from animal reservoirs. The lack of a clear human epidemic suggests that
the basic reproductive number R0 is below or very close to one for all three infections. However, robust
cluster-based estimates for low R0 values are still desirable so as to help prioritise scarce resources between
different emerging infections and to detect significant changes between clusters and over time. We developed
an inferential transmission model capable of distinguishing the signal of human-to-human transmission from
the background noise of direct spillover transmission (e.g. from markets or farms). By simulation, we showed
that our approach could obtain unbiased estimates of R0, even when the temporal trend in spillover exposure
was not fully known, so long as the serial interval of the infection and the timing of a sudden drop in spillover
exposure were known (e.g. day of market closure). Applying our method to data from the three largest
outbreaks of influenza A/H7N9 outbreak in China in 2013, we found evidence that human-to-human
transmission accounted for 13% (95% credible interval 1%–32%) of cases overall. We estimated R0 for the
three clusters to be: 0.19 in Shanghai (0.01-0.49), 0.29 in Jiangsu (0.03-0.73); and 0.03 in Zhejiang (0.00-
0.22). If a reliable temporal trend for the spillover hazard could be estimated, for example by implementing
widespread routine sampling in sentinel markets, it should be possible to estimate sub-critical values of R0
even more accurately. Should a similar strain emerge with R0>1, these methods could give a real-time
indication that sustained transmission is occurring with well-characterised uncertainty.
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INTRODUCTION

Novel infections that are transmissible between humans but to which there is no immunity have the potential
to cause pandemics, sometimes with high morbidity and mortality . The majority of emerging infectious
disease events are caused by zoonotic pathogens, most of which have their origins in wildlife, as SARS or
avian influenza do . The frequency of zoonotic (or spillover) events, where pathogens are transmitted to
novel hosts from reservoir species, has increased in recent decades and such events pose a substantial risk
to human populations .

Various factors need to be considered when assessing a new threat from disease lineages that circulate in
animal populations, including: their rate of infection in domestic animals; the frequency with which they infect
humans; the severity of infection in humans; levels of pre-existing immunity in the human population; and the
rate at which they are adapting to human hosts . However, the current capability of a pathogen to transmit
from human to human is of paramount importance . If the basic reproductive number, R , defined as the
average number of secondary cases generated by a typical infectious case in a fully susceptible population,
is less than one, the virus will not cause a pandemic . The closer R is to one, the lower the hurdle that must
be overcome for the strain to persist.

There are two central objectives for the surveillance of novel human infections: first, to quickly detect zoonotic
events and assess their spillover threat; and second, to rapidly and consistently detect temporal changes in
the degree of transmissibility between humans. To disentangle the role of animal-to-human and human-to-
human transmission, we present a model of spillover exposure and onwards human-to-human transmission
in which human cases on a given day can arise from exposure to animals or as a result of earlier human
cases. We do not assume that the temporal pattern of exposure to animals (the spillover hazard) is known
and we jointly estimate spillover exposure and the human-to-human R . Using simulated data, we first
examine the feasibility of obtaining robust estimates of R from reported (human) cases. We then apply the
method to real case data, estimating the value of R in the three largest outbreaks reported for influenza
A/H7N9 from China: Shanghai (33 cases), Zhejiang (46 cases) and Jiangsu (27 cases).

METHODS

Epidemic model

In our transmission model, human cases could be generated in one of two ways. First, they could arise from
exposure to animals. We defined h (t) to be the expected number of new human cases with onset on day t
due to exposure to animals. This was assumed to be a step function with S steps and S − 1 change points.
Cases could also arise from human-to-human transmission: we assumed infected individuals had an
infectiousness profile described by a Poisson distribution with mean λ, the serial interval of the disease. The
number of new infections generated by each infectious individual depended on R and, because there were
few total infections relative to the population size, we assumed no saturation effects: depletion of the
susceptible pool did not affect the dynamics. Our baseline assumption was that the offspring distribution
followed a Poisson distribution. We defined h (t) to be the expected number of new human cases with onset
on day t due to previous human cases,

where d  was the day infected (so t − d  was the days since individual i was infected) and I  was the total
number of infected individuals at time t. The number of new human cases each day, N , was also chosen from
a Poisson distribution with mean h (t) + h (t).

Statistical inference

Given a parameter set θ, the likelihood of a time series of observed human cases {N ,…,N } was :

where

and k is the maximum value the serial interval distribution can take. Model inference was performed using the
full likelihood and Markov Chain Monte Carlo (MCMC) over the space of possible parameter values. Each
parameter was assumed to be positive, with a flat linear prior distribution otherwise.

As a sensitivity analysis, we also considered the possibility of data arising from an overdispersed offspring
distribution while inference was performed assuming a Poisson distribution. For this analysis, secondary
cases were drawn from a negative binomial distribution with mean R  and shape parameter 0.1.

H7N9 case data

Between 19th February and 10th August 2013, there were 136 reported human cases of influenza A/H7N9 in
China (including one asymptomatic). We considered the three provinces with the largest number of cases:
Shanghai, Zhejiang and Jiangsu. The first H7N9 case was recorded in Shanghai on 19th February. As a
result of the outbreak, all live bird markets (LBMs) in Shanghai were closed on 6th April. The last recorded
onset date in Shanghai in the 2013 outbreak was 13th April, and the total number of cases was 33 (with
onset dates known for 29). The first case in Zhejiang had onset date 7th March and the last had onset date
18th April; the total number of cases was 46 (all with known onset date). Of the 35 cases with known location,
23 occurred in Hangzhou, the capital of Zhejiang and 9 in Huzhou, a prefecture-level city just north of
Hangzhou. In Hangzhou LBMs were closed on April 15th and in Huzhou LBMs were closed around April
10th. In Jiangsu, the first case had onset date 8th March and the last 19th April; in total there were 27 cases,
23 with known onset date. Twenty cases have known location, half of which were in Nanjing, the province
capital, where LBMs were closed on April 6th. We gathered data from a variety of public sources including:
ProMed, WHO, FluTrackers, news reports and research articles . The line list is available on Dryad
(doi:10.5061/dryad.2g43n).

RESULTS

Estimating basic reproduction number and spillover hazard

Testing our novel statistical framework against simulated case data, we found that the model could
distinguish between human-to-human and animal-to-human transmission when the basic reproductive
number was substanitally greater than zero (R = 0.6), but still subcritical.

Fig. 1: Simulation results with mean serial interval λ=6 days and
R0=0.6.

Results from inference using simulated time series with R =0.6 and mean
serial interval λ=6. (A) Time series generated by model, with cases as blue
points and spillover hazard function given by green line. (B) Joint posterior
distribution for R and absolute spillover hazard from model inference when
timing and relative amplitude of spillover hazard are known. True values are
indicated by white dot. (C) Joint posterior distribution for R and peak
spillover hazard (i.e. middle step of hazard function) when amplitude and
timings of the spillover hazard steps are unknown but the hazard drop date

(e.g. date of market closure) is known. (D) Histogram of estimated value of R from model inference
using 200 different simulated time series, when neither amplitude nor timings of the spillover hazard
steps are known. Each value is calculated as the median of the posterior distribution for R . Solid lines,
R in the simulated data. Dashed lines, the inferred value of R . (E) Histogram of estimated value of R
when relative amplitude and timings of the spillover hazard steps are known. (F) Histogram of estimated
value of R when amplitude and timings of the spillover hazard steps are unknown but the hazard drop
date is known.

We simulated 200 different time series with R  of 0.6 and a three step spillover hazard (Fig. 1A). We
assumed that λ, the serial interval for infections (the average time from onset of a primary case to onset of a
resulting secondary case), was 6 days (results for λ=3 are shown in Figure 2). Ideally, we would be able to
measure – via virological market surveillance or otherwise – the change in the relative spillover hazard over
time, leaving just two unknowns: R and the absolute magnitude of the spillover hazard. Fig. 1B shows that if
we assumed the amplitudes and timings of the steps in the spillover hazard were known, our estimates of R
were tightly constrained around the true value (Fig. 1E). With current surveillance practices it is likely that far
less about the spillover hazard will be known. However, if the risk of transmission from animals is decreased
by culling or market closure, this date is often reported . Therefore we modelled a known drop in spillover
hazard date (±7 days), but with nothing else known about the shape or magnitude of the hazard (Fig. 1C).
Even in this scenario, we obtained unbiased estimates of R , although the posterior distributions had higher
variance than before (Fig. 1F). In contrast, if we had no information whatsoever about the shape and
magnitude of the spillover hazard, we obtained a diffuse posterior distribution, with an apparently biased
median value for R  (Fig. 1D).

Fig. 2: Simulation results when mean serial interval λ=3.

Results from inference using simulated time series with R =0.6 and mean
serial interval λ=3. (A) Time series generated by model. (B) Joint posterior
distribution for R and absolute spillover hazard from model inference when
timing and relative amplitude of spillover hazard are known. (C) Joint
posterior distribution for R and peak spillover hazard when amplitude and
timings of the spillover hazard steps are unknown but the hazard drop date
is known. (D) Histogram of estimated value of R from model inference using
200 different simulated time series, when neither amplitude nor timings of

the spillover hazard steps are known. (E) Histogram of estimated value of R when relative amplitude
and timings of the spillover hazard steps are known. (F) Histogram of estimated value of R when
amplitude and timings of the spillover hazard steps are unknown but the hazard drop date is known.

When secondary cases are generated using a negative binomial distribution with mean equal to R , and
overdispersion parameter 0.1, but inference is performed assuming a Poisson offspring distribution, our
estimates for R  are below the true value (Fig. 3). However, even when the offspring distribution is mis-
specified in this way, it is still possible to detect a signature of human-to-human transmission from onset data.

Fig. 3: Sensitivity to mis-specification of offspring distribution

Results from inference using simulated time series with R =0.6 and λ=6,
with a negative binomial offspring distribution in simulations, and Poisson
distribution in the inference model. (A) Histogram of estimated value of R0
from model inference using 200 different simulated time series, when neither
amplitude nor timings of the spillover hazard steps are known. (B) Histogram
of estimated value of R0 when relative amplitude and timings of the spillover
hazard steps are known. (C) Histogram of estimated value of R0 when
amplitude and timings of the spillover hazard steps are unknown but the

hazard drop date is known.

Our model also appears to be insensitive to functional mis-specification of the spillover hazard function, so
long as the timing of the drop in hazard is known. In order to examine the sensitivity of our estimates to a mis-
specified hazard function, we generated 200 time series using an exponential growth of hazard from spillover
exposure and fitted a step-wise spillover hazard function in our analysis (Fig. 4A). Taking the median estimate
of R from the posterior distributions of the model fits, we found that even with this mis-specification we
obtained an unbiased estimate of R  (Figs. 4B–C).

Fig. 4: Sensitivity to mis-specification of hazard function

Model inference when simulated spillover hazard depends on an exponential
function, and inference model uses a step function. (A) Representative run
when R0 =0.25 and λ=3. Blue points, simulated time series; green line,
hazard function in the case generation model. (B) Histogram of median
posterior distribution for R0 for 200 time series generated with λ=3. Black
line shows true value of R0 =0.25; dashed line, median of inferred values.
(C) Histogram of median posterior distribution for R0 for 200 such time
series with λ=6.

To test how well the model estimated the proportion of cases that arose from human-human transmission, we
simulated 200 time series and recorded whether each case came from an animal-human or human-human
source. Fig. 5A shows that the model generally provides good estimates of the proportion of human-human
cases, and generates underestimates more often than overestimates. Fig. 5B shows that when simulated
secondary cases are overdispersed, there is more variation in estimates of the proportion of human-human
transmission. However, the inferred and true values are still strongly correlated: in both cases the Pearson
correlation coefficient is >0.8 (p<0.0001).

Fig. 5: Inference of proportion of human-human transmission

(A) Comparison of inferred proportion of cases resulting from human-human
transmission and actual proportion, for 200 simulated timeseries, using a
Poisson offspring distribution. (B) Comparison of inferred human-human
cases and actual proportion when offspring distribution is negative binomial
with shape parameter 0.1.

Influenza A/H7N9 in China

Applying our methods to data from the recent outbreak of influenza A/H7N9 in China, with spillover resulting
from exposure to poultry in live bird markets, we found support for the presence of human-to-human
transmission, but no evidence that R was near the critical value of one. First we calibrated the animal
exposure portion of the model in the absence of human-to-human transmission, setting R =0 and estimating
a stepwise hazard with arbitrarily many steps. This framework contains the saturated likelihood model: with a
step for every day, we obtain the highest possible probability for the data. However, only a few steps were
required for a parsimonious model of animal-to-human-only infections: using the Bayesian Information
Criterion (BIC), we see that the models with three or four steps have substantially more support than other
hazard functions across Shanghai, Zhejiang and Jiangsu (Table 1). Therefore we used a three step function
in the rest of our analysis. Next, we added human-to-human transmission to the spillover model with a three
step hazard function and known date for a decrease in hazard (in this instance, the market closure date).
Based on cluster data available at the time of the outbreak , we first assumed λ=9.6 days. Table 1 shows
that the model with human-to-human transmission had more support than the animal-to-human-only model
for Shanghai and Jiangsu, with both models having similar support for Zhejiang.

Table 1: Comparison of different models of spillover hazard.

Region Model Likelihood Parameters BIC
Shanghai 2 step -51.7 3 115.8

3 step -40.7 5 102.3
4 step -39.8 7 108.6
5 step -37.5 9 112.5
6 step -39.5 11 124.8
7 step -37.5 13 129.1
Exponential -41.4 5 103.5
Log-normal -38.9 7 106.9
Gamma -39 7 107.1
3 step with H2H -38 6 100.9

Jiangsu 2 step -39.6 3 91.8
3 step -36.4 5 93.7
4 step -35.3 7 99.8
5 step -36.1 9 109.9
6 step -36.4 11 118.9
7 step -36.9 13 128.3
Exponential -39.7 5 100.3
Log-normal -35.8 7 101
Gamma -36.8 7 103
3 step with H2H -33 6 91.1

Zhejiang 2 step -82.8 3 178.2
3 step -48.1 5 117.2
4 step -44.4 7 118.3
5 step -43.5 9 124.9
6 step -46.1 11 138.4
7 step -44.6 13 143.9
Exponential -48.9 5 118.9
Log-normal -47.9 7 125.2
Gamma -48 7 125.5
3 step with H2H -46.9 6 119.1

In all three datasets, the estimate of R is well below one and the 95% credible interval around the estimate
always excluded one (Table 2). There was evidence of heterogeneity in R between these three outbreaks,
with two having very similar posterior densities: Shanghai – median 0.19 (95% credible interval 0.01–0.49),
and Jiangsu 0.29 (0.03-0.73); and one with support only for much lower values of R : Zhejiang 0.03 (0.00–
0.22).

Table 2: Estimate of R  in different regions. 95% credible interval is given in parentheses.

Region λ R  estimate
Shanghai 3 0.39 (0.02-0.90)

6 0.29 (0.04-0.66)
9.6 0.19 (0.01-0.49)

Jiangsu 3 0.32 (0.02-0.78)
6 0.22 (0.01-0.58)
9.6 0.29 (0.03-0.73)

Zhejiang 3 0.26 (0.00-0.69)
6 0.11 (0.00-0.37)
9.6 0.03 (0.00-0.22)

Figures 6A–C show the posterior distributions for R , the timing of all other changes in the spillover hazard
and the amplitude of the spillover hazard. Despite using only case onset data from publicly available sources,
these values are consistent with recently published estimates for R  based on non-public data obtained
during subsequent investigations by China CDC , which were not available at the time of the outbreak.

Fig. 6: Estimates for R0 and spillover hazard for A/H7N9 in China

Posterior estimates for spillover hazard (in this case resulting from live bird
markets) and R for influenza A/H7N9 in China, assuming a mean serial
interval λ=9.6. (A) Case incidence for Shanghai and the spillover hazard
from the best fitting model with market and human-to-human hazard: black
dots, observed H7N9 cases; red shaded region, posterior distribution for
amplitude of the spillover hazard. Inset: Posterior distribution for R in
Shanghai. (B) Case incidence for Jiangsu and inferred spillover hazard in
best fitting model. (C) Case incidence for Zhejiang and inferred spillover

hazard in best fitting model. (D) Estimated number of cases resulting from human-to-human transmission
in different regions. Black points, total observed onsets; blue points, estimated non-index cases (with
error bars representing 95% credible interval).

We were also able to estimate the number of observed non-index human cases that resulted from human-to-
human transmission (Table 3). Overall, for these three outbreaks, we estimated that 13% (1%–32%) of
observed cases arose from human-to-human transmission. The relative patterns in our estimates for R and
our finding that R is below one were unaffected if we instead assumed a smaller serial interval , one of 6
days rather than 9.6 days (Table 2). However, a serial interval of 3 days does increase the estimate of R in
Zhejiang.

Table 3: Estimated number of cases resulting from human-to-human transmission in different
regions.

Region Observed onsets λ Non-index cases (95% credible interval)
Shanghai 29 3 8.5 (1.0-22.0)

6 5.9 (0.6-10.5)
9.6 6.9 (0.9-10.7)

Jiangsu 23 3 8.2 (0.9-14.9)
6 5.7 (0.38 -14.6)
9.6 4.4 (1.1-11.8)

Zhejiang 46 3 10.6 (1.4-25.5)
6 3.0 (0.13-22.0)
9.6 1.5 (0.1-6.5)

There has been some speculation that not all cases of influenza A/H7N9 were reported , however our
method produced reliable estimates for R even if simulated time series were subject to partial reporting. We
considered time series with a mean of 33 observed cases (the average number of observed cases with
known onset across the three regions of China we examined), with only 1% or 25% of actual cases observed
(Fig. 7).

Fig. 7: Sensitivity to under-reporting when drop in hazard known

Histograms of estimated value of R0 from model inference with simulated
time series when only timing of drop in spillover hazard known. Market
parameters are chosen so that a mean of 33 cases are observed, regardless
of reporting rate. 200 different time series were simulated. Each value in the
histogram is calculated as the median of the posterior distribution for R0.
Solid lines, R  = 0.6 in the simulated data; dashed line, median of inferred
values. Top row, serial interval is 3 days; middle row, 6 days; bottom row, 9.6
days. (A), (B) and (C) All cases observed. (D), (E) and (F) only 25% of cases

observed. (G), (H) and (I) Only 1% of cases observed.

As was the case with full reporting, the R estimates were improved when more information about the hazard
function was known (Fig. 8). Although underreporting is a common problem in outbreaks for multiple reasons,
these results suggest that our framework could be used reliably even when the true extent of the outbreak is
unknown, assuming that cases are reported with a constant probability over time.

Fig. 8: Sensitivity to under-reporting when shape of hazard known

Histograms of estimated value of R0 from model inference simulated time
series when relative amplitude and timings of spillover hazard known.
Market parameters are chosen so that a mean of 33 cases are observed,
regardless of reporting rate. 200 different time series were simulated. Each
value in the histogram is calculated as the median of the posterior
distribution for R0. Solid lines, R0 = 0.6 in the simulated data. Top row, serial
interval is 3 days; middle row, 6 days; bottom row, 9.6 days. (A), (B) and (C)
All cases observed. (D), (E) and (F) only 25% of cases observed. (G), (H)

and (I) Only 1% of cases observed.

Emergence of a human transmissible strain

Should similar outbreaks occur in future with R > 1, these methods could be valuable in real time to generate
the earliest possible evidence of sustained human-to-human transmission. Using a simulated time series with
R = 1.05 (Fig. 9A), and assuming only the timing of drop in spillover hazard is known, we found our estimate
of R approached the true value once the spillover hazard decreased, although the credible interval still
included many values below one (Fig. 9B). In contrast, if the shape of the spillover hazard – but not the
overall amplitude – was known, we obtained useful information about R , and hence the presence of
sustained human-to-human transmission, much earlier (Fig. 9C).

Fig. 9: Estimation of R0 in real time

(A) Simulated time series, with cases as blue points and spillover hazard
function given by green line. R = 1.05 and λ = 6. (B) Real time estimate of
R when only the timing of drop in spillover hazard was known. Thick blue
line, inferred estimate of R at that point in time; blue shaded region, 95%
credible interval; dashed line, true value of R . (C) Real time estimate of R
when shape of the spillover hazard but not the overall amplitude was known.

DISCUSSION

The statistical framework presented here would have substantial value during future outbreaks so long as the
timing of drops in hazard are known. Also, if direct evidence of the parametric form of the spillover hazard
function over time could be obtained, these methods would provide even more accurate results. With a
sufficiently long case time series, repeated simulation and parameter fitting suggests that our model produces
unbiased estimates of the basic reproductive number, R . This is the case even when there is underreporting
of cases and when the spillover hazard function is mis-specified as a step function when simulated with
exponential growth. We were also able to recover parameters when data were simulated using an
overdispersed offspring distribution, and inferred under the assumption of Poisson distributed secondary
cases.

Our method adds to the currently available statistical toolkit for analyzing spillover infections. Previous studies
have obtained estimates for R using data about household-based cases (influenza A/H5N1  and
A/H7N7 ), or by utilizing knowledge that some cases were of animal origin and others were not (influenza
A/H3N2v , influenza A/H5N1  and monkeypox ). Using our model, it is possible to detect a signature of
human-to-human transmission for a spillover infection from only the time series of overall clinical incidence.

There are some limitations to the framework and results we have presented. Firstly, we were not able to
jointly estimate either the mean or variance of the serial interval distribution for human-to-human infections.
Rather, we assumed a value using the best currently available evidence and then tested the sensitivity of key
results to changes in that value. Also, we used only publicly available data; additional evidence has become
available since 2013 and has confirmed our estimates . Our reliance on only onset data and not outbreak
investigation data can be viewed as a strength: case counts by day of onset are often the earliest data public
health decision makers in both local and remote populations have access to when making rapid assessments
of risk during a spillover event. Despite these limitations, our formulation adds substantial additional insight to
the time series of new cases.

We found evidence that around 13% of observed cases in the three largest clusters of influenza A/H7N9 in
China in 2013 resulted from human-to-human transmission, rather than from spillover exposure (this
increased to 15% when we assumed a serial interval of 6 rather than 9.6 days). This contrasts with the five
potential cases of human-to human-transmission reported out of a total of 136 cases , suggesting that a
greater number of human-to-human cases may have been confirmed if additional data on each case’s
potential for exposure had been available. It is interesting that the peak of our posterior estimates for R in
Shanghai and Jiangsu (Figs. 6A–B) is above zero, but for the slightly later epidemic in Zhejiang there is no
evidence that R is significantly greater than zero (Fig. 6C). These differences in R posteriors could be
explained by a number of hypotheses. It could be that changes in behaviour – perhaps as a reaction to mass
media reports – reduced transmission by the time the Zhejiang outbreak started. Alternatively, differences in
human population structure and density, as well as the distribution of markets and bird movements, could
have affected the dynamics of the infection in different regions.

The framework we present has substantial potential value for public health. First, the approach can be
applied to any outbreak of a spillover infection similar to influenza A, and gives a useful upper bound for R
consistent with the observed onset data. Second, the results illustrate how being able to characterise the
variation in spillover hazard over time can permit accurate estimates of R from relatively small outbreaks. For
example, to characterise the hazard from avian influenza in poultry markets, weekly random samples could
be taken and stored from sentinel markets. In the event of a nearby outbreak of human cases, stored
samples could be tested and the temporal variation in spillover risk estimated independent of the incidence of
human cases. If this approach were combined with routine sequencing of human isolates, it is possible that
fitness increases in the virus could be observed prior to the virus crossing the critical threshold of R equal to
one.
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