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Abstract

Air pollution is associated with mortality and morbidity worldwide. Hot and cold

temperature is also related to increased deaths and possibly hospital visits and admissions

in many settings. Climate change is anticipated to pose increasing risks of deaths and

illnesses associated with air pollution and temperature variations, particularly in developing

world. To date, research studies about health effects of air pollution and temperature have

been conducted in developed countries with cool climate more than in developing countries

with subtropical or tropical climate. Furthermore, studies to identify susceptible

populations are still limited. This study aims to investigate heath effects of air pollution and

temperature and to identify people who are more susceptible to air pollution and

temperature in a developing, tropical country, Thailand.

A regression analysis of retrospective time series data was employed to assess the short-

term effects of air pollution and temperature on daily out-patient visits and hospital

admissions in Chiang Mai, Thailand, from October 2002 to September 2006. Generalised

negative binomial regression was used to model the relationships between the exposure and

health outcomes, controlling for seasonal patterns and other possible potential confounders.

Lag effects up to 4 days for air pollution, and up to 13 days for temperature were

considered. Effect modification by age, sex, occupation, season, and previous out-patient

visits before admissions were also examined.

There were positive, but not significant, effects of air pollution for some pollutants

(particularly for S02), with notably larger effect sizes compared to previous studies in

Western countries. There was evidence of hot temperature effects (though wide confidence

intervals), with an increase in diabetic visits of 26.3% (95% Cl, 7.1% to 49.0%), and in

circulatory visits of 19.2% (95% Cl, 7.0% to 32.8%) for each 1°C increase in temperature

above 29°C. There was a rise of both the visits (3.7% increase, 95% Cl, 1.5% to 5.9%) and

admissions (5.8% increase, 95% Cl, 2.3% to 9.3%) due to intestinal infectious disease for

each 1°C increase across the whole temperature range. Despite no statistically significant

differences between subgroups, air pollution effects were stronger in the elderly, females
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and manual workers, whereas temperature effects were stronger in the elderly, male and

unemployed people.

This study suggests that while there was little evidence of air pollution effects, there was

significant evidence of high temperature effects on daily morbidity in Chiang Mai. The

elderly seemed to be more vulnerable to the daily changes of both air pollution and

temperature.
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Chapter J Introduction

Chapter 1: Introduction

1.1. Background

1.1.1 Air pollution, temperature, and health

A large body of epidemiological evidence has suggested that exposure to air pollution, even

at moderate concentrations, is associated with increased morbidity and mortality in many

cities worldwide (1-5). Numerous observational studies about temperature effects have also

shown increased morbidity and mortality in relation to temperature changes (6-13). However,

health effects of air pollution and temperature are not equally spread (14, 15). Children, the

elderly, and people with pre-existing illnesses, such as heart and lung diseases, are more

vulnerable to air pollution exposure than general population (16-21). An increase in daily

deaths and hospitalizations due to temperature exposure is also pronounced among older

people (22-25). It has been found that the risk of hospital admissions and premature deaths

related to either air pollution or temperature are more likely to be enhanced by individual

health conditions, such as respiratory diseases, cardiovascular diseases, and diabetes (26-38).

To date, studies to indentify the characteristics of those vulnerable to the effects of air

pollution and temperature are still limited and need further investigations in order to gain a

better understanding of their special susceptibility characteristics, which are crucial for

developing targeted public health interventions.

It is important to note that most research studies about air pollution and temperature effects

have been carried out in developed countries and in cool, temperate regions. The likely

adverse health effects in developing countries with SUbtropical or tropical climates may

however be different from those settings. The characteristics determining the vulnerability

of a population may also be different. This could include several factors, such as genetic

factors, lifestyles, health behaviours, socioeconomic status (SES), and environments.

Therefore, assessment of regional specific vulnerabilities to temperature and air pollution

variations is very important.

Chiang Mai is the second biggest city in Thailand, a tropical country in Southeast Asia.

Chiang Mai is a growing city with an increasing population, intensifying traffic density,
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and an increased consumption of natural resources to serve the growing economic

development and urbanization. Since few investigations have been undertaken in low-

income settings, the investigations of adverse health effects associated with current levels

of air pollution and temperature in Chiang Mai, as well as identifications of its vulnerable

population are needed for determining, developing and implementing appropriate public

health mitigation measures and interventions.

1.1.2 Chiang Mai profile

Geographical location

Chiang Mai is located about 750 kilometres north of Bangkok, the capital city of Thailand,

with 16 north oflatitude, 99 east oflongitude, and with 1,027 feet above sea levels (39). The

northern part of Chiang Mai connects to Myanmar, while other parts connect to other

provinces of Thailand.

Weather

The weather in Chiang Mai is moderate throughout the year, with the average temperature

of 25.4 °C (min = 20.1 °C and max = 31.8 QC),relative humidity of 72%, and annual rainfall

of 1,000-1,200 mm (39). There are three seasons in Chiang Mai: cool season (November-

February), warm season (March-May), and rainy season (June-October).

Population

The total area of Chiang Mai is 20,107.057 sq km, with a total population of about 1.6

million (about 80/sq km, information obtained in 2006). Among all districts of Chiang Mai,

Maung district is the most crowded, with the population density of about 1,947.2/sq km

(total area = 152.4 sq km and total population = 296,753 people, December 2005) (39).

Approximately 80% of the total area is mountainous. The mountains in Chiang Mai are

more than 500 feet above sea levels and are located in the northern and western parts of the

province. Most of this area consists of forests and rivers, and is unsuitable for agriculture.

Thus, there are significant numbers of Chiang Mai population living on the highland, which

account for 19.5% of the total, including hill tribes (14.3%), minority ethnic groups such as

Chinese and Mianmese minority (2.2%), and local Thais (3.0%).
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Agricultural activities are the most common occupation in Chiang Mai. Approximately

60% of working people in Chiang Mai work in the agricultural sectors, followed by 13.6%

in industry, 10.2% in business and trading. Regarding industrial activities, there is no

major industry that may cause a substantial air pollution problem in the city. However,

there are total of 2,192 various small factories in the province. The three most prevalent

industries include agricultural factories (43.8%), 207 transportation factories (9.4%), and

200 food factories (9.1%).

Chiang Mai pollution and health

Air pollution in Chiang Mai has been of great concern in recent years due to its rapid

economic growth, development and urbanization to serve an increasing population and also

an influx of international tourists. Levels of air pollutants, especially PMIO, have

occasionally exceeded the National Ambient Air Quality Standard levels (40,41). In addition

to the already polluted air from the vehicle exhausts during traffic jams, burning of fallen

leaves and agricultural residues in adjacent areas and open burning for cooking (such as

food street vendors) have caused polluted air in a wider area (42). Moreover, Chiang Mai is

located in a valley surrounded by mountains and also influenced by the low pressure

weather from China, which make it difficult for air pollutants to disperse (42).

In 1994, the statistics also showed the high number of about 500,000 hospitalized patients

suffering from respiratory diseases (43). In 1995, the prevalence of allergic diseases and

asthma among children in Chiang Mai was observed, with 8.8% of total Chiang Mai

children reported to suffer from asthmatic problems (44). Furthermore, the annual health

report has indicated that respiratory disease is the first leading cause of out-patient visits

among the general population in Chiang Mai (39). However, there is a lack of investigations

as whether these respiratory health problems are influenced by the current levels of air

pollution and/or temperature in the city.

1.1.3 Global climate change and public health risks

It is estimated that global climate change may pose increasing health risks and regional

vulnerability associated with air pollution and temperature variations in the future (45, 46).

Climate change may influence weather, distribution of airborne allergens, anthropogenic

emissions of pollution, and dispersion and concentrations of air pollutants, which may all in
23



Chapter I Introduction

tum lead to fluctuations of either temperature or air pollution (46). Temperature and air

pollution variations may directly affect people's health by increasing deaths and illnesses

due to inability to adapt and tolerate to the changes (47). Hence, greater attention should be

paid to determining specific vulnerabilities in low-income countries because these settings

are more likely to be highly affected by the climate variability due to less capacity to assess

vulnerabilities and to develop and implement cost-effective mitigation and adaptation

strategies (48).

1.1.4 Summary

Levels of air pollution and temperature can vary from country to country, corresponding

with variation in geographical locations, climatic conditions, and human activities. Health

effects of air pollution and temperature found in different regions can also vary. To date,

most studies that illustrate the vulnerability to air pollution and temperature are conducted

in developed regions like America and Europe with cooler temperate climates more than in

developing regions with subtropical or tropical climates. Among those studies, either air

pollution or temperature studies, more consistent findings have been found for mortality

than those for morbidity. In this context, the investigation of the effects of air pollution and

temperature on morbidity and the identification of susceptible populations in a tropical

climate and less developed country is warranted.

1.2 Research topic

Short-term effects of air pollution and temperature on daily morbidity in Chiang Mai,

Thailand

1.3 Research questions

1. How do daily changes in air pollution and temperature affect daily out-patient visits

and hospital admissions in a tropical climate country, such as Thailand?

2. Do people with many counts of out-patient visits have a greater risk of hospital

admissions associated with air pollution and temperature exposure?

3. What factors modify a person's risk of getting illness associated with air pollution

and temperature exposure?
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1.4 Hypotheses

Introduction

1. Daily increase in air pollution levels increases daily out-patient visits and hospital

admissions.

2. Daily increases in either heat or cold temperatures can affect daily out-patient visits

and hospital admissions.

3. People with many counts of previous out-patient visits are at increased risk of a

hospital admission associated with air pollution and temperature exposure.

4. The effects of air pollution and temperature on daily out-patient visits and hospital

admissions may be modified by factors, such as age, sex, occupation, and season.

1.5 Aim and objectives

The aim of the study was to describe and quantify the short-term effects of air pollution and

temperature on the health of people in Chiang Mai, Thailand and to identify people who

were more susceptible to air pollution and temperature.

The specific objectives of the study were:

1. To assess the association between air pollution (S02, N02, CO, 03, PMIO, and

PM2.S) and daily out-patient visits and hospital admissions, and the association

between temperature and out-patient visits and hospital admissions.

2. To quantify the effects of air pollution and temperature on daily counts of out-

patient visits and hospital admissions, with all causes of the visits and admissions

and with specific disease groups, including respiratory, circulatory, diabetic, and

intestinal infectious diseases, in the selected health centres and hospitals in

Chiang Mai.

3. To determine whether people who had many counts of out-patient visits at the

selected health centres and hospitals were at increased risk of a hospital

admission for all causes, and for specific disease groups, including respiratory,

circulatory, diabetic, and intestinal infectious diseases.

4. To determine whether factors, such as age, sex, occupation, and season had

modified the effects of air pollution and temperature on daily out-patient visits

and hospital admissions in the selected health centres and hospitals in Chiang

Mai.
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1.6 Conceptual framework

Effect modifiers:
-Demographic characteristics
(age, sex, and occupation)
-Season

1ntroduction

Exposure:
Air pollution &
temperature
variations

Health outcomes:
Increased morbidity1---------.....lI .....--------.! (e.g. respiratory,
circulatory diseases,
and others)

Possible confounders
-Seasonal patterns
-Time trends
-Day of the week
and holidays

-Other weather variables
(RH and Rain)

-Influenza epidemics

Figure 1. 1 Conceptual framework in assessing morbidity in relation to air pollution
and temperature exposure.

1.7 Significance of the study
It was expected that the findings of the study would raise awareness of the general

population, government, and private sectors regarding the effects of current levels of air

pollution and temperature on the health of people in Chiang Mai, Thailand. This may lead

to implications for public health to implement appropriate mitigation measures to reduce air

pollution in the city and to prevent adverse health effects, especially among the vulnerable

population. Since there was an establishment of a linkage between the history of hospital

admissions and subsequent deaths, but not between daily counts of out-patient visits and

subsequent hospital admissions, the study was unique due to identifying the susceptible

population by linking the frequency of out-patient visits with subsequent hospital

admissions. This study could increase understanding of the susceptibility to air pollution

and temperature in less developed countries with tropical climates, could add more

epidemiological evidence of time series studies in Asia, and could also be a sound basis for

further research conducted within this area.
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1.8 Structure of the thesis

Introduction

In addition to this introduction chapter, there are 8 remaining chapters as follows:

Chapter 2 reviews previous literatures on air pollution and temperature effects on health,

mainly focusing on time series studies.

Chapter 3 outlines the methods of developing the models to be used for quantifying the

short-term effects of air pollution and temperature.

Chapter 4 discusses the characteristics and quality of the health data, and air pollution and

meteorological data used in the study.

Chapter 5 presents the descriptive analysis results of the data used in this study, both

exposure and health outcomes data.

Chapter 6, 7, and 8 describes the regression analysis results from the three series: out-

patient visits series, hospital admissions series, and linkage series (linkage between out-

patient visits and hospital admissions). The results of sensitivity analyses of each series are

also presented.

Chapter 9 provides the discussion about the main findings of the study with respect to

previous literatures as well as specific issues of concern, such as analytical issues, multiple

testing, harvesting, and confounding. The strengths and limitations of the study are

discussed. The conclusion of the key findings, implications for public health in regard to

the short-term effects of air pollution and temperature, and recommendations for future

research are also included.
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Chapter 2: Literature review

This chapter presents a review of literature regarding health effects of air pollution and

temperature. Due to a huge number of research studies on air pollution and health, this

document is mainly focused on time series studies of air pollution in different countries,

particularly in Asia. However, some relevant case-crossover studies of either air pollution

or temperature, which have been shown to give similar results to time series studies, are

also included. The specific health conditions and other related factors that are more likely

to enhance the susceptibility to air pollution and temperature are described.

2.1 Air pollution and Health

2.1.1 Time series studies of air pollution and health

Time series regression is a method used for evaluating short-term effects of time-varying

exposures (49). A time series study generally aims to understand how explanatory variables

influence health outcomes over time, and usually employs regression analysis for the

investigation (50). The time series method has been widely used to detect the short-term

effects of air pollution on daily mortality and morbidity in many cities worldwide. The key

advantage of the time series method is that the study population serves as its own control,

and this, therefore, eliminates the influence of other underlying risk factors (such as

smoking) that may vary among subjects, but do not vary from day to day (49). However,

there are some limitations of using this method, including the likelihood of measurement

error due to using single or central monitoring sites to represent exposure for large mobile

population, and the need for sophisticated statistical methods to adequately control for

possible potential confounders such as long-term time trends, seasonal patterns, weather

variables, and unusual events (e.g. influenza epidemics) (51). Moreover, the time series

method does not provide the information about long-term exposure to air pollution. Despite

the limitations, time series studies have increased understanding about the influence of

daily changes in ambient air pollution on health in various aspects, such as an increased

daily mortality, exacerbation of asthma, and increased hospital visits and admissions (52).

Epidemiological evidence showing the effects of air pollution on daily mortality and

morbidity are presented in this section. The morbidity effects are specific to out-patient

visits and hospital admissions only.
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2.1.2 Criteria air pollutants

A brief description of five criteria air pollutants, which are commonly used for time series

studies, is provided here in order to give general information about the unique

characteristics of each pollutant. The five criteria air pollutants include sulphur dioxide

(S02), nitrogen dioxide (N02), carbon monoxide (CO), ozone (03), and particulate matter

(PM).

Sulphur dioxide (SOz)

S02 is an irritant gas, mainly released into the atmosphere through industrial combustion of

coal and oil. In a humid environment, S02 can be oxidized to sulphuric acid, and partially

neutralised sulphate salts (53). Thus, humidity and photochemical processes can accelerate

the formation of acid aerosols in the atmosphere. Health effects of exposure to S02 may

range from mild effects, such as irritation of the eyes, nose, and throat, to severe effects,

such as bronchial spasm and deaths due to respiratory insufficiency and concomitant effects

on the central nervous system (54).

Nitrogen dioxide (NOz)

N02 is a secondary air pollutant, formed by the reactions of oxides of nitrogen and

atmospheric oxidants such as 03 in the presence of sunlight (53). Oxides of nitrogen are

generally emitted to the atmosphere by the combustion of fossil fuels from stationary

sources, such as heating and power generation, and motor vehicles (54). Exposure to N02 has

been shown to increase airway reactivity to stimuli such as inhaled allergens, and enhance

bacterial infection and colonization by reducing the ciliary beat frequency of bronchial

epithelial cells (55). The health effects of N02 exposure may range from cough and

haemoptysis to lung oedema (54).

Carbon monoxide (CO)

CO is generated by the incomplete combustion of fossil fuels. Ambient concentrations of

CO are highly related to traffic congestion, domestic combustion devices (such as heating

and cooking), and smoking (54). The effects of CO on health are due to the binding of CO to

haemoglobin, which produces carboxyhaemoglobin, resulting in a reduction of

haemoglobin capacity to transport or release oxygen (53). Thus, when exposed to CO,
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human body organ is likely to become hypoxia, leading to fainting, increased respiratory

and pulse rate, intermittent convulsions, coma, and death (54).

Ozone (0))

03 is a photo-oxidant, formed by a complex series of reactions of nitrogen oxides and

hydrocarbons in the presence of sunlight in the troposphere (56). 03 is a highly reactive

pollutant. Therefore, exposure to 03 may lead to inflammation of the nasal mucosa and of

bronchoalveolar lining, leading to an increase in airway hyper reactivity and a decrease in

lung function (53).

Particulate Matter (PM)

Particulate matter is a complex mixture of solid particles and liquid droplet suspended in

the air. It can originate either from natural sources, such as windblown dust, bushfires,

volcanoes, and the oceans, or from anthropogenic activities, such as industrial processes,

motor vehicle exhaust, domestic fuel burning, and industrial and domestic incineration (57).

Mechanical processes, including grinding, breaking, or dust resuspension generate coarse

particles (larger than 2.5J,lm in aerodynamic diameter), whereas combustion processes

generally create fine particles (those smaller than 2.5J,lm in aerodynamic diameter, PM2.5)

(58). Thus, particles suspended in the air comprise a variety of sizes and mass composition.

They may consist of various substances, including inorganic and organic carbon (such as

polycyclic aromatic hydrocarbon), fine soil dust, acidic nitrates and sulphates, heavy metals

(such as lead), asbestos, and other fibres (53).PMIOrefers to particulate matter less than

luum in aerodynamic diameter, sometimes called thoracic particles, while PM2.5 or fine

particles can be called respirable particles (51).The small particles are of great concern

because they can deposit in the deeper parts of the respiratory system and cause various

adverse health effects.

It is noteworthy that there are several substances mixtures in the air. Generally, most air

pollutants are highly correlated, which make it difficult for air pollution studies to separate

the effects of one pollutant from one another pollutant (59).Thus, the issue of collinearity is

one common problem in epidemiological studies of air pollution (60).
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2.1.3 Air pollution effects on mortality

Exposure to air pollution, even at moderate levels, is associated with increased mortality in

many cities (51,61). Although the expression of the risk of dying due to air pollution

exposure can vary from study to study, time series studies conducted in different locations

have shown consistent findings of the association between air pollution and mortality.

For example, the APHEA (Air pollution and Health: a European approach) studies

undertaken in 29 European cities indicated that each 101lg/m3 increase in PMIO

concentrations was associated with an increase in all cause mortality of 0.6% (95% Cl, 004,

0.8) (62).Similarly, the National Mortality, Morbidity and Air pollution Studies (NMMAPS)

conducted in the 20 largest metropolitan areas in the USA suggested that each 101lg/m3

increase in PMIOconcentrations was associated with an increase in all cause mortality of

0.5% (95% Cl, 0.1,0.9) (63). All cause mortality in London (1992-1994) was also found to

be associated with various pollutants (N02, S02, PMIO, CO, and black smoke), but the

strongest association was found between PMIOand respiratory mortality (4.0% increase in

deaths of all ages for a 10th-90th percentile increment) (64).

Air pollution is associated with not only an increase in all-cause mortality, but also an

increase in respiratory and cardiovascular mortality, particularly in the elderly (65-72).

Moreover, it has been speculated that the risk of dying in relation to air pollution is more

likely to occur in general population, not only persons who are very ill or are about to die
(73,74)

2.1.4 Air Pollution effects on morbidity

Daily out-patient visits to different care settings and hospital admissions have been used as

health outcomes to evaluate short-term effects of air pollution on morbidity. Similar to

mortality, a daily change in air pollutant levels are related to increased daily hospital visits

and admissions. The changes in air pollution have been found associated with all causes of

the visits and admissions, and with several health conditions, including respiratory illnesses

(such as upper respiratory infections (URI), lower respiratory infections (LRI), chronic

obstructive pulmonary disease (COPD) and asthma), and cardiovascular diseases (5, 16,23,75-

82).The risk of the visits and admissions appears to be pronounced in children and the
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elderly (5,23,75,80,SI,83).The study results of some previous time series studies on morbidity

effects of air pollution reviewed for this document can be seen in Appendix 2A. Similar to

mortality studies, literature showed the increased risk of illnesses could occur among

general population, not just only those who are very ill and would enter the hospital within

a few days or weeks, anyway (73).

2.1.5 Time series studies of air pollution in Asia

In Asia, the pattern of mortality and morbidity in low-income countries is currently in a

transition, that is, life expectancy in those countries is increasing and health risk factors

tend to be related to lifestyles, urbanization, and environmental deterioration. Generally, the

diffuse, small-scale burning (such as burning garbage and biomass) is the main contribution

to air pollution in many Asian countries. It has been found that total suspended particle

(TSP) is the major outdoor air pollutant, followed by PMIO,S02, and N02, respectively (84).

Like other regions, time series studies in Asian regions have also demonstrated an

association between ambient air pollution and increased risks of deaths and illnesses.

According to the Public Health and Air Pollution in Asia (PAPA) project of the Health

Effect Institute (HEI), a meta-analysis of 28 time series studies (of the total 45 studies) in

Asia showed that all criteria pollutants were associated with daily mortality and morbidity,

but the estimated risks varied, depending on study areas and their selected study pollutants

(see table in Appendix 2B) (S4).Levels of S02, TSP, and PMIOwere highly related with

mortality and morbidity in this region. The health effects of 03 and N02 were found in

some areas in Hong Kong and Korea (33,38,85-92),while the health effects of CO were found

predominantly in industrial areas in Korea (93).The more recent publications of the PAPA

project and of other Asian studies (Shanghai and Bangkok) also confirmed the adverse

effects of PMIO,03, S02, and N02 on both mortality and morbidity in this region (94-96).

Most literature has indicated that current levels of pollutants, even at levels well below

recommended standards (WHO or national standards), are significantly associated with

increased mortality and morbidity (4,75,97,98).In addition, the most vulnerable groups appear

to be children, the elderly (::: 65year), and people with pre-existing diseases, such as

cardiovascular diseases (congestive heart failure, ischemic heart disease, and stroke),

chronic obstructive pulmonary disease (COPD), and asthma (87,88,91,93,97,99-102),There is
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only one study mentioning sex, indicating that risk of stroke mortality associated with

particulate pollution is higher in the elderly female population (89).

In summary, air pollution is associated with an increase in daily deaths and illnesses all

around the world. Children, the elderly, and people with pre-existing health problems are

particularly vulnerable compared to general population. Among all five criteria pollutants

(S02, N02, CO, 03, and PMIO),which are commonly used for time series studies of air

pollution, particulate matter (PM) has demonstrated more consistent adverse health effects
than other pollutants (77,94,103-116).

2.2 Temperature and Health

There is a growing concern over temperature effects on health. Exposure to extreme hot

and cold weather can affect people's health directly, such as hyperthermia or heat stress as

a result of exposure to very hot temperatures and hypothermia and ischemic stroke due to

exposure to very cold temperatures, leading to a rise in deaths and hospitalizations (8, 117-120).

Besides direct effects from extreme weather events, a bigger burden from indirect effects of

exposure to small changes of temperature over time has been shown. The increasing heat

and cold temperatures have been found to be associated with increased risks of deaths and

illnesses (e.g. due to CVDs and respiratory diseases) in many places (8-10,118,121).

2.2.1 Temperature effects on mortality

An attempt to detect mortality risks associated with variations of heat and cold temperature

has been done in many countries. It has been suggested that comfort temperatures

(temperatures that people are able to adapt or live with) could vary across different

geographical locations (122).For example, the comfort temperatures in Valencia, Spain,

were about 15°C in colder months and 24°C in hotter months (123). Thus, an increase in heat

(from 24°C) during hot periods and a decrease in temperatures (from 15°C) during cold

periods could result in a rise of mortality in the city (123). In a subtropical country, Taiwan,

the comfort temperature ranged from 26°C to 29°C, and therefore, the mortality from

coronary heart disease was detectable when temperature dropped below this range (124).

As a consequence of consistent observations that an increase in either hot or cold

temperature can result in increased mortality, the relationship between temperature and
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mortality can be visualised as a U-, V-, or J-shaped relationship (6, 13, 122, 125, 126), In

addition, due to increasing evidence of high temperature effects on deaths in many settings,

it has been pointed out that heat-related mortality can be a major public health problem, not

only in cool climate regions but also in temperate and warm climate regions (12),

Several studies have suggested that the risk of dying due to temperature effects is more

likely to be higher in the elderly (8, 25, 123, 126, 127), Furthermore, respiratory and

cardiovascular diseases have constituted the major causes of deaths associated with

temperature changes (6,8, 123), With respect to sex difference, some studies illustrated that

females had a higher risk of dying associated with temperature changes (128-130) , while some

studies found that males were prone to die from heat-related deaths (131, 132), However, a

recent review of mortality effects of high temperature suggested a higher risk among

females (127).

Literature has also suggested that there might be interactions between air pollutants and

temperature on mortality effects of high temperature. However, to date, this issue remains

unclear as some studies found a significant confounding or effect modification by air

pollutants (particularly by 03 and PMIO) on the association between temperature and

mortality, whereas some studies did not (127),

2.2.2 Temperature effects on morbidity

By comparison to mortality, there are fewer research studies on the association between

temperature and morbidity. Moreover, the risk of illnesses or hospitalizations in relation to

temperature changes derived from morbidity studies appears to be less consistent compared

to that obtained from mortality studies,

Jlotte~perature
Increased morbidity can be found following exposure to extremely hot temperatures, For

example, a study in Australia suggested that the majority of hospital presentations during a

ten day heat wave were older people (60 years or over), those who lived in institutional care

or live alone, and those with pre-existing health problems such as cognitive impairment,

alcoholism and diabetes (118), Excess hospital admissions during a 1995 heat wave in

Chicago were found to be mainly due to the direct effects of high temperatures, such as
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dehydration, heat exhaustion, and heat stroke, and mostly in person aged 65 or older (119).

The admissions significantly increased in patients with underlying health conditions,

including cardiovascular disease, diabetes, renal disease, and nervous system disorders (119).

An observational study during a 2003 heat wave in France also demonstrated that infected

critically ill patients were more likely to suffer from hyperthermia than non-infected

critically ill patients (133).

In addition to extreme temperature, a small increase in temperature may affect daily

morbidity. For example, a study in London demonstrated that a 10.5% increase in hospital

admissions due to respiratory disease among the elderly (over 75 years) was associated

with each 1°C increase in daily mean temperature above 230C (10).

Hot temperature has also been found to be associated with hospital admissions for heart

diseases. A study in 12 US cities illustrated that an association between hot temperature and

hospital admissions for heart diseases (121). This was corresponding to a study in Denver,

Colorado, which found the link between high temperature and an increase in hospital

admissions for myocardial infarction and congestive heart failure (24). Another study in New

York City also suggested an increase in hospitalizations in association with high

temperatures, ranged from 28.9°C - 29.4°C (134). While a study in the US demonstrated the

relationship between high temperature and heart disease admissions, studies in London,

Madrid, California, and 12 European cities did not find the relationships between them (10,

135.137). The lower effects of high temperature on hospital admissions than on mortality in

those places suggest that many people may die before receiving medical treatment or

admission to hospital (136).

Cold temperature
Daily variations of low temperature can also increase the risk of getting illness. For

example, the excess winter morbidity among older people living in cold homes (those with

insufficient energy to keep warm) in London was observed (138). Another study in London

found that a 10.5% (95% Cl 7.6, 13.4) rise in all respiratory GP consultations among

people age 65 or over was associated with each 1°C decrease in mean temperature below
50C (23).
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A study in Athens also showed that, with each IQCdecrease in mean temperature (linear),

there was a 5% increase in hospital admissions due to acute coronary diseases, which was

stronger in females and the elderly (139). A study in Chicago illustrated the magnitude of CO

effects on hospital admissions for congestive heart failure (CHF) increased with decreasing

temperature, suggesting that the CO effects was temperature dependent (31). The relative

risks of hospital admissions for CHF associated with the 75th percentile of exposure to CO

were 1.02 (95% Cl 0.95, 1.10) for high temperature range, 1.09 (95% Cl 1.04,1.14) for

medium temperature range, and 1.15 (95% Cl 1.09, 1.12) for low temperature range.

In brief, small changes of temperature can induce morbidity, not only extreme

temperatures. The elderly and ill people are particularly vulnerable to temperature effects in

comparison to others. In addition, the manifestation of adverse health effects may be due to

the interactions between temperature and air pollutants, not temperature alone.

2.2.3 Health effects of temperature in Asia

Few investigations of association between temperature and health have been made in Asia.

Nevertheless, evidence shows that temperature changes may also affect mortality and

morbidity in Asia, but the magnitude of the risk may differ from that in other regions in

accordance with variability of climates and population characteristics.

Mortality studies

In China, Kan et al reported that the lowest mortality risk occurred at a temperature of

26.7°C (optimum value) in Shanghai (140). It was found that the total mortality increased by

0.73% for each 1°C increase in temperature above this optimum value, but decreased by

1.21% for each 1°C increase in temperature below this value.

In Taiwan, Pan et al found that the temperature range for the minimum mortality risks due

to coronary artery disease (26-29°C) and cerebral infarction (27-29°C) was higher than that

observed in colder climate countries (124). Each 1°C decrease in temperature from 27-29°C

was associated with a 3% increase in the risk of cerebral infarction in the elderly.
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The increased cardiovascular mortality, such as heart disease and ischemic stroke, were

also found in Israel (141), Japan (142), and Korea (143). The increased deaths appeared to be

higher in winter and highly associated with cold temperature.

Morbidity studies

In Japan, Ye et al indicated that daily maximum temperatures were associated with hospital

emergency transport for pneumonia, but not for other diseases (144). They also found that

increased daily maximum temperatures were associated with decreased hospital emergency

transport for hypertension.

In Taiwan, an increase in acute coronary syndrome of about 30-40% was observed when

the average daily temperature was below 26.2 0C (145).

2.3 Susceptible populations

Individual susceptibility is one important factor affecting relationships between air

pollution and health and between temperature and health. Each individual has different

ways and different degrees in responding to environmental exposure. Therefore, individual

susceptibility can vary greatly among a population, which can be influenced by individual

variability and diversity, such as levels, dose, and duration of exposure, physiology,

biological mechanisms, and behaviour (15). Furthermore, the increased susceptibility is

likely to be enhanced by frail health status. An establishment of a link between history of

hospitalizations and mortality has suggested that a risk of dying associated with air

pollution and temperature is higher among persons who were hospitalized before deaths

with chronic health conditions, such as congestive heart failure, myocardial infarction, and

diabetes (14,27,28). However, there is a lack of identifying characteristics of frail populations

by linking the history of out-patient visits with subsequent hospital admissions to see

whether the risk of admissions associated with the exposure is modified by history of

previous visits before the admissions.

2.3.1 Health conditions and enhancement of vulnerability

Pre-existing health problems, including respiratory disease, circulatory disease, diabetes,

and intestinal infectious disease, are more likely to increase the risks of deaths and

hospitalizations in association with air pollution and temperature.
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Respiratory disease

Air pollution effects are more likely to manifest in persons with respiratory disease such as

asthma and chronic obstructive pulmonary diseases (COPD), Experimental human studies

showed that exposure to ozone (03) could limit ability of people with COPD to perform

deep inspiration through reflex mechanisms, resulting in a significant decrease in vital

capacity of the lung (146), The significant effects (both single and combined) of exposure to

relatively low concentrations of air pollution have been shown in asthmatic patients,

including the reduction of force expiratory volume (FEV) after exposure to 03, the

enhancement of airway reactivity to allergen and airway inflammation when exposed to

N02, and the increase in bronchoconstriction due to S02 exposure (146), The pulmonary

infections may occur due to the, single and combined effects of 03 and N02 on alveolar

macrophage by reducing its ability to react against infectious agents (147), Air pollution may

increase the vulnerability of lung defence mechanisms by causing the changes of

immunological response such as suppressing and increasing antibody production of

immune system (148),

The vulnerability to temperature appears to increase in persons with COPD, This may be

because these people usually have cardiovascular problems, and therefore, their blood

components are particularly vulnerable to temperature changes (14), Respiratory infections

during cold weather in persons with COPD can occur easily because their lungs are

typically colonized by bacteria (149), Furthermore, an increase in red cell counts, platelet,

blood viscosity, and bronchospasm can also be enhanced by cold weather (150),

Circulatory disease

It has been suggested that acute episodes of cardiovascular diseases (such as myocardial

infarction and cardiac arrhythmia) are probably due to the impairments of lung functions,

inflammation of alveolar, increased coagulability of the blood, alterations of the nervous

system control of the heart, and decrease of heart rate variability following the exposure to

air pollutants (151-153), In addition, persons with myocardial damage or cardiac disease are

more likely to develop congestive heart failure (CHF) due to an enhancement of acute

pulmonary diseases, such as bronchitis and pneumonia, after exposure to air pollution (154),
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In order to adapt to hot temperature, cardiac output in human bodies is generally increasing

to increase blood circulation (121), This process can be limited by dehydration, which

reduces blood volume in the body, Increased cholesterol and blood viscosity has also been

found on exposure to high temperatures (155), Thus, people with impairment of cardiac

functions are probably less able to adapt to increasing temperature compared to healthy

persons, resulting in increased deaths and hospitalizations during heat waves, Furthermore,

some medications used in chronic disease of the heart and lungs may interfere with heat

loss mechanisms and reduce adaptive responses during hot temperature (25, 117), In addition,

people with pre-existing hypertension or hypercholesterolemia are more likely to develop

ischemic stroke on exposure to cold temperature (143), Cold temperature may facilitate the

development of ischemic heart disease by causing hemoconcentration, which can lead to

thrombosis (156), Moreover, angina pectoris and myocardial infarction can be facilitated by

physical activity during cold weather (121),

Diabetes

Recent studies suggested that people with diabetes were at greater risk of death and illness

associated with air pollution (28. 29. 32. 157), For example, a study in Brazil showed that an

increase in cardiovascular emergency room visits in association with S02 levels was higher

in diabetic patients than non-diabetic patients (157), It has been pointed out that the increased

risk among diabetic patients appears to be related to cardiovascular risk factors associated

with PM pollution, including increased plasma fibrinogen levels and other makers of

systemic inflammation, increased C reactive protein levels, and reduced heart rate

variability (28. 29), In addition, exposure to particles was also found to be associated with

impairment in vascular reactivity and endothelial function in diabetes, which was also

related to cardiac functions (32), An increased risk of deaths on hot days among people with

diabetes was found to be higher than other people (14. 158), This may be because of the

interaction between increased demands on the circulatory system under extreme thermal

stress and impairment of endothelial function and autonomic control in people with

diabetes,
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Intestinal infectious disease

There is evidence suggesting that climate variability may lead to an increase in frequency

and severity of some particular infectious diseases, such as intestinal infectious diseases.

For example, an increase in hot temperature may not only increase the frequency of

occurrences of infectious diarrhoea, but may also increase the severity of the illness. Since

exposure to hot temperature can cause dehydration through heat loss mechanisms (117), the

body of persons with infectious diarrhoea may not be able to balance fluid intakes and

outputs easily during high temperatures. This could result in an increased severity of their

dehydration and electrolyte imbalance. In addition, an increase in temperature may promote

the growth of bacteria and transmission of intestinal infectious diseases, such as bacteria

enteric infections, diarrhoeal diseases, and food poisoning, leading to a rise of numbers of

visits or admissions to hospitals (159-162). For instance, the number of food poisoning cases

in European countries was found to increase in association with a 1QC increase in average

temperature above indentified threshold value (160). The hospital visits and admissions for

diarrhoea in children also increased by 8.0% and 5.6% per 1QC increase In mean

temperature over lag 0-4 weeks, in Peru and Bangladesh, respectively (159, 162).

Other diseases relating to air pollution and temperature exposure

Apart from the diseases mentioned above, there are some other diseases that may also be

related to air pollution and temperature exposure, such as cancer, suicide, and traffic

accidents. Evidence has suggested that the incidence of cancer, such as lung cancer, is

associated with outdoor air pollution emitted from industrial sources, power plants, and

motor vehicles (163-165). It has been speculated that carcinogenic effects of air pollution may

be derived from an exposure to combustion emissions, including particles, semivolatile,

and gaseous pollutants, which usually contain chemical compounds, such as polycyclic

aromatic hydrocarbons (PAH) and nitrated PAH (166). It has also been suggested that the

particularly vulnerable people may not be only those with cardiorespiratory health

problems, but also those with failing health causing difficulty in regulating their

physiologic set points, such as cancer (Frank et al cited in 70). For example, it was found that an

increase in daily deaths from cancer of 3.9% (95% Cl, 1.0 to 6.91) among people age 65

years or over in Quebec was associated with an increase in the changes of mean

concentrations of 03 of 21.3% ug/m' (70).
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Accidental events, such as traffic accidents, have also been suggested to increase in

association with increasing temperature. For example, during hot days in Tokyo, the

occurrence of motor vehicle collisions was significantly associated with the high

temperatures (167). Similarly, road traffic accidents in Riyadh were also found to be related

to the high temperatures in summer (168). Hot temperature may lead to increased stress,

decreased performance in intellectual tasks (which require physical efforts and motor

skills), and increased heart rate that exacerbates existing pathological conditions of heart

and lung diseases of drivers, resulting in road traffic accidents (168).

In addition, an increased risk of suicide in England and Wales was also found to be

associated with hot weather (169). For each 1QCincrease in mean temperature, there was an

increase in suicide and violent suicide by 3.8% and 5.0%, respectively (169). The hot

temperature may lead to excessive alcohol drinking, and aggressive and violent behaviour

among individuals, which might result in an increase in suicidal acts.

2.3.2 Effect modifiers

Besides the pre-existing health problems, some characteristics of population such as age,

sex and occupation may also increase vulnerability to air pollution and temperature.

Age

Numerous research studies have indicated that the elderly are particularly vulnerable to air

pollution and temperature. This may be due to the deterioration of their physical bodies

with increasing age. The functional impairment of important physical organs (such as heart,

lungs, and kidneys) may make it difficult for the body of people in older age to adapt or

recover after exposure to high concentrations of pollutants or temperature changes

compared to the young. Research evidence has also suggested that older people may have a

higher risk of suffering from air pollution effects due to a decline of antioxidant defences

(170). With regard to temperature effects, an experimental study demonstrated that older

people (>60 years) were less able to maintain core temperature under a given cold

temperature compared to younger people because of a reduction in thermal sensitivity of

the skin (such as vasoconstrictive response to cold) and in subjective thermal perception

during cooling (171). In addition, the cognitive impairment and reduced mobility may limit
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their abilities to perform behavioural defences or may delay their access to health care
services after exposure (117 , liS).

Sex

The role of sex in association between health and air pollution or between health and

temperature are not consistent. Some studies showed an increased risk of the exposure in

females (8, 18, 172, 173), while some studies showed a higher risk of exposure in males (24, 174).

Nevertheless, by comparison, it appears that females are more vulnerable than males as

indicated by the majority of published literature (127). First of all, the increased susceptibility

may be related to differences in the growth and development of physical organs and the

maturity of immune system. Due to smaller sizes of the lung and air way calibre, but higher

levels of bronchial and airway reactivity, females are more likely to be vulnerable to air

pollution than males (18). A smaller proportion of the heart relative to body size

(approximately two-thirds) as well as higher pulse rates in females in comparison to males

may also increase their vulnerability to pollution and temperature (IS).

It has also been postulated that fluctuations of hormones during menstrual, pregnancy, and

menopause periods may be responsible for female susceptibility to air pollution (such as

exacerbation of asthma) (18). Finally, the differences in lifestyle and behaviour between

females and males, in terms of domestic exposure, daily activities, and occupation may

influence their susceptibility differently. This could result in different exposure hazards as

well as different does, levels, and duration of exposure. It should be noted that much of the

evidence indicating sex differences has been found in older populations (14,28. S9, 129, 130, 172,

175, 176). The differences may be attributed to confounding by age, as the increased

vulnerability among elderly female populations may be due to age related declines in

physiological functions.

Occupation

Occupation may also influence individual susceptibility to air pollution and temperature

because people who work in different places may be exposed to air pollution and

temperature differently. The mixtures and concentrations of air pollutants may vary from

workplaces to workplaces. For example, a study in Thailand showed that there was a
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decline in lung functions among traffic police who work at roadside in Bangkok, which was

associated with higher levels of exposure to particles from motor vehicle exhausts (177).

Another study in Bangkok also demonstrated that street vendors, who sell clothes or foods,

were highly exposed to genotoxic air pollutants such as particle-associated polycyclic

aromatic hydrocarbons (PAHs) and benzene (178). Similarly, workers will experience

thermal stress (heat and cold stress) to different degrees in relation to different working

environments. For example, people who worked outdoors during winter periods were found

to suffer from cold stress, whereas people who worked in a glass factory experienced

intensive heat exposure (179). Therefore, occupation (or employment status) has also been

used as a proxy of socioeconomic status (SES) in some studies for examining the

interaction between SES and environmental exposure-related health outcomes (180.183).

Season

In general, levels of air pollution and temperature vary throughout the year, from season to

season. This is due to the fact that several factors in the atmosphere, such as pressure, wind,

and sunshine, can influence the emission, formation, and dispersion of pollutant mixtures in

the air. The interactions between various mixtures of pollution components and

meteorological variables may occur differently in different seasons, which could also

influence exposure levels of individuals differently (184). For example, ozone (03) is known

to be a secondary pollutant, formed by a series of reactions between nitrogen oxides and

hydrocarbons in the presence of sunlight (56). Therefore, a higher level of ozone in summer

would be expected, and people would then be more likely to be affected by 03 in summer

than in other seasons. Furthermore, it may be possible that patterns of outdoor activity of

individuals may vary from season to season, resulting in differences in both duration of

exposure and exposure levels (185). For example, people tend to go out for outdoor activities

summer or warm season, which may lead them to be more exposed to outdoor air pollution

and hot temperature than other seasons. The use of air conditioning or opening windows for

cooling may be more prevalent during hot period, while the use of heating or closing

windows to keep warm may be more prevalent during cold period.
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2.4 Lag effects of air pollution and temperature

In general, the effects of air pollution are acute, which usually occur at current day of

exposure (lag 0) or at 3-5 days after exposure. For example, the effects of particulate air

pollution on daily mortality in Seoul, Korea, were found to occur on the same day of

exposure (186). Another study in Atlanta, U.S.A., showed that the effects of particulate air

pollution on respiratory visits in ambulatory care setting occurred at lag 3-5 days (76).

For temperature effects, it has been suggested that hot temperature effects are immediate,

with occurrence at short lag (e.g. from lag 0 up to 5-7 days), while cold temperature effects

are prolonged and may appear after lag 3 days to at least 2 weeks or 1-2 months (9, 125, 187-

189). For example, a study in the Netherlands found that the lag effects of hot temperature

occurred at current day of exposure, whereas the lag effects of cold temperature occurred at

lag 0-5 days (125). Another study in Sofia and London demonstrated that there were short lag

effects of hot temperature at around 3 days, while there were longer lag effects of cold

temperature at 2 weeks (188).

Although evidence from previous studies has suggested short lag effects for air pollution

and for hot temperature, and longer lag effects for cold temperature, it is important to note

that the lag effects could vary depending on geographical locations and on characteristics of

study populations. The geographical locations may influence intensity of air pollution and

temperature, resulting in different exposure levels and duration. The population

characteristics may also mean the variability in susceptibility to air pollution and

temperature exposure, which could make the magnitude and lag structures of the effects

vary from study to study. In addition, since there are several factors affecting hospital

visits/ admissions (e.g. necessity to make appointments in advance, availability oftransport,

and availability of hospital beds), the morbidity outcomes may induce lag effect structures

that differ from those observed in the mortality studies.

2.5 Conclusion

Research evidence has suggested an increase in daily mortality and morbidity is associated

with daily changes of air pollution and temperature. The young, the elderly and persons

with pre-existing health problems are particularly vulnerable. However, there are few
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investigations in developing countries with tropical climates. Furthermore, more consistent

findings of association between air pollution and health, and between temperature and

health have been found for mortality than those for morbidity. With regard to future

impacts of climate variability that are more likely to affect low-income settings than high-

income settings, there is a need for more research studies in developing countries with

different types of climate to assess regional specific vulnerabilities and to identify the

populations susceptible to air pollution and temperature variations.
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Chapter 3: Methods

The methods used for conducting this study are presented in this chapter. The study design

and period, area of the study, and the study population are described. Sources of health data

as well as air pollution and meteorological data are explained. The analytical methods

employed for the study are also detailed.

3.1 Study design and period

This study was a regression analysis of retrospective time series data to assess the effects of

air pollution and temperature on daily out-patient visits and hospital admissions among

people in Chiang Mai province, Thailand, from October 2002 to September 2006.

3.2 Study area

This study was undertaken in Muang district of Chiang Mai, the inner area of the city.

There were three main reasons to select Muang district for the study.

First of all, it is an urban area with growing infrastructure development, and higher

population density and traffic congestion than other districts. Thus, it is more likely to be

affected by air pollution and temperature changes. It has also been suggested that heat

effects are usually higher in urban areas than rural areas ('urban heat island effect', which

occurs due to abundance of heat-retaining surfaces, such as concrete and black asphalt) (47).

In addition, evidence has showed that respiratory illness has become an important health

problem in Chiang Mai. For example, in 1994, health statistics showed that there was the

high number of 500,000 hospitalized patients due to respiratory diseases (43). In 1995, it was

observed that 8.8% of the total children in Chiang Mai was suffering from asthmatic

problems (44). Moreover, the annual health report has also indicated that respiratory disease

is the first leading cause of out-patient visits among the Chiang Mai population (39).

Therefore, it is interesting to know whether this health problem is exacerbated by short-

term changes of air pollution and/or temperature in the city.

The second reason for undertaking the study in the Muang district was due to the feasibility

in obtaining health data as well as air pollution and meteorological data at the same period

46



Chapter 3 Methods

of time. The two air monitoring stations are located within the area of Muang district,

which is among the few cities in Thailand that has more than one fixed air monitoring

station. The use of two fixed sampling sites could help reduce bias in regard to

misclassification of exposure that commonly occurs in epidemiological studies when using

only one fixed sampling site to estimate exposure of large population (190). Because one

station is located in the inner city and another one is located in the outskirts (about 10

kilometres away), it was expected that the average exposure levels from the two stations

located in different geographical locations would be the reasonable average exposure levels

for the study population since personal exposure could not be known. The use of data from

two stations could also help reduce a problem of missing data because when data from one

station were missing, data from another station were used for calculating the replacements

(detailed later in section 3.4.2).

The final reason of choosing Muang district for the study was to avoid the likely influences

of differences between people living in urban area and people living in the highland (e.g.

tribal people living in remote area on the mountains) on study results, in relation to

socioeconomic status and lifestyle such as levels of education, nutritional status, and indoor

cooking activities (which is common among tribal people in the highland).

3.3 Study population

Study population were all people who had visited and/or had been hospitalized at the

selected health centres and hospitals in Muang district in Chiang Mai, from October 2002

to September 2006. During the study period, the district comprised a population of296,753

people (December 2005), with 16% of 0-14 year, 73% of 15-59 year, and 11% of> 60

year) (39).

3.4 Data collection

3.4.1 Health data

Health outcome data of this study were daily morbidity data, which were the routine daily

health records of two different data sets: out-patient visits (all ambulatory care settings,

including primary care) and hospital admissions, of selected health centres and hospitals

within Chiang Mai public health systems. The daily out-patient visit data were obtained
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from the Chiang Mai Provincial Health Office, and the daily hospital admission data were

obtained from the National Security Health Office. Therefore, only health centres and

hospitals that provided a monthly report of daily out-patient visits for the provincial health

office and of hospital admissions for the National Health Security Office were included in

the study. These consisted of 10 sub-district health centres and 11 hospitals (6 private

hospitals and 5 government hospitals). The time period of health data collection covered a

four-year period from October 2002 to September 2006. However, over this study period,

there were different numbers of health centres and hospitals contributing to the health data

in each month. Health information on individual visits and admissions selected for the

study comprised hospital number, date of visits, date of birth, age, sex, occupation (out-

patient visits only), a unique individual identification number (ID), and diagnosis based on

diagnostic codes of the International Classification of Disease, the 10th version (ICD-l 0) of

the WHO (191).

3.4.2 Air pollution and meteorological data

Data on daily levels of selected criteria air pollutants, including S02, N02, CO, 03, PMIO,

and PM2.5, were obtained from the two air monitoring stations: Chiang Mai City Hall

station (35T) and Yuparaj College station (36T), in Muang district, Chiang Mai. The

Yuparaj College station (36T) is located in the Muang district central, and is a roadside

station. The Chiang Mai City Hall station (35T) is located about 10 kilometres away from

the central district, which is an urban area station (description of the two types of air

monitoring station is presented in chapter 4, section 4.3.1). The two stations are operated by

the Pollution Control Department (PCD), Bangkok, which is the centre for controlling the

real-time air monitoring stations all around the country.

The real-time monitoring equipments can provide readings of air pollutant levels at any

time interval such as at every 30 minute or at every one hour, depending on settings. The

PCD is responsible for calculating the daily mean levels of the pollutants and provides this

information to the public via the PCD's website. Daily mean levels of all pollutants (only

PM2.5data are not shown via the website) are calculated from Warn to 9am of a day. The

data presented on the website are the daily mean of a pollutant measured every one hour,

the first reading begins at lOam (starting the measurement from 9am) every day and ends at

9am on the following day, which is the day of reporting. The data of most pollutants were
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the report of a one-hour average for 24 hours, with exceptions for CO (8-hr average) and

PMIO (24-hr average). Daily mean levels of temperature, relative humidity, and rainfall

were also obtained from these two stations during the same period.

In this study, the meteorological data from the district central station were used for the

analysis because levels of meteorological variables were not greatly different between the

two stations, and also the data from the district central station had less missing values

compared to the outskirt station.

For air pollution, levels of air pollutants from these two air monitoring stations were

calculated as representative of the city's mean daily levels for the analysis. If there was a

missing value of one station, the mean daily value from another station on the same day

was used to estimate the missing value on that particular day. By adopting the APHEA (Air

Pollution and Health: a European Approach) protocol, the mean value from the remaining

station was multiplied by a factor equal to a ratio of the three-month mean for the missing

station over the corresponding mean from this remaining station on that day (192). If there

were missing values from both stations on the same day, the mean values of both stations

on the previous day and the day after were used for the estimation by adopting the same

approach. However, if there was a gap (e.g. 2 days upward) of missing data from the two

stations at the same period of time, the estimation could not be made and, therefore, those

particular days with missing data were left as they were.

3.5 Analytical methods

The purpose of time series analysis was to explore whether there was a short-term

association between exposure and outcome. Regression analyses of daily counts of the

visits and admissions were employed. In general, for count data, a Poisson distribution is

assumed and a Poisson regression model, allowing for overdispersion, is commonly used

for time series studies (193). However, when the overdispersed Poisson (OP) regression

model is not sufficient to accommodate the high overdispersion of the data, negative

binomial (NB) distribution can be assumed and NB regression can be applied for the

analysis (105,194) Since the health data in this study were heavily overdispersed, the NB were

used for the analysis.
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For the NB model, the probability distribution is given by the expression:

P(Y I) r(y+a-
I
)( aJ.i(x) JY ( 1 )-1 OlK

r = y X = y!r(a-I) l+aJ.i(x) x l+aJ.i(x) a ,y = " ,

Where X is the vector of explanatory variables and a is the dispersion parameter, which

represents the degree of extra-Poisson variation. When overdispersion is not present, a = 0

and the NB will be equal to a Poisson distribution. The variance of the NB model is:

var(Yjx) = ¢ [.u(x) + a .u(x)2]. The model holds negative binomial distribution when ¢ = 1

and the model is overdispersed when ¢ > 1 or underdispersed when ¢ < I (194).

Generalized linear models(GLMs) were applied for the modelling (195). The NB model is in

the following form:

Where E(Y) is the expected daily counts of out-patient visits or hospital admissions, XI ...

Xp are explanatory variable (predictors) of Y, and {31 ... {3p are the regression coefficients for

the predictors.

3.5.1 Adjustment for potential confounders

Seasonality

In general, there is a systemic variation in air pollution, weather, and health outcomes over

time. The seasonal patterns of each variable may induce correlations among them, even

though they may not be causal relation. The changes in out-patient visits and hospital

admissions over time may not be due to the changes in levels of air pollution and

temperature. The changes of the visits and admissions may be due to the changes of

something else such as the changes of hospital systems or people's lifestyles in relation to

season change.

With respect to the problem of having different numbers of hospitals contributing to the

health data in each month, when building the models, a monthly indicator representing
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months of the visits/ admissions over the study period from 1 to 48 (4-year data) was used

for seasonal control.

Long-term trends

In this study, long-terms trends can be defined as long-term changes in the mean daily

hospital visits and admissions (outcomes) over a certain period of time. It is also possible

that there are long-term trends of air pollution and temperature (exposure) over a certain

period of time. The long-term changes of exposure and of outcomes over a certain period of

time may make it look like they have had a causal relationship even though they do not.

Thus, long-term trends must be addressed in time series studies.

To account for long-term trends, the smooth function of time was used to capture long-

terms trends in the data. The splines created by 'frencurv' command were used in this

study. The 'frencurv' is an extension ofb-splines, which generates a set of reference splines

to be used in the design matrix of a regression model, with the property that the parameters

fitted will be values of the spline at a list of reference points. The core model was

developed with the starting of using one degree of freedom (df) for the smooth of time at

the first place.

Day of week

Day of week can affect daily hospital visits and admissions. There are usually higher counts

of visits and admissions on Monday than any other weekdays, while there are usually less

counts of visits and admissions on the weekend (193). To account for day of week effects,

day of week indicator was incorporated in the models.

Holidays

Similar to day of week, holidays may also have effects on hospital visits and admissions.

Besides including indicator variables of public holidays during the study period into the

models, indicator variables of the two long-holiday periods in Thailand: international new

year period (30 Dec-2 Jan) and Thai new year period (13-16 Apr), were also included into

the models. This was because the plots of residuals showed relatively high positive and

negative residuals during these two periods. In general, daily hospital visits and admissions,
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particularly due to accidents (e.g. car accidents or head injuries because of drinking and

driving, and high traffic congestion) are usually high during these periods. Thus, the

increased visits/ admissions during these periods may confound the relationships between

air pollution and the visits/ admissions, and between temperature and the visits/ admissions.

Influenza or respiratory epidemics

There is no information on influenza or respiratory epidemics in Thailand. It has been

suggested that this variable may confound the findings in time-series study because they

may co-vary with the environmental exposures or may be more prevalent during cold

weather period (196). Therefore, the period comprising daily counts of the visits/ admissions

due to respiratory diseases above the 99th centile of the total respiratory visits/ admissions

was used as an indicator for influenza or respiratory epidemics in this study.

Meteorological variables

Three meteorological variables: temperature, relative humidity, and rain, were included in

the models by using natural cubic splines (3df over the range of the values of these three

variables). When air pollution was the exposure of interest, temperature was considered as

a potential confounder to be controlled for, whereas, when temperature was the exposure of

interest, air pollution was controlled for. When either air pollution or temperature was the

exposure of interest, humidity and rain were also incorporated into the model as possible

potential confounders. Functional forms of meteorological, specific to temperature, in terms

of smoothing and linear (or threshold models), are described below.

Smoothing

Graphical assessment was used for visualising general relationships between temperature

and the visits/ admissions, by using natural cubic splines (NeSs) to identify the general

relationships between them. The NeSs were used to avoid too much flexibility at the edges

as these splines would become straight at the edges if there were not too many values of the

temperature. The NeSs fit cubic polynomials to temperature-the visits/ admissions

relationships in each interval. The polynomials of each interval are joined smoothly by

knots, the boundaries of the intervals. Therefore, the number of knots determines the degree

52



Chapter 3 Methods

of smoothing of the data. In this study, two knots (3df) were chosen for allow for flexibility

of the relationships between the exposure and the outcomes.

Linear or threshold models

It was expected that the general relationships between temperature and the visits/

admissions would be shown in three-possible figures below (197):

2a. 2b.

.: _/\_v
(1) Linear (2) Threshold models (3) Double threshold models

Figure 3. 1 Conceptual models of temperature-hospital visits/ admissions.

Simple linear models were considered when a log-linear association through the whole

range of temperature as shown in Figure 3.1-1. For simplicity, a threshold temperature

used for quantifying temperature effects in the present study was chosen visually (integer

value only) from the plots of their general relationships. A likelihood ratio test between the

model fitted with linear terms of temperature and the model fitted with non-linear terms of

temperature was also performed to ascertain the non-linearity of the relationships. If the

temperature threshold was not apparent from a graphical assessment and the test showed

that there was no evidence of non-linearity, a linear term of temperature was used for

quantifying temperature effects.

When a plot of the smoothed relationships between temperature and the visits/ admissions

was shown as Figure 3.1-2, a threshold model was assumed, which could be two possible

directions. Figure 3.1-2a shows a log-linear increase in the risk of the visit/admissions

above the temperature threshold and no increase (or decrease) in the risk of the

visit/admissions below the temperature threshold. Figure 3.1-2b illustrates a log-linear

increase in the risk of the visit/admissions below the temperature threshold and no increase

(or decrease) in the risk of the visit/admissions above the temperature threshold.
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If a smoothed plot of the relationships suggested U or V shape as shown in Figure 3.1-3,

the double thresholds model was assumed. There would be two temperature thresholds: low

and high temperature thresholds for quantifying temperature effects. This meant that there

was a log-linear increase in the risk of the visits and admissions below a 'low temperature'

threshold, and above a 'high temperature' threshold.

3.5.2 Lag structure (delayed effects)

The effects of air pollution and temperature may be immediate and/or may occur several

days after exposure (delayed effects occurring with some lags). This can be called a

distributed lag structure, which means that air pollution or temperature could affect

morbidity on many days. Thus, the effects of air pollution or temperature on morbidity (at

any day) would be the sum of the effects on those days. However, the magnitude of the

effects of today's air pollution (or temperature) and of yesterday's air pollution (or

temperature) could be different.

In the present study, distributed lag models were employed to investigate the effects of air

pollution and temperature on daily hospital visits and admissions. The overall effects of a

unit increase in air pollution (or in temperature) on a single day are its impact on that day

plus its impact on subsequent days. For air pollution, lag effects at 0-1 day and at 0-4 days

were chosen for the analysis because of two reasons: first, literature reviews suggested that

air pollution effects were more likely to be immediate or relatively short-term (3, 125, 192, 198,

199), and second, to make the study results comparable to the PAPA protocol (Appendix

3A). For temperature, lag effects at 0-1 day (short lag) and 0-13 days (long lag) were

selected for the analysis since previous literature suggested that heat effects were acute

(about 0-1 day after exposure), while cold effects were more delayed up to 2 weeks or even

a month (10, 121). In addition, the plots of constrained lags of temperature effects on the

health outcomes in the study illustrated that the effects were less likely to increase after 13

days.

3.5.3 Effect modification

Because different groups of people may be exposed to different levels of air pollution and

temperature, and some people may be more vulnerable than others, identification of the

vulnerable population in different disease groups was made. Daily counts of the visits/
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admissions were divided into six main groups, including all-cause visitsl admissions,

respiratory diseases (JOO-J99),circulatory diseases (100-199), diabetes (ElO-E14), intestinal

infectious diseases (AOO-A99), and 'other' visitsl admissions (the rest of the counts). The

primary diagnosis based on the International Classification of Disease, 10th version (ICD-

10) of the WHO was used for this purpose. Then, the effects of air pollution and

temperature in different disease groups were assessed in separate series.

There were three effect modifiers: age, sex, and occupation, considered in this study. The

data was divided into three age groups, including 0-14 years (children), 15-64 years (adult),

and ~65 years (the elderly). The data was also stratified by sex (male and female). In

addition, there were three occupational groups for the analysis, including unemployed and

economically inactive people, non-manual workers, and manual workers (details of

occupational grouping can be seen in Appendix 3C). All occupational groups were

restricted for working age (15-64 year) only, excluding children and the elderly. To

investigate the possible modifications, the series were developed separately for each group

and then the test for interaction was undertaken to see whether there was evidence of effect

modification by each subgroup. In addition, the effect modification by season (winter,

summer, and rainy seasons) was also examined. The analysis for each season was done

separately. The test for interaction between seasons was also done.

3.5.4 Autocorrelation

Daily counts of hospital visits and admissions are likely to be correlated and are not

independent. That is, today's visits or admissions are likely to be correlated with

yesterday's visits and admissions. To account for autocorrelations in the models, the partial

autocorrelation function (PACF) was plotted to visualise the serial correlation of the time

series at lag 1 day, 2 days ... etc, with the value of each lag corrected for the previous lags.

In general, the autocorrelation in time series is usually removed after adequate adjustment

for seasonality and other potential confounding factors. However, the remaining

auto correlations can be adjusted for by including autoregressive terms at any order that

shows strong autocorrelations into the models.

In this study, the PACF plots of the out-patient visits senes showed that there were

apparently strong positive autocorrelations at lag 1 day and every seven lag days (1, 7, 14,
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21, and 28 lags), even though and indicator of day of the week was already included in the

models, which suggested the remaining of day of the week effects in the models. Therefore,

autoregressive terms at order 1, 7, 14, 21, and 28 were created and incorporated into the

models.

3.5.5 Overdispersion

As previously mentioned, overdispersion is the phenomenon that the variance of the

residual distribution is greater than the mean of the distribution of the visits/ admissions,

which may be due to several reasons (e.g. the influence of some unmeasured factors on the

heath outcome variables). If the overdispersion is not addressed, it can lead to the

underestimation of coefficient standard errors. Thus, after applying overdispersed Poisson

(OP) or negative binomial (NB) models, a presence of remaining overdispersion was

checked by looking at the model overdispersion parameters (¢ ),which was expected to be

close to 1.

3.5.6 Diagnostic plots

Time series plots

The health outcome data were plotted against time to help identify cyclical or other

seasonal patterns that needed to be addressed in the analysis (200). The time plots were also

useful for checking if there were any unusual events that could have occurred. After

regressing a potential confounder, plots of the predicted values over time were also

undertaken to see whether the fitted model provide an adequate description of the data in

relation to the specific confounder.

Residual plots

Plots of residuals (residual = observation - fitted value) versus time were used to examine

whether the patterns seen in the original data series had been effectively removed. When a

smooth curve was also fitted in the model, the residual plots could help identify if long

wavelength patterns remained in the data. If the seasonal patterns appeared in both the

original data series and in the residual plots, this would have suggested an insufficient

fitting in the model. In contrast, if the patterns presented in the residual plots, but did not

show in the original data series, this would have suggested overfitting in the model (201).
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Partial autocorrelation function (PACF)

As described earlier, the PACF plots were employed to check whether there were any

remaining serial autocorrelation in the series. To account for the autocorrelations,

autoregressive terms at order that showed relatively strong positive autocorrelations were

included in the models. The autoregressive terms were created by extracting the residuals at

any significant order (strong positive autocorrelations) and then lagging them for the

number of days seen from PACF plots (at lag I, 7, 14, 21, and 28 days for out-patient

series, and at lag 1 day for hospital admission series). The PACF plots were checked each

time when including a new variable into the model, and were checked again after including

all variables into the models.

3.5.7 Model building process

After data cleaning and corrections, Pearson pairwise correlations were applied to examine

the correlations among air pollutants and meteorological variables. The model building

process began with plotting count numbers of the visits and admissions against time in

order to see the general patterns of the outcomes over time. Then, the baseline or 'core'

model was developed by inclusions of the terms of potential confounders into the model.

Plots of residuals and of predicted values over time were used at each time adding variables

to the core model to check the adequacy of the modelling.

When seasonality, long-term trends, meteorological variables, and pollution (when

temperature was the main exposure) were adequately adjusted for, PACF of residuals were

explored to assess the presence of any remaining autocorrelation of the data. If

autocorrelation was present, autoregressive terms at significant order were established and

added into the model. The contribution of the air pollution variables and of the temperature

variable to the prediction of daily morbidity (out-patient visits and hospital admissions) was

examined after an establishment of the core model was completed. The effects of air

pollution and temperature were estimated by including variables of air pollutants and

temperature into the core model. Regression coefficients and 95% confidence intervals for

each exposure of interest on different health outcomes were then obtained. The relative risk

(RR) for one degree Celsius increase (OC) in temperature, and for a IO-unit increase in air

pollution levels for all pollutants (except CO, one-unit increase) were used for presenting

the results.
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The RR was determined by the natural exponential of the regression coefficients from the

models as follows:

Temperature:

Air pollution:

RR = exp(regression coefficients)

RR = exp(regression coefficients x 10)

Where exp is the natural exponential.

For air pollution, in the first instance, the risk estimates of each pollutant were analysed

separately to determine the effects of a single pollutant. Based on the results of a single

pollutant model, two-pollutant models were also developed by inclusion of two pollutants

(those that mostly provided positive effects on the health outcomes) into the models. Since

pollutants in the air are highly correlated, to determine the effects of multi-pollutants may

not be very useful. The inclusions of three or more pollutants in the same model may make

it difficult for interpretations. Thus, only single pollutant and two-pollutant models were

developed in the present study.

All statistical procedures were undertaken usmg the STATA statistical software for

professional, the 10th version.

3.5.8 Linkage between hospital admission data and out-patient visit data

Linking the two data sets

To examine whether people who have many out-patient visits (OPO visits) are more

susceptible to a subsequent hospital admission in association with air pollution and

temperature exposure, a new data set was established by linking hospital admission data

with out-patient visit data. This linkage data was then used for investigating whether there

was an effect modification of air pollution and temperature by the history of out-patient

visits prior to the hospital admissions.

First of all, individual daily records in the hospital admission data were linked to all of their

records in the out-patient visit data by using individual identification (ID) numbers. That is,

the ID number of a hospitalized patient in the hospital admission data was matched with the

ID number of an out-patient visit in the out-patient visit data. The ID number is chosen for
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linking the two data sets because all Thai people have their own unique I3-digit ID

numbers. If the ID number of a hospitalized patient and of an out-patient visit was identical,

a patient's date of birth was then used to recheck for validation to ensure that the records in

the two data sets belonged to the same person.

Then, the numbers of out-patient visits prior to admission were counted. Only the visits that

occurred within the 6-month period prior to the admission were included in the count. A 6-

month period of OPD visits prior to the hospital admission was chosen under because it

was believed that using a shorter period, there might be too few counts of out-patient visits

for each individual and the visits might be highly correlated or they might be due to the

same exposure. On the other hand, using a longer period, the out-patient visits might be due

to other reasons, not due to the short-term effects of the exposure. The sensitivity test was

also carried out to investigate the impact of different time periods chosen for obtaining the

linkage data.

With this process, data from the first 6 months (October 2002 to March 2003) of the

hospital admission data could not be used for linking and therefore, were discarded. Thus,

in this study, there were three main time series: two unlinked ID series (out-patient visits

and hospital admissions series described previously), and one linked ID series (presented in

section) as illustrated in the following figure.
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Figure 3.2 Process for data analysis in this study.

Unlinked ID seriesi4--------- (4-year period) ------------+:

Linked ID series:.---------------- ----------------~(3.5 year period)

~--~------------------------~~PD~.ri~
(unlinked)1" six

months of

~

~~~~~~~~~ I~~~_ 0)
1------+--------------------------------IHospital

admissions series
(unlinked)

Check
date of birth

Same date of birth for both data sets

G)L...-- ~

Inclusion and exclusioncriteria of hospital admission cases in the linkage data

1. Hospital admissions that had only one out-patient visit occurring on the same date of

their admission were kept as a baseline group of the admissions with no history of the visits

prior to their admissions.

As mentioned earlier, since Thai patients need to visit the out-patient department (OPD) for

preliminary investigations before admissions, there is a record of an out-patient visit on the

same date as a hospital admission for each patient. Thus, in the linkage data, the out-patient

visit recorded on the same date of the admission was not counted as a history of the visit

60



Chapter 3 Methods

prior to that admission. But this admission was still retained for the analysis as a baseline

group of hospital admissions with 'no history' of previous visits.

2. Only hospital admissions of a patient where ID numbers were matched with the ID

numbers in the out-patient visit data were kept.

It is important to note that not all hospital admissions could be linked with the out-patient

visits, which might be due to the general problem of missing data or errors in inputting

individual information (e.g. the 13-digit ID number). Thus, it was decided to include only

matched ID, hospital admission cases in the linkage data by assuming that all matched ID

cases had their actual numbers of previous visits in the out-patient data set.

However, due to the problem of missing data or errors in routine health records, it could not

be certain that these hospitalized people truly had only one out-patient visit recorded on the

same date of their admissions (i.e. these patients in the 'no visit' group for the linkage

series) or they actually had several visits, but their out-patient visit records were just

missing or errors. To address this problem, another data set that included all unmatched

hospital admission cases was created for sensitivity tests by assuming that those unmatched

cases also had 'one out-patient visit' only (results presented in chapter 8, section 8.3.2, p.

196).

3. Only hospital admissions where the dates of birth were the same in both OPD visit data

set and hospital admission data set were kept.

Because one hospital admission could be matched with several out-patient visits prior to

that admission, date of birth was also used to double check that a hospital admission was

the same person shown in the out-patient data set. If the ID number of both data sets was

matched, and all dates of birth in both data sets were also the same, all records of this

person were kept in the linkage data for further analysis. However, if some of their dates of

birth were not the same, all records of that patient were excluded from the linkage data

because it could not be known for sure which date of birth (the one in the OPD data set or

the one in the hospital admission data set) was the correct one for this person.

61



Chapter 3 Methods

4. Only the first admission of each person was kept. if his/her re-admission was due to the

same diagnosis within 6-month period.

If a patient had more than one hospital admission with the same diagnosis within the 6-

month period, only hislher first admission was included in the linked ID series because

hospital admissions occurring within 6 months might be due to the same condition. But, if

the same person had been re-admitted within the 6-month period due to different diagnoses,

those re-admissions were still kept for the linked ID series.

5. Hospital admissions greater than 6 months apart were considered as a new episode.

If the same patients had hospital admissions greater than 6 months apart, all of hislher

admissions (even though the same diagnoses) were included in the series.

Please note that a 6-month period was used in two different situations. First, it was used to

obtain the linkage data or as a certain time period for counting the numbers of previous

visits before admissions of a patient. Second, it was used for including or excluding the

daily counts of hospital admissions of each individual in the linkage data with regard to the

diagnoses of the hospital admissions.

In order to make it clearer about the use of individual hospital admission records for the

linkage series, an example of daily records of a patient presented in the linkage data is

given below.
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Figure 3. 3 Example of a patient in the linkage data by causes of his/her admissions.

I" 6 months ~I" 6 months ~I
Cause of
admissions

Respiratory [!] W ~

El] EMCirculatory
..

Diabetic [2J
Intestinal [!]
infectious

.

Other G 0

Note: I. Linkage data was a subset of hospital admissions data - the hospital admissions with no history or

with at least one visit or more prior to their admissions.

2. Each admission generally had its own number of previous visits before the admission (not shown).

But there might be an overlap of the previous visits for each admission e.g. the same visit could be

counted for 1st admission and also for the 2nd admission.

Patient number 1: D
- Patient number 1 is an example of a patient, who had 6 hospital admissions in the linkage

data. The number in each block represents a sequel of his admissions from the 1st to the 6th

admissions.

- Since the first admission and re-admissions with different diagnoses within a 6-month

period were kept, the 1st, 2nd, and 3rd admissions of this person were kept in the linkage

data, but the 4th and the 5th were excluded. However, the 6th admission was retained as the

first new episode of respiratory admissions for this person because the interval between the

1st and the 6th admissions was greater than 6 months.

Patient number 2: 11]
- Patient number 2 is an example of a patient, who had 3 hospital admissions in the linkage

data. Each admission of this patient was greater than 6 months apart. Therefore, all of his

admissions were included in the series, even though the 1st and 2nd admissions were due to

the same diagnosis.
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In summary, the linkage data was the hospital admissions, which could be linked with out-

patient visits by using ID numbers. The data comprised two main groups:

1. Hospital admissions with no history of out-patient visits within a 6-month period prior to

their admissions.

2. Hospital admissions with one or more out-patient visits within a 6-month period prior to

their admissions.

After data cleaning and corrections, the linkage data was collapsed into a time series format

and a regression model of this linked ID series was developed.

Analytical methods of the linkage ID series

The analytical methods applied for the linkage ID series were generally the same as those

used for out-patient visits and hospital admissions series. However, the aim of the linkage

series was to explore whether there was a modification of air pollution effects, and of

temperature effects by the history of previous out-patient visits, which might have an

impact on subsequent hospital admissions of each individual.

To investigate whether the patterns of air pollution and temperature effects would have

changed in relation to the frequency of the out-patient visits prior to the hospital

admissions, the numbers of previous visits before admissions were counted and divided

into 4 groups: 0 visit (no history), I visit, 2-5 visits, and >5 visits. The grouping was done

for analysis purposes to have reasonable numbers for each visit-category group.

Then, the effects of air pollution and temperature on each health outcome were examined

for all visit-category groups. In order to see whether there were any patterns of air pollution

and temperature effects across these 4 groups, the estimated effects (RRs and confidence

intervals) of air pollution and temperature for each group were plotted.

In addition, tests for trends of air pollution and temperature effects across the 4 groups were

also done. The distribution of the count numbers of previous visits before admissions in

each group was explored. The median of the count numbers of the visits was used as a

weight score for testing for the trends of air pollution and temperature effects across the
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visit-category groups: 0 for '0 visit' group, 1 for' 1 visit' group, 3 for '2-5 visits' group,

and 8 for '>5 visits' group.

Variables and related factors in the analysis of the study are detailed below.

Outcome variables:

Health outcomes of interest are based on diagnostic codes in accordance with the

International Classification of Disease, 10th version (lCD-I0). The six main groups of

health outcomes include:

• All causes of visits/ admissions

• Respiratory diseases (JOO-J99)

• Circulatory diseases (100-199)

• Diabetes (EI0-EI4)

• Intestinal infectious diseases (AOO-A99)

• Other visits/ admissions (the rest of daily counts in the data, apart from above

disease groups)

Explanatory variables:

1. Air pollutants: S02, N02, CO, a), PMIO, and PM2.5

2. Temperature

Possible confounding factors:

• Time trends

• Seasonal patterns

• Other weather variables: relative humidity and rainfall

• Day of weeks and holidays

• Influenza epidemics

Possible modifiers

• Age groups (0-14, 15-64,65+)

• sex (male /female)
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• Occupation (unemployed & economically inactive people, non-manual workers,

manual workers)

• Season (winter, summer, rainy)

• Previous history of out-patient visits (0, 1,2-5, >5)

3.6 Sensitivity analyses

The section described two main sensitivity analyses when building the core model for the

study, which were done for the first series (out-patient visits series) only. Other sensitivity

tests specific to the hospital admissions and the linkage series were explained in their result

chapters. With regard to model building, the main issues of concern were: model

distributional assumption and model seasonality.

3.6.1 Model distributional assumption

Conventionally, time series studies of air pollution and temperature effects usually employ

Poisson regression, allowing for overdispersion. This is due to the assumption that count

data mostly follow Poisson distribution (195). Failure to allow for overdispersion can lead to

underestimation of the variance of the coefficients and exaggerated significant levels. In the

present study, however, due to heavily extra variation of the data, negative binomial

regression was then chosen for analyses instead. In order to see how much impacts on the

coefficient estimates in regard to using different types of regression analysis, comparison of

the estimates obtained by using negative binomial regression and those obtained by using

Poisson regression was made.

Modelling air pollution

For both negative binomial regression (NB) and overdispersed Poisson (OP), the models

were the following form:

10g[E(Y)] = a + i.dow + i.movisit (1-48) + holidays + time splines (sdate) + splines of

unusual peak visits (sodd) + interny + thainy + influ + autoregressive terms (1, 7, 14 21, 28)

+ temperature splines + humidity splines + rain splines + a pollutant (lag 0-1 day or lag 0-4

days).

Where i.dow = indicator variables of day of the week,
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i.movisit

thainy

influ =

indicator variables of month of the visits (1-48),

indicator variable of public holidays,

time variables using splines of date (frencurvnk, l df/year),

splines of a three-month unusual peak visits from April 2005

to June 2005 (frencurvnk, l df/year),

indicator variable of international new year period

(30 Dec-2 Jan),

indicator variable of Thai new year period (13-16 Apr),

indicator variable of possible influenza epidemic using the

period that respiratory visits were above 99th percentile.

holidays

sdate

sodd

=

intemy =

In addition, the autoregressive terms at order I, 7, 14, 21 and 28, were incorporated to

account for the remaining autocorrelations. The natural cubic splines (3df) of temperature,

humidity, rain were also included into the model. To determine air pollution effects,

pollutant variables at average lag 0-1 day or lag 0-4 days were added into the model.

The probability function of a Poisson model is:

e:" f.l Y
Prey = y) = ;y = 0,1,2,K,

y!

Where 11 is the mean and the degree of dispersion can be estimated by the overdispersion

parameter:

Where 11 is the mean, n is the number of observations, and p is the number of parameter in

the model. When ¢ = 1, the assumptions of the Poisson have been met - variance is equal

to the mean. The model is overdispersed when ¢ > 1. Thus, the variance of the OP model

is var(Y) = ¢ 11.
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Modelling temperature

The regression analysis form used to model temperature was based on the same structure as

that used for modelling air pollution. The only difference is that temperature variables from

lag 0 to 13 were incorporated into the model, instead of air pollutant variables.

3.6.2 Model seasonality

Adequacy of controlling for seasonal and long-term trends in time series studies is of great

concern. The inclusion of a smooth function of time, such as natural splines and penalized

splines, in regression model is commonly used to adjust for seasonality and long-term

trends. However, degrees of smoothing or numbers of degree of freedom (df) used for

splines of time may influence estimates of exposure effects in time series analysis.

Oversmoothing in the series may lead to confounding bias, whereas undersmoothing in the

series may result in attenuation of a true effect (202). Since there are no absolute degrees of

smoothing, evaluating various numbers of df used in time series studies to ensure adequacy

of adjustment for seasonality has been recommended (203). In the present study, time splines

used for modelling referred to the b-splines of date and the I df per year was chosen for

developing the core model at the beginning for both air pollution and temperature models.

To assess the sensitivity of the results in regard to the degrees of smoothing, varying

degrees of freedom of the b-splines of date from 1 df to 10 df per year was examined. Then,

the number of df of time was adjusted as suggested by the sensitivity test results. According

to the sensitivity test results, in this study, Idfwas used for modelling air pollution, while 6

df was used for modelling temperature.
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Chapter 4: Data Quality

This chapter describes characteristics of health, air pollution, and meteorological data in

Thailand. It begins with broad description of Thai health care systems, followed by specific

characteristics of health data used in this study, both out-patient visits and hospital

admissions. Information about air pollution and meteorological data is also included.

4.1 Thai Health care system

This section describes the general characteristics of Thai health care system in relation to

the two main data sets (out-patient visits and hospital admissions) used for the study. The

out-patient data were routine daily health records obtained from the Chiang Mai provincial

health office, while the hospital admission data were the hospital claim data obtained from

the National Health Security Office. Information about the health care system and the

health data are detailed as follows.

4.1.1 Health and welfare of Thai population

According to the 2003 Health and Welfare Survey (HWS), approximately 95% (60.7

million) of the total Thai population were covered by different health insurance schemes,

including the universal coverage (UC) scheme (74.7%), the social security scheme (SSS)-

for private employees and temporary public employees (9.6%) -, the civil servants medical

benefit scheme (CSMBS) - for civil servants, public employee, and their dependants (9%)

- , and private insurance (1.7%) (204). Therefore, only 5% (3.2 million) of the total

population were still uninsured (e.g. they need to pay for health care services themselves at

the point of delivery).

When Thai people are ill, they generally visit their assigned health centres and hospitals

under their own health insurance schemes, which are usually located near their homes.

After providing health care services for patients, health centres and hospitals will claim the

cost of the services from the main offices of the health insurance schemes. To receive

health care services, an individual health care card needs to be presented. If people forget

their cards, they still receive health services from those health centres and hospitals as

necessary. They will be given some period of times (e.g. 3-7 days) for presenting their
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documents. However, an inability to provide the documents by the due date means they

have to pay for their health care services by themselves.

For out-patient services, health care providers generally receive the subsidy for their

services from their provincial health offices as an annual budget based on their public

health activities (e.g. primary health care services, health promotion activities). In other

words, a provincial health office is responsible for distributing the annual budget received

from the Ministry of Public Health to all government health care providers in a province.

Thus, a primary health care provider usually sends daily out-patient records to its provincial

health office, which is a centre for keeping all public health information of a province.

However, there is no financial incentive for health care providers specifically to reporting

their out-patient records to the provincial health office.

For hospital admissions, in each month, hospitals will send the daily routine health records

of hospital admissions, which include personal information (e.g. identification number, age,

and sex), and details of medical treatments used during the admissions, to the National

Health Security Office - a government health sector that is responsible for providing

reimbursement for hospitals under health insurance schemes throughout the country - in

order to get the reimbursement.
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Figure 4. 1 Health care providers under control of the Ministry of Public Health in a
province of Thailand.

Ministry of Public Health

Regional Hospital (~1000 Beds)lProvincial,Hospital (~ 100 Beds)

~ -.

National Health
Security Office2

Health care providers in each province:

Provincial Health Office'

Community Hospital (lQ-120 Beds)"""""_'_'_'_" .i->:
~ "'" Health insurance claim for

", hospital admission cases.
District Health Office • ..' ..~.-.-.-.-.-.-.-.-. _._._ ..

.'

Health Centre (No admission beds),
located in a sub-district,

ISources of OPD records, keeping health records from hospitals and health centres in a province.
2Source of hospital admission records, keeping hospital claim data of the country.

Note: -+ = the direction of administration systems. The higher levels is generally bigger and has more
authority than the lower one .

• .•.• = the route of reporting hospital admission data for reimbursement.

4.1.2 Health centre

In general, health centres in Thailand are located in every sub-district (known as "Tarn-bon'

in Thailand) to provide primary health care services for people in the community. Each

health care centre is assigned to he a main contractor for the population registration in the

VC scheme for its community. Although health centres are entrusted with providing

comprehensive care to their registered population, in practice, they also provide primary

care services for all people (with every type of health insurance schemes, and without

insurance) in the community. For Thai people who have a health centre as a main

contractor (some people who live near hospitals will register with a primary care unit of

their nearest hospitals instead), they have to visit their assigned health centres first when
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they are ill. Direct access to hospital care is not permitted, except in the event of an

accident or the need for emergency care. If local health centres cannot handle their own

patients, such as patients with severe illness or injuries that exceed their capacity, they will

transfer these patients to hospitals for more advanced care (secondary or tertiary care) as

necessary. Hence, there is no bed occupancy in a health centre and its health records are

normally called 'out-patient visits', which can be both elective and emergency situations.

4.1.3 Hospital

For each district in Thailand, there is at least one community hospital of the government to

provide the ambulatory care and in-patient care for the population in the community. The

number of hospital beds is an indicator of the size of a hospital, which can range from 10 to

120 beds. For the district located in the inner area of a province, usually named 'Muang

district', it will have a big, provincial hospital (~100 beds). If the city has a large

population, such as Muang district in Chiang Mai, it can also have a big regional hospital (~

1000 beds) as well as several government hospitals (such as a military hospital, a medical

school or university hospitals, and other specialized hospitals) and private hospitals with

various sizes.

In terms of hospital care, hospitals in Thailand generally consist of two big departments: an

out-patient department (OPO) and in-patient department (IPO or hospital admissions).

Out-patient Department (OPD)

Out-patient department (OPO) is responsible for ambulatory care (including primary care)

in a hospital. Apart from health care centres, out-patient departments of hospitals in

Thailand also have a primary care unit to serve as a main contractor for population

registration in regard to the UC Scheme for its nearest community. Health services at the

OPD consist of both scheduled and unscheduled visits to several health care units (e.g.

Paediatric unit, Medicine unit, Surgical unit, and Gynaecological unit), and emergency

visits to an emergency room (ER) of a hospital. Therefore, health records of out-patient

department in Thailand are the records of all ambulatory care settings in a hospital, which

comprise both elective and emergency visits. The process of health services at OPO in

hospitals in Thailand can vary depending on the administration system of each hospital.
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However, the overall process is very similar. Examples of health services at OPO and ER

are shown in Appendix 4A.

In-patient Department (IPD) or Hospital admissions

The in-patient department (lPD) of a hospital provides in-patient care for hospital

admission cases. When patients go to a hospital, all patients have to visit the OPO of a

hospital first. If patients are considered to be severe illness cases and need admissions, they

will be transferred from OPO to IPD for the admissions. Even if patients have appointments

to admit at a hospital (such as for elective operations), they still have to visit the OPO and

see OPO doctors for primary investigations before their admissions. Therefore, one patient

generally has a record of an out-patient visit and a hospital admission on the same day in

the routine health record data sets. This means that although out-patient visit data and

hospital admission data in the present study were obtained from the different sources, it is

possible that, on the same day, some individual records in the hospital admission data were

also presented in the out-patient visit data (if there is no missing record of out-patient visit

data, all hospital admission records should have at least one out-patient visit records on the

same day of their admissions). Thus, for the linkage series, it was decided that an out-

patient visit recorded on the same day of the hospital admission would not be counted as its

history of the previous visit before admission on that day (see Chapter 3: Methods, section

3.5.8).

With regard to bed capacity, if hospital beds are fully occupied and there is an out-patient

visit considered as a severe case and needed to be admitted, a hospital in Thailand always

provides an additional bed (or extra bed) for hislher admission. For example, during an

outbreak of diarrhoea or of dengue hemorrhagic fever or mass causalities (from accidents

or disaster events), additional beds can be seen between the usual fixed beds in hospital

wards or along the hallway of a hospital building when necessary. In some cases, ifthere is

too much workload for a small hospital and there is a bigger hospital available in the city,

patients from the smaller hospital may be transferred to the bigger hospital for admissions.

Therefore, daily count numbers of hospital admissions in Thailand are unlikely to be

artificially restricted by bed capacity.
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4.2 Quality of health data

4.2.1 An overlap of health records between OPD visits and hospital admissions

As mentioned earlier, in general, every patient who has been admitted to a hospital in

Thailand also has an OPO visit (for preliminary physical examination before admissions)

on the same date of that admission. Thus, there is an overlap of health data used for the

analysis in the present study. Because the OPO data comprised not only OPO visits, but

also hospital admissions, it may be possible that the observed effects of air pollution and

temperature from the OPO visits series may not truly represent the effects on daily OPD

visits due to some possible contributions of hospital admission cases in the data.

Since the hospital admission data in this study were the hospital claim data, which were

obtained from one institute (The National Health Security Office) only, even if we exclude

OPO visit records that were the same cases of these hospital admissions, the OPO data set

would still contain hospital admissions from other institutes (those that were not used for

health insurance claims, which we were unable to know how many they were). Therefore, it

was decided to use the whole original OPO data set, without any exclusion for this study.

4.2.2 Coding system of health records

Daily routine health records used in this study derived from some parts of the diagnosis

related group (DRG) records of health centres and hospitals. ORG was established in the

U.S.A. in 1983 because of the increasing cost of services. The Health Care Financing

Administration (HCFA) had changed the methods of reimbursement of treating patients

under the Medicare program for hospitals. Thailand began to use the DRG system for

routine health records almost 10 years before it officially adopted this system for

reimbursement of Thai health care cost in 1998 (205). However, the reimbursement of

hospital care services in Thailand have been applied for IPO (or hospital admissions) only

and mainly for patients with health insurance schemes introduced by the Ministry of Public

Health.

Like all provincial health offices in the country, the Chiang Mai provincial health office

also employs the ORG system and requires their registered health centres and hospitals to

report the daily health records of out-patient visits in each month to be used for providing
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subsidy (not for health insurance claim, but for other budgetary needs for public health

activities e.g. primary health care services and health promotion activities) for those health

centres and hospitals. Thus, out-patient data in the present study were the daily routine

health records (October 2002 to September 2006) obtained from health centres and

hospitals registered with the Chiang Mai provincial health office only.

By comparison, health records of IPD (or hospital admissions) are more reliable than OPO

visits in regard to accuracy of diagnoses, and completeness and accuracy of coding

practices. This is because of two important reasons. First, ORG records of IPO are used for

reimbursement of health insurance claims, while DRG records of OPD visits are requested

by the government for co-operation in keeping health records (for statistical reports) for the

country. Thus, there is financial incentive for hospitals to provide complete and accurate

records of hospital admissions, whereas there is no financial incentive for a provision of

OPD records. Hence, in this study, the missing data in some months of some hospitals were

found in the out-patient visit data more than those found in the hospital admission data.

Second, on a daily basis, there are less numbers of hospital admissions compared to OPO

visits. At OPO, medical doctors, nurses and other health care workers have to complete

their jobs and health records within a day. Thus, decisions in diagnosis, records of health

reports, and all medical investigations at OPD have to be made quickly and are likely to

have mistakes. At IPO, on the other hand, health records of hospital admissions are

discharge records. Thus, health care workers (such as doctors, nurses, or coders) at IPD can

gradually fill in health reports while patients are staying in a hospital. They are generally

able to spend more time thinking and writing discharge records, and more importantly

doctors can also request for more medical investigations (e.g. laboratory and x-ray) to

ensure their diagnoses. Therefore, IPO records are more likely to have fewer mistakes in

comparison to OPD records.

4.2.3 Coding practices of health records

According to the survey about medical coding practices in Thailand (206), approximately

60% of the survey hospitals had certificated medical coders in coding practices, but 46.20%

of the coders had to work in other jobs as well. Hospitals that did not have certificated

medical coders, health personnel such as nurses, doctors, or public health practitioners
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would be trained to take responsibility for coding instead. Itwas found that, 85% of coders

had attended in a diagnosis/procedure coding training course. Approximately 44% of the

coders had 1-3 year experiences in coding practices, whereas 13.66 % of them had < 1 year

experiences. The most common method of coding was using only ICD books (53.90%),

followed by using ICD books with computer-aided coding program (27.80%) and using

only computer-aided program (18.31%).

The survey also revealed opinions of administrators and academic experts about reliability

of health records in Thailand. It was found that 34.13% of administrators and academic

experts in Thailand believed that ?86% of health records were reliable, 33.15% of them

thought that 76-85% of health records were reliable. Approximately 30% of the

administrators and academic experts believed that the reliability of health records was 50-

75%, whereas only 3.75% of them thought that the reliability of health records was less

than 50%.

Regarding the error in coding, the survey found that there were several types of error in

coding, such as wrong codes, incomplete/missing codes, and codes uncorrelated with age

and sex of patients. The survey indicated that the error in coding practices in Thailand was

due to three main causes: first, insufficiency of coders; second, lack of knowledge and

experience and carefulness in rechecking codes; and third, lack of motivation in their work

due to an inappropriate career ladder and a lack of supportive measures in professional

knowledge and skill.

It is important to note that this survey was conducted in 322 hospitals in Thailand and it

cannot be known whether hospitals in Chiang Mai province were included in the survey.

Even so, the results have demonstrated the likely situation of diagnostic records as well as

the procedure of coding practices in Thailand. During the data collection for this study, the

officer of the biggest hospital in Chiang Mai, which had large number of missing

diagnoses, also acknowledged that the main cause of missing code was due to insufficient

coders of the hospital. This information is in agreement with the first leading cause of

coding error of the above survey. In general, monthly reports of daily routine health records

will be sent to the Chiang Mai provincial health office by the due date although there is
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incomplete coding. In each month, the coders usually work with health records (input the

ICD-IO diagnostic codes into the individual health records) and stop coding in order to

hand in the reports to the provincial health office by the due date with non-specific to

particular patients or diseases in the data set. Thus, if this practice would cause bias to the

study results with respect to the missing information, it would be non-differential.

4.2.4 Factors affecting quality of health data

There are three main issues of concern regarding the quality of the health data: the

distinction between elective and emergency cases, the representativeness of the Chiang Mai

population, and the completeness of the data and the diagnostic accuracy.

Firstly, it is impossible to distinguish between elective and emergency cases for both out-

patient visits and hospital admissions series in this study. In general, one would expect

short-term effects of exposure to air pollution and temperature to only be associated with

emergency visits or admissions (19, 78, 199,207). The use of combined data on elective and

emergency patients will render the series more 'noisy' and therefore, make an assessment

of air pollution and temperature effects more difficult. Since this situation could only serve

to reduce the apparent effects, any association observed will not be invalidated.

Secondly, the out-patient visits and hospitalizations in the health centres and hospitals may

not truly represent the entire residents of Muang district in Chiang Mai. This may be due to

two reasons: health care seeking behaviours and population mobility. First, health care

seeking behaviours among individuals in the city could vary greatly. For example, some

inhabitants may choose alternative medicines, such as Thai traditional medicines (e.g.

massage, herbs) or buying medicines from drug stores to treat themselves (204). Some people

may visit private clinics or other hospitals, which are not included in the study. Second,

there is also the possibility of an influx of people from neighbouring areas into the study

area, which may introduce bias into the study and cause some distortions of the study

results. However, we would expect that most people in the northern region would share

similar characteristics in terms of behavioural and cultural lifestyle. In addition, it is

possible to assume that health care seeking behaviours or an influx of neighbouring

population would have not changed enormously in terms of a day-to-day variation. The
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proposed study is designed for assessing short-term effects only, which would reduce an

influence of this situation on study results.

Thirdly, this study is based on routinely collected health data from several health centres

and hospitals. Thus, the completeness of the data and the degree of diagnostic accuracy

could vary greatly among those selected health centres and hospitals. However, it is

possible to assume that the error in both diagnosis and data records would have acted

randomly over time.

4.3 Quality of air pollution and meteorological data

4.3.1 Air monitoring station

Daily mean levels of air pollutants and meteorological variables for Chiang Mai province

were obtained from the Pollution Control Department (PCD), Bangkok, Thailand. The PCD

is the central air monitoring system for the whole country. By using the standard computer

software called "AIRVIRO", the PCD can control air monitoring stations and obtain levels

of air pollutants from those stations throughout the country via telephone systems. Thus,

the PCD is able to monitor air pollution situations (real-time monitoring) and is able to

forecast the air pollution situation in some particular areas of the country. The real-time

monitoring equipments can provide readings of air pollutant levels at any time interval such

as at every 30 minute or at every one hour, depending on the setting. Daily levels of

pollutants are provided for the public via the PCD's website, presenting daily mean levels

of pollutants measured every one hour ending at 9am on the day of reporting.

An air monitoring station in Thailand is a movable container with 3 metres wide, 4 metres

long, and 2.4 metres high. It is usually located on a concrete base with an area of about 25

square metres (5 metres wide and 5 metre long). In general, there are two types of air

monitoring stations: an urban area station - located approximately 50 metres or more from

the nearest road, and a roadside station - located less than 10 metres from the nearest road.

Thus, in general, levels of air pollution obtained from a roadside station should be higher

than those obtained from an urban area station. The air data used for this study were the

average from the only two stations in the city of Chiang Mai, one roadside station and one

urban area station. The roadside station is located in the inner area of Muang district,
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whereas the urban area station is located in the outskirts of the district (approximately 10

kilometres from each other). Using the data from the station in the city central might

represent higher levels of exposure, while using data from the station in the outskirts might

represent lower levels of exposure. Thus, by using the average levels of air pollution from

both types of air monitoring stations within the same district, the air pollution data in this

study would reasonably represent exposure levels of the study population (though not the

same as personal exposure).

Figure 4. 2 The urban area air monitoring station in Chiang Mai.

Figure 4. 3 The roadside air monitoring station in Chiang Mai.
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4.3.2 Factors affecting quality of air pollution and meteorological data

Completeness

Completeness of the air pollution and meteorological data is also important in assessing

morbidity in relation to daily changes of air pollutant and temperature. Based on

preliminary investigation of two-year data (October 2003- September 2005) obtained from

the PCD, the daily missing values of air pollutants and meteorological factors (temperature,

relative humidity, and rainfall) of the two air monitoring stations ranged from

approximately 4% (rainfall) to 27% (CO) of the total. Summary of daily average levels of

air pollution and meteorological factors from the preliminary findings can be seen in

Appendix 4B. As mentioned previously in the method chapter (section 3.4.2), the missing

data in one station were replaced by using the data from another station by adopting the Air

Pollution and Health: a European Approach (APHEA) protocol.

Afeasurementerror

To obtain levels of air pollutants and temperature from the fixed air monitoring stations is

more likely to cause the so-called 'measurement error' in the study. Like many other time-

series studies, the use of fixed point sampling may not represent true exposure of the large

mobile population (190). However, as mentioned earlier, instead of obtaining the exposure

levels of air pollutants from only one station, the average exposure levels from the two air

monitoring stations in two different geographical locations would be a better estimate of

exposure levels for the study population since the individual exposure could not be known.

For weather variables (temperature, humidity, and rain), it was decided to use the data from

one station only because there were little differences in the levels of weather variables

between the two stations. The levels of weather variables from the city station were used

because there were less missing data than another station.

Summary of data quality for the present study

Health data:

• Hospital admission data in Thailand are generally more reliable than out-patient

data due to the financial incentives of reimbursement from the government.

• Routine health records in Thailand have officially been using DRG coding system

since 1998 (with 10 years of a trial period earlier). Although the problems of
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missing and error in coding the data still remain, the reliability in coding practice

should be acceptable. This is supported by the survey of medical coding practices in

Thailand that approximately 70% of administrators and academic experts believed

in its reliability being >76% or more. Furthermore, most coders have also been

trained before practicing. In addition, missing and/or error in coding practices that

would have caused bias in the study appeared to be non-differential.

• Any observed effects in the study would have been reduced by not only an overlap

of health records between OPD visits and admissions, but also other factors, such as

an inability to differentiate between elective and emergency cases, a mobile

population, and an incompleteness of the data as well as inaccuracy of diagnosis.

Air pollution and meteorological data:

• Due to having two monitoring stations in the city, missing data of one station could

be replaced by calculations using data from another station.

• Like other time series studies, measurement error due to using data from fixed

sampling sites to represent an exposure of individuals from a large and mobile

population was unavoidable.
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Chapter 5: Descriptive results

5.1 Out-patient visits

Daily counts of out-patient (OPD) visits were obtained from the Chiang Mai provincial

health office for a 4-year period from October 2002 to September 2006. After data cleaning

and corrections, there were 1,398,369 visits recorded during this period. Of total daily

visits, 0.6% (8,092 counts) had missing information on age, 0.8% (10,431 counts) had

missing information on sex, and 18.6% (259,522 counts) had missing information on

occupation. Thus, when the data were stratified by age, sex or occupation, these

observations were excluded.

Figure 5.1 presents the total count of OPD visits on a monthly basis. Due to the fact that

there were different numbers of hospitals and health centres contributing to total counts of

OPD visits in each month, a steep increase or decrease of total counts of the visits had

occurred in some particular months throughout the study period.

5.1.1 Characteristics of study population of out-patient visits

Following the ICD-IO coding system, the out-patient data were divided into six disease

groups: respiratory disease (100-J99), circulatory disease (100-199), diabetes (ElO-E14),

intestinal infectious disease (AOO-A09), 'other' diseases (those not included in the four first

categories), and all-cause visits. The distribution of the disease groups by three main

characteristics (age, sex, and occupation) of the study population are presented in Table

5.1.

Three age groups were defined for children (0-14 years), adults (15-64 years), and the

elderly (~65 years). The majority of study population were adults (67.1%), followed by the

elderly (19.3%) and children (13.1%). It was found that approximately 50-70% of all six

disease groups were adults. However, children had higher OPD visits because of respiratory

(40.2%) and intestinal infectious (42.2%) diseases, compared to other diseases. Among

elderly people, the visits due to diabetes (31.2%) and circulatory diseases (37.4%) were

higher than other diseases.
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The daily visits among females were slightly higher than males in all disease groups. In

total, the distribution is approximately 60% females and 40% for males. Regarding

occupational groups, which were restricted among people at working ages (15-64 year)

only, approximately 25% of the study population were unemployed and economically

inactive people. This was followed by non-manual workers (21.6%) and manual workers

(7.6%). The grouping was done according to the 3-digit occupation code (see Appendix

3C). Among these three groups, unemployed and economically inactive people had higher

visits in diabetes (33.0%) and circulatory (26.5%) disease, while non-manual workers had

higher visits in respiratory (24.3%), intestinal infectious (22.6%), and 'other' (30.2%)

diseases. Compared to other occupations, manual workers held the lowest visits in all

diseases, ranging from 3.4% (intestinal infectious disease) to 7.0% (circulatory disease).

When the data were broken down into specific disease groups, there were limited counts in

some selected characteristics, which can be seen Appendix SA. Besides all-cause visits, the

analysis could be done for all stratified groups for respiratory and 'other' visits. For

circulatory and diabetic visits, there were very small count numbers, preventing the

analyses for children (0-14 years), whereas, for intestinal infectious visits, there were

limited count numbers to analyze for the elderly (~ 65 years) and manual workers.

5.1.2 Daily variation of the OPD visits

To visualize the daily variation of the OPO visits over a year, the mean daily count of all-

cause visits and the proportion of each disease group compared to all-cause visits

throughout a 4-year study period were plotted against day of the visits in one year (Figure

5.2). In general, approximately half of the total visits were the visits by 'other' diagnoses.

There was also a seasonal pattern of the visits by 'other' diseases over a year. The visits by

'other' diagnoses increased during the middle of winter to early summer (Jan-Mar) and

dropped after that. Then, the 'other' visits tended to increase during the changes of one

season to another season, such as early on the rainy season (May) and later on the rainy

season (Oct) up to early winter (Nov). Among the rest of the disease groups of interest,

respiratory visits held the highest percentage of 12.6%, while intestinal infectious visits

held the lowest percentage of 1.3%. The respiratory visits were found to be higher during

winter time from January to February than other period of a year. There were also some
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peaks of the visits due to respiratory and circulatory diseases in the middle of rainy season

(August), and in early winter (Nov).

The daily mean count of each disease groups of OPD visits are illustrated in Table 5.2. As

can be seen, the mean (SO) daily counts of OPD visits by all causes were 957 (680). Of

which, regardless 'other' diagnoses, respiratory visits were the most common causes of the

visits (mean=95.3, SO=53.4), followed by circulatory visits (mean=83.6, SD=61.1),

diabetic visits (mean=30.8, SO=23.7) and intestinal infectious visits (mean=9.l7,

SD=5.53), respectively.

5.2 Hospital admissions

Daily counts of hospital admissions were obtained from the National Health Security Office

at the same period of time, obtaining out-patient visits from October 2002 to September

2006. The hospital admission data were the health care insurance claim data. This data is

used by involved hospitals in order to claim for budget that they had spent on admitted

patients who had health care insurance registered with their hospitals. After data cleaning

and corrections, there were 168,829 counts of the hospital admissions over the study period.

Monthly variation of total counts of hospital admissions over the 4-year study period is

illustrated in Figure 5.3. The total counts of admissions were lowest during the beginning

of the study period and began to rise at the beginning of year 2. There was a fluctuation of

total counts in each month, ranging from about 3,000-4,000 from year 2 to year 4, with one

dramatic drop in month 31 (about 2,500 counts) and one considerable peak in month 35

(about 5,000 counts).

5.2.1 Characteristics of study population of hospital admissions

Similar to out-patient visit data, the hospital admission data were categorised in six disease

groups in accordance with the ICD-IO coding system. These included admissions due to

respiratory disease (JOO-J99), circulatory disease (100-199), diabetes (EIO-EI4), intestinal

infectious disease (AOO-A09), 'other' diseases (those not included in the four first

categories), and all-cause admissions. The distribution of the disease groups in three main

characteristics (age, sex, and occupation) of the study population are presented in Table

5.3.
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Overall, the total admissions by all causes were highest in adult (15-64 year, 64.0%),

followed by the elderly (~65 years, 21.7%), and children (0-14 years, 14.0%), respectively.

Adults also held the highest counts of admissions in all disease groups, which accounted for

about 50-70%. By comparison, the admissions in the elderly due to circulatory, diabetic,

respiratory diseases were higher than in children, whereas the admissions in children due to

intestinal infectious diseases were higher than for the elderly.

Although males and females shared similar counts of hospital admissions (approximately

half of the total), the numbers of female patients were slightly higher than those of male

patients in all disease groups, except for respiratory admissions. The respiratory admissions

in males (52.18%) were slightly higher than those in females (47.52%).

Taking into account their occupation, hospital admissions in unemployed and economically

inactive people (5.5%-14.9%) were highest in all disease groups, followed by manual

workers (4.2%-7.6%), and non-manual workers (0.5%-1.8%). However, there were large

numbers of missing occupational codes in the data, which were more than 40% of the data.

Thus, the analysis in different occupational groups for hospital admissions series was

excluded.

The breakdown of the data into specific disease groups by sex and age can be seen in

Appendix 58. According to the count numbers, we could analyze the data for both sex and

age for respiratory and other admissions only. For circulatory admissions, there were very

limited count numbers to analyze for children (0-14 years), while for intestinal infectious

admissions, there were limited count numbers preventing to analyze for all age groups. In

addition, the analysis for both age and sex could not be done for diabetic admissions.

5.2.2 Daily variation of the hospital admissions

The plot of the mean daily counts of all-cause admissions over the 4-year study period, and

the proportion of each disease groups compared to all-causes admissions against day of the

admissions in one year is shown in Figure 5.4. Overall, the admissions due to other

diagnoses held the highest percentage of about 80% of all-cause admissions. Regardless the

admissions by 'other' diagnoses, circulatory admissions held the highest percentage

(11.0%), followed by respiratory (7.9%), intestinal infectious (3.5%), and diabetic
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admissions (0.8%), respectively. The respiratory and circulatory admissions were slightly

higher in winter from late November to early January. There were no obvious seasonal

patterns for the rest of the disease groups.

The distribution of daily hospital admissions by causes of the admissions in accordance

with the lCD-iO coding systems are presented in Table 5.4. The mean (SD) hospital

admissions by all causes were 103.9 (47.9). When looking at specific disease groups, the

admissions by 'other' diagnoses held the highest daily counts of admissions (mean=80A,

SD=40.l), followed by circulatory (mean=l l.I, SO=8.9), respiratory (mean=7.8, SO=4.3),

intestinal infectious (mean=3.3, SO=2.5) admissions, respectively. The admissions due to

diabetes had the lowest mean (SO) of admissions, which were only 0.8 (1.0).

5.3 Linkage data between hospital admissions and out-patient visits

As described previously in chapter 3 (methods), the linkage data between hospital

admissions and out-patient visits was created by matching an identification number (ID) of

a patient between the two data sets. Sixteen percents of total counts of hospital admissions

(169,829 counts) were missing ID, while 16.1% of total counts of out-patient visits

(1,398,369 counts) were missing ID. After matching the two data as well as cleaning and

corrections, there were remaining 29,937 counts (17.6% of total hospital admissions) of the

hospital admissions in the linkage data. The diagram of liking the two data sets can be seen

in Appendix Se.

Monthly variation of total counts of hospital admissions in the linkage data over the 4-year

study period is shown in Figure 5.5. The monthly counts of this data began at month 7th of

the study period, which were generally fluctuated (approximately ranged from 600 to 1000

counts). However, the counts of admissions started to drop below 600 counts from the

month 41th, and dropped steadily to about 100 counts in the last month (48th). This may be

due to the low number of counts of the OPD visits during this period (see Figure 5.1),

resulting in low number of matched cases between OPD visits and hospital admissions for

the linkage data. Since the number of the visits prior to the admissions is an important

factor considered for the linkage series, the data from month 41th to 48th were excluded
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from the analysis. Therefore, the linkage data used for the study were the data from month

7th to 40th (April 2003 to January 2006) only.

5.3.1 Characteristics of study population in the linkage data

After excluding data from month 41th to 48 (2095 observations), there were 29,937 counts

remaining in the linkage data. Of total 29,937 counts, there were only 9.1% (2,733 counts)

that had no history of the visits prior to their admissions (Table 5.5). The breakdown of

people with history of the visits prior to their admissions was shown in Table 5.6. As can

be seen, about half of the total (51.4%) were people with 2-5 visits prior the admissions,

while about one in four of the total were people with 1 visit (26.0%) and people with more

than 5 visits (22.5%) prior to their admissions.

Table 5.7 presents the proportion of disease groups of hospital admissions and out-patient

visits prior to their admissions relative to number of the visits before admissions. Overall,

approximately 30-40% of hospitalized people due to respiratory and circulatory diseases

had the history of out-patient visits with the same diseases prior to their admissions. These

people also had a history of visits due to 'other' diagnoses in about 20-30%, except only

those hospitalized by circulatory disease with no visits (11.3%) and with ~ 5 visits (16.3%)

prior to their admissions. For people admitted by intestinal infectious disease, between 8-

20% had a history of visits by the same diseases, and almost 20% had a history of visits by

respiratory disease. People admitted by intestinal infectious disease and 'other' disease

groups had similar history of previous visits due to 'other' diagnoses of about 40-50%.

However, it should be noted that the diagnoses of previous visits in some people cannot be

known due to the relatively high percentages of missing diagnoses of the out-patient visit

data.

The distribution of the disease groups in the linkage data by three main characteristics (age,

sex, and occupation) of the study population are illustrated in Table 5.S. Since the linkage

data is actually one part of the hospital admissions data - hospitalized people with no visit

and with at least one visit or more prior to their admissions -, the distribution of the disease

groups in the linkage data was similar to the hospital admissions data. The majority of the

patients were adults aged 15-64 years (68.6%), followed by the elderly aged 2: 65 years

(17.4%) and children aged 0-14 years (14.0%), respectively. The elderly had the higher

87



Chapter 5 Descriptive results

admissions due to diabetic (31.0%) and circulatory (27.5%) diseases, whereas children had

the higher admissions due to intestinal infectious (40.2%) and respiratory (33.8%) diseases.

The proportion of females was generally higher than males in all disease groups, except

only respiratory admissions. In addition, there were large numbers of missing data on

occupational group, which accounted for about 21%. Thus, the stratified analysis of the

linkage data by occupation was excluded.

The data of specific disease groups stratified by the number of the visits prior to their

admissions can be seen in Appendix 5D. When the data were divided into subgroups

according to the number of out-patient visits prior to admissions, there were limited count

numbers to analyze for most diseases (except only all-cause and 'other' diseases). When the

data were broke down further by age and sex (not shown), there was also limited count

numbers to analyze for age and sex in different disease groups relative to the history of the

visits before admissions.

5.3.2 Daily variation of the hospital admissions in the linkage data

The plot of the mean daily counts of all-cause admissions over the study period, and of the

proportion of each disease group compared to all-cause admissions against day in one year

in the linkage data is presented in Figure 5.6. Similar to hospital admissions data, the

admissions in the linkage data due to 'other' diagnoses held the highest percentage with

approximately 80%. The percentage of circulatory and respiratory admissions was very

similar, which accounted for about 9%, followed by intestinal infectious admissions (4%).

The diabetic admissions had the lowest percentage of the admissions, which was about 1%

only.

The distribution of daily hospital admissions in the linkage data by causes of admissions in

accordance with the ICO-lO coding systems are presented in Table 5.9. The mean (SO) of

all-cause admissions was 28.9 (14.4). While the admissions by other diagnoses had the

highest daily mean of 22.9 (12.6), the diabetic admissions had the lowest daily mean of 0.2

(0.5). The daily mean of respiratory (mean = 2.1, SO = 1.6) and circulatory (mean = 2.6,

SO = 2.1) admissions was relatively similar, and the daily mean of intestinal infectious was

0.9 (l.0) only.
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5.4 Air pollution and meteorological data

5.4.1 Daily levels and seasonal variations of air pollutants in Chiang Mai

As mentioned previously in chapter 3 (methods), levels of air pollutants used for the

analysis were the daily mean levels from the two air monitoring stations located in the

Muang district, Chiang Mai province. Daily mean levels of air pollutants calculated from

the two stations from October 2002 to September 2006 are presented in Figure 5.7.

As can be seen, PMIO,03, and N02 exhibited a strong seasonal variation, compared to other

pollutants. According to Thailand's ambient air quality standards, there is a 24-hour

average standard of 120llg/m3 for PMIO.In Figure 5.7-e, the straight line represents the 24-

hour average standard levels in Thailand. As shown in the figure, during the study period,

daily mean levels ofPMlOoccasionally exceeded the recommended standards of 120llg/m3.

In general, levels of PMIO were comparatively higher during the winter. In Thailand,

however, the peak of PMIOlevels was usually observed from the end of winter (February)

to early summer (March) because of two main reasons. Firstly, the occurrence of forest

fires is common during this period due to very dry conditions. Secondly, open burning of

crop residues to prepare soil for new crops is an agricultural tradition of local people among

three border countries (Thailand, Myanmar, and Lao), causing a rise of PMIO levels in the

Northern Thailand during this period of every year.

The daily levels of ozone appeared to be higher during summer (March-May) in relation to

the presence of higher sunlight in comparison to other periods in the same year. Daily

levels of N02 are generally related to motor vehicle emissions. In this study area, the peak

concentrations of N02 were observed during winter (Jan and Feb), which might be because

of poor local dispersion conditions together with light winds during the colder period. The

daily levels ofN02 dropped during rainy season of a year. This may due in part to the wash

out by rains. Overall, there is no obvious trend for air pollutants in Chiang Mai. However,

as can be seen in Figure 5.7-f, daily levels ofPM2.5 tended to be increasing over time.
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5.4.2 Daily levels and seasonal variations of meteorological variables

Figure 5.8 shows seasonal variations of daily mean levels of selected meteorological

variables observed in Chiang Mai for a 4-year period from October 2002 to September

2006. The minimum daily levels of temperature were about 20°C in winter (November-

February) and the maximum daily levels of temperature were just above 30°C in summer

(March-May). Relative humidity in Chiang Mai was very high during rainy season (June-

October), with the maximum levels of about 100%. The lower levels of relative humidity

were usually found in winter and possibly in early summer, which were below 40%. The

peak levels of rainfall were observed in rainy season, particularly during the end of July to

early September, which reached the maximum levels of about 7 mmlhr. While there was no

trend for daily mean levels of relative humidity and of rain, a slight increase in daily mean

level of temperature in Chiang Mai over the 4- year period was observed.

5.4.3 Correlations among air pollutants and meteorological variables.

Correlations among daily mean levels of air pollutants and meteorological variables in

Muang, Chiang Mai are presented in Table 5.10. Generally, there were low correlations

among air pollutants, with only one exception - the correlation between PM2.5and N02.

These two pollutants had a high correlation of about 0.81. There were also low correlations

among the three meteorological variables. The daily mean levels of temperature were

negatively correlated with humidity and rain, while the daily mean levels of relative

humidity and rain were positively correlated with each other. In addition, there was a low,

negative correlation between air pollutants and meteorological variables. The only one

positive correlation was found between 03 and temperature, but was also low (r=0.24).

However, it is important to note that the correlations among air pollutants and

meteorological variables may be different during different seasons.
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Table 5. I Characteristics of study population of the out-patient visits data in Muang,
Chiang Mai, from October 2002 to September 2006.

Intestinal
Respiratory Diabetic Circulatory infectious

GrouE ~JOO-J99~ ~EI0-E14~ ~IOO-I99~ ~AOO-A09~ Other Missing All-cause
Total count 139,256 45,040 122,177 13,396 617,184 461,316 1,398,369
Age (year)

0-14 40.2% 1.0% 1.1% 42.2% 11.7% 10.2% 13.1%
15-64 49.1% 67.4% 61.2% 48.9% 67.9% 73.4% 67.1%
~ 65 10.1% 31.2% 37.4% 8.3% 20.0% 15.5% 19.3%
Missing 0.6% 0.5% 0.3% 0.6% 0.4% 0.9% 0.6%

Sex
Male 46.6% 41.0% 41.2% 46.4% 43.0% 40.9% 42.5%
Female 52.9% 58.8% 58.2% 53.1% 56.3% 58.2% 56.8%
Missing 0.5% 0.2% 0.6% 0.5% 0.7% 0.9% 0.8%

Occupation*
Unemployed &
economically
inactive 19.0% 33.0% 26.5% 21.3% 27.1% 23.3% 25.2%

Non-manual 24.3% 27.5% 25.4% 22.6% 30.2% 7.6% 21.6%
Manual 3.8% 6.2% 7.0% 3.4% 6.8% 7.7% 6.8%
Missing 2.8% 1.2% 2.6% 2.3% 4.2% 35.7% 17.2%

*Excluding children (0-14) and the elderly (~65).

Table 5. 2 Daily OPD visits by causes of the visits in accordance with lCD-tO coding
systems in Muang, Chiang Mai, from October 2002 to September 2006.

Percentile
Causes of visits n (day) Mean SD Min 10th 25th 50th 75th 90th Max
Respiratory OOO-J99) 1461 95.3 53.4 3 30.2 53 87 131 166 318
Circulatory (100-199) 1461 83.6 61.1 0 9 22 85 122 163 323
Diabetic (EI0-E14) 1461 30.8 23.7 0 2 9 30 44 59 162
Intestinal infectious
(AOO-A09) 1461 9.17 5.53 0 3 5 8 13 17 33
Other 1461 422 253 16 120 198 373 630 775.8 1163
All-cause 1461 957 680 28 210.2 363.5 912 1473 1749.6 3649
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Table 5. 3 Characteristics of study population of hospital admissions data in Muang,
Chiang Mai, from October 2003 to September 2006.

Intestinal
Respiratory Diabetic Circulatory infectious

GrouE POO-J99l ~EI0-E14l ~IOO-I99l ~AOO-A09l Other Missing All-cause
Total count 12,006 1,184 16,694 4,867 133,189 889 168,829
Age (year)

0-14 23.9% 4.5% 2.3% 28.5% 14.1% 18.6% 14.0%
15-64 47.2% 58.3% 56.9% 60.1% 66.7% 52.9% 64.0%
265 28.7% 37.3% 40.7% 11.2% 19.0% 14.6% 21.7%
Missing 0.2% 0.0% 0.1% 0.2% 0.2% 13.9% 0.3%

Sex
Male 52.2% 41.6% 48.8% 40.5% 46.8% 43.9% 47.2%
Female 47.5% 58.5% 50.9% 59.3% 52.8% 39.7% 52.4%
Missing 0.3% 0.0% 0.3% 0.3% 0.3% 16.4% 0.4%

Occupation*
Unemployed &
economically
inactive 8.9% 12.8% 14.9% 5.5% 14.2% 9.6% 13.5%

Non-manual 1.8% 1.2% 0.5% 1.0% 1.0% 0.3% 1.0%
Manual 4.2% 7.4% 7.0% 4.6% 7.6% 3.7% 7.2%
Missin~ 32.7% 37.1% 34.8% 49.6% 44.4% 53.5% 42.6%

*Excluding children (0-14) and the elderly (265).

Table 5. 4 Daily hospital admissions by causes of the admissions in accordance with
ICD-IO coding systems in Muang, Chiang Mai, from October 2003 to September 2006.

Percentile

Causes of admissions n (day) Mean SD Min 10th 25th 50th 75th 90th Max

Respiratory (100-J99) 1461 7.8 4.3 0.0 3.0 5.0 7.0 10.0 14.0 29.0

Circulatory (I00-I99) 1461 11.1 8.9 0.0 4.0 6.0 10.0 15.0 19.0 32.0

Diabetic (EI0-EI4) 1461 0.8 1.0 0.0 0.0 0.0 1.0 1.0 2.0 6.0
Intestinal infectious
(AOO-A09) 1461 3.3 2.5 0.0 1.0 1.0 3.0 5.0 7.0 13.0

Other 1461 8004 40.1 13.0 32.0 45.0 75.0 115.0 137.0 203.0

All-cause 1461 103.9 47.9 18.0 45.2 63.0 96.0 146.0 172.0 233.0
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Table 5. 5 Summary of the linkage data between out-patient visits and hospital
admissions by history of the visits prior to the admissions from April 2003 to January
2006.

OPD visits within 6 months
prior to admissions Count of admissions

Total 29,937 (100.0%)
No visit 2,733 (9.1%)
1 visit or more 27,204 (90.9%)

Table 5. 6 The breakdown of people with history of out-patient visits prior to their
admissions by number of the visits from April 2003 to January 2006.

History of the visits prior to
the admissions Count of admissions
Total 27,204 (100.0%)

1 visit 7,085 (26.0%)
2-5 visits 13,990 (51.4%)
>5 visits 6,129 (22.5%)

Table 5. 7 Proportion of disease groups of hospital admissions and disease groups of
out-patient visits prior to their admissions from April2003 to January 2006.

5.7a) People with one visit prior to the admissions
Disease groups Disease e:roups of out-patient visits prior to their admissions
of hospital Intestinal
admissions Resplratorv Diabetic Circulatorv infectious Other Missine: All-cause
Respiratory 117 2 19 3 96 182 419

(JOO-J99) (27.9%) (0.5%) (4.5%) (0.7%) (22.9%) (43.4%) (100.0%)

Diabetic 1 4 3 0 2 12 22

(EIO-E14) (4.6%) (18.2%) (13.6%) (0.0%) (9.1%) (54.6%) (100.0%)

Circulatory 12 20 285 2 85 349 753

(100-199) (1.6%) (2.7%) (37.9%) (0.3%) (11.3%) (46.4%) (100.0%)

Intestinal
infectious 24 0 5 17 59 35 140
(AOO-A09) (17.1%) (0.0%) (3.6%) (12.1%) (42.1%) (25.0%) (100.0%)

Other 157 31 121 24 2,374 3,029 5,736

(2.7%) (0.5%) (2.1%) (0.4%) (41.4%) (52.8%) (100.0%)

Missing 0 1 0 0 1 13 15

(0.0%) (6.7%) (0.0%) (0.0%) (6.7%) (86.7%) (100.0%)

All-cause 311 58 433 46 2,617 3,620 7,085
(4.4%) (0.8%) (6.1%) (0.7%) (36.9%) (51.1%) (100.0%)
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5.7b) People with 2-5 visits prior to the admissions
Disease groups Disease zrouns of out-patient visits prior to their admissions
of hospital Intestinal
admissions Respiratory Diabetic Circulatory infectious Other Missin!! All-cause
Respiratory 355 8 40 25 277 314 1,019
(JOO-J99) (34.8%) (0.8%) (3.9%) (2.5%) (27.2%) (30.8%) (100.0%)

Diabetic 1 24 4 0 28 34 91
(EIO-E14) (1.1%) (26.4%) (4.4%) (0.0%) (30.8%) (37.4%) (100.0%)
Circulatory 35 26 371 1 198 583 1,214
(100-199) (2.9%) (2.1%) (30.6%) (0.1%) (16.3%) (48.0%) (100.0%)
Intestinal
infectious 75 2 16 93 166 77 429
(AOO-A09) (17.5%) (0.5%) (3.7%) (21.7%) (38.7%) (18.0%) (100.0%)

Other 385 88 235 64 4,848 5,586 11,206
(3.4%) (0.8%) (2.1%) (0.6%) (43.3%) (49.9% (100.0%)

Missing 1 0 0 0 8 22 31
(3.2%) (0.0%) (0.0%) (0.0%) (25.8%) (71.0%) (100.0%)

All-cause 852 148 666 183 5,525 6,616 13,990
(6.1%) (1.1%) (4.8%) (1.3%) (39.5% (47.3%) (100.0%)

5.7c) People with> 5 visits prior to the admissions
Disease groups Disease arouns of out-patient visits prior to their admissions
of hospital Intestinal
admissions Respiratory Diabetic Circulatory infectious Other Missin!! All-cause

Respiratory 193 9 33 10 176 137 558

(JOO-J99) (34.6%) (1.6%) (5.9%) (1.8%) (31.5%) (24.6%) (100.0%)

Diabetic 2 39 5 0 34 19 99

(EIO-E14) (2.0%) (39.4%) (5.1%) (0.0%) (34.3%) (19.2%) (100.0%)

Circulatory 23 23 129 2 111 166 454
(100-199) (5.1%) (5.1%) (28.4%) (0.4%) (24.5%) (36.6%) (100.0%)

Intestinal
infectious 36 6 15 16 89 27 189
(AOO-A09) (19.1%) (3.2%) (7.9%) (8.5%) (47.1%) (14.3%) (100.0%)

Other 170 105 193 24 2,284 2,036 4,812
(3.5%) (2.2%) (4.0%) (0.5%) (47.5%) (42.3%) (100.0%)

Missing 0 0 1 0 9 7 17
(0.0%) (0.0%) (5.9%) (0.0%) (52.9%) (41.2%) (100.0%)

All-cause 424 182 376 52 2,703 2,392 6,129
(6.9%) (3.0%) (6.1%) (0.9%) (44.1%) (39.0%) (100.0%)
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Table 5. 8 Characteristics of study population of the linkage data in Muang, Chiang Mai,
from April2003 to January 2006.

Intestinal
Respiratory Diabetic Circulatory infectious

Groul! POO-J99l ~EI0-E14l ~IOO-I99l ~AOO-A09l Other Missing All-cause
Total count 2,226 232 2,684 934 23,790 71 29,937
Age (year)

0-14 33.8% 3.5% 2.5% 40.2% 12.5% 19.7% 14.0%
15-64 46.8% 65.5% 70.0% 49.0% 7l.3% 62.0% 68.6%
~65 19.4% 31.0% 27.5% 10.8% 16.2% 18.3% 17.4%
Missing 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Sex
Male 53.3% 41.8% 47.1% 45.3% 44.2% 43.7% 45.1%
Female 46.6% 58.2% 52.9% 54.7% 55.8% 56.3% 54.9%
Missing 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Occupation*
Unemployed &
economically
inactive 18.9% 29.3% 32.3% 11.8% 30.2% 26.8% 29.0%

Non-manual 2.4% 0.0% 0.6% 1.8% l.0% 0.0% 1.1%
Manual 9.7% 13.4% 18.0% 12.2% 18.7% 12.7% 17.7%
Missing 15.9% 22.8% 19.1% 23.2% 21.5% 22.5% 20.9%

*Excludingchildren (0-14) and the elderly (~65).

Table 5. 9 DaiJy hospital admissions of the linkage data by causes of the admissions in
accordance with ICD-10 coding systems in Muang, Chiang Mai, from April 2003 to January
2006.

Percentile
Causes of admissions n (day) Mean SD Min 10th 25th 50th 75th 90th Max
Respiratory (JOO-J99) 1037 2.1 1.6 0 0 1 2 3 4 9
Circulatory (100-199) 1037 2.6 2.1 0 0 1 2 4 5 10
Diabetic (EI0-EI4) 1037 0.2 0.5 0 0 0 0 0 1 3
Intestinal infectious
(AOO-A09) 1037 0.9 1.0 0 0 0 1 2 6
Other 1037 22.9 12.6 1 7 11 23 33 39 60
All-cause 1037 28.9 14.4 2 10 15 30 40 47 70

Table 5. 10 Correlations among air pollutants and meteorological variables.

S02 N02 CO 03 PMIO PM2.5 Tern erature Humidi ram
S02 1
N02 0.36
CO 0.17 0.58 1.00
03 0.19 0.51 0.34
PMIO 0.36 0.81 0.60 0.63 1
PM2.5 -0.01 0.46 0.66 0.40 0.62 1
Temperature -0.05 -0.24 -0.22 0.24 -0.07 0.14
Humidity -0.18 -0.50 -0.46 -0.66 -0.53 -0.58 -0.22 1
Rain -0.08 -0.18 -0.14 -0.23 -0.22 -0.15 -0.05 0.28 1
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Figure 5. 1 Monthly variation of total counts of OPD visits in the selected heath
centres and hospitals Muang, Chiang Mai, from October 2002 to September 2006.
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Figure 5. 2 Overview of a one-year variation of out-patient visits by causes of the visits
over the study period.
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Chapter 5 Descriptive results

Figure 5. 3 Monthly variation of total counts of hospital admissions in the selected
hospitals in Muang, Chiang Mai, from October 2002 to September 2006.
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Figure 5. 4 Overview of a one-year variation of hospital admissions by causes of the
admissions over the study period.
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Chapter 5 Descriptive results

Figure 5. 5 Monthly variation of total counts of linkage data (between out-patient
visits and hospital admissions) in Muang, Chiang Mai, from April 2003 to September
2006.
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Figure 5. 6 Overview of a one-year variation of hospital admissions in the linkage data
by causes of the admissions over the study period.
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Chapter 5 Descriptive results

Figure 5. 7 Daily levels of air pollutants in Chiang Mai for 4-year period measured
from October 2002 to September 2006.
Note: Daily mean levels of I-hr average for all pollutants, except noted.
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Figure 5. 8 Daily levels of meteorological variables in Chiang Mai for 4-year period
measured from October 2002 to September 2006.
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Chapter 6 Regression results: Out-patient visits

This chapter presents the results of time-series analyses for the effects of air pollution and

temperature on daily out-patient visits in Muang, Chiang Mai, from October 2002 to

September 2006. It begins with the relationships between air pollution and out-patient

visits, followed by the relationships between temperature and out-patient visits.

6.1 Air pollution and out-patient visits

Generally, the graphical assessments showed linear relationships between air pollution and

daily out-patient visits (not shown). Therefore, all results presented here were the linear

associations between them. In addition, the effects were the relative risk estimates of a 10-

unit increase of a pollutant (one-unit increase for CO) on the daily out-patient visits.

6.1.1 Lag structures of air pollution effects

As described in chapter 3, the effects of air pollution on daily out-patient visits were

examined through distributed lag models from lag 0 to 4 days. This was because this time

period had been shown to be sufficient to capture the short-term effects of air pollution

according to the literature and this period could make the results comparable to the PAPA

studies (which also used this lag period).

Overall, daily variations of S02 and 03 levels had positive effects on daily out-patient

visits, but not statistically significant. The effects of other pollutants were generally

negative, and also not statistically significant. The effects of most pollutants were found to

be larger at lag 2-3 days. Estimated lag structures for the effects of a 10-unit increase of a

pollutant (one-unit increase for CO) on all studied health outcomes are detailed below.

All-cause visits

No significant effects of air pollutants (except only PMIO) on all-cause visits were found

(Figure 6.1). The risk estimates tended to be larger at lag 3 days and remained stable or

slightly dropped after that.
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Respiratory visits

Some small positive effects of S02 and 03 were found, particularly at lag 2 days (Figure

6.2). N02, CO, and PM2.5effects were found to be larger at lag 3 days, while PMIO effects

relatively fluctuated over 0-4 days. However, none of these effects were statistically

significant.

Circulatory visits

The risks of circulatory visits were larger at lag 4 days in association with a lG-unit

increase in S02, N02, PMJO and one-unit increase in CO (Figure 6.3). The risk of

circulatory visits at lag 3 days was also found to be associated with a 10-unit increase in 03

and PM2.5.

Diabetic visits

The risk estimates of diabetic visits in association with a 10-unit increase in selected air

pollutants were relatively small and close to I, with little fluctuations over the 0-4 days

period (Figure 6.4).

Intestinal infectious visits

Similar to diabetic visits, the estimated effects of each pollutant on intestinal infectious

visits were relatively small and close to I (Figure 6.5). A small increase in positive effects

of most pollutants was found at lag 2-3 days.

Other visits

Some positive effects on 'other' visits were found at lag 0 day for N02, 03, and PMIQ,and

found at lag 2 and 3 days for CO and S02, respectively (Figure 6.6). However, the risk

estimates were not statistically significant.

6.1.2 Air pollution effects on daily out-patient visits

In general, positive effects were predominantly found for S02, 03, and N02, but did not

reach the statistically significant at 5% level. The negative, but significant, effects were

occasionally found for PM 10 and PM2.5.The estimated effects presented here are the sum of

all lags (lag O-land lag 0-4 days) from single pollutant, distributed lag models, and are

described separately for each selected health outcome.
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All-cause visits

There were only two pollutants: S02 and 03 that had positive effects on all-cause visits

(Table 6.1), with 4.7% (95% Cl, -0.91% to 20.5%) increase in all-cause visits per Ifl-unit

increase in S02 (ppb) and 0.1 % increase in all-cause visits per l O-unit increase in 03 (Ppb).

This was found at lag 0-4 days, but not statistically significant. At the same lag, a negative

effect with borderline significance was found for PMIO (RR = 0.988, 95% Cl, 0.977 to

1.000, p-value = 0.053) and for PM2.5 (RR=0.985, 95% Cl, 0.970 to 1.001, p-value =

0.062).

Respiratory visits

Positive effects on respiratory visits were found for S02 and N02, while negative effects

were found for other pollutants (Table 6.2). For instance, at lag 0-4 days, the respiratory

visits increased by 4.4% (95% Cl, -10.9% to 22.4%) per lO-unit increase in S02 (Ppb), and

by 1.0% (95%CI, -2.3% to 4.5%) per Iu-unit increase in N02 (ppb). Negative, but

significant, effects were found for 03 at lag 0-1 day (RR = 0.969, 95% Cl, 0.942 to 0.998,

p-value = 0.036). The negative effects of PM2.5 were also found to be significant, with the

RR of 0.986 (95% Cl, 0.973 to 1.000, p-value = 0.042) at lag 0-1 day, and of 0.976 (95%

Cl, 0.959 to 0.993, p-value = 0.006) at lag 0-4 days.

Circulatory visits

As can be seen in Table 6.3, S02 effects on circulatory visits were relatively large, although

the effects were not statistically significant at the 5% level. It was found that circulatory

visits increased by 11.2% (95% Cl, -6.0% to 31.5%) and by 22.2% (95% Cl, -2.8% to

53.6%) in association with a lO-unit increase in S02 (Ppb) at lag 0-1 day and at lag 0-4

days, respectively. Circulatory visits also increased by 1.7 % (95% Cl, -3.6% to 7.3%) in

association with a 10-unit increase in 03 (Ppb) lat lag 0-4 days. The other pollutants

provided negative association with circulatory visits, but none of the estimates was

statistically significant (except only PM2.5 at lag 0-1 day).

Diabetic visits

As shown in Table 6.4, the relatively large estimated effects on diabetic visits were found

for S02, while smaller effects were found for N02 and CO. There was a rise in diabetic

visits of 5.3% (95% Cl, -19.2% to 37.2%) per l O-unit increase in S02 (ppb) at lag 0-1 day
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and of25.5% (95%CI, -12.1% to 79.2%) per IO-unit increase in S02 (Ppb) at lag 0-4 days.

The effects of other pollutants were found to be negative. However, all estimated effects of

all pollutants on diabetic visits were non-significant.

Intestinal infectious visits

As can be seen in Table 6.5, none of the air pollutants provided positive effects on

intestinal infectious visits in the present study. In addition, the effects of PMIO and PM2.5

were found to be statistically significant at 5% level. For example, at lag 0-1 day, the

relative risks were 0.987 (95% Cl, 0.976 to 0.999, p-value = 0.033) for PMIO, and were

0.962 (95% Cl, 0.932 to 0.993, p-value = 0.018) for PM2.5.

Other visits

Some small positive effects on 'other' visits were found for S02 and 03, but not statistically

significant (Table 6.6). A IO-unit increase in S02 (ppb) at lag 0-4 days was associated with

a 1.3% (95% Cl, -12% to 16.6%) increase in 'other' visits, whereas a lO-unit increase in 03

(ppb) at lag 0-4 days was associated with a 2.5% (95% Cl, -0.7% to 5.8%) increase in

'other' visits. Negative effects were found for other pollutants and were found to be

significant for CO (both lags) and PM2.5 (lag 0-4 days). At lag 0-4 days, the relative risks

were about 0.935 (95% Cl, 0.877 to 0.997, p-value = 0.040) for CO, and were about 0.981

(95% Cl, 0.965 to 0.997, p-value = 0.017).

6.1.3 Air pollution and effect modification

The estimated effects of air pollution on selected health outcomes when the out-patient visit

data was stratified by age, sex, and occupation are presented in this section. To determine

whether air pollution effects were modified by these subgroups, the test for heterogeneity

between subgroups was carried out. Effects of season on association between air pollution

and daily out-patient visits were also examined.

I.Effect modification by age

There was no evidence of effect modification by age on the association between air

pollution and daily out-patient visits in the present study (Figure 6.7). Overall, the effects

of air pollution were found to be stronger in the elderly in comparison to adults and
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children. However, most effects were not significant, and there were no differences in the

estimated effects between age groups.

II. Effect modification by sex

In general, air pollution effects did not vary by sex in this study (Figure 6.8). The estimated

effects of most pollutants seemed to be negative and centred around one, except only S02

effects, but not significant. By comparison, the risks of all-cause, circulatory, diabetic, and

'other' visits were slightly higher in males than in females, whereas the risks of respiratory

and intestinal infectious visits were higher in females than in males. However, there was no

significant difference in the estimated effects between males and females.

III. Effect modification by occupation

Overall, there was little evidence of modification of air pollution effects by occupation in

the present study (Figure 6.9). The effects of air pollution varied from pollutant to

pollutant, and did not consistent across all disease groups. Larger, positive effects on the

visits in different occupational groups were found for S02 than for other pollutants.

Generally, the effects of most pollutants were relatively stronger manual workers for most

diseases, except for circulatory visits, which the effects of all pollutants were higher in non-

manual workers. However, most results from the test for heterogeneity between groups

were not significant.

IV. Effect modification by season

As described earlier, there are three seasons in Chiang Mai, including winter (November-

February), summer (March-May), and rainy (June-October) season. Thus, it was decided to

examine whether air pollution effects on daily out-patient visits were modified by season.

To investigate air pollution effects in different seasons, an indicator variable of season was

incorporated into the models (1= winter, 2=summer, and 3=rainy). The risk estimates of

daily out-patient visits per 10-unit increase of a pollutant (one-unit increase for CO) in

different seasons are shown in Figure 6.10.

Overall, there was no evidence of effect modification by season on association between air

pollution and out-patient visits, with only one exception - the association between air

pollution and respiratory visits (p-value of the test for interaction < 0.05 for the effects of
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all pollutants}. By comparison, the effects of S02 were larger than those of other pollutants

in all seasons, but the confidence intervals were relatively wide. The effects of S02 were

higher in summer for all-cause and respiratory visits, but were higher in rainy season for

circulatory and diabetic visits. The estimated effects of other pollutants seemed to centre

around 1 in all seasons. In addition, although the risk estimates for 03 effects were small, as

one would expected, the 03 effects were stronger in summer compared to other seasons.

6.1.4 Air pollution effects for two-pollutant models

There is a mix of air pollutants in the air. In general, individuals are not exposed to only

one pollutant at a time. Since air pollutants are either positively or negatively correlated,

with each other, to distinguish the most affecting pollutant is very difficult. Nevertheless,

the two-pollutant models may help determine which pollutant is the better predictor of the

health outcomes.

Based on positive effects of single pollutant model results, three pollutants, including S02,

03, and N02, were selected for developing two-pollutant models as they provided more

positive effects than other pollutants studied. The two-pollutant models used the same basic

structure as the single-pollutant models, with the inclusion of linear terms of selected two

pollutants at one time. The two-pollutant analyses focused on main health outcomes,

including all-cause, respiratory, circulatory, diabetic, intestinal infectious and 'other' visits.

In addition, the analyses were undertaken for all ages and for the elderly (~ 65 year) only

because the positive associations in this study were mostly found in the elderly compared to

other age groups.

The results of single pollutant models and two-pollutant models for the effects of a 10-unit

increase in a pollutant at average lag 0-4 days on daily out-patient visits in all ages and in

the elderly (~65 year) are presented in Table 6.7. As can be seen, when including S02 and

03 into the models, the risk estimates of each pollutant were not different from those

obtained from the single pollutant models. Similarly, when including 03 and N02 into the

same models, there was also no significant difference in the risk estimates of each pollutant

in the models compared to the single pollutant models. When S02 and N02 were included

in the models, only one considerable reduction of the effects of S02 on circulatory visits

was observed. That was, the risk estimates ofS02 decreased from 14.7% (95% Cl, -7.8% to
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42.8%) in single pollutant model to 3.4% (95% Cl, -l.9% to 9.0%) in the two-pollutant

model.

In brief, there were generally no significant changes of the risk estimates of each selected

pollutants in the two-pollutant models when compared to those obtained from the single

pollutant models.

6.2 Temperature and out-patient visits

6.2.1 General relationships between temperature and out-patient visits

General relationships between temperature and out-patient visits were investigated by

plotting the counts of the visits against average temperature at lag 0-1 days (for short lag)

and at lag 0-13 days (for long lag). Adjustments were made for humidity, rain, and the two

selected pollutants: S02 and 03. These two pollutants were selected with respect to the air

pollution results as they predominantly provided positive effects on daily out-patient visits

than other pollutants. In addition, 03 is likely to be a confounder as its occurrence related to

the presence of sunlight or warm climate. Since literature suggests that PM lois more likely

to confound the association between temperature and health outcomes (127),replacing S02

with PMJOin the models was also done, but there were little changes in the risk estimates

(not shown). The plots of adjusted relationships between temperature and out-patient visits

are shown in Figure 6.11.

All-cause visits

When adjusting for meteorological variables (humidity and rain) and air pollution (S02 and

03), there was a linear increase in all-cause visits when temperature was above 29°C, but

found for temperature at a long lag (0-13 days) only.

Respiratory visits

The plots of the relationship between temperature and respiratory visits showed a somewhat

linear decrease of respiratory visits with increasing temperature, which was more apparent

for the short lag (0-1 day) than that for the longer lag (0-13 day) period. The likelihood

ratio test between the models with and without splines of temperature also showed that the
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model without the splines of temperature fitted better than that with the splines of

temperature, suggesting a linear association between them.

Circulatory visits

The plot of the relationship between temperature and circulatory visits showed that there

was a linear increase in circulatory visits at temperature above 29°C, which was more

apparent for temperature at a long lag (0-13 days) than for temperature at short lag (0-

lday).

Diabetic visits

The plot of the relationship between temperature and diabetic visits showed a flat line of

the estimated risks, which centred around 1 for temperature at a short lag (0-1 day). For

temperature at a long lag (0-13 days), there was a linear increase in diabetic visits with

temperature threshold of about 29°C.

Intestinal infectious visits

By comparison, the linear relationship between temperature and intestinal infectious visits

was more visible for temperature at a short lag (0-1 day) than for temperature at longer lag

(0-13 days). The plot of the relationship at short lag showed a linear increase in the visits

with increasing temperature, although the visits declined slightly when temperature was

above 29°C.

Other visits

The plot of the relationship between 'other' visits and temperature illustrated that there was

a linear increase in 'other' visits with increasing temperature for both shot lag (0-1 day) and

long lag (0-13 days), but the slope of the relationship was steeper for longer lag.

To sum up, based on the graphical assessments, a linear association between out-patient

visits and temperature with temperature threshold at about 29°C was visible at longer lag

(0-13 days) for all-cause, circulatory, and diabetic visits. Therefore, the quantification of

hot temperature at above 29 °C was carried out for these three diseases. Since a linear

association with no temperature threshold was obviously shown for respiratory, intestinal
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infectious and 'other' visits, quantifying temperature effects by using linear terms of

temperature was done for these diseases. However, the quantification of temperature effects

at long lag (0-13 day) was undertaken for 'other' visits, whereas the quantification of the

effects at a short lag (0-1 day) was done for respiratory and intestinal infectious visits.

6.2.2 Lag structure of temperature effects

The effects of temperature on daily out-patient visits for specified lag period are presented

in Figure 6.12. Generally, there was no significant effect of temperature on out-patient

visits over 0-13 day lag period. Larger, positive effects were mostly observed at lag 2,

while larger, negative effects were shown at lag 1 for most diseases. The estimated effects

remained stable from lag 3 to lag 13. There was also no increase or decrease in temperature

effects beyond 13 days (not shown). Thus, the use of temperature at lag 0-13 days for

further investigations of temperature effects in the present study should be sufficient.

6.2.3 Temperature effects on out-patient visits

As mentioned earlier, a temperature threshold of 29°C was used for quantifying

temperature effects for all-cause, circulatory, and diabetic visits, while a linear term of

temperature was used for respiratory, intestinal infectious, and 'other' visits. The

quantification was examined through the distributed lag models of temperature for short lag

(0-1 day) for respiratory and intestinal infectious visits, and longer lag (0-13 days) for the

rest of the disease groups. The same core model used for determining air pollution effects

was employed for the quantification, but using 6df of the spline for time and adjusting for

two pollutants: S02 and 03. Thus, the estimated effects were the sum of all lags from lag 0

to lday and from lag 0 to 13 days. Generally, without stratification, the temperature effects

on all people reached the statistically significant at 5% level for most health outcomes. The

test for heterogeneity between each stratified group (age, sex, and occupation) was also

investigated. The analysis results are detailed separately for each health outcomes as the

followings.

All-cause visits

Overall, there were positive effects of hot temperature (above 29°C) on all-cause visits, but

the effects were not statistically significant for all subgroups (Table 6.8). There was a 9.4%

(95% Cl, 2.8% to 16.5%) increase in all-cause visits in all people per 1QC increase in
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temperature above 29°C. When the data were stratified by age, the risk estimates in adults

(15-64 years) and the elderly (2: 65 years) were found to be significant and broadly the

same, while the smallest and non-significant estimates were found in children (0-14 years).

For each 1QC increase in temperature above 29°C, the risk of all-cause visits in males

(11.6% increase, 95% Cl, 4.7% to 19.0%) was almost two-times higher than that in females

(6.3% increase, 95% Cl, -0.6% to 13.7%). For occupation, the estimate was significant and

slightly higher in unemployed and economically inactive people (9.9% increase, 95% Cl,

3.1% to 17.1%) than those in non-manual and manual workers, which were similar and not

significant.

Respiratory visits

Generally, there was a reduction in respiratory visits with increasing temperature, but the

reduction was not significant for all subgroups as shown in Table 6.9. For each 1QC

increase in temperature (no threshold), there was a borderline significant reduction of

respiratory visits in all people of about 0.9 % (95% Cl, -1.9% to 0.0%). The decreased risks

of the visits were found to be similar for all age groups, ranging from 0.2% to 1.0%. The

risk of respiratory visits significantly decreased in females (-2.0%, 95% Cl, -3.1% to -

0.9%), but not in males (which was in opposite direction and not significant). A significant

decline in the visits was also observed in unemployed and economically inactive people (-

1.1%, 95% Cl, -2.1% to 0.0%), whereas a decline in the visits and an increase in the visits

were found for non-manual and manual workers, but none of them was significant.

Circulatory visits

There was an increase in circulatory visits by 19.2% (95% Cl, 7.0% to 32.8%) per 1QC

increase in temperature above 29°C in all people (Table 6.10). The increased risk of

circulatory visits in adults (20.4%, 95%CI, 8.2% to 34.0%) was slightly higher than that in

the elderly (17.5%, 95%CI, 3.2% to 33.9%). The increased risk found in males (22.7%,

95% Cl, 9.8% to 37.1%) was higher compared to females (17.3%, 95% Cl, 4.5% to

31.7%). When stratified by occupation, the risks were highest in unemployed &

economically inactive people (23.2%, 95% Cl, 8.9% to 39.3%), followed by manual

workers (19.1%, 95% Cl, -0.8% to 43.0%), and non-manual workers (10.9%, 95% Cl, -

2.3% to 25.8%), respectively.
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Diabetic visits

There was an increase in diabetic visits by 26.3% (95% Cl, 7.1% to 49.0%) per IQC

increase in temperature in all people when temperature >29°C (Table 6.11). The estimated

risks of diabetic visits in adults (25.9%, 95% Cl, 6.8% to 48.5%) were higher than those in

the elderly (17.5%, 95% Cl, -4.5% to 44.6%). The increased risks in males (28.6%, 95%

Cl, 7.7% to 53.6%) were slightly higher than females (23.3%, 95% Cl, 3.0% to 47.7%). For

occupation, the significant, positive effects of hot temperature were found in non-manual

workers (32.5%, 95% Cl, 8.7% to 61.6%) and in unemployed & economically inactive

people (24.0%, 95% Cl, 2.9% to 49.5%), whereas a non-significant, negative effect was

found in manual workers (-2.2%, 95% Cl, -22.9% to 34.4%).

Intestinal infectious visits

In general, for each 1QC increase in temperature (no threshold), there was an increase in

intestinal infectious visits for all diseases, but the increased risks were not statistically

significant at 5% level for all diseases (Table 6.12). There was a 2.6 % (95% Cl, 0.4% to

4.8%) increase in the visits per 1QC increase in temperature in all people. The smallest,

non-significant, increase ofO.2% (95% Cl, -2.7% to 3.2%) was found in children, while the

largest, significant increase of7.7% (95% Cl, 0.2% to 15.6%) was found in the elderly.

Other visits

Most estimated effects of temperature on 'other' visits were found to be statistically

significant at 5% level, but the effects were relatively small in all people and all subgroups

studied (Table 6.13). Overall, the risk estimates of 'other' visits of all groups of people

were very similar, which ranged about 0.6% to 5.5% only. The lowest estimate, but not

significant, was found in manual workers (0.6%, 95% Cl, -3.4% to 4.8%), while the

highest, significant estimate was found in children (5.5%, 95% Cl, 1.2% to 10.1%).

Neoplasm visits

Neoplasms or cancers were not the main outcome of interest in this study at the first place.

However, due to the significant effects of temperature on 'other' visits (and admissions),

this raised a question about which particular sub-disease groups could be the contribution

of the effects. In general, diagnoses in 'other' disease groups vary greatly and therefore
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make it difficult to divide into subgroups. However, among several kinds of diseases in this

category, it was found that the visits and admissions due to neoplasms (lCD-IO: COO-D48)

were relatively large count numbers compared to other diseases, which accounted for 6.1%

for the visits and 28.4% for the admissions. Therefore, further investigations of both air

pollution (results are shown later for hospital admissions only) and temperature effects on

this group were undertaken.

There was a significant association between hot temperature and neoplasm visits in this

study (though wide confidence intervals), as can be seen in Table 6.14. It was found that

there was an increase in neoplasm visits by 28.3% (95% Cl, 4.2% to 58.1 %) among all

people for each 1°C increase in temperature above 29°C. In addition, the positive,

significant effect was shown in adults (29.8% increase, 95% Cl, 4.1% to 6l.9%), whereas

the negative, but not significant effects was shown in the elderly (15.4% decrease, 95% Cl,

-37.4% to 14.4%).

6.2.3 Effect modification by age, sex, and occupation

According to the results shown in Table 6.8-6.14, there was generally no evidence of effect

modification by subgroups (age, sex, and occupation) of people On the association between

temperature and daily out-patient visits in this study. There were only some significant

differences between subgroups obtained from the tests for heterogeneity.

6.2.4 Effect modification by season.

To investigate whether temperature effects on daily out-patient visits were modified by

season, the general relationships between temperature and the visits in each season: winter

(November-February), summer (March-May), and rainy (June-October) season, were

plotted separately. The plots of the relationships between temperature and the visits in each

season are shown in Figure 6.13. Overall, the somewhat linear relationships were seen in

each season for most health outcomes. Thus, the quantification of temperature effects in

different seasons was done by assuming that there was no temperature threshold. The risk

estimates of temperature effects for each 1°C increase in temperature in each season are

presented in Table 6.15.
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As can be seen, there were positive effects of temperature in all seasons for most health

outcomes, except only respiratory and circulatory visits. For each 1QC increase in

temperature, there was an increase in respiratory visits in rainy season, but a decrease in

winter and summer. For circulatory visits, the increase in the visits per 1QC increase in

temperature was found in summer and rainy season, but not in winter. Overall, there were

no significant differences between seasons, with only one exception, all-cause visits (p-

value =0.019). Itwas found that the temperature effect on all-cause visits was much higher

effects in summer (17 .5% increase) than winter (2.1 % increase) and rainy (3 .0% increase)

seasons.

6.3 Sensitivity analyses for out-patient visits series

To examine how using different approaches would have influenced the study results, two

sensitivity tests were performed for out-patient visit series. Firstly, with regard to model

distributional assumption, the effect estimates obtained by using negative binomial (NB)

regression (used in this study) were compared with those obtained by using overdispersed

Poisson (OP) regression (the conventional method commonly used in time series studies).

Secondly, to assess the adequacy of seasonal control, the effect estimates from choosing

different degrees of freedom for the splines of time in the models were explored. The

sensitivity of the results was tested for all main health outcomes (all people only). For air

pollution, the sensitivity of estimates was assessed for three pollutants: S02, 03 and N02,

since these pollutants mostly provided the notable associations with the health outcomes in

this study.

6.3.1 Results of the sensitivity tests for model distribution assumption

Table 6.16 presents the risk estimates of the effects of the selected pollutants on daily out-

patient visits obtained by using NB and OP models. Overall, the effects of air pollution

estimated by both models are relatively similar with some occurrences of opposite

directions of the estimates (one provided negative effects and another one provided positive

effects).

Table 6.17 shows the risk estimates of out-patient visits in association with 1°C increase in

temperature obtained by NB and OP models. As can be seen, the estimates derived from
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both models are broadly similar in terms of the direction of the effects (positive or

negative), with slightly higher estimates provided by NB model compared to OP model.

6.3.2 Results of the sensitivity tests for model seasonality

Varying degrees of freedom for time used for modelling was done to explore the impact of

the changes on the estimated effects of air pollution and temperature.

Degree of freedom for time and air pollution effects

Sensitivity of the results on air pollution effects when using different degrees of freedom

(df) were shown in Figure 6.14 to 6.16. As can be seen, there was no significant difference

in the estimated effects of the selected air pollutants (S02, 03, and N02) on daily out-

patient visits when changing degrees of freedom of the time splines from 1df to 10 df per

year.

Besides the estimated effects, model diagnostics was also examined in determining the

impact of different degrees of freedom for the time splines on the study results. It was

found that the more degrees of freedom, the more negative autocorrelations provided by the

PACF plots, which can be seen in Appendix 6A (Figure 6A-l to 6A-3). When using I

df/year for the splines of date, the negative autocorrelations in the PACF plots were the

least compared to those when using higher degrees of freedom. In addition, the (l/df)

deviance values obtained by using ldf were also lowest compared to those obtained by

using higher degrees of freedom. However, the AIC values of the models with ldf were

slightly higher than those with higher degrees of freedom.

Degree of freedom for time and temperature effects

The estimated risks of 1°C increase in temperature on daily out-patient visits with respect

to different degrees of freedom of the time splines are illustrated in Figure 6.17. The

estimated splines curves of the risks and their confidence intervals can be seen in Appendix

6A (Figure 6A-4). It was found that there was an increase in temperature effects when

using 5 df upward for most health outcomes. Although there was a slight increase with

some fluctuations of the effects when using 5 df up, the overall effects were generally

stable. This suggested that the model was found to be adequately controlled when using 5

df upward, whereas the model was uncontrolled when using 1-4 df of the spline for time.
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Model diagnostics for temperature effects

The model diagnostics for temperature effects with regard to changing degrees of freedom

were also examined (for all-cause visits only). This can be seen in Appendix 6A (Figure

6A-5). Similar to the model diagnostics for air pollution effects, the PACF plots shows

higher presence of negative autocorrelations when increasing degrees of freedom. The use

of 1 df provided the least negative autocorrelations in comparison to the use of higher

degrees of freedom. When looking at the (L'df) deviance values, the model with Idf also

provided the lowest values compared to other models with higher degrees of freedom.

However, the AIC values derived from the model with Idf were slightly higher than those

derived from the models with higher degrees of freedom.

In brief, according to the above results, it was decided to continue using Idf for time for

modelling air pollution effects since there were little changes of the estimated effects ..
However, when modelling temperature effects, because the model was stabilised when

using 5 df up, the core model with the use of 6 df for time was chosen in the present study.

At first, the use of 5df was used, but there were some problems with collenearity of

variables when running the model with 5df for time in Stata (reported by Stata, and this

made it unable to perform the estimations). Therefore, 6df was selected for the modelling

temperature effects instead because it provided the lowest values of overdispersed

parameters, which were very similar to using 5df ( ¢J =1.12 for using 5df, and ¢J =1.13 for

using 6dO.

Estimation of fitted values over time with regard to the choice of seasonal adjustment

As described previously in the analytical method section in Chapter 3, dummy variables of

month of the visits over the study period (i.movisit 1-48, 4-year data) were used to control

for seasonality in this study with respect to different number of hospitals contributing to the

data in each month. According to Schwartz et al 1996 (193), the use of dummy variables of

the month of the study may cause an over specifying the model. Thus, in addition to

examining the model diagnostics, scatter plots of the fitted values of all-cause visits over

time (date) when modelling without adjusting for anything and with adjusting for only

'i.movisit' were also explored to see whether this dummy variables reasonably captured the

changes of the outcome over the study period, which can be seen in Appendix 6B (Figure
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6B-l and 6B-2). As shown in the Figure, the use of month of the visits over the study

period (1-48) was presented an adequate control for the changes of the health outcome over

time.

Summary of out-patient visits series:

Air pollution effects

• There was little evidence of air pollution effects on daily out-patient visits in Chiang

Mai in the present study. The effects were found to be larger for 802, followed by

03, and N02 respectively, although imprecisely estimated.

• The use of lag 0-4 days for the investigation were sufficient to capture the short-

term effects of air pollution since lag effects were predominantly found at lag 2-3

days.

• There was no evidence of effect modification of air pollution by age, sex,

occupation, and season in the present study as there were generally no statistically

significant differences between subgroups. However, the air pollution effects were

seen to be stronger in the elderly and in manual workers for some pollutants for

some diseases.

• By comparison, there was no significant difference in air pollution effects between

those obtained by single pollutant models and those obtained by two-pollutant

models.

Temperature effects

• There was some significant evidence of hot temperature effects on daily out-patient

visits in the present study. The most significant effects of temperature were found

for diabetic visits and circulatory visits (though wide confidence intervals). For each

IOC increase in temperature, there was an increase of 26.3% (95%CI, 7.1% to

49.0%) for diabetic visits and of 19.2% (95%CI, 7.0% to 32.8%) for circulatory

visits.

• Because lag effects of temperature were mostly found at longer lag (0-13 days) and

did not increase or decrease beyond lag 13 days, the use of temperature at a long lag

(0-13 days) for the investigation was sufficient to capture temperature effects in this

study.
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• There was little consistent evidence of effect modification by age, sex, and

occupation, although there were some noticeable differences between subgroups.

For example, the effects of temperature on some disease groups, such as all-cause,

circulatory, and diabetic visits, were found to be stronger in males than in females.

• The temperature effects were partly modified by season. Some differences in the

magnitude and directions of the effects between seasons were shown, but most of

them were not significant.

Sensitivity analyses

• There were no significant changes in the risk estimates of air pollution and

temperature effects obtained by NB models in comparison to those obtained by OP

models.

• There was no significant impact of changing degrees of freedom of the time splines

on air pollution effects.

• When increasing degrees of freedom of the time splines for temperature models, the

risk estimates increased considerably at 5df, but remained fairly stable after that.
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Table 6. 1 Risk estimates for single pollutant, distributed lag models for the effects of al0-unit
increase of a pollutant (one-unit increase for CO) on daily all-cause visits among all people in
Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval
Pollutant ~unitl LaG RR* Lower Ul!l!er p-value
S02 (Ppb) 0-1 day 0.931 0.841 1.029 0.162

0-4 days 1.047 0.909 1.205 0.525

N02(Ppb) 0-1 day 0.978 0.950 1.006 0.127
0-4 days 0.988 0.953 1.024 0.512

CO-8br(ppm) 0-1 day 0.956 0.912 1.002 0.060
0-4 days 0.952 0.893 1.014 0.126

03(Ppb) 0-1 day 1.004 0.980 1.030 0.733
0-4 days 1.001 0.969 1.033 0.961

PM JO(llg/m3) 0-1 day 0.997 0.990 1.003 0.296
0-4 days 0.988 0.977 1.000 0.053

PM2.s(llg/m3) 0-1 day 0.985 0.970 1.001 0.062
0-4 days 0.985 0.970 1.001 0.062

*The estimates are the sum of all lags.

Table 6.2 Risk estimates for single pollutant, distributed lag models for the effects of a 10-unit
increase of a pollutant (one-unit increase for CO) on daily respiratory visits among all people
in Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval
Pollutant ~unitl LaG RR* Lower Ul!l!er p-value
S02 (Ppb) 0-1 day 0.982 0.874 1.104 0.763

0-4 days 1.044 0.891 1.224 0.592

N02(Ppb) 0-1 day 1.010 0.977 1.045 0.541
0-4 days 1.007 0.966 1.049 0.749

CO-8br(ppm) 0-1 day 0.994 0.941 1.051 0.835
0-4 days 0.989 0.918 1.066 0.774

03(Ppb) 0-1 day 0.969 0.942 0.998 0.036
0-4 days 0.966 0.930 1.004 0.078

PMJO(llg/m3) 0-1 day 0.998 0.992 1.004 0.457
0-4 days 0.997 0.990 1.005 0.435

PM2.s(llg/m3) 0-1 day 0.986 0.973 1.000 0.042
0-4 days 0.976 0.959 0.993 0.006

*The estimates are the sum of all lags.
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Table 6. 3 Risk estimates for single pollutant, distributed lag models for the effects of a to-unit
increase of a pollutant (one-unit increase for CO) on daily circulatory visits among all people
in Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval
Pollutant ~unitl LaG RR* Lower Ueeer e-value
S02 (Ppb) 0-1 day l.l12 0.940 1.315 0.216

0-4 days 1.222 0.972 1.536 0.086

N02(Ppb) 0-1 day 0.984 0.939 1.032 0.513
0-4 days 0.995 0.938 1.055 0.868

CO-8hr(ppm) 0-1 day 0.949 0.878 1.026 0.189
0-4 days 0.978 0.882 1.084 0.671

03(Ppb) 0-1 day 0.981 0.941 1.022 0.364
0-4 days 1.017 0.964 1.073 0.538

PMIO(~g/m3) 0-1 day 0.994 0.986 1.003 0.178
0-4 days 0.998 0.988 1.008 0.689

PM2.5(~g/m3) 0-1 day 0.976 0.955 0.997 0.028
0-4 days 0.980 0.953 1.006 0.134

*The estimates are the sum of all lags.

Table 6. 4 Risk estimates for single pollutant, distributed lag models for the effects of a to-unit
increase of a pollutant (one-unit increase for CO) on daily diabetic visits among all people in
Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval
PoDutaot ~uoitl LaG RR* Lower Ueeer e-value
S02 (Ppb) 0-1 day 1.053 0.808 1.372 0.702

0-4 days 1.255 0.879 1.792 0.211

N02(Ppb) 0-1 day 1.004 0.932 1.082 0.910
0-4 days 0.990 0.903 1.086 0.832

CO-8hr(ppm) 0-1 day 1.003 0.888 1.133 0.960
0-4 days 0.944 0.803 1.111 0.488

03(Ppb) 0-1 day 0.980 0.919 1.047 0.554
0-4 days 0.985 0.906 1.071 0.726

PMlo(~g/m3) 0-1 day 0.996 0.983 1.009 0.530
0-4 days 0.993 0.977 1.009 0.380

PM25(~g/m3) 0-1 day 0.981 0.950 1.013 0.240
0-4 days 0.968 0.930 1.008 0.111

*The estimates are the sum of all lags.
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Table 6. 5 Risk estimates for single pollutant, distributed lag models for the effects of a to-unit
increase of a pollutant (one-unit increase for CO) on daily intestinal infectious visits among all
people in Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval
Pollutant ~unitl LaG RR* Lower Ul!l!er I!-value
S02 (Ppb) 0-1 day 0.830 0.637 1.082 0.168

0-4 days 0.876 0.616 1.247 0.462

N02(Ppb) 0-1 day 0.975 0.910 1.044 0.469
0-4 days 0.996 0.913 1.086 0.928

CO-8br(ppm) 0-1 day 0.932 0.831 1.046 0.232
0-4 days 0.876 0.751 1.023 0.094

03(Ppb) 0-1 day 0.968 0.911 1.028 0.288
0-4 days 0.963 0.891 1.041 0.342

PMIO(flg/m3) 0-1 day 0.987 0.976 0.999 0.033
0-4 days 0.985 0.970 1.000 0.047

PM2.S(flg/m3) 0-1 day 0.962 0.932 0.993 0.018
0-4 days 0.981 0.942 1.021 0.337

·The estimates are the sum of a111ags.

Table 6. 6 Risk estimates for single pollutant, distributed lag models for the effects of a to-unit
increase in air pollutants (one-unit increase for CO) on daily other visits among all people in
Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval
Pollutant ~unitl LaG RR* Lower Ul!l!er I!-value
S02 (Ppb) 0-1 day 0.917 0.828 1.016 0.098

0-4 days 1.013 0.880 1.166 0.860

N02(Ppb) 0-1 day 0.979 0.951 1.008 0.150
0-4 days 0.978 0.943 1.014 0.226

CO-8hr(ppm) 0-1 day 0.951 0.907 0.996 0.034
0-4 days 0.935 0.877 0.997 0.040

03(Ppb) 0-1 day 1.011 0.986 1.036 0.392
0-4 days 1.025 0.993 1.058 0.131

PMIO(flg/m3) 0-1 day 0.998 0.994 1.003 0.547
0-4 days 0.997 0.991 1.004 0.399

PM2.S(flg/m3
) 0-1 day 0.989 0.977 1.001 0.068

0-4 days 0.981 0.965 0.997 0.017

·The estimates are the sumof all lags.
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Table 6. 7 Risk estimates for single pollutant and two-pollutant models for a to-unit increase
of a pollutant (average lag 0-4 days) on daily out-patient visits in all ages and in the elderly (::::
65 year) in Muang, Chiang Mal, from October 2002 to September 2006.

Outcome Single pollutant SOz& 03 S02 & N01 03 &N01
RR(95%CI) RR(95%CD RR(95%CI) RR(95%Cn

All-cause
all ages S02 1.053 (0.918-1.208) 1.050 (0.915-1.205) 1.070 (0.930-1.231)

03 1.015 (0.983-1.047) 1.014 (0.982-1.047) 1.018 (0.986-1.051)
N02 0.985 (0.951-1.020) 0.981 (0.947-1.017) 0.981 (0.947-1.016)

2:65 year S02 1.122 (0.967-1.303) 1.120 (0.964-1.300) 1.125 (0.966-1.311)
03 1.013 (0.978-1.049) 1.011 (0.976-1.048) 1.013 (0.977-1.050)
N02 1.003 (0.965-1.042) 0.997 (0.958-1.037) 1.000 (0.962-1.040)

Resnlratorv
all ages S02 1.054 (0.907-1.224) 1.060 (0.913-1.232) 1.052 (0.903-] .226)

03 0.973 (0.939-1.009) 0.973 (0.938-1.009) 0.972 (0.936-1.008)
N02 1.008 (0.976-1.041) 1.002 (0.963-1.042) 1.010 (0.971-1.051)

2:65 year S02 1.157 (0.871-1.537) 1.148 (0.864-1.526) 1.116 (0.836-1.491)
03 1.034 (0.963-1.111) 1.032 (0.961-1.109) 1.024 (0.952-1.103)
N02 1.054 (0.978-1.135) 1.048 (0.971-1.130) 1.048 (0.971-1.131)

Circulatorv
all ages S02 1.147 (0.922-1.428) 1.139 (0.914-1.418) 1.034 (0.981-1.090)

03 1.036 (0.983-1.092) 1.034 (0.981-1.090) 1.040 (0.986-1.098)
N02 0.986 (0.931-1.043) 0.977 (0.921-1.035) 0.977 (0.922-1.036)

~65 year S02 1.174 (0.908-1.519) 1.169 (0.904-1.512) 1.195 (0.918-1.556)
03 1.024 (0.962-1.091) 1.022 (0.960-1.089) 1.027 (0.964-1.095)
N02 0.990 (0.926-1.059) 0.980 (0.915-1.050) 0.985 (0.920-1.054)

Diabetic
all ages S02 1.379 (0.983-1.933) 1.385 (0.988-1.942) 1.364 (0.966-1.926)

03 0.975 (0.899-1.058) 0.972 (0.896-1.054) 0.969 (0.892-1.052)
N02 1.030 (0.945-1.124) 1.014 (0.928-1. J 08) 1.038 (0.950-1.134)

2:65 S02 1.114 (0.727-1.707) 1.135 (0.741-1.738) 1.105 (0.715-1.709)
03 0.900 (0.811-0.998) 0.899 (0.810-0.997) 0.893 (0.804-0.993)
N02 1.015 (0.909-1.134) 1.010 (0.902-1.131) 1.040 (0.929-1.164)

Intestinal
infectious*
all ages S02 0.988 (0.719-1.357) 0.989 (0.720-1.359) 0.988 (0.715-1.367)

03 0.982 (0.914-1.056) 0.982 (0.914-1.056) 0.982 (0.912-1.057)
N02 0.999 (0.923-1.081) 1.000 (0.922-1.084) 1.003 (0.925-1.087)

Other
all ages S02 1.029 (0.900-1.178) 1.024 (0.895-1.172) 1.054 (0.919-1.210) 1.027 (0.995-1.060)

03 1.021 (0.990-1.054) 1.021 (0.989-1.053) 0.968 (0.935-1.003)
N02 0.974 (0.941-1.008) 0.971 (0.938-1.006)

2:65 S02 1.073 (0.934-1.232) 1.070 (0.932-1.230) 1.076 (0.934-1.240) 1.012 (0.978-1.047)
03 LOll (0.978-1.046) 1.010 (0.977-1.045) 0.998 (0.962-1.035)
N02 1.000 (0.965-1.037) 0.997 (0.960-1.034)..*There were insufficient intestinal infectious VISitsamong the elderly (2:65 year) for the analysis.
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Table 6. 8 Relative risk estimates for distributed lag models (0-13 days) for temperature
effects (>29°C) on daily all-cause visits in Muang, Chiang Mai, from October 2002 to
September 2006.

95%CI
Grou2 Mean • SD RR Lower U22er 2-value 2-value b

All people 943.20 845.58 1.094 1.028 1.165 0.005 N/A
Age
0-14 years 114.23 83.88 1.066 0.975 1.165 0.158
15- 64 years 636.41 605.70 1.098 1.027 1.173 0.006
2: 65 years 186.34 154.77 1.108 1.030 l.l93 0.006 0.798

Sex
Male 397.95 329.88 l.l16 1.047 1.190 0.001
Female 543.29 515.64 1.063 0.994 1.137 0.074 0.304

Occupation
Unemployed &
economically inactive 193.70 159.69 1.119 1.041 1.203 0.002
Non-manual workers 189.46 123.49 1.083 1.005 1.166 0.036
Manual workers 50.73 56.27 1.073 0.964 1.194 0.198 0.753

a Mean daily count ofalJ-cause visits when T > 29°C(n = 266 days).
bp-value of the test for heterogeneitybetween groups.

Table 6. 9 Relative risk estimates distributed lag models (0-1 day) for temperature effects
(linear) on daily respiratory visits in Muang, Chiang Mai, from October 2002 to September
2006.

95%CI
Grou2 Mean • SD RR Lower Ueeer e-value e-value b

All people 95.32 53.40 0.991 0.981 1.000 0.053 N/A
Age
0-14 years 38.28 20.58 0.993 0.980 1.006 0.295
15- 64 years 46.83 28.65 0.990 0.979 1.001 0.070
2: 65 years 9.67 6.92 0.998 0.978 1.018 0.810 0.782

Sex
Male 44.40 24.40 1.005 0.994 1.017 0.344
Female 50.45 29.86 0.980 0.969 0.991 0.000 0.002

Occupation
Unemployed &
economically inactive 18.02 10.74 0.985 0.970 0.999 0.042
Non-manual workers 23.02 15.30 0.991 0.976 1.006 0.216
Manual workers 3.55 3.30 1.015 0.983 1.048 0.370 0.249

a Mean daily count of respiratory visits when there was no temperaturethreshold (n = 1387 days).
bp-value of the test for heterogeneitybetween groups.
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Table 6. 10 Relative risk estimates for distributed lag models (0-13 days) for temperature
effects (>29°C) on daily circulatory visits in Muang, Chiang Mai, from October 2002 to
September 2006.

95% Cl
Groul! Mean • SD RR Lower Ul!l!er I!-value I!-value b

All people 77.19 60.91 1.192 1.070 1.328 0.001 N/A
Age"
0-14 years 0.75 1.37
15- 64 years 46.96 37.72 1.204 1.082 1.340 0.001
~ 65 years 29.28 23.58 1.175 1.032 1.339 0.015 0.777

Sex
Male 32.20 25.15 1.227 1.098 1.371 0.000
Female 44.91 36.44 1.173 1.045 1.317 0.007 0.582

Occupation
Unemployed &
economically inactive 20.21 17.37 1.245 1.084 1.429 0.002
Non-manual workers 20.36 15.86 1.124 0.989 1.277 0.074
Manual workers 5.00 5.98 1.187 0.971 1.450 0.094 0.564

a Mean daily count of circulatory visits whenT >29°C(n= 266 days).
bp-value of the test for heterogeneitybetween groups.
C There were limited daily counts of circulatoryvisits amongage 0-14 years for the analysis.

Table 6. 11 Relative risk estimates for distributed lag models (0-13 days) for temperature
effects (>29°C) on daily diabetic visits in Muang, Chiang Mai, from October 2002 to
September 2006.

95%CI
Groul! Mean • SD RR Lower Ul!l!er I!-value I!-value b

All people 29.16 23.44 1.263 1.071 1.490 0.006 N/A
Age"
0-14 years 0.27 0.70
15- 64 years 19.71 16.16 1.259 1.068 1.485 0.006
~ 65 years 9.07 7.82 1.175 0.955 1.446 0.128 0.609

Sex
Male 12.02 9.38 1.286 1.077 1.536 0.006
Female 17.13 14.79 1.233 1.030 1.477 0.023 0.744

Occupation
Unemployed &
economically inactive 9.49 8.36 1.197 0.983 1.458 0.074
Non-manual workers 8.27 7.24 1.374 1.120 1.685 0.002
Manual workers 1.65 2.03 0.901 0.647 1.255 0.539 0.104

a Mean daily count of diabetic visits when T >29°C(n = 266 days).
bp-value of the test for heterogeneitybetween groups.
C There were limited daily counts of diabetic visits among age 0-14 years for the analysis.
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Table 6. 12 Relative risk estimates for distributed lag models (0-1 day) for temperature effects
(linear) on daily intestinal infectious visits in Muang, Chiang Mai, from October 2002 to
September 2006.

95% Cl
Groue Mean • SD RR Lower Ul!l!er I!-value I!-value b

All people 9.21 5.56 1.026 1.004 1.048 0.018 N/A
Age
0-14 years 3.89 2.74 1.002 0.973 1.032 0.895
15- 64 years 4.50 3.28 1.038 1.008 1.069 0.013
~ 65 years 0.77 0.99 1.077 1.002 1.156 0.043 0.090

Sex
Male 4.25 2.97 1.042 1.011 1.074 0.008
Female 4.91 3.42 1.009 0.982 1.038 0.508 0.124

Occupation C

Unemployed &
economically inactive 1.96 1.74 1.016 0.973 1.061 0.462
Non-manual workers 2.06 1.89 1.023 0.979 1.070 0.310 0.833
Manual workers 0.31 0.62

•Mean daily count of intestinal infectiousvisits when there was no temperature threshold (n = 1387 days).
bp-value of the test for heterogeneitybetweengroups.
C There was too limited counts of intestinal infectiousvisits to analyze for manual workers.

Table 6. 13 Relative risk estimates for distributed lag models (0-13 days) for temperature
effects (linear) on daily other visits in Muang, Chiang Mai, from October 2002 to September
2006.

95%CI
Groue Mean • SD RR Lower Ueeer e-value l!-value b

All people 422.44 252.86 1.037 1.015 1.059 0.001 N/A
Age
0-14 years 49.53 31.80 1.055 1.012 1.101 0.012
15- 64 years 286.86 184.75 1.046 1.022 1.070 0.000
~ 65 years 84.39 43.37 1.007 0.986 1.030 0.502 0.029

Sex
Male 181.58 104.49 1.046 1.022 1.070 0.000
Female 237.73 150.65 1.028 1.006 1.052 0.015 0.288

Occupation
Unemployed &
economically inactive 114.74 79.47 1.034 1.008 1.060 0.010
Non-manual workers 127.35 78.99 1.051 1.022 1.080 0.000
Manual workers 28.73 28.53 1.006 0.966 1.048 0.765 0.222

•Mean daily count of other visits when there is no temperature threshold (n '" 1387 days).
bp-value of the test for heterogeneitybetween groups.
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Chapter 6 Regression results: Out-patient visits

Table 6. 14 Relative risk estimates for distributed lag models (0-13 days) for temperature
effects (>29°C) on daily neoplasm visits in Muang, Chiang Mai, from October 2002 to
September 2006.

95%01
Groul! Mean • SD RR Lower Ul!l!er I!-value I!-value b

All people 15.13 30.59 1.283 1.042 1.581 0.019 N/A
Age
0-14 years C 0.57 1.07
15- 64 years 11.54 24.00 1.298 1.041 1.619 0.021
~ 65 years 2.98 6.12 0.846 0.626 1.144 0.278 0.025

Sex
Male 4.49 8.94 1.223 0.940 1.590 0.134
Female 10.63 21.96 l.l43 0.918 1.424 0.232 0.699

Occupation
Unemployed &
economically inactive 6.635 15.301 1.218 0.933 1.591 0.147
Non-manual 1.211 1.510 1.169 0.807 1.695 0.409
Manual workers 2.835 7.280 0.951 0.665 1.361 0.784 0.542

• Mean daily count of all-cause admissions when T > 29°C(n = 266 days).
bp-value of the test for heterogeneity between groups.
C There were limited count of neoplasm visits in children for the analysis.
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Chapter 6 Regression results: Out-patient visits

Table 6. 15 Risk estimates of daily out-patient visits per one degree Celsius increase in
temperature in different seasons in Maung, Chiang Mai, from October 2002 to September
2006.

95%CJ
Outcome" Season • Mean SD RR Lower Ul!l!cr I!-value p-value b

All-cause Winter 989.74 600.47 1.021 0.978 1.065 0.349
Summer 1025.04 841.30 1.175 1.076 1.284 0.000
Rain~ 890.67 624.05 1.030 0.924 1.148 0.592 0.019

Respiratory Winter 122.17 59.86 0.992 0.977 1.008 0.318
Summer 78.40 43.81 0.992 0.970 1.014 0.463
Rain~ 84.38 44.56 1.016 0.986 1.046 0.305 0.346

Circulatory Winter 94.717 67.158 0.996 0.923 1.075 0.918
Summer 84.196 62.572 1.023 0.883 1.186 0.761
Rain~ 74.565 53.404 1.019 0.854 1.217 0.832 0.936

Diabetic Winter 33.01 24.08 1.045 0.912 1.198 0.523
Summer 32.43 25.67 1.171 0.942 1.455 0.155
Rain~ 28.15 21.88 1.061 0.808 1.393 0.669 0.681

Intestinal Winter 10.01 5.74 1.036 0.998 1.075 0.061
infectious Summer 9.69 5.24 1.028 0.978 1.079 0.280

Rain~ 8.19 5.39 1.045 0.975 1.120 0.2]7 0.928

Other Winter 478.43 271.95 1.090 1.036 1.146 0.001
Summer 414.55 242.87 1.074 1.000 1..1 53 0.049
Rain;t 383.18 234.96 1.035 0.931 1.149 0.527 0.680

a A linear relationship was assumed for all seasons, winter: n = 481 days, summer: n = 368 days, and rainy: n
= 612 days.
bp-value for test for heterogeneity between seasons.
C Quantifying temperature effects at a long lag (0-13 days) for all diseases, except respiratory and intestinal
infectious admissions, which was done for the effects at a short lag (0-1 day).
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Chapter 6 Regression results: Out-patient visits

Table 6. 16 Risk estimates of daily out-patient visits in distributed lag models (0-4 days) for a
to-unit increase of a pollutant between using negative binomial regression (NB) and using
overdispersed Poisson regression (OP).

Negative binomial regression Overdispersed Poisson regression
95%CI 95%CI

Pollutant Outcome RR Lower Upper RR Lower Upper

SO,
All-cause 1.047 0.909 1.205 0.995 0.881 1.125
Respiratory 1.044 0.891 1.224 1.029 0.882 1.201
Circulatory 1.222 0.972 1.536 1.155 0.939 1.42

Diabetic 1.255 0.879 1.792 1.307 0.938 1.822

Intestinal infectious 0.876 0.616 1.247 0.870 0.603 1.254

Other 1.013 0.880 1.166 1.009 0.889 1.146

03
AU-cause 1.001 0.969 1.033 0.985 0.957 1.014

Respiratory 0.966 0.93 1.004 0.965 0.929 1.002

Circulatory 1.017 0.964 1.073 1.015 0.967 1.066

Diabetic 0.985 0.906 1.071 0.983 0.908 1.063

Intestinal infectious 0.963 0.891 1.041 0.964 0.891 1.044

Other 1.025 0.993 1.058 1.004 0.974 1.035

N01
All-cause 0.988 0.953 1.024 0.977 0.947 1.008

Respiratory 1.007 0.966 1.049 1.005 0.966 1.046

Circulatory 0.995 0.938 1.055 1.016 0.965 1.069

Diabetic 0.99 0.903 1.086 1.019 0.935 1.11

Intestinal infectious 0.996 0.913 1.086 0.993 0.908 1.085

Other 0.978 0.943 1.014 0.970 0.939 1.002

Table 6. 17 Risk estimates of daily out-patient visits per one degree Celsius increase in
temperature (lag 0-13 days) between using negative binomial regression (NB) and using
Overdispersed Poisson regression (OP).

Nec:ative binomial rezresslon Overdlspersed Poisson rearession

Outcome 95%CI 95%CI

(temperature CoeC. SE Lower Upper p- CoeC. SE Lower Upper p-

terms) RR value RR value

All-cause
(>29°C) 0.090 0.032 1.094 1.028 1.165 0.005 0.052 0.032 1.053 0.989 1.121 0.108

Respiratory*
(linear) -0.009 0.005 0.991 0.981 1.000 0.053 -0.007 0.005 0.993 0.984 1.002 0.147

Circulatory
(>29°C) 0.175 0.055 1.192 1.070 1.328 0.001 0.160 0.053 1.173 1.059 1.301 0.002

Diabetic
(>29°C) 0.234 0.084 1.263 1.071 1.490 0.006 0.195 0.082 ] .215 1.035 1.426 0.017

Intestinal
Infectious"
(linear) 0.025 0.011 1.026 1.004 1.048 0.018 0.026 0.011 1.026 1.004 1.049 0.021

Other
(linear) 0.036 0.011 1.037 1.015 1.059 0.001 0.036 0.010 1.036 1.016 1.057 0.00]

"'Temperature effects at short lag (O-Iday) were examined for these two diseases.
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Chapter 6 Regression results: Out-patient visits

Figure 6. 1 Risk estimates for single pollutant models for the effects of a 10-unit increase of a
pollutant (one-unit increase for CO) in different lags (0-4 days) on daily all-cause visits among
all people in Muang, Chiang Mai, from October 2002 to September 2006.
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Chapter 6 Regression results: Out-patient visits

Figure 6. 2 Risk estimates for single pollutant models for the effects of a lO-unit increase of a
pollutant (one-unit increase for CO) in different lags (0-4 days) on daily respiratory visits
among all people in Muang, Chiang Mai, from October 2002 to September 2006.

6.2a) S02

M
..:

r;

~
12

~

<Xl

0

802 and Respiratory visits

1

6.2c) co

2
S02.lag(day)

CO-8hr and Respiratory visits

o

"l ~------'-------T-------'-------'

6.2e) PMIO

2
CO-8hr·lag(day)

PM-10 and Respiratory visits

2
PM-10·lag(day)

6.2b) N02

N02 and Respiratory visits

12~~----~------4------+------+

~'-r-----r-----r-----r----..,..
2

N02-lag(day)

6.2d) 03

03 and Respiratory visits

~ I~

01

2
03-lag(day)

6.21) PM2.S

15
PM-2.5 and Respiratory visits

s~

~~

III

:!l
2

PM-2.5-lag(day)

130



Chapter 6 Regression results: Out-patient visits

Figure 6. 3 Risk estimates for single pollutant models for the effects of a to-unit increase of a
pollutant (one-unit increase for CO) in different lags (0-4 days) on daily circulatory visits
among all people in Muang, Chiang Mai, from October 2002 to September 2006.
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Chapter 6 Regression results: Out-patient visits

Figure 6. 4 Risk estimates for single pollutant models for the effects of a lO-unit increase of a
pollutant (one-unit increase for CO) in different lags (0-4 days) on daily diabetic visits among
all people in Muang, Chiang Mai, from October 2002 to September 2006.
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Chapter 6 Regression results: Out-patient visits

Figure 6. 5 Risk estimates for single pollutant models for the effects of a to-unit increase of a
pollutant (one-unit increase for CO) in different lags (0-4 days) on daily intestinal infectious
visits among all people in Muang, Chiang Mai, from October 2002 to September 2006.

6.5a) S02
802 and Intestinal infectious visils

ii~

I
"1

0 2
S02-lag(day)

6.5c) CO
CO-8hr and Intestinal infectious visils

o~~------~--------r-------.--------r

6.5e) PMIO

2
CO·Shr·lag(day)

PM-10 and Intestinal infectious visits

o~~------~------~r-------.--------r
2

PM.10-lag(day)

4

6.5b) N02

N02 and Intestinal infectious visits

~L,---------.--------r--------.---------,-
2

N02-lag(day)

6.5d) 03

03 and Intestinal infectious visits

ii~*------+------~----4------+

~ ~-------r------~------~--------.
2

03-lag(day)

6.S!) PM2.5

PM-2.5 and Intestinal infectious visits

~~*------+------~----+------+

2
PM·2.5-lag(d8Y)

133



Chapter 6 Regression results: Out-patient visits

Figure 6. 6 Risk estimates for single pollutant models for the effects of a lO-unit increase of a
pollutant (one-unit increase for CO) in different lags (0-4 days) on daily other visits among all
people in Muang, Chiang Mai, from October 2002 to September 2006.
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Chapter 6 Regression results: Out-patient visits

Figure 6. 7 Risk estimates for single pollutant, distributed lag models (0-4 days) for alO-unit
increase of a pollutant (one unit increase for CO) on daily out-patient visits in different age
groups in Muang, Chiang Mal, from October 2002 to September 2006.

Note: 1. C = Children (0-14 years), A = Adult (15-64 years), E = Elderly (~65years).
2. There were limited counts to analyze for children for circulatory and diabetic visits, and

for the elderly for intestinal infectious visits.
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Chapter 6 Regression results: Out-patient visits

Figure 6. 8 Risk estimates for single pollutant, distributed lag models (0-4 days) for alO-unit
increase of a pollutant (one unit increase for CO) on daily out-patient visits in males and
females in Muang, Chiang Mai, from October 2002 to September 2006.

Note: M = Male, F = Female.
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Chapter 6 Regression results: Out-patient visits

Figure 6. 9 Risk estimates for single pollutant, distributed lag models (0-4 days) for alO-unit
increase of a pollutant (one unit increase for CO) on daily out-patient visits in different
occupational groups in Muang, Chiang Mai, from October 2002 to September 2006.

Note: U = unemployed & economically inactive people, N = non-manual workers, M = manual workers.
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Chapter 6 Regression results: Out-patient visits

Figure 6. 10 Risk estimates for single pollutant, distributed lag models (0-4 days) for alO-unit
increase of a pollutant (one unit increase for CO) on daily out-patient visits in different
seasons in Muang, Chiang Mai, from October 2002 to September 2006.

Note: W = Winter, S = Summer, R = Rainy.
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Chapter 6 Regression results: Out-patient visits

Figure 6. 11 General relationships between daily out-patient visits and temperature at both
short lag (0-1 day) and long lag (0-13 days) in Muang, Chiang Mai, from October 2002 to
September 2006.

Note:
-Relationship between temperature and daily out-patient visits, adjusting for day of the week, holidays, month
of the study (1-48), Thai new year, International new year, influenza, AR term at lag 1,7,14,21, 28, humidity,
rain, S02, and 03•
-The x-axis represents temperature range (0C), and the y-axis represents the estimated relative risk (RR) of
daily out-patient visits. The centre line in each graph is the estimated spline curve, and the upper and lower
lines are the 95 percent confidence limits.
-The left graphs of each disease group show the relationship for temperature at a short lag (0-1 day), whereas
the right graphs of each disease group show the relationship for temperature at a long lag (0-13 days).
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Chapter 6

6.lld) Diabetic visits
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Chapter 6 Regression results: Out-patient visits

Figure 6. 12 Temperature effects on daily out-patient visits in different specified lags (0, 1, 2,
3-4,5-8, and 9-13 days) in Muang, Chiang Mai, from October 2002 to September 2006.
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Chapter 6 Regression results: Out-patient visits

Figure 6. 13 General relationships between daily out-patient visits and temperature in
different seasons in Muang, Chiang Mai, from October 2002 to September 2006.
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6.13d) Diabetic visits (average temperature 0-13 days)
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Figure 6. 14 Risk estimates of daily out-patient visits using different degrees of freedom per
year for a lO-unit increase of S02 at lag 0-4 days.
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Figure 6. 15 Risk estimates of daily out-patient visits using different degrees of freedom per
year for a 10-unit increase of 03 at lag 0-4 days.
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Figure 6. 16 Risk estimates of daily out-patient visits using different degrees of freedom per
year for a 10-unit increase of NOz at lag 0-4 days.
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Figure 6. 17 Risk estimates of daily out-patient visits per one degree Celsius increase in
temperature in Muang, Chiang Mai, from October 2002 to September 2006.
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Chapter 7 Regression results: Hospital admissions

This chapter provides the regression analysis results of air pollution and temperature effects

on daily hospital admissions in Muang, Chiang Mai, from October 2002 to September

2006. First of all, the association between air pollution and hospital admissions are

presented. Then, the association between temperature and hospital admissions are

illustrated.

7.1 Air pollution and hospital admissions

Similar to out-patient visits, the results described m this chapter suggested the linear

relationship between air pollution and hospital admissions. The risk estimates of air

pollution on hospital admissions were also employed the same method used for the out-

patient visits. The results were the estimate effects of a lu-unit increase of a pollutant, but

one-unit increase for CO. The lag structure of air pollution effects are presented first,

followed by the regression results obtained from the single pollutant models and two

pollutant models respectively.

7.1.1 Lag structures of air pollution effects

The distributed lag model was employed to determine air pollution effects on the exposure

day and up to 4 subsequent days. It was found that the estimated effects of air pollution

were generally fluctuated over lag 0-4 day period, and were not statistically significant.

Some positive significant effects were occasionally found for some pollutants such as S02

and CO, which might be due to chance. The estimated effects on main health outcomes are

described below.

All-cause admissions

Overall, the effects of air pollutants on all-cause admissions were non-significant and were

slightly fluctuated over 1-4 days after exposure (Figure 7.1). However, there were

significant effects on daily all-cause admissions at lag 2 days for S02, and lag 0 day for 03.

Respiratory admissions

The effects of air pollutants on respiratory admissions were found to be non-significant and

reverted to RR = lover 2-4 days after exposure, except only S02 effects that tended to
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increase slightly (Figure 7.2). A significant, positive effect of CO was found at lag 1 day,

while the significant effect of 03 was found to be positive at lag 0 day, but negative at lag I

day.

Circulatory admissions

In general, the effects of air pollutants on circulatory admissions were not significant, with

little fluctuations over lag 0-4 days (Figure 7.3). However, while the effects of most

pollutants were relatively stable, the effects of 03 gradually declined with time. The

positive significant effects of CO on daily circulatory admissions were found at lag 1 day,

while the negative significant effects PMIO were found at lag 2 days.

Diabetic admissions

There was no significant effect of air pollution on daily diabetic admissions over lag 0-4

days (Figure 7.4). Generally, the estimated effects of all pollutants slightly fluctuated over

the period, with greater estimated effects at lag 2 days.

Intestinal infectious admissions

The overall estimated effects of air pollution on daily intestinal infectious admissions were

found to be non-significant (Figure 7.5). However, some significant effects were

occasionally found. The only one significant, positive effect was found at lag 3 days for

PM2.5, whereas the significant, negative effects were found at lag 1 day for CO and at lag 2

days for 03•

Other admissions

Generally, there was no significant effect of air pollution on daily other admissions (Figure

7.6). One positive effect on other admissions was found on lag I day, while the rest of the

estimated effects were negative or centred around one.
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7.1.2 Air pollution effects on daily hospital admissions

The estimated effects presented in this section were the sum of all lags, which were lag 0-1

day and lag 0-4 days. In general, the overall estimated effects were found to be non-

statistically significant. The greater estimates were found for 802, 03, and CO than for

other pollutants. The effects of air pollution on each selected health outcome are detailed as

follows.

All-cause admissions

There were two pollutants: 802 and 03 that provided positive effects on daily all-cause

admissions, but none of the estimates were not statistically significant (Table 7.1). At lag

0-4 days, a 10-unit increase of 802 was associated with a 2.6% (95% Cl, -9.9% to 16.9%)

increase in all-cause admissions and of 03 was associated with a 0.4% (95% Cl, -2.4% to

3.4%) increase in all-cause admissions. In contrast, the rest of selected pollutants (N02,

CO, PMIO and PM2.5) provided negative (with some significant) effects on all-cause

admissions.

Respiratory admissions

Although imprecisely estimated, the larger effects on daily respiratory admissions were

found for 802, followed by CO and 03, respectively (Table 7.2). For example, at lag 0-4

days, there was an increase in respiratory admissions of 41.0% (95% Cl, 1.0% to 97.0%)

per lO-unit increase of 802, of 5.9% (95% Cl, -8.8% to 22.9%) per one-unit increase of

CO, and of 1.5% (95% Cl, -5.6% to 9.2%) per IO-unit increase of 03. The negative,

estimated effects were found for N02, PMlO and PM2.5, but none of them was significant.

Circulatory admissions

The non-significant, positive effects of 802 and CO on daily circulatory admissions were

found for both lag 0-1 day and lag 0-4 days (Table 7.3). For instance, the circulatory

admissions increased by 5.0% (95% Cl, -14.9% to 29.5%) at lag 0-1 day, and by 8.2%

(95% Cl, -18.8% to 44.1%) per 10-unit increase of 802. there were negative effects for

both lags for N02 and PM2.5,whereas there were positive effects at lag 0-1 day and negative

effects at lag 0-4 days for 03 and PMlO. However, all of the estimates effects were not

statistically significant.
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Diabetic admissions

The overall estimated effects of air pollution on daily diabetic admissions were not

significant, and mostly negative (Table 7.4). There were only two positive effects, which

were found for S02 and CO at lag 0-4 days. The large estimates of 40.1% (95% Cl, -50.5%

to 96.5%) increase in diabetic admissions were found to be associated with a lO-unit

increase of S02, while the small estimates of 0.5% (95% Cl, -38.0% to 62.9%) were found

to be associated with one-unit increase of CO, but these estimates were imprecise as the CIs

were considerably wide.

Intestinal infectious admissions

Generally, there were negative effects of air pollution on daily intestinal infectious

admissions (Table 7.5). As can be seen, the negative effects of PMIOwere statistically

significant for both lags, with RR of 0.976 (95% Cl, 0.959 to 0.993) at lag 0-1 day, and of

0.977 (95% Cl, 0.955-0.999) at lag 0-4 days. The significant, negative effect was also

found for CO at lag 0-1 day, with RR of 0.815 (95% Cl, 0.685 to 0.970). There was only

one positive effects found for N02 at lag 0-4 days, with RR of 1.052 (95% Cl, 0.920 to

1.202).

Other admissions

Similar to intestinal infectious admissions, the estimated effects of air pollution on daily

'other' admissions were mainly found to be negative, which were statistically significant

for some pollutants, such as N02 and PMIO(Table 7.6). 03 was the only one pollutant that

provided positive effects on 'other' admissions. It was found that a lO-unit increase in 03

was in association with 2.0% (95% Cl, -0.6% to 4.6%) increase in 'other' admissions at lag

0-1 days, and with 0.9% (95% Cl, -2.2% to 4.2%) increase in 'other' admissions at lag 0-4

days.

Neoplasm admissions

As mentioned in previous chapter, due to the finding of some positive effects of air

pollution on 'other' visits and admissions, this raised a concern about which particular sub-

disease groups were the contribution of this pollution signal, though not significant. The

diagnoses in 'other' diseases vary enormously with several kinds of diseases, but there were

151



Chapter 7 Regression results: Hospital admissions

relatively larger numbers of the visits/ admissions due to cancers or neoplasms (ICD-IO:

COO-D48), with 6.1 % for the visits and 28.4% for the admissions. Since previous literature

has shown evidence of the association between air pollution and cancers (163-165), this study

explored further to see whether there was any effect of air pollution on neoplasm visits and

admissions. While there was no significant effect on neoplasm visits (not shown), there was

a significant effect of 03 (lag 0-1 day) on neoplasm admissions (Table 7.7), with an

increase in the admissions of 6.8% per 10-ppb increase in 03 level. When the data were

stratified by age and sex, the effects of 03 (lag 0-1 day) remained significant for all

subgroups, but no statistically significant differences between subgroups (see Appendix

7A, p. 325-6).

7.1.3 Air pollution and effect modification

As mentioned previously in the descriptive chapter, there were considerable missing values

of occupation for hospital admissions data. Therefore, the occupation variable was

excluded for the analysis with regard to effect modification. There were three variables:

sex, age and season, to be examined whether they had modified air pollution effects in the

hospital admissions data.

I. Effect modification by age

Overall, there was no evidence of effect modification by age on the association between air

pollution and daily hospital admissions in this study (Figure 7.7). However, the estimated

effects of air pollution in children and the elderly were relatively larger than those in adults,

as can be seen from the respiratory admissions. None of the estimated effects in each age

group were statistically significant at 5% level.

II. Effect modification by sex

There was also no significant difference in the estimated effects of air pollution between

males and females in the present study (Figure 7.8). Although there was no significant

difference between sex groups, the air pollution effects on respiratory admissions in

females were slightly greater than those in males. However, there was a contradictory result

of air pollution effects between sex groups for circulatory admissions, which was found that

the CO effects were positive and larger in males, whereas the S02 effects were positive and

larger in females.
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III. Effect modification by season

No evidence of interaction between season and air pollution effects on daily hospital

admissions was found in this study (Figure 7.9). For circulatory admissions, the effects of

CO and S02 were found to be greater in winter than other seasons, but no significant

difference in the effects between seasons.

7.1.4 Air pollution effects for two-pollutant models

By considering the results from single pollutant models, there were three pollutants: S02,

03, and CO that provided more positive effects on daily hospital admissions than other

pollutants. Therefore, these three pollutants were chosen to be included in the two pollutant

models. The same methods used for the out-patient visits series were employed for

determining the effects of the three pollutants in the two-pollutant models for the hospital

admissions series. The results obtained from the two-pollutant models are illustrated in

Table 7.8. As shown in the Table, the overall estimated effects of each pollutant on daily

hospital admissions obtained by the two-pollutant models were relatively higher than those

obtained by single pollutant models. However, the increased estimates in the two-pollutant

models were not very consistent.

For example, when there were S02 and CO in the models, S02 effects were found to be

larger than those in the single pollutant models for all disease groups among people in all

ages. But, when looking at the elderly people (2: 65 year), it was found that S02 effects

(when CO were included in the models) were smaller than those in the single pollutant

models (i.e. respiratory disease). For 03, the estimated effects among both all ages and the

elderly found in the two-pollutant models (either with S02 or with CO) were generally

higher than those found in the single pollutant models for all-cause, respiratory, and other

admissions, but not for circulatory, diabetic, and intestinal infectious admissions. The

estimated effects of CO when included 03 in models were relatively larger than those

obtained in the single pollutant models for all disease groups and for both all ages and the

elderly, but its effects when having S02 in the models, instead of CO, were not consistently

larger than those observed in the single pollutant models.
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7.2 Temperature and hospital admissions

The results of investigating the effects of temperature on daily hospital admissions are

presented in this section. It begins with the description of the general relationships between

temperature and hospital admissions. This is followed by the lag structure of the

temperature effects and their estimated effects on all selected health outcomes. The

investigation of effect modification by age, sex, and season was also included.

7.2.1 General relationships between temperature and hospital admissions

By adopting the same procedure used for out-patient visits series, the plots of general

relationship between temperature and hospital admissions are shown in Figure 7.10.

As can be seen, the use of temperature average at longer lag (0-13 days) better captured

short-term effects of temperature on daily hospital admissions than the use of temperature

average at a short lag (0-1 day) for most outcomes, except for respiratory and intestinal

infectious admissions. An obvious linear increase with increasing temperature was seen for

these two diseases. Similar to out-patient visit data, there was no cold effect found for

hospital admission data, but heat effects only.

Based on graphical visualization for temperature at a long lag (0-13 days), the temperature

threshold of 29°C was used for quantifying the short-term effects of temperature on all-

cause, circulatory, and other admissions, whereas a linear term of temperature was used for

diabetic admissions. Due to apparent linear increase of respiratory and infectious

admissions with increasing temperature at a short lag (0-1 day), a linear term of

temperature was used for quantifying temperature effects for these two diseases.

7.2.2 Lag structure of temperature effects

Temperature effects on daily hospital admissions for specified lag period are shown in

Figure 7.11. Overall, there were no significant effects of temperature over 0-13 day period.

The temperature effects were generally found to be larger at lag 1 and lag 2 days and

relatively stable from lag 3 to 13 days. There was no significant increase or decrease of the

temperature effects beyond lag 13 days in this study (not shown). Thus, the quantification

of temperature effects for long lag up to 13 days should suffice for the study.
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7.2.3 Temperature effects on hospital admissions

To quantify temperature effects, the distributed lag models were used, with adjustment for

all possible potential confounders like the out-patient visit series. As mentioned earlier, for

all-cause, circulatory, and other admissions, the linear relationship between temperature

and these three outcomes were assumed when temperature were above 29°C. For

respiratory, diabetic, and intestinal infectious admissions, the linear terms of temperature

was employed for quantifying temperature effects. The distributed lag model from the

exposure day and up to 13 previous days were carried out for most health outcomes, except

for respiratory and intestinal infectious admissions (short lag, O-Iday). Thus, the estimated

effects presented here were the sum of all lags from 0 to 13 days for long lag and from 0 to

1 day for short lag. Generally, for each 1°C increase in temperature, there were positive

effects of temperature on most health outcomes, but not consistently significant across

subgroups studied. The effects of temperature on each health outcome are described

separately as the followings.

All-cause admissions

Overall, there were positive effects of temperature on all-cause admissions, with only one

exception - the effects in children (Table 7.9). For each 1 °C increase in temperature above

29°C, there was an increase in all-cause admissions of about 4-12%. It was found that the

all-cause admissions in all people increased by 5.3% (95% Cl, -0.2% to 11.1%) per 1°C

increase in temperature above this threshold. The effects of hot temperature were found to

be largest and significant in the elderly, and slightly greater in males than in females.

Respiratory admissions

Generally, there was a small, positive increase in respiratory admissions in association with

1 °C increase in temperature (no threshold) (Table 7.10). The respiratory admissions in all

people significantly increased by 2.8% (95%CI, 0.6% to 5.0%) per 1°C increase in

temperature. The estimated effects of respiratory admissions were slightly greater in the

elderly than in other age groups, and also slightly greater in females than in males.
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Circulatory admissions

There was no evidence of hot temperature effects on daily circulatory admissions in the

present study (Table 7.11). When temperature above 29°C, there was a decrease in

circulatory admissions in most subgroups, and none of the estimates was significant. The

only one positive increase was found in the elderly, but the estimate was small and also

non-significant.

Diabetic admissions

Due to limited daily counts of daily diabetic admissions, the temperature effects could be

estimated for all people only (Table 7.12). The imprecise estimate was found for diabetic

admissions with very wide confidence interval. For each 1 °C increase in temperature, the

diabetic admissions were found to increase about 4.2% (95% Cl, -11.6% to 22.9%).

Intestinal infectious admissions

There were significant, positive effects of temperature on intestinal infectious admissions in

all people, children, and male people, while there were non-significant, positive effects on

the admissions in adult, the elderly and female people (Table 7.13). Among all people, it

was anticipated that the intestinal infectious admissions significantly rose by 5.8% (95%

Cl, 2.3% to 9.3%) per 1 °C increase in temperature. The increase in intestinal infectious

admission with increasing temperature admissions was found to be significantly larger in

children (13.1% increase, 95% Cl, 6.4% to 20.3%) and male people (10.6% increase, 95%

Cl, 4.8% to 16.6%) in comparison to other subgroups.

Other admissions

Overall, there were positive effects of hot temperature on 'other' admissions, but most of

the effects were not statistically significant (Table 7.14). The stronger estimated effects

were found for the elderly and male people, while the overall estimated effects on all

people were not significant at 5% level.

Neoplasm admissions

Similar to the visits series, hot temperature effects on neoplasm admissions were also

examined, although not the main outcome of interest. There were generally positive, but not
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significant effects of hot temperature on neoplasm admissions (Table 7.15). The effects

were found much stronger in children and male people, but no statistically significant

differences between subgroups.

7.2.4 Temperature and effect modification by age and sex

Based on the results shown in Table 7.9-7.14, there was little evidence of effect

modification by age and sex on the association between temperature and daily hospital

admissions in this study. Overall, the estimated effects of temperature for most outcomes

seemed to be larger in the elderly and male people. However, the significant differences

between subgroups were found for intestinal infectious admissions only, with strongest

estimates in children and male people.

7.2.5 Effect modification by season

The effect modification by season for hospital admission series was investigated by the

same method used for out-patient visit series. The investigation of temperature effects was

undertaken by looking at the relationships between temperature and hospital admissions in

each season separately. The plots of the general relationships between them are illustrated

in Figure 7.12. As shown in the figure, there was generally no visible apparent temperature

threshold for all seasons. Therefore, a linear association was assumed for quantification

temperature effects for all seasons. The estimated effects in each season are illustrated in

Table 7.15. Overall, the positive, larger estimated effects of temperature were found in

summer than other seasons for most outcomes. However, there were no significant

differences in the estimated effects between seasons.
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7.3 Sensitivity analyses of hospital admissions series

For hospital admissions series, the effect of re-admissions on the estimated risks is of most

concern. It was speculated that even a small number of re-admissions could lead to the

distortions in the data, which might result in false conclusions (208).Since literature review

has suggested that temperature effects, such as cold effects, may delay for more than two

weeks after exposure (13,188),the hospital admissions within 30 days could possibly due to

the same episode. Because the present study investigated not only air pollution effects, but

also temperature effects, it was decided to exclude the re-admissions within 30 days due to

with the same diagnosis from the data set for the hospital admission series. Therefore,

investigations of air pollution and temperature effects on the main outcomes of interest,

using different types of admission data: all admissions, single admissions only, and the one

used in the present study (with exclusions of re-admissions by the same diagnosis within 30

days), were undertaken. The risk estimates of air pollution effects and temperature effects

are presented in Table 7.16 and 7.17, respectively.

As can be seen, although different types of admission data were used for the analysis, the

estimated effects of selected air pollutants on hospital admissions were relatively similar,

except for S02 and CO effects. The estimated effects of S02 obtained from the data used in

the present study were higher than those obtained from the data with all admissions or

single admissions in all disease groups, with only one exception, diabetic admissions, that

the estimated effects were higher when using data with single admissions. Also, the

estimated effects of CO on most health outcomes, using the data with single admissions,

were slightly higher than those using the data with all admissions and with some exclusion

employed by this study. For temperature, overall, the risk estimates of temperature effects

on daily hospital admissions obtained by all types of admissions data were found to be

similar. Even though the estimated effects of temperature were slightly lower when using

single admissions data for diabetic admissions, the overall estimates were broadly the same

for the rest of the outcomes.

158



Chapter 7 Regression results: Hospital admissions

Summary of hospital admissions series:

Air pollution effects

• There was some evidence of the association between air pollution and hospital

admissions. Although the findings were non-significant at 5% level, the estimated

effects were larger, particularly for S02, CO, and 03.

• Since the effects of air pollution were generally found during 1-2 days after

exposure, the use of lag 0-4 days for the investigation was sufficient to capture the

short-term effects of air pollution in this study.

• There was no evidence of effect modification by age, sex, and season.

• The effects of the three selected air pollutants: S02, CO, and 03 in the two-pollutant

models were larger than those in the single pollutant models. But this finding was

not consistent across all disease groups.

Temperature effects

• The positive effects of hot temperature were found for most diseases, but not

consistently significant across subgroups. Most of the significant effects were found

for respiratory and intestinal infectious admissions.

• There were some findings, which were contradictory to out-patient visits series.

When temperature above 29°C, there was an increase in circulatory visits, while

there was a decline in circulatory admissions.

• The investigation of temperature effects up to lag 13 days was sufficient since the

effects did not increase or decrease beyond this period.

• There was little evidence of effect modification by age and sex.

• The temperature effects on hospital admissions were partially modified by season.

Sensitivity analyses:

• In the present study, the re-admissions in the data did not greatly affect the

estimated effects of temperature, but had some impacts on the estimated effects of

S02 and CO. That was, the S02 effects in this study (exclusion of re-admissions by

the same diagnosis within 30 days) were slightly larger than those used the data,

comprising all re-admissions or single admissions, while the CO effects in this

study were slightly smaller than those used other two types of admissions.

159



Chapter 7 Regression results: Hospital admissions

Table 7. I Risk estimates for single pollutant, distributed lag models for the effects of a to-unit
increase of a pollutant (one-unit increase for CO) on daily all-cause admissions among all
people in Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval
Pollutant ~unit~ Lag RR* Lower Ul!l!er I!-value
S02 (Ppb) 0-1 day 1.002 0.913 1.101 0.959

0-4 days 1.026 0.901 1.169 0.699

N02(Ppb) 0-1 day 0.969 0.944 0.995 0.020
0-4 days 0.977 0.944 1.010 0.164

CO-8br(ppm) 0-1 day 0.956 0.916 0.997 0.038
0-4 days 0.977 0.922 1.034 0.421

03(Ppb) 0-1 day 1.018 0.996 1.040 0.115
0-4 days 1.004 0.976 1.032 0.793

PMIO(Ilg/m3) 0-1 day 0.994 0.990 0.999 0.009
0-4 days 0.993 0.987 0.998 0.012

PM2.S(llg/m3) 0-1 day 0.990 0.981 1.000 0.053
0-4 days 0.987 0.975 1.000 0.044

*The estimates are the sum of all lags.

Table 7. 2 Risk estimates for single pollutant, distributed lag models for the effects of a to-unit
increase of a pollutant (one-unit increase for CO) on daily respiratory admissions among all
people in Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval
Pollutant ~unit~ Lag RR* Lower Ul!l!er I!-value
S02 (Ppb) 0-1 day 1.128 0.889 1.430 0.322

0-4 days 1.410 1.010 1.970 0.044

N02(Ppb) 0-1 day 0.998 0.933 1.068 0.956
0-4 days 0.976 0.894 1.064 0.578

CO-8br(ppm) 0-1 day 1.064 0.953 1.189 0.269
0-4 days 1.059 0.912 1.229 0.456

03(Ppb) 0-1 day 1.012 0.956 1.071 0.685
0-4 days 1.015 0.944 1.092 0.681

PMIO(llglm3) 0-1 day 0.998 0.987 1.010 0.733
0-4 days 0.995 0.980 1.009 0.475

PM2.S(llg/m3) 0-1 day 0.991 0.966 1.016 0.460
0-4 days 0.978 0.947 1.009 0.167

*The estimates are the sum of all lags.

160



Chapter 7 Regression results: Hospital admissions

Table 7. 3 Risk estimates for single pollutant, distributed lag models for the effects ofa to-unit
increase of a pollutant (one-unit increase for CO) on daily circulatory admissions among all
people in Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval
Pollutant ~unit~ Las RR* Lower Ueeer e-value
S02 (Ppb) 0-1 day 1.050 0.851 1.295 0.649

0-4 days 1.082 0.812 1.441 0.591

N02(Ppb) 0-1 day 0.991 0.937 1.049 0.764
0-4 days 0.979 0.911 1.052 0.557

CO-8hr(ppm) 0-1 day 1.001 0.911 1.100 0.983
0-4 days 1.009 0.889 1.144 0.893

03(Ppb) 0-1 day 1.028 0.980 1.078 0.255
0-4 days 0.990 0.932 1.052 0.741

PMIO(llg/m3) 0-1 day 1.001 0.991 1.010 0.914
0-4 days 0.999 0.986 1.011 0.811

PM2.5(llg/m3) 0-1 day 0.993 0.973 1.014 0.533
0-4 days 0.996 0.970 1.023 0.772

·The estimates are the sum of all lags.

Table 7. 4 Risk estimates for single pollutant, distributed lag models for the effects of a to-unit
increase of a pollutant (one-unit increase for CO) on daily diabetic admissions among all
people in Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval
Pollutant ~unitl Las RR* Lower Ueeer e-value
S02 (Ppb) 0-1 day 0.821 0.384 1.758 0.612

0-4 days 1.401 0.495 3.965 0.525

N02(Ppb) 0-1 day 0.823 0.660 1.025 0.082
0-4 days 0.934 0.708 1.231 0.626

CO-8hr(ppm) 0-1 day 0.891 0.623 1.272 0.524
0-4 days 1.005 0.620 1.629 0.984

03(Ppb) 0-1 day 0.998 0.834 1.195 0.985
0-4 days 0.990 0.792 1.237 0.928

PM 1O(llg/m3) 0-1 day 0.948 0.912 0.985 0.006
0-4 days 0.955 0.910 1.003 0.067

PM2.S(llglm3) 0-1 day 0.956 0.889 1.028 0.221
0-4 days 0.947 0.863 1.039 0.246

"The estimates the sum of all lags.
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Table 7.5 Risk estimates for single pollutant, distributed lag models for the effects of a to-unit
increase of a pollutant (one-unit increase for CO) on daily intestinal infectious admissions
among all people in Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval
Pollutant ~unitl LaG RR* Lower Ul!l!er l!-value
S02 (Ppb) 0-1 day 0.663 0.433 1.014 0.058

0-4 days 0.718 0.400 1.287 0.265

N02(Ppb) 0-1 day 0.953 0.860 1.057 0.366
0-4 days 1.052 0.920 1.202 0.459

CO-8br(ppm) 0-1 day 0.815 0.685 0.970 0.021
0-4 days 0.853 0.676 1.076 0.179

03(Ppb) 0-1 day 0.988 0.908 1.075 0.782
0-4 days 0.944 0.847 1.052 0.295

PM)o(J.lg/m3) 0-1 day 0.976 0.959 0.993 0.006
0-4 days 0.977 0.955 0.999 0.043

PM2.S(J.lg/m
3
) 0-1 day 0.976 0.941 1.012 0.194

0-4 days 0.987 0.942 1.035 0.592

*The estimates the sum of all lags.

Table 7.6 Risk estimates for single pollutant, distributed lag models for the effects of a to-unit
increase of a pollutant (one-unit increase for CO) on daily other admissions among all people
in Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval
Pollutant ~unitl LaG RR* Lower Ul!l!er l!-value
S02 (Ppb) 0-1 day 0.996 0.893 1.111 0.942

0-4 days 0.988 0.849 1.149 0.875

N02(Ppb) 0-1 day 0.958 0.929 0.988 0.006
0-4 days 0.957 0.920 0.995 0.027

CO-8br(ppm) 0-1 day 0.943 0.898 0.991 0.021
0-4 days 0.967 0.905 1.034 0.325

03(Ppb) 0-1 day 1.020 0.994 1.046 0.129
0-4 days 1.009 0.978 1.042 0.562

PMIO(J.lg/m3
) 0-1 day 0.993 0.988 0.998 0.007

0-4 days 0.991 0.984 0.998 0.007

PM2.S(J.lg/m3) 0-1 day 0.991 0.980 1.002 0.116
0-4 days 0.987 0.973 1.001 0.070

*The estimates the sum of all lags.
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Table 7. 7 Risk estimates for single pollutant, distributed lag models for the effects of a to-unit
increase of a pollutant (one-unit increase for CO) on daily neoplasm admissions among all
people in Muang, Chiang Mai, from October 2002 to September 2006.

95%CI
Pollutant !unit~ LaG Coef. SE RR* Lower Ul!l!er I!-value
S02 (Ppb) 0-1 day 0.008 0.010 1.082 0.889 1.317 0.431

0-4 days 0.017 0.014 1.190 0.913 1.551 0.199

N02(ppb) 0-1 day -0.003 0.003 0.967 0.915 1.023 0.248
0-4 days -0.006 0.004 0.945 0.881 1.013 0.111

CO-8br(ppm) 0-1 day -0.111 0.047 0.895 0.817 0.981 0.017
0-4 days -0.093 0.061 0.911 0.809 1.027 0.127

03(Ppb) 0-1 day 0.007 0.002 1.068 1.022 l.l16 0.004
0-4 days 0.005 0.003 1.047 0.992 1.105 0.098

PMIO(llg/m3) 0-1 day -0.000 0.000 0.996 0.986 1.005 0.370
0-4 days -0.001 0.001 0.992 0.981 1.004 0.206

PM2.s(llg/m3) 0-1 day -0.002 0.001 0.985 0.966 1.005 0.139
0-4 days -0.002 0.001 0.979 0.955 1.003 0.084

*The estimates are the sum of all lags.
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Table 7. 8 Risk estimates of single poUutant models and two-pollutant models for a Ifl-unit
increase of a pollutant (one-unit increase of CO) at average lag 0-4 days on daily hospital
admissions in all ages and in the elderly(~ 65 year) in Mauang, Chiang Mai, from October
2002 to September 2006.

Outcome Single pollutant S02& 03 S02& CO 03&CO
RR(95%CI) RR(95%CI) RR(95%CI) RR(95%CI)

All-cause
all ages S02 1.024 (0.898-1.168) 1.023 (0.897-1.166) 1.038 (0.909-1.185)

03 1.002 (0.976-1.028) 1.004 (0.976-1.032) 1.004 (0.977-1.033)
CO 0.977 (0.923-1.035) 0.972 (0.916-1.031) 0.984 (0.928-1.043)

~65 year S02 0.922 (0.741-1.147) 0.932 (0.748-1.161) 0.927 (0.743-1.157)
03 1.009 (0.967-1.053) 1.018 (0.971-1.066) 1.010 (0.964-1.058)
CO 1.003 (0.913-1.1 03) 1.019 (0.925-1.124) l.008 (0.915-l.l11)

Resnlratorv
all ages S02 1.383 (0.987-1.937) 1.467 (1.045-2.058) 1.402 (0.998-1.969)

03 1.000 (0.934-1.071) 0.986 (0.915-1.061) 1.009 (0.936-1.087)
CO 1.061 (0.914-1.232) 1.035 (0.890-1.203) 1.072 (0.920-1.249)

~65 year S02 1.432 (0.761-2.695) 1.402 (0.738-2.665) 1.362 (0.713-2.602)
03 1.009 (0.890-1.143) 1.029 (0.896-1.182) 1.045 (0.910-1.200)
CO 1.231 (0.940-1.613) 1.208 (0.916-1.595) 1.205 (0.912-1.592)

Circulatorv
all ages S02 1.078 (0.807-1.440) 1.048 (0.784-1.402) 1.080 (0.805-1.447)

03 0.994 (0.939-1.052) 0.989 (0.929-1.052) 0.983 (0.923-1.046)
CO 1.006 (0.887-1.141) 1.005 (0.884-1.142) 1.028 (0.903-1.169)

~65 year S02 1.030 (0.659-1.609) 1.002 (0.639-] .574) 0.948 (0.602.1.495)
03 0.994 (0.910-1.085) 0.986 (0.895-1.086) 0.978 (0.887·1.077)
CO 1.128 (0.928.1.370) 1.128 (0.924-1.378) 1.149 (0.941-1.404)

Diabetic*
all ages S02 1.543 (0.541.4.401) 1.355 (0.471-3.900) 1.559 (0.543-4.479)

03 1.050 (0.850-1.298) 1.008 (0.801-1.269) 1.005 (0.800-1.263)
CO 0.967 (0.597-1.567) 0.959 (0.586-1.570) 0.993 (0.605-1.631

Intestinal
infectious*
all ages S02 0.712 (0.393-1.290) 0.787 (0.437-1.417) 0.760 (0.419-1.380)

03 0.953 (0.860-1.057) 0.944 (0.846·1.054) 0.954 (0.854-1.065)
CO 0.847 (0.672-1.066) 0.860 (0.678-1.090) 0.875 (0.691-1.108)

Other
all ages S02 0.987 (0.847-1.150) 0.981 (0.842-1.143) 1.001 (0.857-1.168)

03 1.006 (0.976.1.037) 1.012 (0.980-1.046) l.012 (0.980-1.046)
CO 0.969 (0.907-1.035) 0.965 (0.901-1.033) 0.971 (0.908·1.039)

~65 S02 0.850 (0.647-1.117) 0.880 (0.669·1.158) 0.875 (0.664.1.153)
03 1.013 (0.960.1.068) 1.024 (0.966-1.085)

0.987 (0.874·1.1 ] 5)
1.013 (0.956·1.072)

CO 0.963 (0.856·1.083) 0.968 (0.858-1.093)
*There were limited counts of admissions among the elderly (~65 year) for the analysis,
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Table 7. 9 Relative risk estimates for distributed lag models (0-13 days) for
temperature effects (>29°C) on daily all-cause admissions in Muang, Chiang Mai.
from October 2002 to September 2006.

95%CI
Groul! Mean • SD RR Lower Ul!l!er I!-value I!-value b

All people 110.50 50.78 1.053 0.998 1.111 0.061
Age
0-14 years 15.35 8.69 0.972 0.868 1.088 0.618
15- 64 years 71.47 32.46 1.046 0.984 1.113 0.151
:::65 years 23.59 12.34 1.119 1.022 1.226 0.015 0.158

Sex
Male 52.50 24.05 1.064 0.994 1.139 0.076
Female 57.90 27.85 1.038 0.972 1.109 0.266 0.609

• Mean daily count of all-cause admissions when T> 29°C (n = 266 days).
bp-value of the test for heterogeneity between groups.

Table 7. 10 Relative risk estimates for distributed lag models (0-1 day) for
temperature effects (linear) on daily respiratory admissions in Muang, Chiang Mai,
from October 2002 to September 2006.

95%CI
Groul! Mean • SD RR Lower Ul!l!er I!-value I!-value b

All people 7.81 4.26 1.028 1.006 1.050 0.011
Age
0-14 years 1.88 1.62 1.028 0.984 1.073 0.216
15- 64 years 3.70 2.64 1.027 0.995 1.059 0.094
:::65 years 2.21 1.70 1.037 0.997 1.078 0.070 0.925

Sex
Male 4.06 2.69 1.029 0.999 1.060 0.055
Female 3.73 2.47 1.034 1.003 1.066 0.034 0.823

• Mean daily count of respiratory admissions when no temperature threshold (n-1387 days).
bp-value of the test for heterogeneity between groups.
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Table 7. 11 Relative risk estimates for distributed lag models (0-13 days) for
temperature effects (>29°C) on daily circulatory admissions in Muang, Chiang Mal,
from October 2002 to September 2006.

95%CI
Groul! Mean" SD RR Lower Ul!l!er I!:value I!-value b

All people 11.18 5.86 0.979 0.867 1.105 0.730
Agee
0-14 years 0.27 0.60
15- 64 years 6.52 3.74 0.941 0.801 1.106 0.462
~ 65 years 4.39 2.n 1.021 0.844 1.234 0.832 0.521

Sex
Male 5.53 3.51 0.952 0.801 1.132 0.579
Female 5.64 3.28 0.999 0.842 1.184 0.988 0.697

a Mean daily count of circulatory admissionswhenT > 29°C (n - 266 days).
bp-value of the test for heterogeneitybetweengroups.
C There were limited daily counts of circulatoryadmissionsamong age 0-14 years for the analysis.

Table 7. 12 Relative risk estimates for distributed lag models (0-13 days) for
temperature effects (linear) on daily diabetic admissions in Muang, Chiang Mai, from
October 2002 to September 2006.

Groul!' Mean" SD RR Lower Ul!l!er
95%CI

I!-value I!-value b

All people 0.77 0.95 1.042 0.884 1.229 0.623 N/A

a Mean daily count of diabetic admissionswhen no temperature threshold (n = 1387 days).
bp-value of the test for heterogeneitybetweengroups.
C There were very limited daily counts of diabetic admissionsamong subgroups for the analysis.

Table 7. 13 Relative risk estimates for distributed lag models (0-1 day) for
temperature effects (linear) on daily intestinal infectious admissions in Muang,
Chiang Mai, from October 2002 to September 2006.

95%CI
Groul! Mean" SD RR Lower Ul!l!er I!-value I!-value b

All people 3.31 2.49 1.058 1.023 1.093 0.001
Age
0-14 years 0.94 1.13 1.131 1.064 1.203 0.000
15- 64 years 1.98 1.85 1.023 0.979 1.068 0.307
~ 65 years 0.37 0.63 1.044 0.942 1.156 0.415 0.032

Sex
Male 1.34 1.34 1.106 1.048 1.166 0.000
Female 1.96 1.73 1.027 0.984 LOn 0.228 0.034

• Mean daily count of intestinal infectiousadmissionswhen no temperature threshold (n - 1387 days).
bp-value of the test for heterogeneitybetweengroups.
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Table 7. 14 Relative risks for distributed lag models (0-13 days) for temperature
effects (linear) on daily other admissions in Muang, Chiang Mai, from October 2002
to September 2006.

95% Cl
Groue Mean a SD RR Lower Ueeer e-va1ue e-value b

All people 86.01 42.99 1.053 0.990 1.119 0.100
Age
0-14 years 12.00 7.54 0.988 0.869 1.123 0.853
15- 64 years 57.67 28.07 1.039 0.971 1.112 0.264
~ 65 years 16.27 9.83 1.130 1.010 1.266 0.033 0.275

Sex
Male 40.46 19.99 1.087 1.005 1.175 0.036
Female 45.47 24.10 1.011 0.939 1.089 0.769 0.187

a Mean daily count of other visits when temperature> 29°C (n = 266 days).
bp-value of the test for heterogeneity between groups

Table 7. 15 Relative risk estimates for distributed lag models (0-13 days) for
temperature effects (>29°C) on daily neoplasm admissions in Muang, Chiang Mai
from October 2002 to September 2006.

95%CI
Groue Mean- SD Coef. SE RR Lower Ueeer I!-value I!-value b

All people 19.19 15.46 0.062 0.062 1.064 0.942 1.202 0.315
Age
0-14 years 1.40 1.76 0.256 0.209 1.291 0.858 1.944 0.221
15- 64 years 13.47 11.28 0.048 0.069 1.049 0.917 1.201 0.487
~ 65 years 4.31 3.81 0.019 0.107 1.020 0.827 1.256 0.856 0.594

Sex
Male 7.81 6.97 0.173 0.087 1.189 1.003 1.410 0.046
Female 11.38 9.15 -0.036 0.073 0.965 0.836 1.113 0.622 0.064

a Mean daily count of all-cause admissions when T > 29°C (n = 266 days).
bp-value of the test for heterogeneity between groups.
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Table 7. 16 Risk estimates of daily hospital admissions per one degree Celsius increase
in temperature in different seasons in Maung, Chiang Mai, from October 2002 to
September 2006.

95%CI
Outeome " Season • Mean SD RR Lower UEfer l!-value l!-va)ue b

All-cause Winter 97.62 44.99 1.032 0.754 1.412 0.845
Summer 106.76 51.35 l.101 1.032 1.176 0.004
Rainl: 107.12 47.51 0.991 0.911 1.078 0.837 0.151

Respiratory Winter 7.78 4.53 1.039 1.001 1.078 0.043
Summer 7.60 4.22 1.052 1.003 1.104 0.037
Rainl: 7.97 4.12 0.987 0.926 1.052 0.692 0.272

Circulatory Winter 11.46 5.87 0.951 0.863 1.048 0.313
Summer 10.81 5.98 1.075 0.941 1:229 0.289
Rainl: 10.88 5.88 0.860 0.688 1.077 0.188 0.173

Diabetic Winter 0.68 0.86 1.032 0.689 1.545 0.880
Summer 0.84 1.00 0.913 0.564 1.480 0.712
Rainl: 0.80 0.99 1.315 0.562 3.079 0.528 0.760

Intestinal
infectious Winter 2.62 2.37 1.052 0.986 1.122 0.126

Summer 3.87 2.44 1.093 1.024 1.167 0.008
Rainl: 3.46 2.47 1.022 0.927 1.127 0.664 0.492

Other Winter 73.70 37.65 1.059 1.010 1.109 0.017
Summer 83.42 43.18 1.115 1.036 1.200 0.004
Rain:z:: 83.81 39.50 1.019 0.930 1.118 0.683 0.296

a A linear relationship was assumed for all seasons, winter: n = 481 days, summer: n= 368 days, and rainy:
n= 612 days.
bp-value oftest for heterogeneity between seasons.
C Quantifying temperature effects at a long lag (0-13 days), except respiratory and intestinal infectious
admissions, which was done for the effects at a short lag (0-1 day).
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Table 7. 17 Risk estimates of daily hospital admissions per Ill-unit increase of a
pollutant (one-unit increase for CO) for single, distributed lag models at lag 0-4 days,
using different types of admission data in Muang, Chiang Mai, from September 2002
to October 2006.

Excluded re-admissions within
Pollutant ~unit~ All admissions Single admissions 30 dal:s with the same diagnosis*
AU-cause
S02 (Ppb) 0.997 0.999 1.026

(0.876-1.134) (0.876-1.139) (0.901-1.169)
N02 (Ppb) 0.971 0.980 0.977

(0.940-1.004) (0.948-1.014) (0.944-1.010)
CO-8hr (ppm) 0.964 0.984 0.977

(0.910-1.021) (0.929-1.042) (0.922-1.034)
03(Ppb) 1.004 0.998 1.004

(0.977-1.032) (0.971-1.026) (0.976-1.032)
PMIO(llg/m3) 0.993 0.993 0.993

(0.987-0.998) (0.987-0.999) (0.987-0.998)
PM2.5(llg/m3) 0.987 0.989 0.987

~0.975-1.000~ ~0.977-1.002} {0.975-1.000}
Respiratory
802 (Ppb) 1.327 1.323 1.410

(0.958-1.840) (0.924-1.894) (1.010-1.970)
N02 (Ppb) 0.980 0.967 0.976

0.902-1.066) (0.881-1.061 ) (0.894-1.064)
CO-8hr (ppm) 1.047 1.075 1.059

(0.906-1.210) (0.917-1.260) (0.912-1.229)
03(Ppb) 1.029 1.008 1.015

(0.959-1.103) (0.933-1.089) (0.944-1.092)
PM 1O(llg/m3) 0.997 0.993 0.995

(0.983-1.011) (0.978-1.009) (0.980-1.009)
PM2.s(llg/m3) 0.987 0.976 0.978

{0.957-1.017} (0.943-1.010} {0.947-1.009}
Circulatory
S02 (Ppb) 1.033 1.017 1.082

(0.779-1.369) (0.754-1.372) (0.812-1.441)
N02 (Ppb) 0.973 0.979 0.979

(0.906-1.044) (0.908-1.055) (0.911-1.052)
CO-8hr (ppm) 0.993 1.026 1.009

(0.878-1.123) (0.900-1.170) (0.889-1.144)
03(Ppb) 0.980 0.983 0.990

(0.923-1.040) (0.923-1.047) (0.932-1.052)
PMIO()lg/m3) 0.996 1.001 0.999

(0.984-1.008) (0.988-1.014) (0.986-1.011)
PM2.S()lg/m3

) 0.991 0.998 0.996
{0.966-1.0172 {0.971-1.0262 ~0.970-1.023}

*Data used in the present study.

(Table 7.17 continues next page)
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Table 7.17 Risk estimates of daily hospital admissions, using different types of
admission data (continued).

Excluded re-admissions with the
Pollutant ~unit~ All admissions Single admissions same diagnosis within 30 dal:s*
Diabetic
S02 (Ppb) 1.341 1.592 1.401

(0.489-3.682) (0.538-4.709) (0.495-3.965)"
N02 (Ppb) 0.965 0.891 0.934

(0.737-1.263) (0.667-1.192) (0.708-1.231)
CO-8hr (ppm) 1.012 1.033 1.005

(0.631-1.623) (0.624-1.710) (0.620-1.629)
03(Ppb) 1.010 1.025 0.990

(0.813-1.254) (0.813-1.291) (0.792-1.237)
PMJO()lg/m3) 0.959 0.953 0.955

(0.915-1.006) (0.906-1.004) (0.910-1.003)
PM2.5()lg/m3

) 0.963 0.940 0.947
(0.881-1.054) (0.851-1.039) (0.863-1.039)

Intestinal infectious
S02 (Ppb) 0.731 0.677 0.718

(0.409-1.307) (0.373-1.231 ) (0.400-1.287)
NOz(ppb) 1.058 1.057 1.052

(0.926-1.209 (0.923-1.209) (0.920-1.202)
CO-8hr (ppm) 0.997 0.866 0.853

(0.986-1.008) (0.685-1.095) (0.676-1.076)
°lppb) 0.977 0.940 0.944

(0.955-0.999) (0.842-1.049) (0.847-1.052)
PMJO()lg/m3) 0.977 0.978 0.977

(0.955-0.999) (0.956-1.001) (0.955-0.999)
PM2.5()lg/m3

) 0.983 0.987 0.987
~0.938-1.0292 ~0.941-1.0352 ~0.942-1.03S2

Other
S02 (Ppb) 0.970 0.962 0.988

(0.836-1.l26) (0.827-1.118) (0.849-1.149)
N02 (Ppb) 0.952 0.960 0.957

(0.916-0.989) (0.924-0.998) (0.920-0.995)
CO-8hr (ppm) 0.953 0.970 0.967

(0.892-1.018) (0.908-1.036) (0.905-1.034)
03(Ppb) 1.008 1.004 1.009

(0.977-1.041 (0.972-1.036) (0.978-1.042)
PM1o()lg/m3

) 0.991 0.991 0.991
(0.984-0.997) (0.984-0.997) (0.984-0.998)

PM2.5()lg/m3) 0.987 0.989 0.987
(0.973-1.001) (0.973-1.001) (0.973-1.001)

*Data used in the present study.
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Chapter 7 Regression results: Hospital admissions

Table 7. 18 Relative risks of temperature effects on daily hospital admissions per one
degree Celsius increase in temperature for distributed lag models (0-13 days), using
different types of admission data in Muang, Chiang Mai, from September 2002 to
October 2006.

95% Cl
Tl::~eof admission data Mean • SD RR Lower U~~er l!-value
All-cause (>29°C)

All 122.70 58.90 1.064 1.007 1.123 0.026
Single 98.89 42.77 1.051 0.996 1.110 0.072
Some excluded b 110.50 50.78 1.053 0.998 1.111 0.061

Respiratory (linear) e

All 8.22 4.39 1.024 1.003 1.045 0.026
Single 7.12 3.90 1.025 1.003 1.048 0.025
Some excluded b 7.81 4.26 1.028 1.006 1.050 0.011

Circulatory (>29°C)
All 11.65 6.04 0.991 0.880 1.117 0.884
Single 10.32 5.35 0.958 0.845 1.086 0.505
Some excluded b 11.18 5.86 0.979 0.867 1.105 0.730

Diabetic (linear)
All 0.81 0.98 1.051 0.895 1.234 0.546
Single 0.71 0.89 1.022 0.860 1.214 0.805
Some excluded b 0.77 0.95 1.042 0.884 1.229 0.623

Intestinal infectious (linear) C

All 3.35 2.53 1.056 1.021 1.091 0.001
Single 3.19 2.42 1.056 1.021 1.092 0.002
Some excluded b 3.31 2.49 1.058 1.023 1.093 0.001

Other (>29°C)
All 97.21 50.92 1.066 1.002 1.133 0.042
Single 76.34 35.81 1.056 0.993 1.122 0.082
Some excluded b 86.01 42.99 1.053 0.990 1.119 0.100

a Mean daily count of the admissions when temperature> 29°C (n = 266 days), and when no temperature
threshold (n = 1387 days).
"Re-admissions by the same diagnosis within 30 days were excluded, which were used in the present study.
C Temperature effects for short lag (0-1 day) were examined for these two diseases.

171



Chapter 7 Regression results: Hospita I admissions

Figure 7. 1 Risk estimates for single pollutant models for the effects of a to-unit
increase of a pollutant (one-unit increase for CO) in different lags (0-4 days) on daily
all-cause admissions among all people in Muang, Chiang Mai, from October 2002 to
September 2006.
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Chapter 7 Regression results: Hospital admissions

Figure 7. 2 Risk estimates for single pollutant models for the effects of a Ifl-unit
increase of a pollutant (one-unit increase for CO) in different lags (0-4 days) on daily
respiratory admissions among all people in Muang, Chiang Mai, from October 2002
to September 2006.
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Chapter 7 Regression results: Hospital admissions

Figure 7. 3 Risk estimates for single pollutant models for the effects of a to-unit
increase of a pollutant (one-unit increase for CO) in different lags (0-4 days) on daily
circulatory admissions among all people in Muang, Chiang Mai, from October 2002 to
September 2006.
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Chapter 7 Regression results: Hospital admissions

Figure 7. 4 Risk estimates for single pollutant models for the effects of a lO-unit
increase of a pollutant (one-unit increase for CO) in different lags (0-4 days) on daily
diabetic admissions among all people in Muang, Chiang Mai, from October 2002 to
September 2006.
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Chapter 7 Regression results: Hospital admissions

Figure 7. 5 Risk estimates for single pollutant models for the effects of a lO-unit
increase of a pollutant (one-unit increase for CO) in different lags (0-4 days) on daily
intestinal infectious admissions among all people in Muang, Chiang Mai, from
October 2002 to September 2006.
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Chapter 7 Regression results: Hospital admissions

Figure 7. 6 Risk estimates for single pollutant models for the effects of a lO-unit
increase of a pollutant (one-unit increase for CO) in different lags (0-4 days) on daily
other admissions among all people in Muang, Chiang Mai, from October 2002 to
September 2006.
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Chapter 7 Regression results: Hospital admissions

Figure 7. 7 Risk estimates of for single pollutant, distributed lag models (0-4days) for
a lO-unit increase of a pollutant (one unit increase for CO) on daily hospital
admissions in different age groups in Muang, Chiang Mai, from October 2002 to
September 2006.
Note: 1. C = Children (0-14 year), A = Adult (15-64 year), E = Elderly (~65 year)

2. There were limited counts to analyze in children for circulatory admissions, and in the elderly for
intestinal infectious admissions.
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Chapter 7 Regression results: Hospital admissions

Figure 7. 8 Risk estimates of for single pollutant, distributed lag models (0-4days) for
a Ifl-unit increase of a pollutant (one unit increase for CO) on daily hospital
admissions in males and females in Muang, Chiang Mai, from October 2002 to
September 2006.
Note: M = Male, F =Female
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Chapter 7 Regression results: Hospital admissions

Figure 7. 9 Risk estimates of for single pollutant, distributed lag models (0-4days) for
a lO-unit increase of a pollutant (one unit increase for CO) on daily hospital
admissions in different seasons in Muang, Chiang Mai, from October 2002 to
September 2006.
Note: W = Winter, S = Summer, R = Rainy season
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Chapter 7 Regression results: Hospital admissions

Figure 7. 10 General relationship between daily hospital admissions and temperature at both
short lag (0-1 day) and long lag (0-13 days) in Muang, Chiang Mai, from October 2002 to
September 2006.

Note:
-Relationship between temperature and daily hospital admissions, adjusting for day of the week, holidays,
month of the study (1-48), Thai new year, International new year, influenza, AR term at lag 1, humidity, rain,
S02, and 03.
-The x-axis represents temperature range COC), and the y-axis represents the estimated relative risk (RR) of
daily out-patient visits. The centre line in each graph is the estimated spline curve, and the upper and lower
lines are the 95 percent confidence limits.
-The left graphs of each disease group show the relationship for temperature at a short lag (0-1 day), whereas
the right graphs of each disease group show the relationship for temperature at a long lag (0-13 days).
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Chapter 7 Regression results: Hospital admissions

Figure 7. 11 Temperature effects on daily hospital admissions in different specified
lags (0, 1, 2, 3-4, 5-8, and 9-13 days) in Muang, Chiang Mai, from October 2002 to
September 2006.
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Chapter 7 Regression results: Hospital admissions

Figure 7. 12 Plots of the general relationships between daily hospital admissions and
temperature in different seasons in Muang, Chiang Mai, from October 2002 to
September 2006.
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Chapter 8 Regression results' Linkage data

Chapter 8 Regression results: Linkage data

The regression analysis results from the linkage data series are presented in this chapter.

The linkage data was created by matching an individual record in the hospital admission

data with his/her individual record in the out-patient visit data (the method of linking can be

seen in chapter 3, section 3.5.8, p. 58). This was carried out to examine whether the risk of

hospital admissions due to short-term effects of air pollution and temperature increased by

history of previous out-patient visits before admissions. The estimated effects of air

pollution among people with and without history of previous visits before admissions are

described first. Then air pollution effects across different numbers of the visits prior to

admissions are illustrated. Due to small count numbers when stratified by age, sex, and

season, a modification of air pollution effects was examined for all causes only. Similarly,

temperature effects in the linkage series with regard to the frequency of previous visits

before admissions are also presented.

8.1 Air pollution effects

The main focus of this section is whether air pollution effects on hospital admissions were

modified by the history of out-patient visits prior to admissions. The effects of air pollution

on hospital admissions in the linkage data were estimated for a 10-unit increase of a

pollutant (one-unit increase for CO), which were the same as those done previously for the

out-patient visits and hospital admissions series. The method of analyses was also the same.

However, unlike previous result chapters, this chapter presents the estimated effects of air

pollution for single pollutant, distributed lag model for lag 0-4 days only (no estimate for

lag 0-1 day). The longer lag was chosen because the larger estimates of most pollutants in

this study were predominantly found beyond lag 0-1 day (mostly at lag 2-3 days).

Additionally, since the main interest was to see whether there was an increased risk with

respect to history of previous visits, not about lag effects, looking at one lag period should

be sufficient.
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Chapter 8 Regression results: Linkage data

8.1.1 Air pollution effects among people with and without history of out-patient visits

prior to hospital admissions

This section presents the comparison of the estimated effects of air pollution on hospital

admissions among people with and without history of out-patient visits prior to their

admissions. The risk of hospital admissions was estimated for all disease groups, except

only diabetic admissions, for which numbers were very small (mean of total daily counts =

0.2, SD = 0.5). The risk estimates of air pollution effects on hospital admissions among

people with and without history of the visits before admissions for specific disease groups

are shown in Table 8.1-8.5. By comparison, the stronger effects of air pollution in people

with history of the visits before admissions than those in people without history did not

show consistently across all diseases. In addition, there were only some pollutants that

exhibited significant differences between these two groups.

For all-cause admissions, the finding of more harmful or less protective effects in people

with history than people without history was found for most pollutants, except N02 and 03.

But there were only S02 and CO that exhibited significant differences between the two

groups. An increased risk of 25.5% (95% Cl, -2.6% to 60.3%) was found in people with

history of the visits prior to admissions, while a decreased risk of 49.8% (95% Cl, -78.1%

to 14.6%) was found in people without history in association with a 10-unit increase in S02

(Ppb). According to the test for interaction, this difference was significant (p-value =

0.039). Although the negative effects of CO were found for both groups, people without

history of the visits had higher protective effects (35.1% decrease, 95% Cl, -52.5% to -

11.4%) than people with history (8.7% decrease, 95% Cl, -18.0% to 1.6%) per one-unit

increase of CO (ppm). This difference was also significant (p-value = 0.042).

For respiratory admissions, the finding of more harmful effects in people with history than

people without history was found for all pollutants, although the differences between the

two groups were not statistically significant at 5% level. Similar finding was seen for

circulatory admissions, with only one exception - 03 effects (which were positive in people

without history, but negative in people with history). There was a borderline significance

between the two groups found for PM2.5 effects on circulatory admissions (p-value ==

0.057).
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In contrast to other disease groups, for intestinal infectious admissions, there were harmful

effects in people without history, but protective effects in people with history found for S02

and CO, whereas there was an opposite direction of this pattern found for the rest of the

pollutants. However, none of the estimated effects were significant, and also no significant

differences in the estimated effects between the two groups were observed.

For 'other' admissions, the patterns of air pollution effects were found to be similar to all-

cause admissions, particularly for S02 and CO effects, which exhibited more harmful or

less protective effects in people with history than in people without history. The differences

in S02 and CO effects between the two groups were also significant. However, the opposite

direction of the effects (less harmful or more protective) was observed for some other

pollutants. However, there was only one borderline significance between the two groups,

which was found for N02 effects (p-value = 0.059).

To sum up, there was no evidence of an increased effect of air pollution in people with

history of out-patient visits prior to admissions compared to that in people without history

as this pattern was not consistent across the studied pollutants or diseases. Approximately,

there were about half of the estimates followed this pattern, while there were about half of

the estimates showed the opposite direction of this pattern.

8.1.2 Do air pollution effects differ in accordance with the numbers of out-patient

visits prior to hospital admissions?

Besides looking at the overall effects of air pollution on hospital admissions in people with

and without history of the visits prior to admissions, the visits were also broken down into

different group numbers (1, 2-5, and >5 visits) in order to see whether there were any

changes of air pollution effects across these subgroups. The '0 visit' group, representing the

admissions without history of the visits prior to admissions, was kept as a baseline for

comparison. The effects of air pollution in each subgroup were examined first. Then, test

for trends of air pollution effects across the numbers of previous visits before admissions

was undertaken (see analytical methods in chapter 3, p. 64). Like all previous analyses, the

quantification of air pollution effects in each subgroup as well as the test for trends of air

pollution effects were done for a 10-unit increase of all pollutants, but one-unit increase of

co.
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Figure 8.1 presents the plots of the estimated effects of each pollutant on hospital

admissions across different group numbers of previous visits before admissions. As can be

seen, S02 exhibited an increasing pattern of the effects with increasing number of the out-

patient visits prior to admissions for most diseases, except for respiratory and intestinal

infectious admissions. The relative risk of this increasing trend (though not significant) is

shown in Table 8.7. For example, there was an increase in all-cause admissions of 13.0%

(95% Cl, -9.0% to 42.0%) for a 10- unit increase in S02 (Ppb) per visit-category.

The somewhat increase in air pollution effects across the history of the visits was also

found for some other pollutants, such as the effects of CO and PM 10 on all-cause,

respiratory, and 'other' admissions, but the effects did not always increase steadily with

increasing number of previous visits. The results of tests for trends (Table 8.7) showed an

increased risk of 2.0% (all-cause), 7.0% (respiratory), and 4.0% (other) for one-unit

increase of CO (ppm) per visit-category, but no trend for PM 10. However, none of the tests

were statistically significant.

As shown in Figure 8.1, a decrease in 03 effects across the group numbers of previous

visits was shown for circulatory admissions, whereas a somewhat increase in 03 effects

across the visit groups was seen for respiratory admissions. This corresponds to the

estimated trends (Table 8.7). There was a reduction of 6.0% (95% Cl, -17.0% to 8.0%) for

circulatory admissions and a small increase of 2.0% (95% Cl, -11.0% to 17.0%) for

respiratory admissions in association with a 10-unit increase in 03 (ppb) per visit-category,

but not statistically significant.

In brief, when looking at air pollution effects across the numbers of out-patient visits before

admissions, an increase in the effects with increasing numbers of the visits was more

apparent for S02 than for other pollutants. On the contrary to S02, the apparent decreasing

effects with increasing number of the visits were found for 03, but for circulatory

admissions only.
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8.1.3 Are air pollution effects with respect to the history of out-patient visits before

admissions modified by the factors like age, sex or season?

The effect modification of air pollution across the numbers of out-patient visits prior to

admissions by age, sex, and season were also examined because it might be possible that

these factors had some influence on the frequency of the visits of a patient (e.g. the elderly

may visit a hospital more often than other age groups, the daily visits to a hospital may be

inhibited by rain or too hot/cold weather in different season). Since there were large

numbers of missing information of occupation (>30% missing), the modified effects by

occupation were not undertaken for the linkage series. Due to the problem of very limited

counts of most diseases across the group numbers of previous visits before admissions

when stratified by age, sex, and season, resulting in very imprecise estimates, it was

decided to present the analysis results for all-cause admissions only.

Effect modification by age

Overall, there was some evidence of effect modification by age, which can be seen in

Figure 8.2. Even though, there is no apparent increase or decrease in estimated effects of

most pollutants across the visit groups, the effects of some pollutants across the visits

between age groups were found to be different. For example, there was a J-shaped pattern

of N02 effects across the visit groups in children, with stronger, positive effects in '0 visit'

and '>5 visits' groups, and a small negative effect in '1 visit' group. However, all of N02

effects across the visits in adults and the elderly were negative with a somewhat small

decreasing trend with increasing numbers of previous visits.

According to tests for trends, some differences in air pollution effects across the visit

groups between age groups were also observed. For examples, there was a somewhat

increasing trend of S02 effects in all age groups, and the relative risk of this trend was also

found in all age groups (Table 8.7). The risk associated with a 10-unit increase in S02

(ppb) per visit-category was greater in the elderly (28.0% increase) than in children (19.0%

increase) and adults ( 11.0% increase). In contrast, the weakest increasing trend per one-unit

increase in CO (ppm) for each visit-category was seen in adults (1.0% increase), compared

to children (9.0% increase) and the elderly (6.0% increase). Notably, tests for heterogeneity
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of the estimated trends across the visits between age groups were also undertaken, but none

of the tests were significant at 5% levels (results not shown).

Effect modification by sex

The plots of estimated effects of air pollution across the numbers of the visits prior to

admissions when stratified by sex are illustrated in Figure 8.3. Overall, there was no

evidence of the effect modification by sex as the effects of most pollutants across the visit

groups in males and females were broadly the same. There were also no significant

differences in the estimated trends between males and females for all pollutants (Table

8.7).

Effect modification by season

Figure 8.4 presents the estimated effects of air pollution across the group numbers of the

visits prior to the admissions for all seasons (winter, summer, and rainy). In general, there

was some evidence of a modification of air pollution effects by season as the effects of each

pollutant across the visit groups varied across seasons. For instance, there was a somewhat

increase in the effects of S02 and CO across the visit groups in summer and rainy seasons,

while there was no obvious increase or decrease in the effects of the two pollutants across

the visit groups in winter. This corresponds to the estimated trends of these two pollutants

across the visit groups illustrated in Table 8.7. There were however no significant

differences in the estimated trends across the visit groups for all pollutants.
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8.2 Temperature effects

Regression results: Linkage data

This section describes temperature effects on hospital admissions in the linkage series.

Similar to air pollution effects, the estimated effects of temperature were explored for

hospital admissions in both people with and without history of out-patient visits prior to

their admissions. Then, temperature effects across the group numbers of previous visits

before admissions were investigated. To see whether temperature effects across the group

numbers of previous visits were modified by age, sex, and season, the data analyses when

stratified by these factors were also undertaken.

S.2.I Temperature effects among people with and without history of out-patient visits

prior to hospital admissions

According to graphical assessments (Appendix SA, Figure SA-I), the temperature

threshold of 29°C was used for quantifying temperature effects (lag 0-13 days) on all-cause,

circulatory and 'other' admissions, and a linear term of temperature was used for

quantifying temperature effects (lag 0-1 day) on respiratory and intestinal infectious

admissions. There was no investigation of temperature effects on diabetic admissions due

to the very limited counts of diabetic admissions in the linkage data.

The risk estimates of temperature effects on hospital admissions in people with and without

history of out-patient visits prior to admissions are shown in Table S.6. Opposite to air

pollution effects, the overall effects of temperature were found to be stronger in people

without history of previous visits before admissions compared to people with history. There

was only one exception, the estimated effects on circulatory admissions. However, none of

the estimates reached the statistical significance at 5% level, and also no significant

difference in the estimates between the two groups. For each 1°C increase in temperature,

there was an increase in hospital admissions in people without history of the visits, ranging

from 4.5% (respiratory) to 33.7% (other), while there was a smaller increase in people with

history, ranging from 3.8% (all-cause) to 9.7% (intestinal infectious). In contrast to other

disease groups, for circulatory admissions, the protective effect was found for people with

no history (13.6% decrease), whereas the harmful effect was found for people with history

(5.3% increase) per 1°C increase in temperature above 29°C.
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8.2.2 Do temperature effects differ in accordance with the numbers of out-patient

visits prior to hospital admissions?

Figure 8.5 presents the estimated effects of temperature across the numbers of previous

out-patient visits before admissions. There was generally no apparent increase or decrease

in temperature effects across the number of previous visits in association with each 1QC

increase in temperature (relative to the identified temperature threshold) for all diseases.

According to tests for trends shown in Table 8.8, there was no statistical significance in the

estimated trends of temperature effects across the visit groups for all diseases.

8.2.3 Are temperature effects with respect to the history of out-patient visits prior to

the admissions modified by factors like age sex, and season?

The effect modification of temperature effects by age, sex, and season with respect to the

group numbers of out-patient visits prior to admissions are illustrated in this section for all-

cause, respiratory, circulatory, and 'other' admissions. No stratified analysis for intestinal

infectious admissions across the groups was carried out because of very small counts of this

disease.

I. Effect modification by age

There was little evidence of effect modification by age across the numbers of previous

visits before admissions as shown in Figure 8.6. Since the estimates could not be done for

all visit categories in each age group, it is difficult to describe the effect modification by

age here. Nevertheless, the pattern of temperature effects across the visits in children was

seen to differ from those in adults and the elderly. For example, the temperature effects on

'other' admissions across the visits in children (0-14 years) were fluctuated and negative,

while the effects across the visits in adults and the elderly were fairly stable and positive.

There seemed to be an increasing pattern of temperature effects across the visits in children

for respiratory admissions, but no clear pattern was observed in adults and the elderly due

to inability to analyze for the estimated effects for these people in some visits groups.

When looking at the estimated trends of temperature effects across the visit groups (Table

8.8), there was only a small increase or decrease in the estimated trends across the visit
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groups and none of them were significant. There were also no significant differences in the

estimated trends between age groups.

II. Effect modification by sex

Figure 8.7 presents the estimated effects of temperature across the number of out-patient

visits prior to admissions between males and females. Overall, there was no evidence of

modification of temperature effects by sex as the effects across the visit groups in males

and females were broadly similar for most diseases. This was consistent with the results

from tests for trend (Table 8.8), which showed similar trends of the effects across the visit

groups in males and females, except for circulatory admissions. For each IQCincrease in

temperature per visit-category, there was a decrease in circulatory admissions of about

6.0% in males, whereas there was an increase in circulatory admissions of about 4.0% in

females. These estimates were however very imprecise with very wide confidence

intervals. There were also no significant differences in the estimated trends across the visit

groups between males and females for all diseases.

III. Effect modification by season

Based on graphical visualization of the general relationships between temperature and the

studied health outcomes (see Appendix 8A, Figure 8A-2), a linear association was

assumed for all seasons. Therefore, linear terms of temperature were used for quantifying

temperature effects across seasons for all diseases.

The estimated effects of temperature across the visit groups when stratified by season are

presented in Figure 8.8. There were only two diseases (all-cause and 'other' admissions)

that the effects across the visits group could be estimated for all seasons. Overall, there was

little evidence of modification of temperature effects by season as the patterns of

temperature effects across the visit groups in each season were slightly different. For

example, for all-cause admissions, the somewhat downward patterns of the effects across

the visit groups was visible in summer, but no clear patterns were shown in winter and

rainy season. However, according to the estimated trends of temperature effects across the

visit groups in different seasons shown in Table 8.9, there was a decreasing trend of the

effects for all-cause admissions in all seasons (although a relatively large reduction was
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shown in summer). In general, none of the estimated trends were statistically significant at

5% level, and no significant differences in the trends between seasons were found.

8.3 Sensitivity analyses for the linkage series

8.3.1 Linked period

In the present study, the 6-month period was chosen to assess whether the history of out-

patient visits of a patient within a 6-month period prior to the admissions would have

increased their vulnerability to air pollution and temperature exposure. Thus, the use of

different time periods to obtain the count numbers of out-patient visits prior to admissions

was explored to see whether it had different impacts on the findings. It was decided to

choose 3 months for a shorter period and 12 months for a longer period to compare with the

6-month period already used in this study.

The overall time period used for the sensitivity analyses was restricted to be between

October 2003 and January 2006. This was because the out-patient visit data began from

October 2002, and therefore the history of out-patient visits for a l2-month period prior to

admissions could be obtained for all patients (if they had the history) admitted from

October 2003. Additionally, due to a dramatic drop of the linkage data from February to

September 2006 (month 41th-48th, see descriptive result, section 5.3, p. 85), the linkage

data created for the sensitivity tests for all time scales were also excluded month 41th-48th.

The sensitivity analyses were undertaken for all-cause admissions only. The sensitivity tests

showed that, when using different time period to obtain the linkage data, there were

generally little changes in the patterns of air pollution and temperature effects across the

number of the history of visits prior to the admissions, which can be seen in Appendix 8B.

For air pollution, according to the plots of estimated effects (Figure 8B-l), the differences

in the patterns of air pollution effects across the visit groups when using different time

period were visible for 03 only. It was found that 03 effects exhibited a decreasing pattern

across the visit groups for the use of a shorter period (3 months), but no increasing or

decreasing pattern for the use of longer periods (6 and 12 months). However, overall, there

were no significant differences in the estimated trends of 03 effects across the visit groups

(Table 8B-l). The positive trend found for S02 effects was slightly larger when using a
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shorter period to obtain the linkage data, while the trends found for other pollutants were

the same for all time periods used to obtain the linkage data.

For temperature, no apparent upward or downward pattern was visible from the plots of the

effects across the visit groups (Figure 8B-2). However, a positive trend of temperature

effects was found when using a shorter period (3 months), whereas negative trends were

found when using longer periods (6 and 12 months), which can be seen in Table 8B-2.

Based on this result, the use of a shorter period, which comprised more recent visits,

seemed to provide stronger effects of both air pollution and temperature. These differences

were however not statistically significant.

8.3.2 Inclusion of unmatched hospital admission cases in the linkage data

As mentioned previously, for Thai hospital system, all patients need to visit an out-patient

department for preliminary investigations before admission to hospital. Therefore, health

records of out-patient visits and hospital admissions on the same day generally presents in

the two data sets. In other words, each hospital admission case should have at least one out-

patient visit recorded on the same date of the admission (if there is no missing record).

In this study, it was decided that all out-patient visits recorded on the same day of the

admission were not counted as a history of the visits prior to that admission. But the

hospital admission that had only one record of out-patient visit, which occurred on the same

day of the admission, was kept for the analysis in the linkage series as a hospitalized patient

with no history of the visits prior to his/her admission (because this person had no previous

visits before his/her admission date). Meanwhile, all hospital admissions that could not be

matched with out-patient data or did not have any records in the out-patient visit data were

excluded from the analysis.

Due to the problems with missing data and/or errors in inputting information in routine

health records in both hospital admission and out-patient visit data sets, it was a concern

whether all hospitalized people in this study truly had one out-patient visit when there was

one record (occurring on the same date of admissions) presented the out-patient data set, or

whether they actually had several out-patient visits before admissions (but those records
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were missing and/or errors inputting information). This could result in unmatched cases

when linking the two data sets for the linkage series. There was however nothing could be

done to address this common problem of the data.

Nevertheless, for the '0 visit' group, it might be possible to assume that all hospital

admissions, which could not be matched with the out-patient visit data, had their own "one

previous out-patient visit" on the same date of their admissions in the out-patient visit data

(but those records were just missing and/or errors). In this case, the unmatched hospital

admission cases (which were excluded in this study) could also be counted as people with

'0 visit' or no history of the visits prior to admissions and retained for the analyses.

To see whether an inclusion of the hospital admissions, which could not be matched with

out-patient visit data, as people with '0' visits would have an impact on the linkage results,

sensitivity tests were carried out to compare the patterns of air pollution and temperature

effects across the group numbers of out-patient visits between two data sets:

1. the data used in this study - excluded all unmatched hospital admission cases and

counted the matched cases that had only one record on the same date of admissions in out-

patient data as people with no history of previous visits, and

2. the data that kept all unmatched hospital admissions cases by counting these admissions

with no records presented in out-patient data, as people with no history of the visits -

presumably, their out-patient records on the same date of admissions were missing.

Similar to the previous analyses, sensitivity tests for both air pollution and temperature

effects in this section were undertaken for all-cause admissions only. The sensitivity

analyses showed that the patterns of air pollution and temperature effects between the two

data sets were broadly the same, which can be seen in Appendix SB.

For air pollution, the plots of the patterns of air pollution effects across the visit groups

were broadly similar for all pollutants (Figure SB-3), but small differences were found

from tests for trends (Table 88-3). For example, there was a slightly larger positive trend

for S02 effects for the 'matched cases only' data (13.0% increase for each lO-ppb increase
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in S02 per visit-category, 95% Cl, -10.0% to 42.0%) compared to 'both unmatched and

matched cases' data (10.0% increase for each lO-ppb increase in S02 per visit-category,

95% Cl, -5.0% to 27.0%).

For temperature, the plots of its patterns across the visit groups were similar for both data

sets (Figure 88-4). There was a contrasting pattern of the estimated trends across the visit

groups between these two data sets (Table 88-4). The small, decreasing trend of all-cause

admissions ofO.7% (95% Cl, -8.9% to 8.2%) for each 1QCincrease in temperature (>29QC)

per visit-category was found for the 'matched cases only' data, whereas the small,

increasing trend of all-cause admissions ofO.8% (95% Cl, -5.3% t07.3%) was found for the

'both unmatched and matched cases' data. This difference was however not significant.

Summary of the linkage series:

Air pollution effects

• There was no consistent evidence of an increased effect of air pollution in people

with a history of out-patient visits before admissions in comparison to people

without history.

• When looking at air pollution effects across the group numbers of out-patient visits

prior to admissions, an increased effect of air pollution with increasing number of

the visits was mostly found for S02, whereas no apparent increasing or decreasing

effects across the visit groups was found for other pollutants. The tests for trends of

air pollution effects across the visit groups were generally consistent with the

estimated effects. However, none of the tests reached statistical significance at 5%

level.

• There was little evidence of the effect modification of air pollution across the

history of the visits by age, sex, and season. The different patterns of air pollution

effects across the visit groups with respect to age, sex, and season were present for

all pollutants, but the shape of the patterns varied from pollutant to pollutant. There

were however no statistically significant differences in estimated trends across the

visits between subgroups.
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Temperature effects

• Unlike air pollution effects, a higher risk of hospital admissions in association with

Regression results: Linkage data

each 1°C increase in temperature was found in people with no history of the visits

prior to their admissions compared to people with history. This was found for all

diseases, except only circulatory admissions. However, none of the differences were

significant.

• Overall, there was no apparent increase or decrease in temperature effects across the

group numbers of the visits prior to admissions for all diseases. There was also no

significant trend of temperature effects across the visit groups for all diseases.

• There was little evidence of effect modification of temperature effects across the

visit groups by age, sex, and season. Generally, the estimated effects of temperature

across the group numbers of the visits prior to admissions were slightly different in

each subgroup. However, there was no obvious increase or decrease in the effects

across the visit groups. There was also no statistically significant difference in the

estimated trends across the visits between subgroups.

Sensitivity analyses

• There were no considerable changes in the estimated effects and trends of air

pollution and temperature effects across the group numbers of previous visits before

admissions when using different time periods for obtaining the linkage data.

However, the estimated effects of air pollution (e.g. S02) and temperature effects

were slightly larger when using a shorter time period in obtaining the previous visits

before admissions than those when using longer periods.

• The different assumption in obtaining the '0 visit' groups or no history of the

previous visits did not affect the estimated effects and trends of air pollution and

temperature effects in the linkage series.
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Table 8. t Risk estimates for single pollutant, distributed lag models (0-4 days) for the effects
of a to-unit increase of a pollutant (one-unit increase for CO) on daily all-cause admissions in
relation to the history of out-patient visits prior to their admissions in Muang, Chiang Mai,
from April 2003 to January 2006.

Pollutant History of 95%CI Test for
~unitl visits RR Lower Ueeer e-va1ue Interaction •
SOz (ppb) No history 0.502 0.219 1.146 0.102

With history 1.250 0.974 1.603 0.079 0.039

N02(ppb) No history 1.010 0.836 1.220 0.919
With history 0.937 0.879 1.000 0.050 0.462

CO-8hr(ppm) No history 0.649 0.475 0.886 0.007
With history 0.913 0.820 1.016 0.095 0.042

03(ppb) No history 1.023 0.880 1.189 0.766
With history 1.003 0.953 1.055 0.922 0.808

PMlO(l!g/m3
) No history 0.972 0.943 1.001 0.061

With history 0.995 0.984 1.005 0.306 0.148

PMdllg/m3
) No history 0.959 0.851 1.081 0.493

With history 0.977 0.937 1.018 0.272 0.773
• p-value for test for heterogeneity between groups.

Table 8. 2 Risk estimates for single pollutant, distributed lag models (0-4 days) for the effects
of a to-unit increase of a pollutant (one-unit increase for CO) on daily respiratory admissions
in relation to the history of out-patient visits prior to their admissions in Muang, Chiang Mai,
from April2003 to January 2006.

Pollutant History of 95%CI Test for

~unitl visits RR Lower Ueeer e-value Interaction •
SOz(ppb) No history 0.747 0.034 16.299 0.853

With history 1.356 0.574 3.202 0.487 0.715

NOz(ppb) No history 0.751 0.398 1.417 0.377
With history 1.214 0.972 1.517 0.087 0.162

CO-8hr(ppm) No history 0.779 0.277 2.189 0.635
With history 1.120 0.770 1.629 0.552 0.517

03(ppb) No history 0.755 0.436 1.309 0.317
With history 0.874 0.728 1.048 0.147 0.313

PM 1O(I!g/m3
) No history 0.956 0.864 1.057 0.379

With history 1.006 0.970 1.043 0.756 0.439

PMzs(l!g/m3
) No history 0.962 0.630 1.470 0.859

With history 1.036 0.904 1.188 0.608 0.744
• p-value for test for heterogeneity between groups.
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Table 8. 3 Risk estimates for single pollutant, distributed lag models (0-4 days) for the effects
of a to-unit increase of a pollutant (one-unit increase for CO) on daily circulatory admissions
in relation to the history of out-patient visits prior to their admissions in Muang, Chiang Mai,
from April 2003 to January 2006.

Pollutant History of 95%CI Test for
~unitl visits RR Lower Ueeer e-value Interaction •
S02 (ppb) No history 0.454 0.045 4.609 0.504

With history 1.710 0.764 3.826 0.192 0.289

N02(ppb) No history 0.660 0.359 1.214 0.181
With history 0.976 0.802 1.188 0.808 0.231

CO-8hr(ppm) No history 0.668 0.248 1.801 0.425
With history 0.919 0.660 1.281 0.618 0.550

03(ppb) No history 1.475 0.934 2.329 0.095
With history 0.983 0.838 1.152 0.830 0.100

PMIO(llglm3) No history 0.975 0.887 1.071 0.598
With history 1.010 0.979 1.042 0.545 0.486

PM2s(llglm3) No history 0.699 0.480 1.017 0.061
With history 1.023 0.914 1.144 0.693 0.057

• p-value for test for heterogeneity between groups.

Table 8. 4 Risk estimates for single pollutant, distributed lag models (0-4 days) for the effects
of a to-unit increase of a pollutant (one-unit increase for CO) on daily intestinal infectious
admissions in relation to the history of out-patient visits prior to their admissions in Muang,
Chiang Mai, from April2003 to January 2006.

Pollutant History of 95%CI Test for

!unitl visits RR Lower Ueeer e-va1ue Interaction •
S02 (ppb) No history 2.459 0.099 60.946 0.583

With history 0.474 0.103 2.190 0.339 0.364

N02(ppb) No history 1.025 0.516 2.035 0.944
With history 1.116 0.789 1.579 0.536 0.828

CO-8hr(ppm) No history 1.306 0.433 3.944 0.636
With history 1.079 0.605 1.925 0.797 0.764

03(ppb) No history 0.843 0.477 1.490 0.557
With history 0.860 0.645 1.147 0.304 0.951

PM 1O(llglm3) No history 0.950 0.855 1.057 0.346
With history 1.002 0.948 1.059 0.942 0.383

PM2s(llglm3) No history 0.806 0.496 1.311 0.385
With history 0.937 0.744 1.180 0.581 0.439

• p-value for test for heterogeneity between groups.
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Table 8. 5 Risk estimates for single pollutant, distributed lag models (0-4 days) for the effects
of a to-unit increase of a pollutant (one-unit increase for CO) on daily other admissions in
relation to the history of out-patient visits prior to their admissions in Muang, Chiang Mai,
from April2003 to January 2006.

Pollutant History of 95%CI Test for
!unitl visits RR Lower Ueeer e-value Interaction •
S02 (ppb) No history 0.333 0.125 0.887 0.028

With history 1.234 0.929 1.639 0.147 0.012

N02(ppb) No history 1.131 0.905 1.413 0.279
With history 0.902 0.838 0.972 0.006 0.059

CO-8hr(ppm) No history 0.595 0.410 0.864 0.006
With history 0.891 0.787 1.008 0.066 0.044

03(ppb) No history 1.027 0.861 1.226 0.766
With history 1.026 0.968 1.087 0.393 0.992

PM 1O(llglm3
) No history 0.976 0.941 1.011 0.177

With history 0.992 0.980 1.004 0.197 0.400

PM2s(llglm3) No history 1.007 0.876 l.I58 0.924
With history 0.968 0.923 1.016 0.190 0.600

• p-value for test for heterogeneity between groups.
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Table 8. 6 Relative risk estimates for temperature effects (for each 1°C increase in
temperature) on daily hospital admissions in relation to history of previous visits in Muang,
Chiang Mal, from April 2003 to January 2006.

Outcome n (day) Mean • SD RRb
95%CI Test for
Lower Upper p-value interaction C

All-cause (29°C)
No history
With history

173
3.08
26.34

2.09
13.83

1.217
1.038

0.883
0.922

1.678
1.168

0.230
0.541 0.362

Respiratory (linear) 974
No history
With history

0.22
1.92

0.49
1.51

1.045
1.040

0.868 1.260 0.641
0.206 0.9620.979 1.104

Circulatory (29°C)
No history
With history

173
0.31 0.57

1.91
0.864
1.053

0.267
0.734

2.799
1.510

0.808
0.778 0.7522.28

Intestinal infectious 974
(linear)

No history
With history

0.17 0.43
0.90

1.171 0.945
0.992

1.450
1.212

0.150
0.74 1.097 0.071 0.588

Other (29°C) 173
No history 2.24 1.72 1.337 0.922 1.938 0.126
With history 21.26 12.17 1.059 0.924 1.213 0.410 0.248

• Mean daily count of hospital admissions relative to the identified temperature threshold.
b Temperature effects at short lag (O-lday) for respiratory and intestinal infectious admissions, and at a long
lag (0-13 days) for all-cause, circulatory, and other admissions.
C p-value for test for heterogeneity between groups.
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Chapter 8

Table 8. 9 Estimated trends of temperature effects (lag 0-13 days) across the group numbers
of out-patient visits (0, 1, 2-5, and >5 visits) prior to hospital admissions in different seasons in
Muang, Chiang Mal, from January 2003 to April 2006.

Note: The estimated trends = a relative risk ratio for 1QC increase in temperature per visit-category.

95% Cl

Outcome" n~dal:l Mean" SD RR Lower Ul!l!er I!-value I!-value C

All-cause (>29QC)
Winter 324 27.19 17.16 0.991 0.918 1.071 0.679
Summer 232 29.93 18.33 0.965 0.861 1.081 0.307
Rain~ 418 29.37 17.39 0.985 0.840 1.156 0.730 0.930

Other (>29QC)
Winter 324 21.18 14.96 0.990 0.902 1.088 0.698
Summer 232 24.02 16.02 0.965 0.831 1.121 0.411
Rain~ 418 23.51 15.28 1.013 0.824 1.245 0.812 0.927

a Only these two diseases that the estimates could be done for all three seasons.
"Mean daily counts of hospital admissions in each season.
c p-value for test for heterogeneity oftbe estimated trends between seasons.
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Chapter 8

Figure 8. 1 Risk estimates for single pollutant, distributed lag models (O-4days) for a
to-unit increase of a pollutant (one unit increase for CO) on daily hospital admissions
by history of the visits prior to admissions in Muang, Chiang Mai, from April 2003 to
January 2006.
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Chapter 8

S.ld) Intestinal infectious admissions
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Chapter 8

Figure 8. 2 Risk estimates for single, distributed lag models (0·4 days) for a 10·unit
increase of a pollutant (one-unit increase for CO) on daily all-cause admissions by
history of the visits prior to admissions in different age groups in Muang, Chiang Mai,
from April2003 to January 2006.
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Chapter 8

Figure 8. 3 Risk estimates for single, distributed lag models (0-4 days) for a to-unit
increase of a pollutant (one-unit increase of CO) on daily all-cause admissions by
history of the visits prior to admissions in males and females in Muang, Chiang Mai,
from April 2003 to January 2006.
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Chapter 8

Figure 8. 4 Risk estimates for single, distributed lag models (0-4 days) for a 10-unit
increase of a pollutant (one-unit increase of CO) on daily all-cause admissions by
history of the visits prior to admissions in different seasons in Muang, Chiang Mai,
from April 2003 to January 2006.
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Chapter :5

Figure 8. 5 Risk estimates of temperature effects for each 1°C increase in temperature
on daily hospital admissions in all people by history of the visits prior to admissions in
Muang, Chiang Mai, from April 2003 to January 2006.
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Chapter 8

Figure 8. 6 Risk estimates of temperature effects for each 1QCincrease in temperature
on daily hospital admissions in different age groups by history of the visits prior to
admissions in Muang, Chiang Mal, from April2003 to January 2006.

Note: The estimates relative to the number of the visits could not be done for some age groups, but for
circulatory and intestinal infectious admissions, the estimates could not be done for all age groups.
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Figure 8. 7 Risk estimates of temperature effects for l°C increase in temperature on
daily hospital admissions in males and females by history of the visits prior to
admissions in Muang, Chiang Mai, from April2003 to January 2006.
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Chapter 8

Figure 8. 8 Risk estimates of temperature effects for 1°C increase in temperature on
daily hospital admissions in different seasons by history of the visits prior to
admissions in Muang, Chiang Mal, from April2003 to January 2006.

Note: A linear association was assumed, using linear terms of temperature for all seasons.
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Chapter 9: Discussion and Conclusion

This chapter provides an overview of the main findings, followed by a discussion of the

findings in the context of existing literature. Some important issues of concern related to

the findings are described. The strengths and limitations of the study are also discussed.

Conclusions drawn from the study, policy implications and recommendations are also

included in this chapter.

9.1 An overview of main findings

9.1.1 Air pollution effects

Main effects

There was little evidence of air pollution effects on daily hospital visits and admissions in

Chiang Mai. Positive effects were found for some pollutants only, namely S02 and 03.

Most of them did not reach statistical significance at the 5% level. The stronger estimated

effects of air pollution were generally found at a short lag, from lag 1 to lag 3 days.

Effect modification

There was no evidence of effect modification by age, sex, occupation (out-patient visits

only) and season. For out-patient visits, the effects were slightly stronger in the elderly and

manual workers, while for hospital admissions, the effects were slightly stronger in

females. There were however no significant differences between subgroups. Similarly,

there was no consistent evidence of an increased risk of admissions in people with a history

of out-patient visits prior to admissions, compared to those with no history. There were also

no apparent trends (increasing or decreasing) of the effects across numbers of previous

visits before admissions.

9.1.2 Temperature effects

Main effects

There was evidence of hot temperature effects on hospital visits and admissions, which was

found for temperature above 29°C at a longer lag (0-13 day) for most diseases. The effects

of hot temperature (with no threshold) at a short lag (0-1 day) were also found for

respiratory and intestinal infectious diseases only.
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Effect modification

There was no consistent evidence of a modification of temperature effects. The temperature

effects on most disease outcomes were stronger in the elderly, male, and unemployed and

economically inactive people. However, there were no differences between subgroups for

all diseases, except for intestinal infectious admissions. The effects on this disease were

significantly stronger in children and in males. Temperature effects seemed to be stronger

in people without a history of previous visits than those with a history, though the

differences were not statistically significant. There was no apparent pattern (either increase

or decrease) of temperature effects across the numbers of previous visits before admissions.

9.1.3 Sensitivity analyses

•

No difference in the estimated effects of air pollution and temperature between

overdispersed Poisson (OP) models and negative binomial (NB) models.

No significant impacts of the changes in degrees of freedom of time on air pollution

effects. However, the changes in degrees of freedom (dt) of time from 5df upward

had caused an increase in temperature effects (but stable after that), suggesting that

the core model was uncontrollable when using df of time below 5 df.

• For the hospital admissions series, the re-admissions did not greatly affect the

•

estimates of temperature effects, but caused some changes in the estimates of S02

and CO effects.

• For the linkage series, there were no substantial changes in the patterns of air

pollution and temperature effects across the number of visits before admissions

when using different time period to obtain the linkage data or when using different

inclusion and exclusion criteria of hospital admission cases. However, the positive

trends (though non-significant) of air pollution (S02 in particular), and temperature

effects were slightly larger when using a shorter time period to obtain history of the

visits than those when using a longer time period (See Appendix 88, Table 88-1

and 88-2).
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9.2 The research findings and the existing knowledge

9.2.1 Air pollution and daily morbidity in Chiang Mai.

Are there any associations between air pollution and daily morbidity in Chiang Mai?

Overall, there was no significant association between air pollution and daily morbidity in

Chiang Mai in the present study as most estimated effects did not reach statistical

significance at the 5 % level. The lone exception was the significant association between 03

and neoplasm admissions. However, the lack of a statistically significant association is not

conclusive evidence that an association does not exist. The inability to achieve statistical

significance may be hampered by factors, such as the limitations of the data used for the

analyses as previously discussed in Chapter 4 and/or the nature of morbidity data itself. In

general, as suggested by the literature, one would expect to see air pollution effects on

emergency visits/ admissions. However, the data in the present study consisted of both

elective and emergency visits/ admissions, which might contribute to the reduction of any

true association (if there was). In addition, time series studies of short-term effects of air

pollution and morbidity (hospital visits/ admissions) have shown less consistent findings in

comparison to mortality studies. Unlike deaths, the visits and admissions to a hospital are

usually affected by several circumstances, such as the perceived needs of individuals and

the differences in ability to access health services of individuals (209). These circumstances

may affect the visits. and admissions of each individual differently, which might result in

the distortion and/or attenuation of the association between the exposure (air pollution) and

health outcomes (hospital visits/ admissions).

Among all studied pollutants, S02 exhibited the largest positive estimated effects on the

visits and admissions, though not statistically significant. S02 is a chemical compound

produced by fuel combustion and is usually found more prevalent in industrial areas.

Although there is no major industry in Chiang Mai, S02 may be emitted as a by product of

the production processes of small factories around the city (e.g. agricultural, transportation,

and food factories). The study found that there were relatively large estimated effects of

S02, with an increase in respiratory admissions of 41.0% (95% Cl, 1.0% to 97.0%),

circulatory visits of 22.2% (95% Cl, -2.8% to 53.6%), and diabetic visits of 25.5% (95%

Cl, -12.1% to 79.2%) in association with a 10-ppb increase in S02.
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The finding of large estimated effects of S02 is in agreement with several time series

studies of air pollution in Asia (S4).For example, in Beijing, it was found that an increase in

non-surgery out-patient visits of 20.2% was significantly associated with an increase in S02

levels (6 ug/nr' - 106 ug/m') (75).In Seoul, a rise of hospital admissions for ischemic heart

disease in the elderly of 32.0% (95% Cl, 8.0% to 62.0%) associated with an interquartile

increase in S02 (4.4 ppb) was observed (S3).The effect sizes ofS02 found in this study were

relatively larger than those found in Europe and America (16,24,so, 199,210).For example, the

APHEA study in West European cities found a 6.0% (95% Cl, 1.0% toll.0%) increase in

respiratory admissions in the elderly (~ 65year) for each 50 ug/m' increase in S02 levels

(SO).A study in Denver, USA, observed a 9% increase in a risk of hospital admissions for

dysrhythmias associated with a 25-75th percentile change in S02 levels (3.8 - 7.2 ppb) (24).

Besides S02 effects, the study also found positive effects of 03, N02 and CO. The only

positive significant effect of 03 in the study was found for neoplasm admissions (which

will be discussed later in the next section about health outcomes). The finding of positive

effects (though not significant) of 03 on the visits and admissions corresponds to previous

findings in many regions (19,79.SI,III, 211.215),which were predominantly found for

respiratory disease. It has been postulated that 03 may act as an irritant that induces

defensive responses in the airways, such as increased mucus secretion and increased

bronchial hyperactivity, and may also produce free radicals and oxidative stress on lung

cells (III). Besides respiratory disease, a recent study in Bangkok also showed a positive

effect of 03 on hospital visits for CVD among the elderly (~ 65 years) (95).However, there

were some studies that did not find positive, significant associations between 03 and
hospitalizations (199,216,217).

The effects of N02 and CO on hospital visits/ admissions have also been observed in

several settings (5,33,76,77, SI, S2,86).These two pollutants are mainly generated by the

combustion of fossil fuels, and therefore their concentrations are highly related with traffic

and domestic combustions (e.g. heating, cooking and smoking) (54).Chiang Mai is a

growing city with rapid developments to serves an increasing population and large number

of tourists. Problems with traffic congestion and domestic combustion in the city are likely
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to be increasing. This might contribute to the small, positive effects of N02 and CO in the

study.

The failure to detect the effects of PMIO and PM2.5 in this study was not expected since

particulate matter is the pollutant that shows consistent evidence of adverse health effects

worldwide, even at low levels. Time series studies conducted in America (NMMPS),

Europe (APHEA), and Canada have shown consistent evidence of acute effects of

particulate matter on daily mortality and morbidity (26,27,106,203).The review of time series

studies in Asia and the recent publication of the Public Health and Air Pollution in Asia

(PAPA) project have also confirmed adverse effects of PMIO on both mortality and

morbidity in several Asian countries (84, 94). Moreover, another recent study in Bangkok

demonstrated a positive effect of PMIO on hospital visits for CVDs among the elderly (~ 65

years) (95).However, the failure to establish positive associations between particulate matter

and health outcomes has occasionally occurred in some places. For example, a study in

Denver, U.S.A., did not find any association between particulate matter and hospitalization

for any CVDs (24). Another study in the UK also found inconsistent associations between

particulate matters (PM2.5-10) and hospital admissions, and even found several large

negative associations (107).

In this study, the inability to capture the positive effects of PMIO and PM2.5 is difficult to

explain. There was no reason to think that the unusual results were due to the statistical

techniques since most techniques used in the study were adopted from those previously

employed by several studies, such as the APHEA project, which were acknowledged to be

reasonably robust (62). The behavioural adaptation of the local population might be a

possible explanation. A smoke haze usually occurs in the northern part of Thailand in

recent years, particularly during the dry season (February-March). It mainly originates from

traditional agricultural burning, forest fires and wood-fired cooking in the local area of the

northern provinces of Thailand (including Chiang Mai), and neighbouring countries (e.g.

Loas and Mianmar). As a consequence, the warning system to prevent adverse health

effects of the haze, which has been implemented (including health education e.g. wearing

mask, staying in the home when there is dense smog). may have increased awareness

among the Chiang Mai population. This may have reduced the impacts of particulate matter
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in the city due to the fact that particle is the fine product of the dust in the air (that people

learn to avoid being exposed to).

What health outcomes were greatly affected by air pollution in the study?

There were greater estimated effects of air pollution on respiratory and circulatory visits/

admissions than those on other disease groups in this study. This finding corresponds with

the literature, although the effect sizes vary considerably among the published literature.

The effects of S02 have been described for respiratory diseases (5,77,79,107,210,212,213,218),

and for CVDs (83,212,219).The plausible mechanisms of S02 effects on these diseases has

also been suggested by experimental studies as exposure to air pollutants could lead to an

increase in broncho-constriction (146)and acute episodes of CVDs (e.g. myocardial

infarction and cardiac arrhythmia), which may be due to the impairments of lung functions,

inflammation of alveolar, increased coagulability of the blood, alterations of the nervous

system control of the heart, and decrease of heart rate variability (151.153).

The study also found relatively large, positive effects of S02 on diabetic visits/ admissions

(though not significant). This finding is supported by a study in Sao Paulo, Brazil, which

showed a higher risk of CVDs emergency visits among diabetic patients than non-diabetic

patients in association with S02 levels (157). It has been pointed out that diabetic patients are

at higher risks of deaths and illnesses associated with air pollution (particles, in particular).

This may be related to cardiac functions, such as an increased plasma fibrinogen levels and

other makers of systemic inflammation, increased C reactive protein levels, reduced heart

rate variability and impairment in vascular reactivity and endothelial function (28,29,32).

Since there are still limited investigations of air pollution effects on diabetic morbidity

compared to other diseases, more research determining the effects of air pollution on

diabetic visits/ admissions is needed to confirm this finding.

As expected, there were generally no significant effects of air pollution on intestinal

infectious visits and admissions. Most of these effects were negative. Since there is no

plausible biological reason to expect that there is an association between air pollution and

intestinal infectious disease, the finding of non-significant effects of air pollution on this

disease group was intuitive.
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Chapter 9 Discussion and conclusion

For all-cause and 'other' visits/ admissions, the estimated effects found were broadly

similar, with small positive effects for S02 and 03, but negative effects for the rest of the

studied pollutants. However, none of the estimates were significant. The 'other' visits/

admissions refer to visits/ admissions by other diseases apart from those previously

discussed. To give a clearer idea about 'other' diseases, the percentage of the disease

subgroups among this group were explored (for hospital admissions only) and shown in

Figure 9.1.

Figure 9. 1 Percentage of subgroups of diseases among the 'other' diseases of hospital
admissions in Muang, Chiang Mal, from September 2002 to October 2006.
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As shown in the figure, the four largest subgroups of diseases represented in this category

were admissions by neoplasms or cancers (28.4%), external causes and their consequences

(11.3%), musculoskeletal system and connective tissue (6.2%), and factors affecting health

and contact to health services (5.3%), respectively. Approximately half (48.8%) of the total

admissions were accounted for by several diseases. Thus, the fmding of positive effects of

S02 and 03 on 'other' admissions may partially be explained by the admissions due to

cancers, which held almost 30% of the total. The association between ambient air pollution,

particularly in industrialized countries, and cancer mortality (e.g. lung cancer) has been

observed (163, 164,166). Although cancers were not the health outcome of interest in this study

initially, the analysis for neoplasm admissions (ICD-lO code: COO-D48) was carried out

according to evidence from the literature and the high percentage of neoplasms in the

'other' disease group. Itwas found that there were, indeed, positive effects of both S02 and

03 on neoplasm admissions. The S02 effects were however not significant, but relatively
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large, with a 19.0% (95% Cl, -8.7% to 55.1%) increase in neoplasm admissions among all

people per 10-ppb increase of S02 (0-4 days).

For 03, a significant association between 03 and neoplasm admissions was found, with a

6.8% (95% Cl, 2.2% to 11.6%) increase in the admissions among all people per 10-ppb

increase of O, (0-1 day). When the data were stratified by age and sex, the effects of O, (0-1

day) on neoplasm admissions remained significant, with stronger estimates in children and

males. However, the differences between subgroups were not statistically significant. The

finding of 03 effects on neoplasm admissions in this study corresponds to a study in

Quebec, Canada, which found that the mean concentration of 03 (21.3 ug/m') was

associated with an increase in daily deaths by neoplasms in the warm season among people

2: 65 years of 3.93% (95% Cl, 1.01% to 6.93%) (70). It also showed a higher mean

percentage of change in deaths for lung cancers (though borderline significant) and

postulated that 03 might be responsible for an alteration of the surfactant or the

extracellular lining of the lungs, and that also have interactions with the functioning of

macrophages (70).Since the association between acute air pollution exposures and cancers is

clearly not plausible due to the fact that cancers generally take time to develop and this

study was able to capture a short-term association only, this finding could only be viewed

as reflective of greater vulnerability among cancer patients due to their improper

physiological functions compared to the general population (220).This, therefore, could

make them prone to be admitted to hospital in association with daily changes of air

pollution.

Two pollutant model

Since there are several air pollutants mixtures in the air and most pollutants are highly

correlated, this makes it difficult to separate the effects of one pollutant from other

pollutants (59). The issue of collinearity is one common problem in epidemiological studies

due to the difficulty in determining the actual, single contribution of an exposure on health

outcomes (60).For two pollutant models, the interpretation of the results was done under the

consideration that if one pollutant was acting only on its own without any contribution of

one another pollutant, we would expect that the estimated effects of the pollutant would

remain unchanged in a two-pollutant model compared to a single pollutant model (221).
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That is, if one pollutant was not acting independently, its effects would become larger in

the two-pollutant model due to synergistic action with one another pollutant, or would

become smaller due to antagonistic effects.

In this study, for out-patient visits, the two-pollutant models for S02, 03, and N02 showed

that there was little change in the effects of these three pollutants obtained from the two-

pollutant models compared to those obtained from the single pollutant models. This

suggested that each pollutant might have acted mainly on its own. Therefore, its effects

remained the same even when including another pollutant in the same models. While the

results obtained from a two-pollutant model could vary from study to study, this finding is

in agreement with a study in London that suggested that S02 and 03 appeared to have

independent effects on general practitioner consultations for allergic rhinitis (213).

For hospital admissions, the two-pollutant models for S02, CO, and 03 provided relatively

larger effects than those obtained from single pollutant models. There was however no

consistency of the finding across all disease groups. In this case, it might be possible that

two of the three pollutants had acted synergistically, resulting in the stronger estimated

effects for the two-pollutant models than those for single pollutant models. However, we

were unable to make a strong conclusion about the synergistic effects of two pollutants here

because the results were not consistent across all diseases and none of the estimates were

statistically significant.

What/actors modified air pollution effects in Chiang Mai?

Overall, there was little evidence of effect modification by the studied factors. Only small

differences in the estimated effects between subgroups were found. Even so, the differences

were not statistically significant.

Age

The finding of somewhat stronger effects in the elderly in this study may be attributed to

the consistently suggested vulnerability of the elderly to air pollutants noted in many
. di . h . . (16 19 24 36 80 106 108.114.216) . he AsiprevIous stu res, eit er In Europe or Amenca . . . . . . or In t e sta

Pacific region (33. 81. 83. 215. 222. 223). The susceptibility to air pollution among older people
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may be due to the general deterioration of their physiological functions, especially the heart

and lungs. Compared to younger people, older people are prone to have higher frequencies

of both pre-existing pulmonary diseases and clinically severe infections of respiratory

diseases (19). Moreover, older people also have a higher risk of suffering from air pollution

effects due to a decline of antioxidant defences (170).

Sex

Despite the finding of no statistically significant difference in air pollution effects between

sexes, there was a suggestion of higher effects in females than in males, especially for

respiratory admissions for all pollutants studied. According to the literature, the role of sex

differences in environmental exposure-related health outcomes remains unclear. Some

studies showed stronger estimated effects of air pollution in females compared to males (5.

18.28.89.173.175.176), whereas others found a higher risk in males than in females (24. 174).

Occupation

This study found that air pollution effects were stronger among manual workers than other

occupational groups (details of the 3-digit code of each group can be seen in Appendix

3C). The finding of stronger estimates in manual workers may be explained by relatively

higher exposure to outdoor air pollution compared to other groups. In this study, the

manual workers were blue-collar workers and those who worked outdoors (e.g. farmers,

gardeners, and construction labourers). Therefore, this group was more likely to be exposed

to outdoor air pollution than other occupational groups, resulting in the stronger estimated

effects among them. In addition, it might also be possible that the manual workers in this

population represented the low SES groups, which were more susceptible to air pollution as

suggested by previous studies (181-183).

Season

The effects of air pollution on the visits and admissions in this study were found to vary

from season to season (winter, summer, and rainy), but the differences were neither

significant nor consistent across pollutants and health outcomes. In general, one would

expect different effects of air pollution in different seasons, but this largely depends on

geographical locations, metrological conditions, and population characteristics of each
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research study. Most previous studies generally found stronger 03 effects in the warm

season as its formation requires the presence of sunlight (70, 111,214). This study also found

that the 03 effects were stronger in summer for most causes of out-patient visits (all-cause,

circulatory, diabetic, and 'other' visits).

Previous out-patient visits

Previous research has investigated the linkage between hospital admissions and subsequent

deaths (27). However, to date, no research investigates whether the effects on hospital

admissions are modified by history of out-patient visits before admissions. Accordingly, the

linkage between out-patient visits and subsequent hospital admissions was established in

this study. It is important to note that the insignificant findings for the linkage series may be

partly because of small counts in the linkage data. Therefore, the discussion in this section

was done with respect to stronger estimates (though not significant) observed from the

series. Itwas found that there was no consistent evidence of an increased risk of admissions

associated with air pollution in people with history of out-patient visits prior to admissions

in comparison to people with no history. There were also no obvious trends (increasing or

decreasing) of the effects across the numbers of previous visits before admissions. This

may be explained by two possible reasons as follows:

First, people who make several visits to hospitals may not be very ill. These people may

seek health care when starting to feel unwell. The health care treatments from their visits

may be good enough to make them feel better and go home. In addition, the data in this

study included not only emergency visits, but also scheduled visits to receive continuing

care, such as drug treatments (e.g. HT cases). Hence, people with many counts of out-

patient visits may not necessarily be admitted in later days.

Secondly, SES may partly playa role in effect modification by previous visits. It might be

possible that people who were able to access health care services frequently were those who

were of higher SES. These people may not need to worry too much about work or income.

They may seek for health care by visiting a hospital whenever they feel unwell, leading to

high count numbers of their out-patient visits. However, they may not be very sick or need

admissions to hospital. Lower SES people, on the other hand, may be very worried about
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their work and income. To stop working and go to hospital may mean losing their daily

income. Thus, these people may not visit hospitals unless they are very ill, and require

specialised care and admissions. As a consequence, lower SES people may have no history

of out-patient visits or have relatively fewer visits prior to admissions, compared to higher

SES people.

Since this is the only study, which has explored effect modification of air pollution on

hospital admissions by previous visits, and the study was not able to examine the role of

SES due to data limitations, more research should be undertaken to increase more

understanding about this. In addition, sensitivity tests showed slightly larger estimated

effects when using a shorter time period for obtaining previous history of out-patient visits

before admissions, this raises the question of whether more recent visits would be a marker

of greater vulnerability to air pollution exposure. It might be possible that the physiological

functions (e.g. immune or blood circulation system) of a patient were not fully recovered

within a few months after their visit, which could make them more vulnerable. However,

this finding was not significant and was also found for S02 effects only. Hence, further

research should also consider using a shorter time period for assessing effect modification

by previous visits to see whether there is a consistency of the increased risk among more

recent visits, and whether this could occur for other pollutants, not just S02.

If previous history of out-patient visits could modify the short-term effects of air pollution,

one would expect that there might also be a possible effect modification by previous history

of admissions on subsequent admissions. Moreover, it might be possible that previous

admissions would provide greater modified effects than previous visits since admission

cases generally have higher disease severity compared to out-patient visits. Hence, we also

explored whether previous admissions had any influence on air pollution and temperature

(which will be presented later in the temperature effects section) effects. Because previous

admissions were not the main interest of the study at the beginning, it was decided to

investigate the effect modification by previous admissions for discussion purposes and this

was undertaken for all-cause admissions only.
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For analysis purposes, previous admissions within a 6-month period (180 days) before each

admission of a patient were counted. Then the latest admission of a patient was kept for the

analysis by looking at the total counts of hospital admissions (within 180 days) prior to that

latest admission. The same method of analysis employed for the linkage series was used,

but not stratified analysis. The descriptive statistics and analysis results can be seen in

Appendix 9B (Table 9B-l to 9B-4 and Figure 9B-l). Almost 80% of people in this data

set had no history of admissions before their last admissions ('0' admission), followed by 1

admission (13.3%), 2-5 admissions (7.4%), and >5 admissions (1.1%) respectively.

It was found that there were no significant differences in air pollution effects between

people with and without a previous history of admissions. Interestingly, when looking at air

pollution effects across the group numbers of previous admissions, there was a somewhat

decreasing pattern of the effects with increasing numbers of previous admissions for all

pollutants (except 03). The higher risk of subsequent admissions associated with air

pollution among people with fewer numbers of previous admissions may be partially

explained by the hospital admission data used in this study was health insurance claim data.

It might be possible that hospital admissions were given to patients easily as this could

guarantee the hospitals' income from reimbursement. Since there is also no constraints on

hospital bed capacity in Thai hospitals, the increased admissions could occur in any groups,

not necessarily those who were very ill and were admitted to hospital many times before.

9.2.2 Temperature and daily morbidity in Chiang Mai.

Effects of temperature on out-patient visits and hospital admissions

The study found significant effects of hot temperature on circulatory visits (all people),

with an increase of 19.2% (95% Cl, 2.3% to 32.8%) for each 1°C increase in temperature

above 29°C. This finding is in agreement with a study conducted in 12 US cities that

observed an association between hot temperatures and an increase in hospital admissions

for heart disease in people ~ 65 years (121). This finding is also consistent with a study

conducted in Denver, Colorado, and New York that demonstrated an association between

high temperature and hospital admissions for CYDs (24. 134). An increase in hospitalization

during high temperature may be because the body of vulnerable people cannot establish

appropriate compensatory measures, such as increasing cardiac output (required during heat
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stress) or having chronic heart insufficiency due to inability to increase cutaneous

circulation (which can impede dissipation of heat) (119).

However, this result is in contradiction with studies undertaken in London, Madrid,

California, and 12 European cities, which suggested no association between high

temperature and heart disease admissions (10, 135-137). It has been posited that the lower heat

effects on admissions than on mortality and/or no association between hot temperature and

admissions may be because people die rapidly before receiving medical treatments or

admissions to hospitals. The contradictory results between colder countries and a warmer

country, like Thailand, may be explained by the possibility of having a higher temperature

threshold among Thai people. Literature suggests that people tend to be able to adapt to

their local climate through physiological acclimatisation, behaviour patterns, and adaptive

mechanisms (158). Since Thai people are generally accustomed to hot temperatures, their

bodies may tolerate small increases in temperature better than people in colder countries,

resulting in less severity of diseases (just getting ill, instead of dying). In addition, their

illnesses may require only primary care services at out-patient visits, leading to negative

and non-significant effects of hot temperature on hospital admissions for circulatory disease

in this study.

The study also found significant effects of high temperatures on diabetic visits. For each

1°C increase in temperature above 29°C, there was an increase in diabetic visits of 26.3%

(95%CI, 7.1% to 49.0%). This finding corresponds to a study in Chicago, which showed an

increased numbers of diabetic admissions during a heat wave (119). Similarly, studies on the

impacts of extreme temperature in 50 US cities and in Wayne County, Michigan, observed

a higher risk of dying on hot days among diabetic patients than other subjects (14, 158). A

recent study in California, U.S.A., also showed significant effects of high temperature on

diabetic admissions (137). This may be because diabetic patients have an impaired autonomic

control and endothelial function, which could affect their responses to extreme thermal

stress (14).

In this study, increasing temperature seemed to have a protective effect on respiratory

visits, but not respiratory admissions. Itwas found that, among all people, there was a small
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decrease in respiratory visits of 0.9% (95% Cl, -1.9% to 0.0%), whereas there was a

slightly larger and significant increase in respiratory admissions of 2.8% (95% Cl, 0.6% to

5.0%) in association with each 1°C increase in temperature (no threshold). In general, the

common cold or upper respiratory tract infection (URI) is a common respiratory problem

during winter or cold period. Thus, it is possible that warmer temperature help reduce

hospital visits due to cold or URI, which is usually a majority of daily counts of respiratory

visits in Thailand. However, high temperatures may have induced more respiratory

admissions, which may be explained by disease severity. Generally, we would expect more

severe respiratory illness for admissions than for out-patient visits. While out-patient visits

may be higher with less severe health problems (such as cold or URI), hospital admissions

may be higher with more severe diseases (such as bronchitis, asthma, pneumonia or

COPD). This is supported by the finding of a study in EU cities, which observed an

increase in hospital admissions for respiratory illness with increasing temperature,

particularly in the elderly (136).

The study found that an increase in intestinal infectious visits and admissions were

significantly related to increasing temperature. For each 1°C increase in temperature

without an identified threshold, there was a 2.6% (95% Cl, 0.4% to 4.8%) increase in

intestinal infectious visits, and a 5.8% (95% Cl, 2.3% to 9.3%) increase in admissions. This

finding corresponds to previous studies in Peru, Canada, EU countries, and Bangladesh,

which suggested an increase in hospital visits and admissions due to diarrhoeal diseases,

food poisoning, and bacterial enteric infections in association with an increase in

temperature (159-162). This may be because higher temperature promotes the growth of

bacteria, and the transmission of infections (160. 162). Generally, most intestinal infections

have longer lag effects (e.g. 0-2 days or up to 1-2 weeks). However, approximately 81% of

infectious diseases in this study (either out-patient visits or hospital admissions) fell into

diarrhoea and gastroenteritis of presumed infectious origin (ICD-IO code: A09).

Additionally, the surveillance of diarrhoeal diseases in Thailand also reported that 77.4% of

total diarrhoea cases were classified as acute diarrhoea (224). This suggests that the nature of

intestinal infectious diseases in Thailand may be more acute compared to other places,

which supports the finding of this study that the hot temperature effects were shown over a

short lag period (0-1 day) for this disease group.
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There were also positive effects of temperature on both all-cause and 'other' visits and

admissions (all people), but the effects were found to be significant for out-patient visits,

not for admissions. The positive effects of hot temperature on 'other' visits and admissions

might be partially explained by the visits or admissions due to external causes and their

consequences (e.g. injuries, accidents, suicide), and cancers. Both groups held almost 40%

of total 'other' admissions (see Figure 9.1, p. 222). An increase in accidental events, such

as traffic accidents and suicide, has also been reported to be associated with hot

temperature (167-169). However, it is important to note that the accidental events that could

support the results of this study would have been non-fatal cases as there was an increase in

hospital admissions, not deaths.

Compared to the general population, patients suffering from cancers (such as lung cancer)

may be more vulnerable to temperature exposure because of the dysfunction of their

physical organs, which could make them less able to tolerate hot temperatures. For

instance, lung cancer patients would possibly have been affected by high temperatures in

the similar way to patients with lung problems, such as chronic obstructive pulmonary

disease (COPD), one of the most common causes of admissions for respiratory disease

among the elderly. The patient with capo may hyperventilate during hot temperature,

which may increase dynamic hyperinflation leading to dyspnea and mechanical

cardiovascular effects (136).

As mentioned previously, although cancers were not the disease of interest in this study, the

analysis of temperature effects on neoplasm admissions was also undertaken because

neoplasm held the largest proportion in 'other' visit! admissions. There were positive

effects of high temperature (>29°C) on neoplasm both visits and admissions in this study,

though not consistently significant for all subgroups. The larger estimates were found for

out-patient visits rather than for hospital admissions. However, the finding did not support

the above hypothesis because the effects were larger in children (the admissions) and adults

(the visits) than in the elderly. This suggested that there might not be only lung cancer

(which mostly shown in the elderly) that made people more vulnerable to hot temperature,

but other kinds of cancers found in children or adults might also make people more prone to

hot temperature effects than the general population (because of their impaired physiological
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functions). Health care seeking behaviour could be another explanation for this. More

visits/ admissions among children suffering from cancers may be largely due to their

parents' worries and eagerness in seeking health care when their children get ill. On the

other hand, the elderly suffering from cancers may prefer to stay home and wait for dying

as they are old and probably tired of seeking for health care.

Temperature effects on morbidity in Chiang Mai in comparison with previous study of

temperature effects on mortality.

Previously, there was a study on heat- and cold-related mortality in 12 urban populations in

low-and middle income countries (225). Chiang Mai was one of the cities included in that

study. Because the previous study and the present study were conducted at different time

periods, and some analytical methods and the outcomes are also different, it may not be

appropriate to make a comparison between them. However, one interesting point is that

although the mortality study (1995-1997) was conducted earlier than this morbidity study

(2002-2006), the temperature threshold of that study at which all-cause mortality rises

(28°C) was very similar to the threshold obtained for an increase in aU-cause visits and

admissions (29°C) in the present study. The similarity of the thresholds between the two

studies is therefore logical and reflects the high possibility of illnesses or deaths among the

Chiang Mai population at temperatures above these identified thresholds (28-29°C). Hence,

this is an important message for public health personnel to establish a warning system for

high temperatures to prevent illnesses and deaths among the Chiang Mai population.

Lag effects of temperature

Most previous studies suggest that the effects of hot temperatures are immediate with short

lag from 0 to 3-5 days, while the effects of cold temperatures are more delayed with a

longer lag from 0 to at least 13 days (23. 187. 188). This study found hot temperature effects (no

threshold) at a short lag (0-1 day) for respiratory and intestinal infectious diseases, but the

effects (>29°C) occurred at a longer lag (0-13 days) for the rest of the disease groups. The

finding of hot temperature effects at a longer lag is corresponding to a study in Santiago

(Chile) and Palermo (Italy), which suggests that the persistence of heat effects on

respiratory deaths may be up to 20 days after exposure (189).
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The difference in local climate may be a possible explanation for this. Most previous

studies that found acute effects of hot temperature were conducted in colder countries (127),

while the present study was undertaken in a tropical climate with more hot days over a year

than cool days. Thus, the long period of hot days could have prolonged temperature effects

on daily morbidity among the study population. Another explanation may be the adaptation

and the tolerance of the population to their local climate as mentioned earlier. Because Thai

people get used to hot weather, it might be take times for the effects of hot temperature to

manifest and then lead to people seeking health care services.

Whatfactors modified temperature effects in Chiang Mai?

There was little evidence of effect modification by age, sex, occupation (for out-patient

visits only), and season since there were no significant differences in the effects of

temperature between subgroups for most diseases.

Age

The study found that the effects of high temperature were stronger in the elderly in most

disease groups for both out-patient visits and admissions, except only intestinal infectious

admissions, which were significantly stronger in children. Research evidence shows that

children are particularly vulnerable to increasing temperature, resulting in the visits and

admissions due to infectious diseases (such as diarrhoea) (159.197). In this study, the stronger

and significant effects found for hospital admissions, not for out-patient visits, among

children may be explained by the greater severity of illnesses, which required admissions to

hospitals for close observations than just received out-patient treatments and went home.

This finding of slightly larger effects in the elderly is consistent with most previous studies

of high temperature effects on hospital visits and admissions, which have demonstrated that

the elderly are more vulnerable compared to the general population (24. us, 119. 121. 135. 136).

The greater susceptibility of the elderly may be because of a reduced thermoregulatory

capacity together with a decline in ability to detect changes in their body temperature (14.22.

25.123.126.158.226). Furthermore, the cognitive impairment and diminished mobility may also

limit their ability to perform behavioural defences, resulting in a delay in access to health

care services (117. 118).
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Sex

The study found slightly stronger effects of hot temperature in males than in females for

most diseases. According to the literature, there was an inconsistency of temperature effects

on sex as some studies showed an increased risk in females (8, 18, 128-130, 172), while some

studies showed a higher risk in males (24, 132). However, by comparison, females appear to

be more vulnerable to high temperature than males as indicated by the majority of

published literature (127). IIi this study, the greater effects in males than in females may

broadly be explained by higher outdoor activities among males, which led them to be more

exposed to hot ambient temperatures than females. Traditionally, Thai females are more

likely to be housewives, working at home than going out. Although this tradition is

gradually changing (as more women work outside the home), it might still be possible that

the old tradition still continues in the northern part of the country, particularly in Chiang

Mai.

Occupation

There was inconsistency of temperature effects on occupation as the effects on all-cause,

and circulatory visits were larger in unemployed and economically inactive people, whereas

the effects on diabetic, intestinal infectious and 'other' visits were larger in non-manual

workers. Unemployment is a surrogate for low SES, which has been suggested to have a

greater susceptibility to temperature effects (158). Thus, the larger estimated effects found for

this group were possible. However, the stronger estimated effects found in non-manual

workers are difficult to explain because these people usually work indoors and therefore

should be less exposed to ambient temperature.

Season

When stratified by season, there were generally significant, positive effects of temperature

(linear) on the visits and admissions in summer compared to other seasons. Despite no

statistically significant differences in temperature effects between seasons for all diseases

(except only all-cause visits), the stronger effects in summer highlighted the greater impacts

of increasing temperature on daily morbidity in Chiang Mai.
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Previous out-patient visits

The study found that people with no history of out-patient visits seemed to have an

increased risk of hospital admissions compared to people without such a history. This may

be explained by perception of temperature changes. In everyday life, people may not be

aware of air pollution changes because the changes are generally invisible, except only

during a heavy smoke period. Unlike air pollution, people could feel hot or cold when

temperature increase or decrease (227,228). It may be possible that people who have many

counts of out-patient visits may be more exposed to health education messages when

visiting hospitals, and they therefore, may become more concerned about taking care of

themselves than the less exposed population. Thus, these people may avoid going outdoor

when it is very sunny and/or hot weather, or wear appropriate clothes for sun protection,

which mean less exposure to hot temperature. This could result in a reduction of the effects

among them compared to those without a history.

When looking at different numbers of out-patient visits prior to admissions. there was no

increasing or decreasing trends of temperature effects across the group numbers of out-

patient visits. The same explanations discussed previously for air pollution effects could be

applied here. That is, having many counts of out-patient visits does not necessarily mean

that these people will eventually have hospital admissions at later days. First, people with

many visits may not be unhealthy. These people may instead be health conscious and

always seek health care when feeling unwell, leading to many records of out-patient visits.

Second, it might also be possible that hospital visits were affected by SES. The higher SES

may visit hospitals often when not very ill or needing admission, while the lower SES may

be worried about the need to work and therefore only visit hospitals when they have very

serious illness that requires admission. Replication of the studies looking at modification of

temperature effects by previous visits should consider including SES factors to ascertain the

finding.

Similar to air pollution effects, the sensitivity analysis suggested stronger estimated trends

of temperature effects across the visit groups when using a shorter time period for obtaining

a previous history of out-patient visits (See Appendix 88, Table 88-2). The positive

increasing trend of 1.8% was found when using a 3-month period. while the small
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decreasing trends were found when using a longer period, with a decrease of 0.1% when

using a 6-month period and of 0.3% when a using l2-month period. Although these

changes were very small and non-significant, it raised an additional concern whether more

recent visits would be a maker of greater vulnerability. If more recent visits could lead to

admissions rather than later visits, the short time period (such as 3 months) would be an

important period in which people should be aware of their susceptibility and avoid doing

outdoor activities, which could lead them to be highly exposed to high temperatures (as

well as air pollution).

With respect to possible effect modification by previous admissions, the investigation on

modification of temperature effects by history of admissions was also done (for all-cause

only and no stratified analysis). These are presented in Appendix 98 (Table 98-5 and

Figure 98-2). It was found that both groups of people, with and without a history of

previous admissions, were affected by high temperature (>29°C). The effects were however

much larger and significant in people with a previous history of hospital admissions (14.5%

increase, 95% Cl, 2.5% to 28.0%) than that in people with no history (4.4% increase, 95%

Cl, -2.0% to 11.2%). Although this difference was not statistically significant, previous

admissions seemed to be a marker of vulnerability to temperature exposure, leading to

subsequent admissions. The plot of estimated effects across the group number of previous

admissions showed that there was a somewhat, small increase in the temperature effects

with increasing number of previous admissions. There was also an estimated increase

(though not significant) in all-cause admissions of 4.0% (95% Cl, -6.9% to 16.3%) for each

1°C increase in temperature per admission-category.

9.2 Issues relating to the findings

9.2.1 Analytical issues

There were two main issues of concern relating to analytical methods used when

developing the core models that might influence the study results. These are the model

distribution assumption and the model seasonality with respect to the choice of degree of

freedom (df) for time.
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First, the negative binomial distribution was assumed for the modelling, instead of the

Poisson distribution as commonly done in most time series studies. In general, time series

analysis has a distinct assumption that daily counts of deaths or hospital admissions usually

follow a Poisson distribution. However, because of the heavy overdispersion of the data as

previously mentioned in Chapter 3 (Methods), this study employed negative binomial

regression models to estimate the effects of air pollution and temperature instead. At the

beginning, the Poisson regression was used for the analysis but it did not handle the

overdispersion very well compared to the use of negative binomial regression as indicated

by overdispersed parameters and residual plots (not shown). Thus, the sensitivity tests to

compare the estimated effects obtained between negative binomial (NB) models and

overdispersed Poisson (OP) models were undertaken. It was found that there were no

differences in the estimates obtained between the two models. This suggests that the use of

model distribution assumption different from the conventional methods did not affect the

findings of the present study.

The choice of degree of freedom (dt) for time was the second analytical issue in the study.

To account for seasonal and long-term trends, smooth function of time was incorporated

into the model. As indicated in the methods chapter, it was decided to start with using the

small number of df (1 df first) of the spline for time when developing the core model. Since

there are no absolute degrees of smoothing to be used for the modelling, evaluating various

numbers of df used to ensure adequacy of adjustment for seasonality is important (203).

Oversmoothing may lead to confounding bias, whereas undersmoothing may result in

attenuation of a true effect of the studies (202). Therefore, the choice of smoothing in time

series studies could vary from study to study. For example, the APHEA project used 3-4

df/year, the NMMAPS study used 7df/year, and the recent PAPA studies used 4-6df/year

(62, 94, 203). The sensitivity analysis to explore an impact of changing number of df for time

in the study was undertaken, and the results showed that there were no substantial changes

in air pollution effects in relation to the changes of number of df, while there was an

increase in temperature effects when using 5 df upward (but the effects were fairly stable

after that). This suggests that the use of l df for time in the core model for investigating air

pollution effects, and the use of 6 df for time in the original model for investigating

temperature effects could provide reasonable results for the study.
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9.2.2 Data quality issues

I. Health data

First, daily out-patient visit data were obtained from several district health centres and

hospitals of various sizes (indicated by hospital beds) in Muang district of Chiang Mai.

Thus, variations in diagnostic practices and different proportions in the degree of disease

severity across health centres and hospitals would have occurred. For example, diagnostic

accuracy from bigger hospitals with medical doctors may be more reliable than that from

district health centres with no medical doctors (in health centres, nurses or public health

personnel take this role, instead of doctors). However, all practitioners (e.g. doctors, nurses,

and district health personnel) were formally trained to use the same coding system (206);

there is no change of the system during the study period; and the diagnostic practices were

unlikely to change on a daily basis and/or in association with high and low air pollution

days. Moreover, the misclassified diseases and missing diagnoses in this study were likely

to occur randomly or to be non-differential. Therefore, it is possible to assume that the

variations of diagnostic accuracy across data providers would not cause enormous changes

in the estimated effects, and this non-differential misclassification would produce an

underestimate of the short-term association in this study only (229). Additionally, with the

use of broad categories of diseases instead of finer specific disease codes, it was expected

that the underestimation of the effects due to misclassification of disease outcomes would

have been minimised.

Second, the large numbers of missing ID numbers in the out-patient visit data, which was

used for linking between out-patient visits and hospital admissions, might also affect the

estimations in the linkage series. Because of large amount of missing ID numbers in the

out-patient data set, there were small count numbers in the linkage data, resulting in very

imprecisely estimated effects. This made it difficult for interpretations and conclusions for

the series. However, because the linkage data were created by the original data sets of out-

patient visits and hospital admissions, the impacts of any missing information on the effects

observed in the linkage series would occur in similar manners to those that occurred in the

out-patient visits and hospital admissions series. Hence, it is reasonable to believe that the

patterns of air pollution and temperature effects across the group numbers of out-patient

visits before admissions obtained in the linkage series were likely to be non-differential.
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Third, the mix of both elective and emergency cases in the health data is also an important

issue of concern. Since it was impossible to distinguish between these two proportions in

the health data, any true effects in this study might have been affected. If the proportion of

emergency cases were bigger than elective cases, the estimated effects were likely to

represent the short-term association among the study population. This is because we would

expect to see the acute effects of exposures on emergency cases as suggested by previous

air pollution studies (19, 78, 199, 207). Conversely, if the proportion of elective cases were

bigger than emergency cases, it could result in a dilution of the true effects in this study.

II.Air pollution data

In this study, air pollution data were obtained from the only two air monitoring stations

located in Muang district of Chiang Mai. The total area of Muang district is approximately

152 sq km, with a population density of about 1,947 per sq km. For air pollution studies,

the use of air pollution data from central monitoring stations could lead to misclassification

of exposures for individuals living in the study area because exposure levels may not be the

same for each individual. It have been accepted that the measurement error due to using

exposure data from fixed air monitoring sites is likely to result in an underestimation of the

effects (190,230). According to the summary of statistics of air pollution data from the two

stations in this study (see Appendix 48), levels of all pollutants (except only 03) from the

city central station (Yaparaj College station) were higher than the outskirt station (Chiang

Mai City Hall station). Therefore, it was believed that the bias due to either over or under

estimation of exposure levels of the study population would have been reduced by using the

average levels between the two stations, instead of using exposure data from one station

only. In any case, air pollution data from the fixed monitoring stations were only used as a

proxy for actual air pollution exposure, and the main interest of this study design was the

day-to-day changes in air pollution effects. A great variation in air pollution values over a

daily basis was very unlikely. Hence, the use of exposure data from any of the two stations

would not cause substantial changes in the estimated effects, even though the absolute

values of air pollution from both stations are different. Nevertheless, it was acknowledged

that measurement error of exposure in this study could not be ruled out because information

from the two fixed stations may not truly represent the actual personal exposure of the

entire population in the city.
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9.2.3 Multiple testing

Multiple testing becomes an issue of concern in the present study since we analysed several

exposure variables (6 pollutants and one temperature term), several health outcomes (e.g. 6

disease groups for out-patient visits series), and several lags (up to 4 days for air pollution

and up to 13 days for temperature). We did not adopt a conservative method, such as

Bonferroni's corrections, to adjust the findings because this method would imply an equal

adjustment of all results in accordance with the total number of the tests performed,

ignoring that there might be some differences in an importance or a plausibility of the

results (231,232). Furthermore, the several lags studied are highly correlated. Thus, to use the

Bonferroni adjustments in the present study by considering that all results are equal and

independent may not be appropriate. We also did not adopt a more recent approach, such as

the 'false discovery rate (FOR), approach, to make comparison of the study results. The

term FOR refers to the expected proportion of errors committed by falsely rejecting null

hypotheses (233). This is because this study is relatively simple, while the FOR approach is a

complex method, which is more suitable for studies with considerable numbers of tests and

comparisons (e.g. laboratory experiments) (233,234).

For simplicity, it was decided to interpret the study results in an informal way by

considering that the statistically significant results would occur by chance, and therefore,

they would be compared to the actual number of the tests in the same set of the analyses

(232). This means that, in this study, emphasis was put on consistency of the results across

the exposures and outcomes by looking at overall results rather than singling out only

significant results from particular exposures or outcomes.

Concerning about multiple testing, all significant results of air pollution effects in this study

were informally compared to the total number of the tests done in the same set of analyses

(see Appendix 9A). Itwas found that the number of the statistical association seemed to be

more than would be expected by chance. For example, of 36 tests of air pollution effects

(lag 0-4 days) on out-patient visits, there were 4 statistically significant associations, and all

of them were protective effects, which accounted for 11.1% of the total observations in this

set. For hospital admissions, there were 5 statistically significant effects of air pollution (lag

0-4 days) out of 36 tests (13.8%), and all results were also protective effects. Furthermore,
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the significant, protective effects appeared to be clustered at particles (PMIO and PM2.s).

The finding of protective effects of particles is really difficult to explain due to the large

body of consistent evidence of adverse health effects of particulate matters (either PM10or
PM2.s)worldwide (77,103-108,110-116,235).

9.2.4 Harvesting

Harvesting effect refers to the assumption that air pollution and temperature effects may

occur among people who would die or enter the hospital within a few days or weeks,

anyway (73.74). This generally implies that there would be a depletion of the pool of

vulnerable individuals, which would lead to subsequently fewer cases following a period

with a relatively large number of cases. In other words, there would be subsequent negative

effects following the large, positive effects (a rebound effect) during the episode. In

general, this phenomenon is usually found in mortality studies rather than morbidity

studies. Since the present study is a morbidity study, we would expect that harvesting effect

is unlikely to be a major threat here. Moreover, the plots of the estimated effects did not

obviously show any sign of harvesting effects. Therefore, we did not attempt to profoundly

explore this phenomenon for the study.

9.3 Strengths of the study

Although most study results, particularly for air pollution effects, did not achieve statistical

significance, there are some important contributions of the study to environmental health.

Firstly, the study has added to the epidemiological research of air pollution and temperature

effects on morbidity, particularly in Asia and in a tropical country. To date, although there

are many air pollution and temperature studies worldwide, there are fewer studies looking

at morbidity effects compared to mortality effects, which is obviously seen for temperature

studies. Moreover, the majority of research studies have been conducted in developed

countries, especially in Europe and America, where their climate and economies are

different from Thailand and other Asian countries. For Thailand, there are very few time-

series studies of air pollution, which were conducted in the capital city, Bangkok, only. To

date, in Chiang Mai, there are only three air pollution studies and none of them are time-

series studies. Two of them are the International Study of Asthma and Allergies in

Childhood (ISACC) (44. 236),and another one is a cohort study looking at the association

241



between air pollution and the peak expiratory flow rates among asthmatic children (237).

Additionally, there is only one previous time-series study of temperature effects on

mortality in the city (ISOTHURM project) (225). Therefore, this study is the first time series

study of air pollution that investigated the effects on different age groups (not only

children) and different disease groups (not only asthma) , and also the first morbidity study

of temperature effects in Chiang Mai. Consequently, this study has increased understanding

of the morbidity effects of acute exposure to air pollution and temperature and also

contributed to identification of subpopulations that might have a greater vulnerability to

these effects in the Asian region, and particularly in Thailand.

Secondly, the study has demonstrated that existing routinely collected health and

meteorological data in Thailand can be a useful tool in conducting an epidemiological

research study. However, the investigation needs to be undertaken with careful

considerations to analytical methods in order to minimise possible bias and confounding

due to limitations and nature of data quality in the country. This study has also suggested

that, with more improvement of data quality, there will be a greater chance to further

explore and/or replicate studies to accurately detect stronger associations, which could in

tum, encourage researchers to establish more environmental, epidemiological research in

Thailand.

Thirdly, the study has highlighted the possible impacts of hot temperature in Thailand.

Since Thailand is a tropical country with moderate to high temperatures, one would expect

that local people would be accustomed to a hot climate and be able to adapt to this

environment very well. Additionally, in Thailand, more attention has been paid to dealing

with public health risks in the cold season than in the warm season. This is due to annual

reports of deaths that usually occur during winter among the poor who live in remote areas

of the country (which may be partly because of insufficient warm clothing for winter).

Thus, this study could raise awareness that Thailand might also encounter the negative

impacts of hot weather on health, which are predicted to increase all over the world.
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9.4 Limitations of the study

9.4.1 Confounding

For time series studies of short-term effects of air pollution and temperature, potential

confounding refers to time-dependent variables, including slow time-varying factors (such

as long-term time trends and seasonality) and short-term time varying factors (such as

weather variables e.g. temperature may confound air pollution effects, and humidity may

confound temperature effects). These variables associate with day-to-day changes in air

pollution and temperature, and also associate with day-to-day changes in health outcomes

(hospital visits/ admissions).

In the present study, possible potential confounders were taken into account. For example,

natural splines of time and month of the study were incorporated into the core models (for

both air pollution and temperature models) in order to control for factors that change slowly

or seasonally over time, such as seasonal and between-month differences. Weather

variables, including temperature (for modelling air pollution effects), humidity, and rain,

were also controlled for. The residual plots as well as PACF plots were checked each time

when including more variables into the models to see whether there were any significant

residuals shown from the plots. Although the use of statistical modelling techniques to

control for potential confounding may not guarantee the complete elimination of residual

confounding due to unmeasured, poorly measured, or unknown risk factors (238), the

residual confounding in terms of time varying factors were minimized and should not be

considered a major issue of this study.

9.4.2 Bias

a) Information bias

Measurement error of exposures

It has been acknowledged that time series studies that employ exposure data from fixed

monitoring stations may experience some degrees of measurement error in estimating daily

exposure of the study population (190). This is because exposure data from fixed sampling

sites may not truly represent the actual exposure of large mobile populations. Individuals

may not experience the same period and levels of exposure. In this study, one monitoring

station is located in the inner city alongside a busy road and another one is located in the
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outskirts of the city about 50 metres far from the nearest road (the stations are

approximately 10 kilometres apart).

For air pollution, the daily average levels of air pollutants from the two stations were used

for examining air pollution effects. If we used the data from only one station in the inner

city alongside a busy road, we might overestimate exposure levels of the population due to

the fact that not all people live in the city centre and are highly exposed to traffic air

pollution. On the other hand, if we used the data from only the outskirt station, we might

underestimate exposure levels of the entire population as well. Thus, it was expected that

the use of daily average levels of air pollutants calculated from the two stations would best

describe exposure levels of individuals living in the city of Chiang Mai.

For temperature, the daily mean temperature from one station (the inner city station), was

used for examining temperature effects. This was because this station provided more

complete data (fewer missing records compared to another station). With the use of records

from the inner city station, one might say that the urban temperature might represent the

exposure levels of people experiencing temperature effects as a result of 'urban heat island

effects', not the levels that the general population were exposed to. However, there were no

substantial differences in temperature levels between the two stations. Thus, the

temperature levels from this station should be a reasonable estimate of the exposure for the

study population as people, either those living in urban or suburban areas, had experienced

similar temperatures.

Although air pollution and temperature levels were chosen with careful considerations for

ensuring a representative sample of exposure levels of the study population, the

measurement error of exposures would still be an issue in this study. This was due to the

fact that the exposure data used was the population-average exposure, not the actual

personal measurements. However, because the same daily average levels were used for all

available health records on the same day, the measurement error would be the non-

differential misclassification. In addition, this error is known as the Berkson type and is

likely to cause an underestimation of the true association (bias toward the null) of the study
only (190,230,239).
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Measurement error of outcomes

Although hospital visits and admissions can be used as health endpoints for investigating

air pollution and temperature effects, quality of the information with regard to the accuracy

and the completeness of the information are of great concern.

The first concern is about diagnostic accuracy. Because out-patient visit and hospital

admission data in this study were used for administrative control and payment for health

care services, there might be some bias regarding the information on diagnosis, favouring

diseases that receive more expensive treatments. In addition, although all involved health

centres and hospitals utilized the same diagnostic tool (DRG system in accordance with

ICD-IO diagnostic manual), there might still be variability in diagnostic records across the

health centres and hospitals. However, as mentioned previously in chapter 4 (data quality),

Thailand had employed the DRG system for about a IO-year period before officially

adopting this system in 1998. Moreover, quality audits and surveys about health records

have also been conducted. There was also no change in the health record system during the

study period. This should indicate a reasonable quality of the health data used in this study.

Furthermore, it is also reasonable to believe that the misclassification of diagnosis would

not have changed enormously over time or vary greatly from day-to-day basis. Since the

study was designed for determining short-term effects of the exposures, misclassification of

diagnosis should not cause a considerable bias of the study. With concern that the

misclassification of diagnosis would vary by season (e.g. the high respiratory visits/

admissions during cold weather may lead to diagnosing some people with respiratory

diseases when they are actually ill with some other diseases), the study analysed for air

pollution and temperature effects in each season separately. Additionally, in order to

address the possibility of misclassification of diagnosis, the broad categories of diseases

(respiratory, cardiovascular, diabetic, and intestinal infectious diseases) were used, instead

of specific diseases (e.g. pneumonia, asthma, stroke, and CHF). Taking into account the

above concerns and explanations, misclassification of the outcomes in regard to diagnostic

accuracy should not be substantial in the present study.
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The second concern is about missing information e.g. missing data in some months at some

health centres and hospitals, and missing individual information, such as age, sex, and

occupation. For the problem of missing data in some months, the month of the study (1-48)

was incorporated into the core models to control for between-month differences. With

respect to missing individual information, the stratification by age, sex, and occupation,

was done in broad categories. The variables with high percentages of missing data (e.g.

missing occupation information >30% for hospital admission data) were also excluded

from the analyses. In addition, caution was taken when interpreting the study findings.

Thus, despite an existence of missing data, the influence of the problem was minimised in

the present study.

b) Selection bias

Hospital bed capacity

When analysing and interpreting data on hospital admissions, bed capacity of a hospital is

one important issue of concern. This is because the availability of beds may affect the rates

of admissions to a hospital, which influence the timing of the admissions (208). If there is a

limitation in the supply of beds, a patient may not be admitted when there is a manifestation

of the health problem. In general, hospital admissions are highest during winter (Nov-Feb)

of each year due to an increase in respiratory infection cases during cold weather. However,

as mentioned previously in chapter 4 (data quality), Thai hospitals generally provide extra

beds for admissions when necessary. That is, under the Thai hospital system, a patient will

be admitted to hospital when needed in accordance with medical indications of disease

severity that need close observations and/or advance treatments. Thus, the constraint of bed

capacity is very unlikely to cause selection bias in this study.

Under-representation of study population

The main concern in regard to the limitations of the health data in terms of inability to

distinguish between emergency and elective cases, variability in health care seeking

behaviours, and the possibility of an influx of a neighbouring population into the study area

were already discussed in chapter 4 (data quality). These factors could cause the spurious

association of the study results.
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In addition to those previously mentioned, there is also a concern about whether there is an

under-representation of some portions of the study population. In general, people who visit

or are admitted to private hospitals are thought to be from the wealthier portion of the

population, while people who visit or are admitted to government hospitals are thought to

be from the poorer portion. If this assumption is true, when we use the data from only

government sectors, it may be possible that there is an under-representation of the wealthier

portion of the population.

On the other hand, if we use the data from only private sectors, there might be an under-

representation of the poorer portion of the population. However, the under-representation of

poorer or wealthier subjects can only pose limitations on inferences about socioeconomic

differences in the vulnerability to air pollution and temperature exposure. Since this study

did not attempt to explore the socioeconomic impacts on air pollution and temperature

effects in Chiang Mai, and the health data used in this study was not only derived from

government hospitals, but also from some private hospitals in Chiang Mai (those registered

to the government with respect to health insurance claim system), the selection bias in

relation to socioeconomic differences should not be a major threat to the study.

Nevertheless, it is important to acknowledge that some degree of selection bias for hospital

admissions in the study might occur due to the fact that the data were health insurance

claim data. As previously discussed about effect modification of previous out-patient visits,

it might be possible that, in some cases, even though a patient was not severely ill, he/she

might still be admitted to hospital because he/she had health insurance that guaranteed the

hospital income received from the reimbursement. However, it is possible to assume that

this could occur randomly over time on a regular basis, which should not cause substantial

bias in the study.

c) Ecological bias

Ecological bias refers to uncontrolled confounding that occurs when rates of exposure

relative to rates of outcome are compared between geographical areas (240). This bias could

occur because exposure and health outcomes are measured at the aggregated level, it is

impossible to link exposure with disease in particular individuals as we cannot be sure
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whether those people who died or were admitted to hospital due to respiratory disease were

the same people who experienced the air pollution exposure. Furthermore, we may not be

able to control for potential confounding factors that are unmeasured at the individual level.

Time series studies can be considered as ecological studies in the sense that exposure

measurements are area-wide and the study subjects are not followed individually through

time as in cohort studies (241). Thus, time series studies that aim to combine information on

the exposure and health outcome and make comparisons within and between multi-site

studies from different countries and regions could be prone to ecological bias. However, the

present study was a small-area study, and the data was collected in a homogeneous and

restricted geographical area of the city of Chiang Mai only. The analyses were also

restricted to only one study population. Therefore, it was very unlikely that the study was

subjected to ecological bias.

9.4.3 Generalizability

In addition to differences in the nature of health data in different settings, regional

differences in terms of population characteristics (e.g. physiology, behaviour, and culture)

and geographical locations in different settings may also vary. This could lead to the

differences in the vulnerability to the exposure and the variability of exposure levels and

durations. Other factors, such as study period, measurement methods of air pollution and

temperature, and patterns of medical practice are also different. Accordingly, results of the

studies undertaken in different places could vary from study to study. In general, small-area

studies or single-city studies are less generalizable to other locations than multi-cities

studies. Single-city studies have been criticized for their findings not being consistent, and

that even the re-analysis of the data in the same city could give inconsistent results (242).

Therefore, the multi-cities studies, such as NMMAPS, APHEA, and PAPA projects, have

been conducted to overcome some of those criticisms and to make the studies comparable

across different locations. The results of these projects can provide evidence of consistency

andlor heterogeneity in air pollution effects and can also identify the potential effect

modifiers of air pollution effects across different geographic locations (242, 243). Because the

present study was conducted in a single city of the north of Thailand with a tropical climate

and 4-year time-series data used in the study was not very long, the findings may not be

generalizable to other places.
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9.4.4 Small daily counts of the investigations

The effects of air pollution are generally seen to be stronger for specific cardio-respiratory

diseases (e.g. asthma, COPD, CHF, and MI) and specific subgroups of people (e.g. children

and the elderly) (35. 112.210). Due to the relatively small daily counts of the visits/ admissions

when the data were broken down into specific disease groups and subgroups of population

(by age, sex, and occupation), the present study was unable to explore further for finer age,

sex, and occupation within each disease groups and for finer specific diseases, but for broad

categories only. The small daily counts provided limited statistical power, resulting in the

often low precision of the estimates as shown by the wide confidence intervals.

The lack of statistical power was obviously presented in the results obtained for the linkage

series, which were very imprecisely estimated as the confidence intervals were very wide.

There were relatively small daily counts for the investigation of modified effects of

previous visits on hospital admissions (total counts of 29,937). The limitation was due to

too many missing patient ID numbers, which was the best variable to be used for linking

the visits with the admissions due to uniqueness of this information at the individual level.

We did try to link the two data sets (out-patient visits and hospital admissions) by using

other variables, such as hospital number (HN) or dates of birth, but there was no big

difference in the linkage data obtained. Because of the imprecise estimates obtained for the

linkage data, this made it difficult to make specific interpretations and/or any strong

conclusions about the findings. Since, to date, there is no investigation on modification of

air pollution and temperature effects by previous hospital visits/ admissions on subsequent

admissions, replication of the study is needed to confirm the findings.

9.4.5 Lack of some relevant information at the individual level

Although the study explored the modification of air pollution and temperature effects by

factors at the individual levels, including age, sex, occupation, and history of previous

visits, there were still some other relevant factors, such as SES (e.g. income and educational

levels) and heat adaptations (e.g. air-conditioning use at home), which might playa role in

the association. As discussed earlier, evidence suggests that people of lower SES may be

more vulnerable to air pollution and temperature effects (181.183). There were some previous

studies using occupation as an indicator of SES to determine air pollution effects (182. 183).
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Despite having information about occupation, the present study was not able to use it to

identify SES of the study population because of the fact that there is no standard of income

levels relative to occupation in Thailand. However, future improvements of data quality in

the country by collecting direct information on individual income levels as well as

educational levels may help to assess the role of SES on the association.

With regard to temperature effects, literature suggests that data at the individual levels in

terms of heat adaptations, such as air-conditioning use, might also play a role in the

association between hot temperature and health outcomes (244).However, unlike the capital

city, Bangkok, the use of air-conditioning is not very common in Thai people's homes,

especially in the north, as the annual average temperature is relatively moderate. Moreover,

traditionally, Thai people's homes are not tightly sealed, and opening windows for

ventilation is commonly seen. Therefore, it is reasonable to believe that the lack of

information on air-conditioning use should not cause any substantial change in the

estimated effects of hot temperatures in the study.

9.S Public health implications

~ The finding of larger estimated effects of a classical pollutant, such as SOz, in the

present study reflects dissimilarities between developed world and less developed

world. That is, while the problem of urban air pollution in developed countries has

changed to be related to photochemical oxidants and acidic aerosols, the problem of

urban air pollution in less developed countries, such as Thailand, is still related to a

classical pollutant. This could also imply that environmental health policies and

emission control measures that have been implemented in the country may not have

been in place very long and/or not effective enough to cause substantial changes in

air pollution problems. In general, S02 is usually found in industrial cities. Since

there is no big industry in Chiang Mai and levels of S02 in the city are also well

below the recommended standard, the larger estimated effects of S02 than of other

pollutants is difficult to explain. Nevertheless, this result has confinned that air

pollution, even at low levels, could effects people's health. It also suggests that the

Chiang Mai population may be particularly sensitive to SOz compared to other

pollutants as a recent cohort study of air pollution in Chiang Mai also found

250



significant effects of S02 on the peak expiratory flow rate among asthmatic children

(237).Thus, further development and implementation of more advanced, rigorous,

and consistent mitigation measures to identify sources of the pollutant and regularly

monitor its levels in the city should be taken into consideration.

~ The finding of hot temperature effects, instead of cold temperature effects, in this

study is very important. Besides giving more attention on the impact of cold

weather during winter that usually cause deaths in Thailand, there is also a need for

public health interventions to educate people about the adverse consequences of

increasing temperatures, and how to behave appropriately during hot periods in

order to prevent serious illness. Traditionally, Thai people's homes are not tightly

sealed, and opening windows for ventilation is commonly seen. Thus, air-

conditioning use to reduce the impact of hot temperatures is economically and

culturally inappropriate for introducing in the Thai community. Other interventions

that have been introduced in European, American and Asian (e.g. Shanghai) cities,

such as advising people to stay in cooler places, drink more water, avoid direct

exposure to sunlight, and look after their more vulnerable neighbours, particularly

the elderly (e.g. Buddy system) during hot days (245),would be more appropriate.

Meanwhile, health care centres and hospitals should be notified in advance to

prepare adequate, suitable medical treatments and staff for the possible increased

morbidity during the hot days, particularly when the temperature rises above 29°C.

Additionally, unlike previous studies, this study identified longer lag period (0-l3

days) for heat effects. Therefore, health care providers should be made aware of

adverse health consequences occurring up to 2 weeks following hot days. Attention

should also be paid to the preparedness of health care facilities and staff in dealing

HYPERLINK \1 "_Toc247948233" D hospital visitsl admissions for some specific

diseases, such as diabetes, cardiovascular, and intestinal infectious diseases. It

should be noted that hot temperature effects on intestinal infections in the city may

be more acute than those observed in other places as this study found the effects

over a short lag period (0-1 day) for this disease group.
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~ There was a greater vulnerability to an increasing temperature for intestinal

infectious admissions in children. In addition, despite no statistically significant

difference between subgroups, the larger estimates were found in the elderly,

manual workers for air pollution effects, and in the elderly and unemployed and

economically inactive people for temperature effects. Thus, it is noteworthy that the

warning system in preventing adverse health effects should have been targeted to

these potentially vulnerable people.

9.6 Conclusions and recommendations

This study was carried out to assess the short-term effects of air pollution and temperature

on daily out-patient visits and hospital admissions in the Muang district in Chiang Mai, the

second biggest province of Thailand. A time series approach was used for the investigation

with careful considerations in selecting analytical methods to minimise possible bias and

confounding. While there was little evidence of air pollution effects, there was significant

evidence of hot temperature effects on daily morbidity in Chiang Mai. The higher risk of

intestinal infectious admissions due to increasing temperature was found to be significant in

children. A suggestion of larger effects of air pollution and temperature on the elderly,

manual workers, and unemployed and economically inactive people was also observed.

Some recommendations drawn from the study for future research are given below.

• Although this study has provided some evidence about air pollution and temperature

effects on daily morbidity in Chiang Mai, replicated studies should be carried out in

order to confirm the findings. Since it has been widely acknowledged that multi-

cities studies could provide greater understanding of modifiers of air pollution and

temperature effects than single-cities studies, it might be worth conducting time

series studies on both morbidity and mortality in more cities in Thailand (e.g. in the

biggest city of each region - north, north-eastern, east, west, central, and south) in

order to provide deeper insight of air pollution and temperature effects specific to

the country as a whole. However, it would be better to improve the quality of health

data before conducting the research, such as having data that can differentiate

emergency and elective cases, and the complete data with less missing information.

Additionally, if diagnostic codes of the data are complete, it might be worth
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exploring further specific disease codes, such as COPD, stroke and CHF, which

could provide a deeper insight of the effects than using broad categories of diseases.

• With regard to the improvement of routinely collected data in the country, an

improvement of both accuracy and completeness in collecting some additional

information at the individual level, such as SES indicators (e.g. education, and

income levels), should also be undertaken. The complete data at the individual level

will provide a greater opportunity for researchers to further explore the impacts of

air pollution and temperature on health and to indentify the vulnerable groups of

people in the study population.

• Further investigations could also explore specific diseases, such as renal failure, and

other infectious diseases (e.g. food poisoning, dengue hemorrhagic fever, and

malaria) that may also increase in association with increasing temperature (46,47,137,

160, 161). Future studies on the association between temperature and these particular

diseases and on what kind of factors may influence the association would be helpful

for establishing health promotion interventions to minimize the impacts of hot

temperatures in the future.

• There was no evidence that people with many counts of previous visits would have

a greater vulnerability to air pollution and temperature effects, leading to subsequent

hospital admissions in the present study. This may be partly due to the possibility

that the data comprised more health conscious people and/or those with high SES.

More research studies are needed to increase the understanding of modified effects

by previous visits (and previous admissions) as well as the role of SES on

subsequent hospital admissions. In addition, since the sensitivity tests suggested that

more recent visits could be a marker of greater vulnerability, a shorter time period

(such as 3-month period, instead of 6-month period as used in this study) may be

more appropriate for obtaining previous visits/ admissions. If the data in future

studies allows, it may be more interesting to link individual records of the same

person from the visits to admissions, and from the admissions to death, in order to

see which specific diseases, and at which particular stage, would make an individual

more susceptible to illness and death in relation to air pollution and temperature.
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• Finally, to better inform health policy makers, further studies, which provide

estimations of health care costs used for hospital visits/ admissions, and deaths in

association with air pollution and temperature effects should also be conducted.

This information will not only increase awareness of the impacts of air pollution

and temperature among the public and policy makers, but can also be a useful guide

for establishing appropriate public health policies and budgets to assist in providing

sufficient health facilities and services to cope with an increase in daily morbidity

and mortality, which is anticipated to increase as a result of global climate change

and variability in the future.

In conclusion, despite having several limitations, the study has shown evidence of the

short-term effects of hot temperature, but little evidence of air pollution effects on daily

morbidity in Chiang Mai. Although the strength of the association was not very high, the

study results were reasonably robust as suggested by a range of sensitivity tests and most of

the study results were generally in good agreement with the existing knowledge. However,

an identification of vulnerable groups of people is required more explorations from future

research as this has not been clearly shown in this study. Replication studies, either in the

same city or other cities in the country, should be undertaken to confirm the findings and to

provide a greater opportunity for interpretations and comparisons. In addition, a wider

range of research studies to determine air pollution and temperatures effects and other

factors that may influence the association in less developed countries is still needed in order

to implement the most appropriate public health policies and interventions specific to

Thailand and the Asian region. This is because populations in different locations are

different physically, behaviourally, culturally, and economically.
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Collaboration and Ethical consideration

Collaboration

Collaboration was sought with two main sources of the data for the study.

1) The Chiang Mai Provincial Health Offices in Thailand for health data.

2) The Pollution Control Department (PCD), Bangkok, Thailand for air pollution and

meteorological data.

Ethical consideration

The proposed study employed secondary data, which were the routinely collected health

data of the Chiang Mai Provincial Health Office under the universal coverage (the 30 baht

health insurance) scheme. Although the name of each patient was not shown on the data

set, patients could be identified though their individual identification numbers (ID) and

hospital number (HN). Thus, ethical approval was sought with the LSHTM Ethic

Committee and the Ethic Committee of the Faculty of Medicine, Chiang Mai University,

Thailand. In addition, the study results were presented as the effects of air pollution and

temperature on groups of population without specific to any individual. There was no ID or

HN of any patient shown in the study results.

Methods of keeping patients' personal information

To ensure that patients' personal information had been keeping secretly throughout the

study, methods of covering patients' secrets was be done as follows.

• Health data was collected in a CD. Then, the principal investigator (PI) created

confidential password of a CD. Thus, PI as the only one person who knew the password

and was able to access the health data.

• All CDs of the health data was kept in the drawer of PI's personal cabinet at the study

office. The drawer was locked and only the PI that had the key to open this drawer. After

completion of the study, All CDs will also be kept in the same way at PI's workplace for 5-

year period, and then will be destroyed.

• During the period of data analysis, the confidential password was also used for accessing

the health data files in the computer. There was be only PI who knew the password and able

to access the health data for analysis purposes.
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Appendices for chapter 1

Appendix lA: Map of study area.
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Appendices

Appendix 2A: Air pollution effects on morbidity.

Table 2A-l Time series studies of air pollution effects on daily out-patient V1SItS

A 22.3 % increase in adult asthma visits was
significantly associated with PM (rusk ratio = 1.23).
PM was signiticantly associated with URI visits at
3-5 days lag (RR=1.021). Fine PM, course PM, and
S02 were also significantly associated with LRl
visits, but in different risk estimates and different
lags.

Setting (reference) Exposure Outcome Results
Beijing, China, 1990 S02 and Daily Each 100 llg/m3 increase in TSP was significantly
(Xu et al, 1995) TSP unscheduled associated with total out-patient visits (~=21.1,

out-patient SE=7. 7) and pediatric visits (~=3 A, SE 1.3), but
visits marginally associated with internal medicine visits

(~=4.2, SE=2.2). Each 100 ug/rrr' increase in S02
was significantly associated with internal medicine
visits (~=14.6, SE=6.7), pediatric visits (~=12.7,
SE=3.7), and ER visits (~=6.8, SE=2.7), but
marginally associated with total out-patient visits
(13=41.5,SE=24.2).

Atlanta, 25 months,
from August 1, 1998
to August 31,2000
(Sinclair & Tolsma,
2004)

PM,
inorganic
gases, and
polar
volatile
organic
compounds

Daily visits
to
ambulatory
care setting

London,1992-1994
(Hajat et aI, 2002)

PMIO,O),
S02, and
CO

A 24.5% increase in consultations (95% Cl, 14.6,
35.2) was significantly associated with a 10th to
90th percentile increase in SOz levels 4 days prior

consultations to consultations (13-31 ug/rn'), and a 37.6%
increase in consultations (95% Cl, 23.3, 53.5) was
significantly associated with a 10th -90th percentile
increase in 03 levels on the consultation days as
well as the preceding 3 days (6-29 ppb) among
children. The S02 and 03 effects were also found in
adults, but with smaller effect sizes.

General
practitioner
(GP)

Hong Kong, 2000-2002
(Wong et al, 2006)

Atlanta, 1993-2000
*detailed measurements
of PM were available for
final 25 months
(Peel et al, 2005)

Portland, Maine &
Manchester,
New Hampshire,
1998-2000
(Wilson et al, 2005)

S02, NOz,
0), PM10,

and PMz.s.

DailyGP
visits for
respiratory
diseases

PMIO,N02, Emergency
03, CO, and room (ER)
S02, visits

Emergency
room (ER)
visits

GP visits for URTI were associated with an
increase concentration ofNOl, 0), PMIO,and
PM2.s.N02 constituted the highest contribution
with the excess risk of3.0%, followed by 03
(2.5%), PM2.s(2.1%) and PMIO (2.0%),
respectively. Similar findings of association
between these all pollutants and non-URTI were
also found.
1-3% increase in URI visits was associated with a
standard deviation increase of 0), NOz, CO and
PMIO, a 3% increase of pneumonia visits was
associated with a 2 ug/m' increase ofPM1.s and
organic carbon, and a 2-3% of increases in chronic
obstructive pulmonary disease (COPD) visits were
associated with a standard deviation increase of
NOland CO.
A 5% (95% Cl 2%, 7%) increase in all respiratory
ER visits and a 6% (95% Cl, 1%, 12%) increase ill
asthma visits were associated with an interquartile
range (IQR, the 75th-25th) increase in SOl. In
addition, a 5% increase in asthmatic ER visits was
found to be associated with an IQR increase ill 03.
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Table 2A-2 Results of time senes studies of air aollution effects on hospital admissions.

A 50 ug/rrr' increase in S02 was associated with
overall increase of 2% (95% cr 1, 5) hospital
admissions among the elderly. A 50).lg/m3increase in
NOz was associated with an increase of 2% (95% Cl 0,
3) hospital admissions. A 50 ug/m' increase in daily
8-hour average of 03 was strongly associated with a
risk estimate of 3% (95% Cl 1, 5) for adult admissions
and of 4% (95% Cl 2, 6) for elderly admissions. The
risk estimates appeared to be higher in warm season.

Setting Exposure Outcome Results
Spokane county, USA., S02, PMIO Hospital A 50 ug/rrr' increase in PMto and in peak-hour 03 was
from January 1, 1988 to and 03 admissions for associated with the increased risk of respiratory
December 31 1990 respiratory hospital admissions, with RR=1.085 (95% Cl 1.036,
(Schwartz, 1995) disease 1.136) for PM10 and RR=1.244 (95% CT1.002, 1.544)

for 03.
Five West European
cities (London,
Amsterdam, Rotterdam,
Paris, and Milano),
APHEA study results
(Spix et ai, 1998)

Sydney, Australia,
1990-1994
(Morgan et al, 1998)

Rome, Italy,
from January 1995 to
October 1997
(Fusco et al, 2001)

Ontario, Canada,
from April 1, 1995 to
December 31, 2000
(Luginaah et al, 2005)

S02, N02,
03, BS,
and TSP

PMIO,

S02, N02,
03, and
CO

N02, S02,
CO,03,
PMIO, and
total
reduced
sulphur
(TRS)

Hospital
admissions for
all respiratory
causes

Hospital
admissions for
asthma, COPD
and heart
disease

Hospital
admissions for
respiratory
conditions

Hospital
admissions for
respiratory
disease

An increase in daily maximum I-hour N02
concentrations from the 10th to 90th percentile was
associated with an increase of 5.29% (95% Cl 1.07,
9.68) in childhood asthma admissions and 4.6% (95%
Cl -0.17, 9.61) in COPD admissions. An increase in
daily maximum I-hour particulate concentrations from
the 10th to 90th percentile was associated with an
increase of3.01% (95% Cl -0.38, 6.52) in COPD
admissions. An increase in daily maximum I-hour
N02 concentrations, daily maximum l-hour 03

concentrations, and daily mean particulate from the
10th to 90th percentile was associated with an increase
in heart disease admission among patients aged 65 and
older of6.71% (95% et 4.25, 9.23) for NOz, 2.45%
(95% cr -0,37,5.35) for 03, and 2.82% (95% er 0.90,
4.77) for particulate.
An increase IQR in N02 of2.5% (22.31lg/m3) and in
CO of 2.8% (I.Smg/rn') was significantly associated
with total respiratory admissions. The N02 effects on
hospital admissions, particularly acute respiratory
infections, tended to be stronger (4.0% increase, lag 0)
than other causes of admissions. A 5.5% increase in
CO levels was associated with asthma admissions,
whereas a 4.3% increase in CO levels was associated
with COPD admissions.
An elevated N02 levels (lag 2) were significantly
associated with respiratory admissions among females
aged 0-14 years, with an RR of 1.19 (95% CT1.002,
1.411), but no significant association among females
in other age groups or males in all age groups.
Elevated CO levels (lag 2) were significantly
associated with hospital admissions among females
aged 0-14 years, with RR of 1.07(95% Cl 1.001,
1.139). A significant effect of SOz (lag 0) on
admissions among females aged 0-14 years was found,
with RR of 1.11 (95% CIl.Oll, 1.221). The effect of
PMlO (lag 2) was found to be significantly associated
with respiratory for males age 15-64 years.
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Table 2A-2 Air pollution effects on hospital admissions (continued).
Setting Exposure Outcome Results
Valencia, Spain, from N02, S02, ER Increases of I 0 microg/m3 in ozone levels (lag 5) and
Jan 1994-Dec1995 CO,O), admissions for of 1 mg/m3 in carbon monoxide (lag 1) were
(Tenias et aI, 2002) COPD associated with increases of 6.1% (95% confidence

interval [CT]= 2.2%,10.1%) and of3.9% (95% CT;"
1.4%,6.6%), respectively, in the expected chronic
obstructive pulmonary disease cases. There was no
significant association for the remainder of the
pollutants.

204 US counties, from PM2.s Hospital There was a short-term increase in hospital admission
1999 to 2002 admissions rates associated with PM2.5 for all of the health
(Dominici et ai, 2006) (from outcomes except injuries. The largest association was

Medicare for heart failure, which had a 1.28% (95% confidence
National interval, 0.78%-1.78%) increase in risk per 10-
Claims History microg/m3 increase in same-day PM2.5.
files) Cardiovascular risks tended to be higher in counties

located in the Eastern region of the United States,
which included the Northeast, the Southeast, the
Midwest, and the South.

Vancouver, from June PM2.s. COPD PM measures had a positive effect on COPD
1995 to March 1999 PM1o• admissions in hospitalization, especially 0 to 2 days prior to the

(Chen et aI, 2004) PMIO-2.S the elderly admissions, before copollutants were accounted for.
N02, S02, (2':65yr) For 3-day average levels of exposure the relative risk
CO,O), estimates were 1.13 (95% confidence interval: 1.05-

1.21) for PM(10), 1.08 (1.02-1.15) for PM(2.5), 1.09
(1.03-1.16) for PM(10-2.5), and 1.05 (1.01-1.09) for
COR. The associations were no longer significant
when NO(2) was included in the models.

Denver, Colorado, in N02, S02, Hospitalization 03 is associated with an increase in the risk of

July and August between CO,03, for hospitalization for acute myocardial infarction,

1993 and 1997 cardiovascular coronary atherosclerosis, and pulmonary heart disease.

(Koken,2003) diseases S02 appears to be related to increased hospital stays
(> 65yr) for cardiac dysrhythmias, and CO is significantly

associated with congestive heart failure. No
association was found between particulate matter or
N02 and any of the health outcomes. Males tend to
have higher numbers of hospital admissions than do
females for all of the selected cardiovascular diseases,
except for congestive heart failure. Higher
temperatures appear to be an important factor in
increasing the frequency of hospitalization for acute
myocardial infarction and congestive heart failure, and
are associated with a decrease in the frequency of
visits for coronary atherosclerosis and pulmonary heart
disease.

Two southeast Idaho PMIO• Hospital In single-pollutant models, respiratory disease

cities, from Nov 1994 to N02, S02, admissions admissions and visits increased (7.1-15.4% per 50

Mar2000 and medical microg/m3 PMI 0) for each age group analyzed, with

(Ulirch et al, 2007) visits for the highest increases in two groups, children and
respiratory and especially the elderly. Unexpectedly, evidence of an
cardiovascular association between PMIO with cardiovascular disease
disease was not found, possibly due to the lifestyles of the

mostly Mormon study population.
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Appendices

Appendices for chapter 3

Appendix 3A: The PAPA protocol

Revision on March 15, 2006

PROTOCOL FOR COORDINATED TIME-SERIES STUDIES OF

DAILY MORTALITY IN ASIAN CITIES

I. RATIONALE

The time-series studies of daily mortality in Asian countries are anticipated to produce a large
international literature on air pollution and daily rates of mortality and hospital admissions,
strengthening both that literature and the conclusions one could draw from the individual PAPA
studies. Within Asia a wider breadth of such studies, especially if designed from the start to be
comparable, would enhance region-specific combined analyses, providing more definitive estimates
of local effects for decision makers.
Recent meta-analyses (Cohen Al, Anderson HR, Ostro B, et al. 20041

; PAPA Review) suggest that
proportional increases in daily mortality per lO~g/m3 increase in PMlOare similar among North
America, Western Europe, and developing countries. However, there are relatively few meta-
analysis studies in Asia. Most studies are not geographically representative, and have taken
inconsistent approaches to the definition of health outcomes and data analyses that complicate
comparisons with each other and with the broader literature. In addition, the worldwide data have
not been appropriately analyzed to determine whether there are real differences in the magnitude of
the effects of short-term exposure, and the reasons for these differences (e.g., differences in air
pollution, population characteristics).
Efforts to bring the world's data together for such analyses are underway with funding from HE! and
the EC in the APHENA project. These efforts would also be strengthened by the additional
variability in air pollution, climate and population characteristics that Asian studies could contribute.
The results of a coordinated set of time-series studies in Asia would also inform extrapolation to
Asia of the results of US and European studies of the effects of long-term exposure on mortality
from chronic cardiovascular and respiratory diseases.

---------------------------_._--------_-_-------._-----

1 Cohen AJ. Anderson HR. Ostro B. Pandey KO. Krzyzanowski M. Kuenzli N. Gutschmidt K. Pope CA. Romieu I. Samet JM.
Smith KR. 2004. Mortality impacts of urban air pollution. In: Comparative Quantification of Health Risks: Global and
Regional Burden of Disease Due to Selected Major Risk Factors (Ezzati M. Lopez AD. Rodgers A. Murray CJL. eds). vol 2.
Wor1d Health Organization, Geneva, Switzer1and.
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II. SPECIFIC OBJECTIVES

The specific objectives ofa coordinated analysis of multi-city Asian data are to:
• Develop a protocol for the design and analysis of data from multiple Asian cities;
• Develop a management framework to conduct the coordinated analysis;
• Conduct coordinated analyses of common exposures and health endpoints according to the

protocol, including meta-analyses to the extent possible;
• Contribute to the international scientific discussion on the conduct and interpretation of

time-series studies of the effects of short-term exposure;
• Report the results of the coordinated analyses in an HEI final report and papers in the

broader peer-reviewed literature.
• Stimulate the development of routine systems for recording daily deaths and admissions for

the purpose of time-series analysis.

III. ELEMENTS OF A COORDINATED STUDY

The conduct of a coordinated set of time-series studies in Asia requires the development of a detailed
protocol that describes the methodology. The methodology is described under the Materials and
Methods section below, and includes a description of the participating centers, the design of the
coordinated multi-city database, the design of the coordinated analyses, and the approach that will be
taken by the participating investigators to the management of the coordinated analysis.

----------------------------------_._--
IV. MATERIALS AND METHODS

A. PARTICIPANTS

l. Participating Research Centers

o City selection includes rationale for selection, and description of city location
(geographic, degree of urbanization, etc).

o Selection of cities has been governed by interests expressed by existing
investigators through responses to RFIQs issued by HE!. The responses comprised
cities with the current information and research capacity to conduct analyses in the
cities to which they have access, and those who expressed interest but could not
proceed without development of new databases or statistical capacity.

o Description of individual studies including population, available data, and
personnel are as follows:

• Bangkok
Bangkok is proposing to examine the effects ofPMIO and several gaseous
pollutants, i.e. ozone, nitrogen dioxide, and sulfur dioxide, on daily mortality
for the years 1997 through 2003 and for al150 districts of Bangkok. With the
population of six to ten million people, Bangkok has an average of about 100
deaths per day. Both mortality and air quality data are computerized and
readily available from the Registrar Office and the Pollution Control
Department, respectively.

The team will test for gender- and age-stratified associations with mortality. It
will also investigate disease-specific associations with mortality focusing on
cardiovascular and pulmonary causes. In addition, during part of the period of
the proposed study, Thailand experienced a serious recession. As a result, it
will be able to assess whether an air pollution-mortality association existed
during this period and also whether the likely reductions in traffic during the
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recession were associated with lower mortality rates. The proposed research
team of Thai and U.S. researchers has had considerable experience conducting
time-series studies and in working in Thailand. The team composes of
Dr. Nuntavarn Vichit-Vadakan (PI), Dr. Bart Ostro,
Dr. Nitaya Vajanapoom, and Dr. Wichai Akeplakorn.

• Hong Kong
In Hong Kong, time-series studies will be performed for short-term effects of
air pollution on mortality and hospital admissions. The confounding and
modifying effects of influenza epidemics will also be assessed. The studies
will include the whole Hong Kong population of6.8 million with an age
distribution: 23% < 20; 62% 20-59 and 15% 60+ years. The period of the
study spans from the year 1996 to 2002. During this period, the health
outcome data, air pollution data, and other covariates are available in
electronic form. In addition, there are By-Census (5 yearly) and Census data
(10 yearly) within the period, thus providing socioeconomic and demographic
information of the population for better interpretation of the results of the
study. The investigators from Hong Kong team include: Dr. CM Wong (PI),
Prof. JSM Peiris, Prof. AJ Hedley, Dr. TQ Thach, Dr. GN Thomas and
Prof. TH Lam of The University of Hong Kong as well as Prof. TW Wong of
The Chinese University of Hong Kong.

• Shanghai
In Shanghai, a time-series study will be conducted to evaluate the association
between mortality outcomes and major air pollutants, using four-year of daily
data (2001-2004). The target population will include all residents living in the
urban area of Shanghai covering nine districts and having a population of
more than six millions. Daily mortality data will be extracted from the
database of Shanghai Municipal Center of Disease Control and Prevention,
and will be classified into deaths due to cardiovascular diseases, respiratory
diseases according to International Classification of Diseases, Revision 10.
Daily air pollution data during the study period, including PMIO, S02, N02 and
03, will be monitored in six fixed-site stations by Shanghai Environmental
Monitoring Center. The investigators from Shanghai team include: 1. Drs
Haidong Kan (PI), Bingheng Chen, and Naiqing Zhao from Fudan University
School of Public Health; 2. Drs Guixiang Song and Changyi Guo from
Shanghai Municipal Center of Disease Control and Prevention; 3. Drs Guohai
Chen and Zuci Shan from Shanghai Environmental Monitoring Center.

• Wuhan
This study will be conducted to determine whether daily variations in ambient
PMIO concentrations in Wuhan during the four years from July 1,2000 to June
30, 2004 are associated with daily variations in non-accidental mortality and
with daily cause-specific mortality. Five fixed-site air-monitoring stations of
the Wuhan Air Quality Automatic Monitoring System, operated by the Wuhan
Center of Environmental Monitoring and certified by the U.S. Environmental
Protection Agency, will provide daily mean concentrations ofPMIO, S02, and
N02• (03 will be provided by only two stations). Daily mortality data from
approximately 4.3 million permanent residents in the nine urban core districts
of Wuhan will be available during the study period. The investigators include
Dr. Zhengmin Qian (PI), Pennsylvania State University (PSU); Prof. Qingci
He (Co-PI), Wuhan Academy of Environmental Science (WAES); Dr. Hung-
Mo Lin, PSU; Dr. Duanping Liao, PSU; Dr. Lingli Kong, WAES; Dr. Dunjing
Zhou, Wuhan Centres for Disease Prevention and Control; and Dr. Beiwei
Wang, Wuhan Center of Environmental Monitoring.
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ii.HEI:
o The International Scientific Oversight Committee (ISOC) acting on behalf of

HEI, will oversee the conduct of the coordinated analyses via a combination of
regular progress reports, periodic site visits, conference calls, and participation
in HEI Annual Conferences. The ISOC and HEI staff will be available to
provide support and technical advice to the investigators as needed upon
request. Once the analyses have been completed a final report will be
published by HEI after review by the HEI Review Committee. The Review
Committee will also prepare a Commentary on the report that will be
published with it.

B. DESIGN OF DATA

l. Health outcomes

The focus of the coordinated analysis will be on: I) estimating daily mortality relative rates
for all natural causes, and cardiovascular and respiratory diseases; and 2) estimating daily
mortality relative rates for the causes of death categories by age and sex, as specified below.
The quality of the health data will be assessed and taken into account in both analysis and
interpretation of results, to the extent possible.

Causes of death Age Sex ICD-9 lCD-tO Notes
rou

All natural causes all ages, both 001-799 AOO-R99 All natural causes include all non-
0-4,5-44, sexes; traumatic, non-suicidal and non-
45-64, stratified poisoning causes.
65+, by male
45+ and
{ol!tionaQ female

Cardio-pulmonary all ages both sexes 390-459, 100-199, This includes both cardiovascular
460-519 JOO-J98 and resQirato~ diseases rubrics.

Cardiovascular all ages both sexes 390-459 100-199 This is the whole circulatory
disease rubric. However,
cardiovascular is a better term and
one that is commonly used. This
would include cor pulmonale
including acute and chronic
pulmonary heart diseases with
lCD-9 = 415-416; ICD-IO = 126-
127.

Stroke all ages both sexes 430-438 160-169 (Optional) This includes the
whole cerebrovascular diseases
rubric. However calling it stroke
may reduce confusion with
cardiovascular. It will include a
few uncommon cerebrovascular
conditions not manifested as
stroke.

Cardiac or heart all ages both sexes 390-398, 100-109 (Optional)
diseases 410-429 120-152
Respiratory all ages both sexes 460-519 JOO-J98 This is the whole respiratory

disease rubric.
Lower respiratory all ages both sexes 466, 110-J22 (Optional) This includes
infections 480-487 influenza, which at this level is

usually pneumonic.
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Chronic obstructive all ages both sexes 490-496 J40-J47 (Optional) This is not really
pulmonary diseases COPD in younger persons as it
(COPD) would also contain asthma (ICD-

9 = 493; ICD-IO = J45-J46). This
is acceptable because asthma is
not a common cause of death, and
because in the elderly there is
little point in distinguishing
between asthma and COPD.

Tuberculosis all ages both sexes 010-018 A15-A19 {OEtionaQ
Control diseases: all ages both sexes 520-629 KOO-K93, (Optional) All these categories

digestive and NOO-N99 had been used as controls in an
geni tourinary intervention study for Hong Kong

both sexes 140-161, COO-C32, with results published in Hedley
all neoplasm all ages 163-239 C37-D48 et al. (Lancet 2002; 360: 1646-
excluding lung 52).
cancer

We choose the above relatively wide range categories of cause of death for this coordinated
time-series study for we expect that this approach may reduce misclassification of
underlying cause of death among the four study cities.

It is recognized that ICD-9 and ICD-IO coded mortality datasets will be used to compile
mortality time-series, with different degree of combination by study cities. The proposed
study periods and dates of change from ICD-9 to lCD-lOin the four cities are as follows:

Bangkok Hong Kong Shanghai PSU-Wuhan

Study period June 1st, 1997- May January 1st, 1996- January 1'\ 2001- Jul~ ISI, 2000-June
31'" 2003 December 31", December 31 'I, 301,2004

2002 2004
Date of change to 1994 January 1'\ 200 I January 1'\ 2002 January 1'\ 2003
ICD-IO

To facilitate conversion and checking between ICD-9 and ICQ-l 0 codes, a supplementary
information sheet for the two coding systems is provided in Annex A. Special attention
from each city will be paid to recognize and identify a potential shift in mortality data
around the change of ICD coding period. Utilization of ICD-9 or lCD-lOis often the
decision from respective national center for disease control (CDC) or equivalent health
surveillance agency. The investigators of these four studies have no influence on the
decision. In other words, they were bounded by whatever is available from their respective
CDCs. Since the time series data will be compiled according to the four very wide ranges of
cause-specific mortality, potential misclassification of such widely-defined causes of death
is less serious a problem than analyzing smaller categories of causes of death.

ii. Assessment of quality of health outcome data

Using mortality datasets that contain individual-level information, each city will conduct
descriptive analyses to obtain the frequency distributions and/or univariate distributions for
all categorical variables (e.g., sex) as well as continuous variables (e.g., age). Investigator in
each city will carefully check these distributions for the miscoded, missing, and out of range
data. Errors, questions, and/or concerns regarding specific data points will be discussed,
validated, answered, and corrected in each city.
We notice that documentation of cross validation for causes of death (causes of death from
death certificates vs. true causes of death from hospital chart review) may be available
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locally among the four study cities. Each city should make effort to assemble the relevant
literature and government publication documenting the validity and accuracy of classified
causes of death.
In addition to examining univariate distributions for all categorical and continuous variables
in each city, it will be important to examine the distributions of the causes of death as well.

iii. City-specific considerations (additional efforts each city needs to put and the
difficulties each city would encounter in order to implement this protocol)

)
• Bangkok
Bangkok team wish to capitalize on the natural economic occurrence that occurred in
1997 by examining whether the reductions in local traffic levels during the recession
impacted mortality rates and resultant concentration-response functions.

• Hong Kong
Hong Kong team will not study the optional outcome, tuberculosis, as the numbers are
small; but it will study mortality due to control diseases.

• Shanghai
(No specific considerations)

• Wuhan
PSU-Wuhan team will test interactions between PMIO exposure and low or high
temperature on daily mortality. It may also perform district stratification analyses,
depending on the results of correlations among the pollutants' measurements from the
five monitoring stations, as well as the results of relevant sensitivity analyses.

iv. Air Pollution

The major analytic objective is to estimate the population daily average air pollution
exposure in each city. Mortality relative rate ratios will be estimated for selected particulate
and gaseous components of the air pollution mixture measured daily. The same averaging
times will be applied to each pollutant. The quality of the air pollution data will be
evaluated for each city and taken into account in both analysis and interpretation of results
via review and analysis of the data, as well as documentation of past and current QC
procedures, to the extent possible.

v, Monitoring period

• Bangkok:
• Hong Kong:
• Shanghai:
• Wuhan:

June 1SI, 1997 - May 31'" 2003
January 1'" 1996 - December 31'1,2002
January 1'" 2001 - December 31"" 2004
July 1", 2000 - June 30lh, 2004

vi. Air quality indicators

After discussion at the PAPA Investigators' Workshop in Bangkok, the following air
quality indicators are proposed:

Pollutant Averaging time
Sulphur dioxide (S02) 24-hr average
Nitrogen dioxide (N02) 24-hr average
Particulate matters (aerodynamic diameter of 10
micrometres or smaller) (PMIO)

24-hr average (PM2.s as optional indicator where
available)
8-hr average (from 10:00 - 18:00)

Carbon monoxide (CO) as optional indicator where available
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vii. Site selection criteria

With respect to the site selection criteria of PAPA, it is recommended to use the criteria
established below:

• Basically, the sites to be selected should be representative of the exposure of
population and taken into account the time scale of their effects on health. The
sites shall reflect the urban background level of air pollution, thereby excluding
those in the direct vicinity of traffic or of industrial sources. The location shall also
avoid buildings housing large emitters such as coal-, waste-, or oil-burning boilers,
furnaces, and incinerators.

• The sites should not be influenced by local sources (highways, industries, open
burning).

• The sites should be large enough to ensure the availability of space for monitoring,
and should be located in flat space and elevated between one and 14 m above
ground level. The elevated height shall be determined according to the relevant
rules & regulations of each country. (Note: In the US, the monitoring site shall be
elevated between 3 and 15 m above ground level according to "40 CFR -
CHAPTER I - PART 58 Probe and Monitoring Path Siting Criteria/or Ambient
Air Quality Monitoring ", However, European urban background sites are
approximately 3m closer to the ground in general.)

• Curbside (or roadside) stations should not be included.
• The sites should be located 5 m upwind from building exhausts and at least 2 m

from walls.
• A single monitor may be insufficient to assess the population exposure level in the

study region. Therefore, it is recommended that a number of monitoring stations be
used to reflect the exposure of the population at risk. These stations should comply
with the site selection criteria described above. The correlations among the
measurements from various stations will be examined.

viii. Measurement methods

The measurement methods used for air quality assessment in the four cities should comply
with the relevant rules & regulations of each country. Methods of measurement for gaseous
pollutants, for example, have been fairly standardized, in that UV fluorescence for S02 and
chemilumisnescence for N02 are usually used. For PMIO, the measurement will be
performed with TEOM or Beta absorption instruments in the four cities.

ix.QAlQC

Two primary documents, QAPP (Quality Assurance Program Plan) and SOP (Standard
Operating Procedure), are needed for each city. Each city will obtain these documents and
review them to answer data quality questions to be provided.
All four cities have quality control programme in order to conform to each country's
requirements. In Wuhan and Shanghai, air quality data should generally be collected at the
monitoring stations under National Quality Control.

x. Completeness criteria

For the calculation of 24-hour average concentration of N02, S02 and PM 10, it is required to
have at least 75% of the one-hour values on that particular day. For the 8-hour average of
03, at least six hourly values from 10:00 to 18:00 have to be available.
If a station has more than 25% of the values missing for the whole period of analysis, the
entire station should be excluded from the study.
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xi. Missing data

According to the completeness criteria, there may be missing values in the air pollutant
series for a small (NB the proportion may not be "small") proportion of the study period.
In the primary analysis in stage I, only the actual collected data (based on each day having
at least 75% of the hours collected and at least 75% of daily data are available for the whole
study period for each station) will be used, and missing data will not be filled in. In the
sensitivity analysis, the individual study centers will use a method of centering to adjust for
the effect of difference in weighting between stations, as described below.

Box No.1: Method of Centering:

Non-missing daily means are first centered for each station i [i.e., individual daily concentrations (Xij) are
subtracted by an annual station mean (Xi) for each day j]. The centered data from all centers are then
combined and added into the annual mean of all stations (X) to form X'ij = (Xij - Xi + XJ. The daily (mean)
concentrations of individual pollutant are computed for analysis by taking the mean of X'ij over all stations
(Wong et al. 2001).

Wong, C.M., Ma, S., Hedley, AJ., Lam, T.H. 2001. Effect of air pollution on daily mortality in Hong
Kon_g. Environmental Health Perspectives 109: 335-340.

xii. PAPA1ISOC request for basic monitoring information

In order to facilitate harmonization and comparison of the information relevant to the
exposure assessments in the 4 cities of PAPA, a questionnaire was prepared and attached
below as Annex B in this protocol.

xiii. Other co-variates

The analytic objective is to identify and specify for purposes of analysis a common set of
time-varying potential confounders to be controlled. These comprise meteorological,
social, and medical factors.

• Meteorological covariates
Temperature: daily average
Humidity: daily average RHlDew point

• Calendar variables
Special events e.g. strikes
Dummy variables for:

(I) Official public holidays
(2) Days of the week

• Use of data on Influenza/other epidemics (optional)
The Hong Kong team will assess the effect of influenza in its city specific study.
For all cities, influenza epidemics could be defined as weekly number of
respiratory mortality above the 90th percentile in each year of the city, and be taken
into account as one of the model improvement methods (Box No.2) in sensitivity
analysis.
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C. DESIGN OF ANALYSIS

A two-stage analysis of multi-city time-series data collected as part of the PAPA project is
envisaged. The design of the second stage analysis will be constrained by the small number of
studies that will be conducted (anywhere from 4 to 8). Nevertheless, summary estimates should be
estimable at a minimum.

i. Single-city (lit stage) analysis

For the core model, all of the four study centers will use the same regression model.
Specifically, the procedure will involve the following:

I. Generalized Additive Model (GAM) with penalized and natural spline smoothers
in R.

2. Poisson function with mortality due to cardiovascular, respiratory and all natural
causes as dependent variables.

3. Smoother for time using 4-6 dfs per year of data.
4. Smoothers for the mean daily temperature and mean daily humidity using 3 dfs

(whole period of study) each at a zero day lag. (Individual study centers can
employ sensitivity analysis to examine other specifications for weather terms.)

S. Day of week terms (i.e, dichotomous variables for each day of tile week from
Monday through Saturday).

6. Dichotomous variable relevant to individual city, if available: public holidays
(Hong Kong) and extreme weather conditions (Wuhan).

7. Exposure at single-day lags of 0 to 4 days, a two-day average of lags 0 and I and a
five-day average oflags 0 to 4 (inclusive).

The results will be reported to the Technical Support Group or to a website along with
statistics indicating the degree of overdispersion and a graph of the autocorrelation function.
The AIC will not be used as a model selection criterion for this core model. If there is
overdispersion in the variance, this will then be adjusted in a second model. If first- or
second-order autocorrelation of the residuals with Irhol>O.1 is present (independent of the
associated p-values) based on the partial autocorrelation function (PACF), the study center
will then alter (probably increase) the degrees offreedom in the smoother of time until
Irhol:SO.I.

After this base case core model is developed, other specifications, using selected lags, will
be used to examine the common mortality outcomes.
Ultimately, each study center will conduct sensitivity analysis on their own data sets (as
detailed). For example, some centers will want to control for flu epidemics, examine
different disease aggregations, weather variables, etc. However more harmonization of
approaches to sensitivity analyses among centers will be suggested. Some analyses can and
should be done by all.
For implementation of the core model development and data analysis, the following
guidelines were established as shown in Box No.2 on the next page.

293



Appendices

Box No.2 Data Analysis Guidelines (Notes of meeting on April18, 2005, 6:00-7:30 pm at Baltimore)

1. Criteria for adequacy in core models: When the absolute magnitude of PACF
plot is less than 0.1 for the first two lag days as specified in items no.I-7 of
Section C (i) above, the core model is regarded as adequate. If these criteria are
not met, it is advisable to take some steps to meet these criteria, as described in
item No.2 below.

2. Improvement of model adequacy by trying the following three methods in order
and selecting 1-3 methods as appropriate.

a. Localized smoothing:
• Identify and define dummy variables (q) for periods with extra

and/or systematic variation in the residual plot
• Define interaction variables I = q x time
• Add smoothing function of! with certain degrees of freedom

b. Inclusion of epidemic variables as defined in item No.6 (b) below
c. Introduction of auto-regression terms:

Other than localized smoothing and inclusion of influenza
epidemic indicator variables, the model can be improved by
introduction of auto-regression terms for lag up to 7 days.
This method is particularly useful when the PACFs are
consistently positive or negative for the first several lag days.
This method was added after discussion with members
subsequent to the Baltimore meeting.

3. Missing data handling and centering: Clarify that missing data will not be filled
in. But to eliminate discrepancies between stations daily data in each center
will be centered (Box No.1) on each individual overall station mean before
computation of city specific daily data. However since Shanghai does not have
pollutant data for individual stations and cannot perform centering for the data,
we may use simple averaging for the main analysis and use centering for the
sensitivity analysis.

4. Multiple pollutant modeling: Decide to use same lag for pair of co-pollutants
(PMIO with S02 and PMIO with N02) in the best model developed for all natural
causes.

5. Dose-response curve: Smoothing function of each pollutant with 3-4 dfs using
natural spline will be fitted for model of all natural causes of death. Y-axis
should be residual after fitting of non-pollutant variables.

6. Sensitivity analysis: This should include changes in effect estimates (a) using
definition of daily pollutant data with centering; (b) adjustment for epidemics
defined by weekly respiratory mortality >901h percentile each year; (c) varying
the dfs of time smoother from 3 to 15.

7. Cross validation of results: Each team will validate the estimates derived from
model of one other team.

294



Append ices

H.Multi-city (2nd_stage)analysis

In the 151 stage of the project, some common data analysis methods and guidelines have
been established, in which a standardized analytical framework is applied to time-series
data across 4 cities. In this way, this should have avoided some sources of biases which
might have otherwise occurred and enable us to carry out a meta-analysis.

The main aim of meta-analysis is to enable the results of the studies to be visually inspected
using Forest plots so that a judgment could be made about the overall direction of the
evidence. We test for heterogeneity (variation between cities in individual studies) and
calculate combined estimate for effect on mortality.

1. Quality assurance:
Before performing meta-analysis for combined estimates of effects across cities,
quality of the data collection methods and data quality have to be recorded and
assessed first. The size ofthe data and other factors, which would affect the
variation in the estimates, should also be recorded and assessed first. The factors
can then be taken into account when calculating a combined estimate for an effect.
First a standardized data format is designed (Annex C) so that the coordinator of
the project could arrange validation the study results. Data sets documented in the
standardized format are sent to other groups for re-running the models or re-
analysis of the data.
Each team should also record the main effect estimates in another standardized
forms (Annex D and E) and send them to the coordinator for cross-checking with
results derived from re-analysis.

2. Further analysis:
Single lag effects: In order to make results comparable to estimates from Poisson
regression, log-relative risks (regression estimates) will be converted into a
standard metric: log-relative risk associated with a 10 r:g/m' increase in the
pollutant.

3. Co-pollutant effects:
In the first stage, we performed two pollutant models in which PMIO or N02 were
analyzed with other pollutants in the model as part of sensitivity analysis. The aim
was to see how robust each of these pollutants was to the inclusion of other
pollutants. The concept is that those pollutants that are most robust in two pollutant
or multi-pollutant models have a more convincing case for being closer to the
causal pathway. Caution must be exercised in the interpretation of such analyses
however, because the estimates obtained tend to be less precise. This means that
confidence intervals may be widen even when the point estimate is relatively
unchanged.
It is proposed to obtain combined estimates for the following

• PMIO single estimates
• PMIO controlling for N02
• PM 10 controlling for 03

• PM 10 controlling for S02

4. Meta-analysis and summary estimates:
Regression estimates and standard errors for studies will be used to obtain
combined effect estimates based on fixed- and random-effects models
(DerSimonian and Laird, 1986).
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S. Cross-validation of results and sensitivity analysis:
The guidelines for performing the sensitivity analysis were developed during the
regional meeting held in Hong Kong on November 30th and December 1st of2005.
The notes of the meeting are outlined in Box 3 below.

Box No.3 Notes from regional meeting held in Hong Kong on November 30,2005 and December 1,
2005.
Cross-validation, sensitivity analysis and information for meta-analysis:

l. Cross-validate results by each other within Hong Kong-Wuhan, and Bangkok-Shanghai for
a. All causes, 65+ with N02 and all lags,
b. All natural causes, all ages with PMIO and all lags

2. Present dose-response curve of all pollutants for all causes with 4 df over time
3. Sensitivity analysis: repeat the analysis for all-cause and cardiovascular mortality (all lags) (with city-
specific "best" core model) with

a. PMIO & 03: Top 5% percentile removed;
b. PMIO: Measurements restricted to ~180 ug/m' (2 separate analyses);
c. PMIO: Monitors with the two highest NOINOx (NO= NOx-N02) dropped, where NOINOx is a

good marker for auto traffic (if data is not available, drop the two stations which are highly
influenced by traffic or largely from industrial sources); and

d. PMIO: Only the non-rainy period adopted (the non-rainy period varies according to cities)
4. Information required for meta-analysis:

a. In order to perform the meta-analysis, the HK team needs the attached information (spreadsheets
of Annex C, D, E and F) from all the cities.

b. Ideally, the information should be based on city-level. If a city does not have the required
information by city-level, district- or provincial-level would be acceptable.

c. It is not necessary to have up-to-date information. If not all the above-mentioned information
could be obtained, the cities should provide the information available.

d. Unavailable information should be marked "NA" in the spreadsheets.

6. Task and Budget Justification for coordinated studies:
a. Basic analysis - to be performed by each individual team (Budget $20,OOOx4)

o Model for health outcomes specified in common protocol
o Display and tabulate diagnostic results
o Tabulate effect estimates
o Submit the data sets and the effect estimates to the coordinator
o Validate (repeat) the models for one other team
o Participate in data analysis and interpretation of results
o Contribute to report writing

b. Meta analysis - to be undertaken by Hong Kong team ($10,000)
o Receive the original and validated results from all other teams
o Assess the validity of the models
o Perform pooled or metal analysis for effect estimates of 4 cities
o Plot and tabulate results
o Write the methods and results sections for the meta analysis

c. Report writing - to be undertaken by Hong Kong team ($5,000)
o Write the introduction section with a literature review
o Write the methods and results sections with input from b above
o Address the issues of the coordinated studies
o Finalize the report for the coordinated studies

d. Communication - to be undertaken by Bangkok ($5,000)
o Set time line
o Facilitate tasks among teams and communication with HEI and APHENA
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o Organize and prepare materials for meetings and workshops
o Communicate for the main tasks of the coordinated studies
o Consult (Dr Bart Ostro) for statistical methods in Tasks band c
o Assist in producing the final report

D. PROJECT COORDINATION AND INTERACTION AMONG INVESTIGATORS

There are two main parallel courses in the implementation of the mortality time-series study for the 4
cities, that is, the individual city study and the coordinated study among the 4 cities.
A system of coordination and communication is needed to implement the study effectively and
efficiently. In terms of interaction among the investigators, web-based communication (i.e. project
message board with link to e-mail notification, and webpage for updating study activities) is
developed. Summary of activities and problems encountered with remedial plan of each of the
project components listed below may be posted on the message board. HE! is responsible for
development and maintenance of the message board. For each of the components, one member from
each team acts as the site facilitator who passes on relevant messages to other team members, and
regularly posts updates from the team on the message board. One member from each team will be
designated the first point of contact. The critical issues for the coordinated study focus on (1) the
data management, (2) data analysis, report writing and (3) dissemination of results. A steering
committee is to be coordinated by Hong Kong team to manage the coordinated study. The main
functions include the following:

1. Guide the investigators during the study period when needed
2. Monitor the adherence of protocol, specifically, the aforementioned critical issues
3. Develop guideline for dissemination of results
4. Resolve any disagreement

The steering committee composes of two to three representatives including the P.1. from each of the
four teams. The main communication mechanism is web-based, i.e. e-mail mainly and chat room.
The steering committee, once formed, schedules a monthly forum (to be determined) to discuss
specific issues. The regional meeting as proposed by HE! may also be used to resolve any
challenges and update activities.
In addition, the coordination tasks may be divided into 2 main categories, i.e., coordination on
technical issues and coordination on administrative issues. It is proposed that CM Wong, Bart Ostro,
Hung-Mo Lin and Dr. Naiqing Zhao take the role of coordinators in the Technical Support Group for
technical matters, and Aaron Cohen and Wei Huang assume the role of administrative coordinators.

------------------------------------------- End 0f Protocol--------------------------------------------
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List

Appendix 38: Comparison of the present study protocol with the PAPA protocol.

Present study
City

PAPA protocol
Bangkok, Hong Kong, Shanghai, Wuhan ChiangMai

3 yearsPeriod 4-7 years

Exposure Air pollutants (S02, N02, PMIO, 03, CO)
and Temperature

Outcome

Air pollutants (S02, N02, PMIO, 03, CO)

Mortality due to cardiovascular,
respiratory, and all natural causes

Morbidity due to respiratory,
circulatory, diabetes, intestinal
infectious and all causes

Design of analysis Single-citySingle-city (I sI stage) and Multi-city (2nd

stage)
Procedure of the
single-city analysis

I. GLM with natural spline smootherI.GAM with penalized and natural spline
smoothers in R.

2. Poisson function for mortality due to
cardiovascular, respiratory, and all natural
causes

3. Smoother for time using 4-6dfper year
of data

4. Smoothers for the mean daily
temperature and humidity using 3 dfs
(whole period of study) each at a zero day
lag. (Individual study centers can employ
sensitivity analysis to examine other
specifications for weather terms.)

5. Day of week terms (i.e. dichotomous
variables for each day of the week from
Monday through Saturday).

6. Dichotomous variable relevant to
individual city, if available: public holidays
(Hong Kong) and extreme weather
conditions (Wuhan).

7. Exposure at single-day lags ofO to 4
days, a two-day average of lags 0 and I and
a five-day average of lags 0 to 4
(inclusive).

2.Poisson function for morbidity due to
respiratory, circulatory, diabetic,
intestinal infectious and all causes

3. Monthly indicator variable will be
used to control for seasonal patterns.
Yearly indicator will be used to control
for any time trend.

4. Natural cubic spline to control for
daily mean temperature (when air
pollution is the main exposure of
interest), humidity, and rainfall- at
longer day lags (to be decided later).
Linear term above and below heat/cold
temperature threshold will also be used.

5. Indicator variables for day of week
and holidays will also be used to control
for calendar effects.

6. Indicator variables for public holidays
will be used. Influenza epidemics will
be defined as the period comprising
daily visits or admissions due to
influenza above the 99th centile of the
total respiratory visits or admissions.

7. Exposure at single-day lags of 0 to 4
days, a two-day average of lags 0 and I
and a five-day average of lags 0 to 4
(inclusive) - for air pollution.

8. Linkage between OPD visits and
subsequent hospital admissions will be
established.

Note

• Source of the PAPA protocol: Dr. Nuntavarn Vlchlt-Vadakam and Dr. Nitaya Vajanapoom (team members
of the project from Bankok, Thailand).

Not using the AIC criteria function for
model selection .

Not using the AIC criteria function for
model selection.
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Appendix 3C: Grouping occupation by based on a 3-digit occupational code.

Note: Excluding children (0-14 year) and the elderly (~65 year) for all groups.

G ru IE eopleroup nemployed conomically inactive
Code Occupation

000 No occupation
900 Studentlhousewives
901 Priest

G 2roup Non-manual workers
Code Occupation Code Occupation
101 Architects 127 Singers
102 Engineers 128 Musicians
103 Explorers 129 Social welfare workers
104 Mechanical engineers 130 Social scientists
105 Scientists 131 Statisticians
106 Doctors 132 Economists
107 Surgeons 133 Missionary
108 Dentists 134 Chaplains
109 Veterinarians 135 Accountants
110 University lecturers 136 Other related academic workers
III School teachers 137 Le_gislators
112 Nurses 138 Fortune tellers
113 Pharmacists 201 Civil servants
114 Medical technicians 202 Military soldiers
115 Medical assistants 203 Navy soldiers
116 Judges 204 Air force soldiers
117 Public prosecutors 205 Policemen
118 Sculptors 206 Political civil servants
119 Artists 207 Other civil service officers
120 Technical artists 208 Pension civil servants
121 Cameramen 209 Temporary government employee
122 AuthorslWriters 210 Permanent government employee
123 News-reporters 211 Senior village headmen
124 Journalists 212 Assistant senior village headmen
125 Actors 213 Village headmen
126 Models 214 Assistant village headmen
215 Sub-district family doctors 701 Brokers/Agents
301 Government enterprise administers 702 Salesmen
302 Government enterprise employee 703 Advertisers
303 Other government enterprise officers 704 Rec~ionists
401 Business owners 705 WaiterslWaitresses
402 Private sector workers 706 Hotel workers
405 Other related private workers 707 Entertainment service workers
406 Clerks 713 Baby sisters
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G 3M kroup anua wor ers
Code Occupation Code Occupation

216 Janitors 718 Beauticians
403 Wage earners/employee 719 Other services workers
404 Labourers 720 Security officers/Guards
501 Farmers 801 Tailors/Dressmakers
502 Agriculturists 802 Leather craftsmen
503 Rice farming workers 803 Electrical equipment mechanics
504 Gardeners/Orchard workers 805 Car repairers
505 Farming workers 806 Electronic equipment mechanics
506 Husbandry workers 807 Car repainting mechanics
507 Fishery workers 808 Watch/Clock r~airmen
508 Hunters 809 Gold craftsmen
601 Wholesales workers 810 Diamond/Jewellery craftsmen
602 Retail workers 811 lronerslBlacksmiths
603 Peddlers/Street vendors 812 Metal related-material workers
604 Sales agents 813 TinsmithslMetal materials welders
605 Other related commercial workers 814 Structural metal materials moulders
606 Trades workers 815 Workers in quenchil!&_metal materials
708 Bus drivers 816 Carpenters
709 Wage drivers 817 Furniture makers
710 Cart drivers 818 Masons
711 Boat drivers 819 Painters
712 Chefs 820 Printmakers
714 ServantslMaids 821 Weavers
715 Cleaners 822 Photographers
716 Launderers 823 Photograph developers
717 HairdresserslBarbers 824 Other handicraft workers

300



Appendices

Appendices for chapter 4

Appendix 4A: Examples of health services at OPD and ER of hospitals in Thailand

Flow chart 1 Health care services at OPD

Emergency
centre (ER)

OPD Clinics (e.g. medicine, surgery,
paediatrics ... etc.)
-checking scheduled card and identifying whether
or not patients are emergency.
-providing appropriate health care before meeting
with doctors

Provide tirst aid
Send to doctor
Send to ER ._. _._._. _. _. _ ._._. _ .. _. _. _. _. - ..

Register for
admissions

Health care services
after seeing doctor

-Laboratory services
-Radiological
services
-Receive medical
treatments
-See specialists
(e.g. heart clinics,
chest clinics ... etc.)

Get an
injection

Register for
referring
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Flow chart 2 Health care services at emergency room (ER)

A patient arrive
atER

+
Investigate and

determine the level
of his/her severity

•• •
Need No need

urgent care urgent care

!
Register for an

Provide urgent carel out-patient card
Resuscitation

~ ~
Accidental Non-Accidental
patients patients

Consult specialists I • •
Examined and Examined and

! treated by doctor treated by doctor
at room no.5 at room no.3

• • •
Admissions Send to [ Death ] ~ ~

at IPD OR for
Received advice from hospitaloperation

workers of the examination room

I
Relatives will be • • •received

Receive medical Admissions Receiveexplanation and
Admissions advice from doctor treatments at lPD medicines

at IPD and nurse (e.g. dressing)

1~
Receive I Discharge
medicines (Go home)

!
Discharge
(Go home)
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Appendix 4B: Summary of statistics of air pollution and meteorological data.

Note: Results from preliminary investigations before data collection.

1.Chiang Mai City Hall station {35T - urban area station, located in the outskirt area2
Two year period from October 2003- September 2005

Daily mean Missing N Mean SD Min Max

Pollution concentrations

PM10 (ug/m') 12.8% 620 58.35 41.90 10.69 204.69
N02(ppb) 8.9% 648 9.77 5.61 0.80 30.20
S02 (Ppb) 12.3% 624 1.17 1.12 0.00 8.00
CO-1hr (ppm) 7.5% 658 0.48 0.30 0.00 1.79
CO-8hr (ppm) 8.6% 650 0.48 0.29 0.00 1.60
03 (Ppb) 7.5% 658 21.49 9.66 2.00 52.29

Meteorological variables

Temperature (oC) 5.6% 689 26.0 2.8 18.3 32.6

Relative Humidity (%) 8.9% 665 70.1 18.0 33.1 100.0

Rainfall (mm/h) 4.1% 700 0.2 0.4 0.0 4.8

2. Yuearaj College station {36T - roadside station, located in the city centraQ
Two year period from October 2003- September 2005

Daily mean Missing N Mean SD Min Max

Pollution concentrations

PM10 (ug/m') 25.4% 518 80.46 56.58 14.80 291.0

N02(Ppb) 25.4% 518 20.19 8.88 1.30 48.40

802 (Ppb) 26.9% 507 2.00 1.26 0.00 9.70

CO-1hr (ppm) 27.2% 505 0.81 0.47 0.10 2.79

CO-8hr (ppm) 18.2% 499 0.81 0.46 0.10 2.59

03 (Ppb) 24.6% 523 19.6 8.05 0.69 51.70

Meteorological variables

Temperature (oC) 5.9% 688 26.5 2.7 19.7 33.0

Relative Humidity (%) 7.5% 676 70.4 15.0 31.1 99.1

Rainfall (mm/h) 4.5% 698 0.1 0.4 0.0 5.3
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Appendices for Chapter 5

Appendix 5A: Distribution of daily out-patient visits by selected characteristics of the

study population.

SA-I. Daily respiratory visits by selected characteristics of study population
from October 2002 to Seetember 2006.

Group Percentile
Obs Mean SD Min 10th 25th 50th 75th 90th Max

Age (year)
0-14 1461 38.28 20.58 0 14 22 36 51 65 149
15-64 1461 46.83 28.65 0 12 24 43 66 86 175
~65 1461 9.67 6.92 0 2 4 9 14 19 39
Sex
Male 1461 44.40 24.40 15 26 42 61 76.8 148
Female 1461 50.45 29.86 0 15 27 45 70 90 175
Occupation*
Unemployed &
economically inactive 1461 17.96 10.71 0 6 10 16 25 32 67
Non-manual workers 1461 23.06 15.23 0 4 10 21 33 43 87
Manual workers 1461 3.52 3.27 0 0 I 3 5 8 18

Total resEirato!l visits 1461 95.32 53.40 3 30.2 53 87 131 166 318

*Excluding children (0-14) and the elderly (~65).

SA-2.Daily circulatory visits by selected characteristics of study population
from October 2002 to Seetember 2006.

Group Percentile
Obs Mean SD Min 10th 25th 50th 75th 90th Max

Age (year)
0-14 1461 0.92 1.41 0 0 0 0 1 3 9
15-64 1461 51.17 38.12 0 5 14 50 77 102 194
~65 1461 31.25 23.49 0 3 8 33 45 62 126
Sex
Male 1461 34.45 25.05 0 3 9 36 52 67 126
Female 1461 48.71 36.64 0 5 13 47 71 98 198
Occupation*
Unemployed &
economically inactive 1461 22.06 17.94 0 2 6 20 32 48 102
Non-manual workers 1461 21.24 15.45 0 2 6 21 32 42 71
Manual workers 1461 5.83 6.07 0 0 1 4 9 14 35

Total circulat0!l visits 1461 83.63 61.12 0 9 22 85 122 163 323

*Excluding children (0-14) and the elderly (~65).
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SA-3. Daily diabetic visits by selected characteristics of study population
from October 2002 to Seetember 2006.

Group Percentile
Obs Mean SD Min 10th 25th 50th 75th 90th Max

Age (year)
0-14 1461 0.31 0.77 0 0 0 0 0 I 8
15-64 1461 20.77 16.11 0 I 7 20 30 40 120
~65 1461 9.61 8.09 0 0 3 9 14 20 41

Sex
Male 1461 12.64 9.56 0 4 12 19 25 55
Female 1461 18.13 14.85 0 5 17 26 36 107

Occupation*
Unemployed &
economically inactive 1461 10.10 8.36 0 3 9 14 21 6
Non-manual workers 1461 8.45 7.26 0 0 2 7 13 18 48
Manual workers 1461 1.89 2.10 0 0 0 3 5 12

Total diabetic visits 1461 30.83 23.70 0 2 9 30 44 59 162
"Excluding children (0-14) and the elderly (~65).

SA-4. Daily intestinal infectious visits by selected characteristics of study
I!0l!ulation from October 2002 to Sel!tember 2006.

Group Percentile

Obs Mean SD Min 10th 25th 50th 75th 90th Max
Age (year)
0-14 1461 3.87 2.74 0 2 3 5 7 18
15-64 1461 4.48 3.26 0 2 4 6 9 17
~ 65 1461 0.76 0.98 0 0 0 0 2 7
Sex
Male 1461 4.26 2.97 0 2 4 6 8 24
Female 1461 4.86 3.39 0 2 4 7 9 23

Occupation"
Unemployed &
economically inactive 1461 1.94 1.72 0 0 2 2 4 11
Non-manual workers 1461 2.07 1.90 0 0 I 2 3 5 II
Manual workers 1461 0.31 0.61 0 0 0 0 0 4

Total intestinal infectious
visits 1461 9.17 5.53 0 3 5 8 13 17 33
*Excluding children (0-14) and the elderly (~65).
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5A-5. Daily other visits by selected characteristics of study population
from October 2002 to Seetember 2006.

Group Percentile
Obs Mean SD Min 10th 25th 50th 75th 90th Max

Age (year)
0-14 1461 49.53 31.80 13 23 45 71 90 192
15-64 1461 286.86 184.75 II 68 125.5 245 435 547 861
~65 1461 84.39 43.37 0 34 43 82 117 144 218

Sex
Male 1461 181.58 104.49 9 58 91 163 264.5 319 599
Female 1461 237.73 150.65 7 60 105 211 358 454 636
Occupatlun"
Unemployed &
economically inactive 1461 114.29 78.90 6 30 50 93 160 241 389
Non-manual 1461 127.37 79.08 I 30 58.5 116 189 228 527
Manual 1461 28.53 28.25 0 3 7 19 40 76 132

Total other visits 1461 422.44 252.86 16 120 198 373 630 775.8 1163

*Excluding children (0-14) and the elderly (~65).
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Appendix 58: Distribution of daily hospital admissions by selected characteristics of

the study population.

58-1. Dally respiratory admissions by selected characteristics of study population
from October 2002 to Seetember 2006.

Group Percentile
Obs Mean SD Min 10th 25th 50th 75th 90th Max

Age (year)
0-14 1461 1.9 1.6 0.0 0.0 1.0 2.0 3.0 4.0 13.0
15-64 1461 3.7 2.6 0.0 1.0 2.0 3.0 5.0 7.0 14.0
::::65 1461 2.2 1.7 0.0 0.0 1.0 2.0 3.0 4.0 11.0

Sex
Male 1461 4.1 2.7 0.0 1.0 2.0 4.0 6.0 8.0 15.0
Female 1461 3.7 2.5 0.0 1.0 2.0 3.0 5.0 7.0 18.0

Total
reseiratory admissions 1461 7.8 4.3 0.0 3.0 5.0 7.0 10.0 14.0 29.0

58-2. Dally circulatory admissions by selected characteristics of study population
from October 2002 to Seetember 2006.

Group Percentile

Obs Mean SD Min 10th 25th 50th 75th 90th Max
Age (year)

0-14 1461 0.2 0.5 0.0 0.0 0.0 0.0 0.0 1.0 4.0
15-64 1461 6.3 3.9 0.0 2.0 3.0 6.0 9.0 12.0 20.0
::::65 1461 4.5 2.8 0.0 1.0 2.0 4.0 6.0 8.0 15.0

Sex
Male 1461 5.4 3.4 0.0 1.0 3.0 5.0 7.0 10.0 19.0
Female 1461 5.6 3.5 0.0 2.0 3.0 5.0 8.0 11.0 19.0

Total
circulatory admissions 1461 11.1 8.9 0.0 4.0 6.0 10.0 15.0 19.0 32.0

58-3. Daily diabetic admissions by selected characteristics of study population
from October 2002 to Seetember 2006.

Group Percentile

Obs Mean SD Min 10th 25th 50th 75th 90th Max

Age (year)
0-14 1461 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 2.0
IS-64 1461 O.S 0.7 0.0 0.0 0.0 0.0 1.0 1.0 4.0
~6S 1461 0.3 O.S 0.0 0.0 0.0 0.0 1.0 1.0 3.0

Sex
Male 1461 0.3 0.6 0.0 0.0 0.0 0.0 1.0 1.0 4.0
Female 1461 0.5 0.7 0.0 0.0 0.0 0.0 1.0 1.0 S.O

Total
diabetic admissions 1461 0.8 1.0 0.0 0.0 0.0 1.0 1.0 2.0 6.0
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58-4. Daily intestinal infectious admissions by selected characteristics of study
eoeulation from October 2002 to Seetember 2006.

Group Percentile
Obs Mean SD Min 10th 25th 50th 75th 90th Max

Age (year)
0-14 1461 0.9 1.1 0.0 0.0 0.0 1.0 1.0 2.0 7.0
15-64 1461 2.0 1.9 0.0 0.0 1.0 1.0 3.0 4.0 10.0

~65 1461 004 0.6 0.0 0.0 0.0 0.0 1.0 1.0 4.0

Sex
Male 1461 1.3 1.3 0.0 0.0 0.0 1.0 2.0 3.0 9.0
Female 1461 2.0 1.7 0.0 0.0 1.0 2.0 3.0 4.0 11.0

Total
diabetic admissions 1461 3.3 2.5 0.0 1.0 1.0 3.0 5.0 7.0 13.0

58-5. Daily other admissions by selected characteristics of study population
from October 2002 to Seetember 2006.

Group Percentile

Obs Mean SD Min 10th 25th 50th 75th 90th Max

Age (year)
0-14 1461 10.9 6.7 0.0 3.0 5.0 9.0 15.0 19.0 38.0

15-64 1461 53.7 26.8 8.0 19.0 30.0 46.0 74.0 90.0 138.0

~65 1461 15.6 9.5 0.0 4.0 7.0 13.0 23.0 29.0 47.0

Sex
Male 1461 38.1 18.9 3.0 15.0 22.0 35.0 53.0 65.0 93.0

Female 1461 42.0 22.5 3.0 15.0 22.0 39.0 60.0 74.0 122.0

Total other admissions 1461 8004 40.1 13.0 32.0 45.0 75.0 115.0 137.0 203.0
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Appendix se: Diagram of linking hospital admissions data with out-patient visits data
by identification number (ID).

Hospital admissions
168,829 counts

(missing/error ID = 16.0%)

Dropping the first 6-month data
r--__ -L. __ -,(Oct 02-Mar 03)

Out-patient visits
1,398,369 counts

(missing/error ID = 16.1%)

Llnklng by ID

1,073,383 counts

Excluding errors and duplicates

Keeping only those with no visit and those with history
of visits within a 6-month period prior to admissions

Keeping only the first admissions and re-admissions with
different diagnoses (re-admissions with same diagnosis if
only they were greater than 6 months apart).

32,032 counts

Dropping if a patient's date of birth in the two data sets
was not the same.

29,937 counts
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Appendix 5D: Daily hospital admissions in the linkage data by disease groups in

relation to history of the visits prior to the admissions in Muang, Chiang Mal, from

April 2003 to September 2006.

5D-1. All-cause admissions
History of visits Percentile

erior to admissions n (day) Mean SD Min 10th 25th 50th 75th 90th Max

Total 1276 41.1 24.7 1 10 18 42 62 73 120

No visit 1276 2.7 2.3 0 0 1 2 4 6 12

1 visit 1276 10.7 7.1 0 2 4 11 16 20 36

2-5 visits 1276 18.2 12.2 0 3 7 17 28 35 59

> 5 visits 1276 9.6 6.4 0 1 4 9 14 19 30

5D-2. Reseirator~ admissions
History of visits Percentile

erior to admissions n (day) Mean SD Min 10th 25th 50th 75th 90th Max

Total 1276 3.1 2.2 0 0 1 3 5 6 13

No visit 1276 0.2 0.5 0 0 0 0 0 1 4

1 visit 1276 0.7 0.9 0 0 0 2 6

2-5 visits 1276 1.2 1.2 0 0 0 2 3 6

> 5 visits 1276 0.9 1.1 0 0 0 2 5

5D-3. Circulator~ admissions

History of visits Percentile

erior to admissions n (day) Mean SD Min 10th 25th 50th 75th 90th Max

Total 1276 3.5 2.7 0 0 1 3 5 7 15

No visit 1276 0.3 0.5 0 0 0 0 0 1 4

1 visit 1276 1.0 1.2 0 0 0 3 7

2-5 visits 1276 1.5 1.6 0 0 0 1 2 4 9

> 5 visits 1276 0.8 0.9 0 0 0 0 2 6

5D-4. Diabetic admissions
History of visits Percentile

erior to admissions n (day) Mean SD Min 10th 25th 50th 75th 90th Max

Total 1276 0.4 0.6 0 0 0 0 1 5

No visit 1276 0.0 0.1 0 0 0 0 0 0

1 visit 1276 0.1 0.2 0 0 0 0 0 0 2

2-5 visits 1276 0.1 0.4 0 0 0 0 0 3

> 5 visits 1276 0.2 0.4 0 0 0 0 0 2
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5D-5. Intestinal infectious admissions
History of visits Percentile
erior to admissions n (day) Mean SD Min 10th 25th 50th 75th 90th Max
Total 1276 1.2 1.2 0 0 0 I 2 3 6

No visit 1276 0.2 0.4 0 0 0 0 0 3
I visit 1276 0.3 0.5 0 0 0 0 4
2-5 visits 1276 0.4 0.7 0 0 0 0 I 4
> 5 visits 1276 0.3 0.5 0 0 0 0 0 3

5D-6. Other admissions
History of visits Percentile
erior to admissions n (day) Mean SD Min 10th 25th 50th 75th 90th Max
Total 1276 32.9 21.6 0 6 13 33 52 62 J08

No visit 1276 2.0 1.9 0 0 0 2 3 4 II
I visit 1276 8.6 6.2 0 I 3 8 13 17 33
2-5 visits 1276 14.8 10.9 0 2 5 13 24 30 55
> 5 visits 1276 7.5 5.5 0 3 7 11 15 27
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Appendices for chapter 6

Appendix 6A: Sensitivity analyses for out-patient visits series.

Appendices

ResIduals for All-cause visits and 802 ~

Figure 6A-l Model diagnostics for all-cause visits & S02 in regard to degrees of freedom.
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Figure 6A-l Model diagnostics for all-cause visits & S02 (continued).
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Residuals for All-causa visits and 03

Figure 6A-2 Model diagnostics for all-cause visits & 03 in regard to degrees of freedom.

10 20 so"""'-oe 031)...4 M~ppb)

Residuals for All-causa vIsits and 03

10 20 3D
""v.r9 OlO~ d.~(ppO)

Residuals for All-cause visits and 03.

10 20 30
Average03 0-4 dI~ppb)

Residuals for All-cause vislls ana 03.

10 20 30
Average 03 0... d.y.{p~l

Residuals for AU-cause visIts and 03 ~

•

10 2{1 30
AVflr~ 03 0'" dly.(ppb)

10 20Lo, 00

10

'0
~~--~10~~2"O--~~--~" Lo,

~~--~1O--~20~--~OO--~"Lo,

df= lIyear
(l/df) Deviance = 1.106939
(l/df) Pearson = 1.105099
AlC = 12.23774

..

df= 2/year
Cl Id!) Deviance = 1.110388
(l/df) Pearson == l.l04541
AlC = 12.23578

df= 3/year
(L'df) Deviance = 1.115808
(lIdt) Pearson = 1.110853
AlC = 12.22638

df= 4/year
(l/df) Deviance
(1/df) Pearson
AlC

= 1.120004
= 1.114407
= 12.22143

df= 5/year
(lIdf) Deviance = 1.124705
(lid!) Pearson := 1.120881
AIC = 12.2093

314



Figure 6A-2 Model diagnostics for all-cause visits & 03 (continued).

Residuals for All-cause visits and 03

20 3()
"".ragl 03 0-.. d.(ppb)

Residuals for AU-cause visits and 03·

10 20 30
A.... ragtl030 .. d.ya<ppD)

Reslduata for All-couse visits and 03·

10 20 JO
" ........g.030 .. dlyalppb)

Residuals for AlI·cause visits and 03·

.1 ...~~--~.~------~--~
10 20 30

A"'lrlgI030,""dIVII(ppb)

Residuals for All-cause visits a:d 03 ~

"
~·~--~--~20----3~O--~"

L..

"

~~--~--~--~--~
20 3() '"L.,"

Appendices

df= 6/year
(l/df) Deviance = 1.129293
(l/df) Pearson = 1.127214
AlC = 12.20964

df= 7/year
(lIdf) Deviance = 1.133648
(l/df) Pearson = 1.133435
AlC = 12.21388

df= 8/year
(l/dt) Deviance = 1.137591
(l/df) Pearson = 1.13784
AlC = 12.21683

df= 9/year
(l/df) Deviance
(l/df) Pearson
AlC

= 1.141532
= 1.14217
= 12.22014

df= 10/year
(1/df) Deviance = 1.146901
(l/df) Pearson = 1.146633
AlC = 12.22212

315



316



Figure 6A-3 Model diagnostics for all-cause visits & NOz (continued).
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Figure 6A-4 Plots of estimated RRs and CIs for temperature effects on daily out-patient visits when
using different degrees of freedom.
a) All-cause visits (>29°C)
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c) Circulatory visits (>29°C)
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e) Intestinal infectious visits
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Splines for time: 1df
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Figure 6A-5 Model diagnostics for all-cause visits & temperature in regard to degrees of freedom.
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Figure 6A-5 Model diagnostics for all-cause visits & temperature (continued).
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Appendix 6B Plots of the fitted values of all-cause visits over time.
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6B-2) Adjusting for month of the visits only (all-cause visits + splines of date +
i.movisit).

Year 1 (month 1-12)
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Appendices for chapter 7

Appendix 7A: Air pollution and temperature effects on neoplasm admissions.

Table 7A-I Risk estimates for single pollutant, distributed lag models for the effects of a 10-
unit increase in air pollutants (one-unit increase for CO) on daily neoplasm admissions by
a e.

PoUutant Age Lag 95% Cl Test for

!unit~ (year) !da~~ Coef, SE e-va1ue RR Lower Ueeer interaction*
S02 (ppb) 0-14 0-1 0.012 0.033 0.722 l.l26 0.585 2.169

0-4 0.030 0.046 0.514 1.349 0.550 3.309
15-64 0-1 0.010 0.011 0.387 1.100 0.887 1.364

0-4 0.027 0.015 0.068 1.312 0.981 1.756
~65 0-1 -0.008 0.018 0.650 0.922 0.648 1.311

0-4 -0.023 0.025 0.353 0.794 0.489 1.291 0.208

N02(ppb) 0-14 0-1 0.006 0.009 0.536 1.059 0.884 1.268
0-4 -0.006 0.011 0.576 0.938 0.749 1.174

15-64 0-1 -0.003 0.003 0.388 0.973 0.914 1.035
0-4 -0.004 0.004 0.350 0.964 0.893 1.041

~65 0-1 -0.008 0.005 0.104 0.921 0.835 1.017
0-4 -0.013 0.006 0.044 0.881 0.778 0.997 0.481

CO-8hr(ppm) 0-14 0-1 -0.241 0.154 0.118 0.786 0.581 1.063
0-4 -0.409 0.202 0.043 0.665 0.447 0.988

15-64 0-1 -0.081 0.052 0.117 0.922 0.833 1.021
0-4 -0.068 0.067 0.312 0.935 0.820 1.065

~65 0-1 -0.171 0.084 0.041 0.843 0.715 0.993
0-4 -0.128 0.110 0.242 0.880 0.710 1.090 0.272

03(ppb) 0-14 0-1 0.015 0.007 0.048 1.158 1.001 1.338
0-4 0.009 0.009 0.327 1.092 0.916 1.303

15-64 0-1 0.005 0.002 0.031 1.055 1.005 1.107

0-4 0.004 0.003 0.221 1.038 0.978 1.102

~65 0-1 0.009 0.004 o.ois 1.097 1.016 1.185

0-4 0.007 0.005 0.178 1.068 0.970 1.176 0.789

PMIO(~g/m3) 0-14 0-1 -0.001 0.002 0.615 0.992 0.961 1.024

0-4 -0.002 0.002 0.227 0.976 0.938 1.015

15-64 0-1 -0.000 0.001 0.669 0.998 0.987 1.008

0-4 -0.000 0.001 0.696 0.997 0.985 1.010

~ 65 0-1 -0.001 0.001 0.249 0.990 0.973 1.007

0-4 -0.002 0.001 0.050 0.979 0.958 1.000 0.259

PM2.s(l1g!m3) 0-14 0-1 0.000 0.003 0.897 1.004 0.943 1.069

0-4 -0.002 0.004 0.599 0.980 0.910 1.056

15-64 0-1 -0.002 0.001 0.118 0.983 0.962 1.004

0-4 -0.002 0.001 0.266 0.985 0.959 1.012

~ 65 0-1 -0.002 0.002 0.285 0.981 0.947 1.016

0-4 -0.005 0.002 0.012 0.947 0.907 0.988 0.308
*p-value of the test for heterogeneity between groups in relation to a pollutant at lag 0-4 days.
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Table 7A-2 Risk estimates for single pollutant, distributed lag models for the effects of a 10-
unit increase in air )!ollutants !one-unit increase for COl on dail~ neo)!lasm admissions b~ sex.

Pollutant Sex Lag 95% Cl Test for

!unit~ !da~~ Coer. SE e-value RR Lower Ueeer interaction*
S02 (ppb) Male 0-1 -0.013 0.014 0.347 0.874 0.660 1.158

0-4 -0.010 0.019 0.586 0.902 0.622 1.308

Female 0-1 0.022 0.012 0.059 1.244 0.992 1.560
0-4 0.035 0.016 0.025 1.424 1.045 1.942 0.064

N02(ppb) Male 0-1 -0.004 0.004 0.299 0.959 0.886 1.038
0-4 -0.009 0.005 0.073 0.9]5 0.831 1.008

Female 0-1 -0.003 0.003 0.403 0.972 0.910 1.039
0-4 -0.004 0.004 0.328 0.960 0.884 1.042 0.458

CO-8br(ppm) Male 0-] -0.154 0.066 0.020 0.857 0.753 0.976
0-4 -0.197 0.085 0.021 0.821 0.695 0.970

Female 0-1 -0.068 0.056 0.220 0.934 0.838 1.042
0-4 -0.022 0.072 0.762 0.978 0.850 1.126 0.116

03(ppb) Male 0-1 0.008 0.003 0.008 1.086 1.022 1.154
0-4 0.004 0.004 0.335 1.037 0.963 1.118

Female 0-1 0.006 0.003 0.030 1.059 1.005 l.1l6

0-4 0.005 0.003 0.095 1.056 0.990 1.] 26 0.718

PMIO(l-lg/m3
) Male 0-] -0.001 0.001 0.281 0.993 0.979 1.006

0-4 -0.002 0.001 0.018 0.980 0.964 0.997

Female 0-1 -0.000 0.00] 0.744 0.998 0.987 1.009

0-4 0.000 0.001 0.907 1.001 0.987 1.0]5 0.058

PM2.s(l-lg/m3
) Male 0-1 -0.001 0.001 0.629 0.993 0.967 1.021

0-4 -0.003 0.002 0.129 0.975 0.943 1.007

Female 0-1 -0.002 0.001 0.082 0.980 0.958 1.003
0-4 -0.002 0.001 0.156 0.980 0.954 1.008 0.815

*p-value oftbe test for heterogeneity between groups in relation to a poJlutant at lag 0-4 days.
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Appendices

Appendix 8A General relationship between daily hospital admissions and temperature

in linkage data

Figure 8A-1 Plots of the general relationships between daily hospital admissions and
temperature at both short lag (0-1 day) and long lag (0-13 days) in the linkage data.

Note: -Relationship between temperature and daily hospital admissions, adjusting for dow, holidays, month
of the study (7-40), Thai new year period, International new year period, influenza, humidity, rain, S02, and
03,

_The x-axis represents temperature range (0C), and the y-axis represents the estimated relative risk (RR)
of daily visits. The centre line in each graph is the estimated spline curve, and the upper and lower lines are
the 95 percent confidence limits.

-The left graphs of each disease group show the relationship between hospital admissions and
temperature at a short lag (0-1 day), whereas the right graphs of each disease group show the relationship
between hospital admissions and temperature at a long lag (0-13 days).
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c) Circulatory admissions
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Figure 8A-2 Plots of the general relationships between daily hospital admissions and
temperature in the linkage data in each season.
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Appendix 8B: Sensitivity analyses for the linkage series.

Table 8B-l Test for trends of air pollution effects across the numbers of the visits prior to the
admissions in the linkage data by linked period (months) used to obtain their history of the
visits.

Note: The estimated trends = a relative risk ratio for IO-unit increase of a pollutant (one-unit increase of CO)
per visit-category.

3 months 6 months 12 months
Pollutant RR(95%CI) RR (95%CI) RR(95%CI)

S02 (ppb) 1.15 (0.90-1.46) 1.13 (0.90-1.40) 1.11 (0.82-1.48)

N02(Ppb) 0.99 (0.93-1.06) 1.00 (0.95-1.05) 1.00 (0.95-1.05)

CO (ppm) 1.02 (0.91-1.14) 1.03 (0.95-1.12) 1.02 (0.93-1.13)

03 (Ppb) 0.99 (0.94-1.04) 0.99 (0.95-1.03) 0.99 (0.96-1.03)

PM 10 (jig/m') 1.00 (0.99-1.01) 1.00 (0.99-1.01) 1.00 (1.00-1.01)

PM2.5(ug/m') 1.00 (0.97-1.04) 1.00 (0.97-1.03) 1.00 (0.97-1.03)

Table 8B-2 Test for trends of temperature effects across the numbers of the visits (0, 1, 2-5,
>5) prior to the admissions in the linkage data by linked period (months) used to obtain their
history of the visits.

Note: The estimated trends = a relative risk ratio for 1°C increase in temperature (>29°C) per visit-category.

3 months 6 months 12 months
Outcome n (day) RR (95%CI) RR (95%CI) RR (95%CI)

AU-cause 132 1.018 (0.885-1.160) 0.999 (0.899-1.111) 0.997 (0.893-1.112)
admissions
* p-value for test for heterogeneity of the trends between groups - 0.969.
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Table 8B-3 Estimated trends of air pollution effects across the numbers of the visits prior to
the admissions in the linkage data that used two different assumptions: matched cases only
(data used in this study); and both unmatched & matched cases, in obtaining people with no
history of the visits.

Note: The estimated trends = a relative risk ratio for 10-unit increase of a pollutant (one-unit increase of CO)
per visit-category.

Matched cases only Both unmatched and matched cases
Pollutant RR(95%CI) RR(95%CI)

S02(ppb) 1.13 (0.90-1.42) 1.10 (0.95-1.27)

N02(Ppb) 0.99 (0.95-1.04) 1.00 (0.96-1.03)

CO (ppm) 1.03 (0.92-1.14) 1.00 (0.94-1.07)

03 (Ppb) 0.98 (0.95-1.02) 0.99 (0.96-1.02)

PM 10 (ug/rrr') 1.00 (0.99-1.01) 1.00 (1.00-1.01)

PM2.5(~g/m3) 1.00 (0.97-1.03) 1.00(0.98-1.02)

Table 8B-4 Estimated trends of temperature effects across the numbers of the visits (0, 1, 2-5,
>5) prior to the admissions in the linkage data that used two different assumptions: matched
cases only (used in this study); and both unmatched & matched cases, in obtaining people
with no history of the visits.

Note: The estimated trends = a relative risk ratio for 1°C increase in temperature (>29°C) per visit-category.

Matched cases only Both unmatched & matched cases
Outcome n (day) RR(95%CI) RR(95%CI)

All-cause 173 0.993 (0.911-1.082) 1.008 (0.947-1.073)
admissions
• p-value for test for heterogeneity of the trends between groups = 0.773.
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Figure 8B-l Risk estimates of air pollution effects (lag 0-4 days) on daily all-cause admissions
for a 10-unit increase of a pollutant (one-unit increase of CO) across the number of the visits
prior to their admissions in the linkage data by linked period (months) used to obtain their
history of the visits.
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Figure 8B-2 Risk estimates of temperature effects OD daily all-cause admissions for one degree
Celsius increase in temperature (>29°C) across the history of the visits prior to the admissions
by linked period (months) used to obtain the linkage data.
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Figure 8B-3 Risk estimates of air pollution effects (lag 0-4 days) on daily all-cause admissions
for a to-unit increase of a pollutant (one-unit increase of CO) across the numbers of the visits
prior to their admissions in the linkage data that used two different assumptions: matched
cases only; and both unmatched & matched cases, in obtaining people with no history of the
visits.
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Figure 8B-4 Risk estimates of temperature effects on daily all-cause admissions for one degree
Celsius increase in temperature (>29°C) across the numbers of the visits prior to their
admissions in the linkage data that used two different assumptions: matched cases only (used
in this study); and both unmatched & matched cases, in obtaining people with no history of
the visits.

Mached cases only Both matched & unmatched

~ Lr------~.-------,_-------,- ~------~--------,--------,-
o 2-5 >5 0 2-5 >5

Number of visits prior to admisssions
Graphs by data
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Appendices for chapter 9

Appendix 9A: Air pollution results with regard to multiple testing.

T bl 9A 1 E' t d a t f' II . fa e - stima e e ec so air po ution rom the out-patient visits series for la2 0-1 day.
Intestinal

AIl-cause Respiratory Circulatory Diabetic infectious Other Total
S02 no no no no no no no
N02 no no no no no no no
CO-8hr no no no no no -ve I -ve si~
03 no no no no no no
PMIO no no no no -ve no I -ve sia
PM2.S no -ve -vc no -ve no 3 -ve sig
Note: 36 tests, with 5-protective (13.8%).

T bl 9 2 E f h . ia e A- stimated effects of air po Iutlon rom t e out-patient VIS ts series for la2 0-4 day.
Intestinal

All-cause Respiratory Circulatory Diabetic infectious Other Total
S02 no no no no no no no
N02 no no no no no no no
CO-8hr no no no no no -ve I -vc sig
03 no no no no no no no
PM10 no no no no -ve no I -ve siz
PM2.S no -ve no no no -ve 2 -ve sia

Note: 36 tests, with 4-protective (11.1%).

Table 9A-3 Estimated effects of air pollution from the hospital admissions series for laa 0-1 dav.
Intestinal

All-cause Respiratory Circulatory Diabetic infectious Other Total
S02 no +ve no no no no 1 +ve sig
NOz -vc no no no no -ve 2 -ve sie
CO-8hr -ve no no no -ve -vc 3 -ve sie
03 no no no no no no no
PMIO -ve no no -vc -vc -ve 4 -ve sia
PM2.S no no no no no no no
Note: 36 tests, with l-adverse, and 9-protectlve (27.7%).

Table 9A-4 Estimated effects of air pollution from the hespita admiss ons series or a2 - day.
Intestinal

All-cause Respiratory Circulatory Diabetic infectious Other Total

S02 no no no no no no no
N02 no no no no no -ve I -ve sis

CO-8hr no no no no no no no

03 no no no no no no no

PMIO -vc no no no -vc -vc 3 -ve siz
PM2.S -vc no no no no no 1 -ve siz

i I 04

Note: 36 tests, with 5-protectlve (13.8%).
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Table 9A-S Estimated effects of air pollution from the linkage series for lag 0-1 day,
lth hlWit no Istery.

All-cause Respiratory Circulatory Other Total
S02 0 -ve 0 0 I -ve sig
NOz 0 0 0 0 0
CO-8hr 0 0 0 0 0
0] 0 0 +ve 0 1 +ve sig
PMlO 0 -ve 0 0 I -ve sig
PM2.S 0 0 0 0 0

Note: 24 tests, with I-adverse effect (8.3%), and l-protective effects (8.3%).

T bl 9A 6 E tl t d fli t f' II tl r th I' k li I 0 4 day, with no history,a e - sima e e ec so air po u Ion rom e ID age series or ag -
All-cause Respiratory Circulatory Other Total

S02 0 0 0 0 0
N02 0 +ve 0 0 I +ve sig
CO-8hr 0 0 0 0 0
03 0 0 0 0 0
PMIO 0 0 0 0 0
PM2S 0 0 0 0 0

Note: 24 tests, with I-adverse effect (4.16%).

Table 9A-7 Estimated e eets 0 air no ut on rom t e ID age ser es or ag
All-cause Respiratory Circulatory Other Total

S02 0 0 0 0 0
N02 0 0 0 0 0
CO-8hr -ve 0 0 0 I -ve sig
03 0 0 0 0 0
PMIO 0 0 0 0 0
PM2.S 0 0 0 0 0

fli f ' II i f h I' k f I 0-1 day, with history,

Note: 24 tests, with l-protective effects (4.16%).

Table 9A-8 Estimated effects of air pollution from the linkage series or a2 -
All-cause Respiratory Circulatory Other Total

S02 0 0 0 0 0
N02 -ve 0 0 0 I -ve sig
CO-8hr 0 0 0 0 0
03 0 0 0 0 0
PMIO 0 0 0 0 0

PM2.S 0 0 0 0 0

Ii I 0 4 day, with history,

Note: 24 tests, with I-protective effects (4.16%).
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Appendix 98: Effect modification by previous admissions.

Table 9B-l Summary of group numbers of admissions within 6-month period prior to those
admissions.
Group of admissions Count

o 80,449 (78.2%)
13,708 (13.33%)
7,591 (7.38%)
1,125 (1.09%)

2-5
>5

Total 102,873 (100%)

Table 9B-2 Distribution of previous hospital admission data by group numbers of history of
admissions within 6-month period prior to those admissions.

Std.
Group Obs Mean Dev. Min 10th 25th 50th 75th 90th Max

0 1461 55.06 23.40 11 26 37 51 73 88 125

1 1461 9.38 6.12 0 2 4 8 14 18 34

2-5 1461 5.20 4.16 0 1 2 4 7 11 33

>5 1461 0.77 1.15 0 0 0 0 2 8

Total 1461 70.41 32.03 12 31 45 65 94 114 173

Table 9B-3 Risk estimates for single pollutant, distributed lag models (0-4 days) for the effects
of a 10-unit increase of a pollutant (one-unit increase for CO) on daily all-cause admissions in
relation to the history of hospital admissions within 6-month period prior to those admissions
in Muang, Chiang Maiz from October 2002 to September 2006.

Pollutant History of 95% Cl Test for

~unitl admissions RR Lower Ueeer e-value Interaction •
S02 (ppb) No history 0.977 0.835 1.142 0.766

With history 0.973 0.749 1.265 0.840 0.979

NOz(ppb) No history 0.989 0.950 1.029 0.573
With history 0.969 0.906 1.037 0.361 0.610

CO-8hr(ppm) No history 0.989 0.923 1.059 0.750
With history 0.896 0.798 1.006 0.063 0.151

03(ppb) No history 1.005 0.972 1.038 0.787
With history 0.999 0.945 1.056 0.978 0.856

PMIO(Ilg!m3
) No history 0.992 0.985 0.999 0.022

With history 0.989 0.978 1.001 0.064 0.662

PM2S(Ilg!m3) No history 0.990 0.976 1.004 0.176
With history 0.987 0.964 1.010 0.254 0.827
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Table 9B-4 Estimated trends of air pollution effects across the group numbers of history of
admissions (0, 1, 2-5, and >5 admissions) within 6-month period prior to those admissions in
Muang, Chiang Mai, from October 2003 to September 2006.

Note: The estimated trends = a relative risk ratio for 10-unit increase of a pollutant (one-unit
increase of CO) per admission-category.

95% Confidence Interval
Pollutant RR Lower Upper p-value
S02 (Ppb) 0.914 0.694 1.203 0.295

N02 (Ppb) 0.984 0.923 1.049 0.389

CO (ppm) 0.965 0.865 1.077 0.297

0) (Ppb) 1.018 0.957 1.083 0.343

PM10 (ug/m') 0.999 0.988 1.010 0.650

PM2.5 (ug/m') 0.999 0.979 1.020 0.870

Figure 9B-l Risk estimates of air pollution effects on daily hospital admissions by history of
admissions with 6-month period prior to those admissions per 10-unit increase of a pollutant
(ODeunit increase for CO) for single pollutant, distributed lag models (0-4days).

802
I()
,....:

N02 CO-8 03 PM-10 PM-2.5

o 1 2-5 >5 0 1 2-5 >5 0 1 2-5 >5 0 1 2-5 >5 0 1 2-5 >5 0 1 2-5 >5

Number of previous admisssions
Graphs by pollutant

Note: There is no significant p-value obtained from test for heterogeneity between groups of previous
admissions for each pollutant.
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Table 9B-5 Relative risk estimates for distributed lag models (0-13 days) for temperature
effects on daily hospital admissions among aU people with respect to history of admissions
within 6-month period prior to their admissions in Muang, Chiang Mai from October 2002 to
September 2006.

n 95%CI Test for
Outcome (day) Mean· SD Lower Upper p-value interaction bRR
All-cause (29°C)

No history 266 59.88 25.01 1.044 0.980 1.112 0.185
Withhistory 266 16.99 10.651.145 1.025 1.280 0.017 0.157

• Mean daily count of hospital admissions relative to temperature used for quantifying temperature effects.
b p-va1ue for test for heterogeneity between groups.

Figure 9B-2 Relative risk estimates of temperature effects on daily hospital admissions for
1°C increase in temperature (>29°C) among aU people with respect to history of admissions
within 6-month period prior to their admissions in Muang, Chiang Mai, from October 2002 to
September 2006.

allcause
N

~ Lr-------------.-------------r-------------,
o 2-5

Number of previous admisssions

>5

Graphs by outcome

Note: The estimated trends or a relative risk ratio for 1°C increase in temperature per admission-category =

1.040 (95%CI, 0.931 to 1.163).
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