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Abstract. In the past, frequent movements and migration were studied separately in
metapopulation models. The levels that exist in a hierarchical metapopulation model were
also limited to two and only recently increased to multiple levels. Moreover, a generalisable
deterministic model was not available. Here we introduce a novel model incorporating both
movement scenarios as well as a multiple-level structure. We describe the system in simple
differential equation form. The simulations of different distributions of local contact rates for
disease transmission suggest that local information is important for predicting disease dy-
namics. The comparison between the results from a solely migration-based multilevel model
and the model discussed in this paper suggests that diseases with low transmission rates
can spread rapidly and infect a large number of susceptible individuals in a short time if
they appear in a population where frequent movements are dominant.
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1 Introduction1

It is now clear that understanding and prediction of the progress of disease requires consideration of2

the spatial arrangement of individuals and many recent computational models of disease spreading3

place a strong emphasis on the role of the spatial heterogeneity of human populations [1–3]. It is4

clear that the distribution of individuals within a population significantly affects the process of5

pathogen dispersal, but the exact operating functions linking transmission and spatial pattern are6

still unknown. However, even when using pathogen-related parameters that are invariant, e.g. a7

model where pathogen infectivity and virulence are kept constant throughout the simulations, the8

results generated by spatial models simulate the real epidemics very well [2, 4–6].9

There are various ways to integrate spatial heterogeneity into models. One popular method10

is to build metapopulation models, where the population is divided into a network of smaller11

subpopulations on patches [2, 7, 8]. Individuals within each subpopulation are assumed to be well12

mixed. Metapopulation models allow explicit mathematical expressions and straightforward nu-13

merical solutions [9], and hence play an important role in mathematical epidemiology. Hierarchical14

metapopulation models are a special type of general metapopulation models [2,10]. They consider15



the hierarchy involved in human movements (i.e. that subpopulations have some non-random pat-16

tern of connections) [11, 12] and simulations from these models show that disease spreading is17

significantly influenced by multilevel movements [2,6]. New studies based on real human mobility18

data also provide evidence to support the argument that individual movements occur at different19

levels [11,12].20

Another thing to consider is that the ways individuals interact with each other. Interactions21

between individuals involve both within-patch interactions and between-patch interactions. It is22

assumed that the contacts between individuals on each patch are frequent and hence random mix-23

ing applies within the subpopulation. Between-patch interactions are of more interest and usually24

modelled by two methods, depending on the frequency of movements. If the interaction between25

two patches is dominated by frequent movements (e.g. people commuting to and from work), the26

subpopulations are said to be interacting with each other in a way like particles randomly bumping27

into each other. In other words, any infection occurring on one patch has the force of infection on28

the susceptible individuals in the closely related patches [1,13,14]. The force of infection is defined29

as the per capita rate that the infected individuals transmit the disease to susceptible individu-30

als [15]. Alternatively, if the movements between two patches mainly take the form of migration,31

it means that individuals migrate to the host population with the disease status they get from the32

home patch first and then take part in the disease transmission process in the host patch [1, 9].33

These two scenarios were studied separately in the past [1, 13]. In real populations, it is obvious34

that both scenarios occur simultaneously.35

Here we build a metapopulation model based on multilevel movements including both patch-36

coupling and migration. At the lowest level, where the population movements between the patches37

are most frequent, the patches are coupled by the force of infection; while patches with less38

frequent movements in between are linked by migration. In this paper, these two kinds of patch39

relationships are referred to as close-related patches and not close-related patches. Moreover, it40

does not necessarily mean that well-connected patches are geographically close, in contrast to41

previous work [2]. Human mobility tends to be more complex than animal migration or plant42

dispersal and is not necessarily related to geographic distances [16,17].43

2 The model44

The hierarchical system we set up to describe the metapopulation model consists of L levels of45

movements. The number of patches at the same level is denoted by a fixed branching ratio B46



for simple indexing. Therefore the total number of patches is BL, denoted by n. We assume that47

the fewer the movements between two patches, the larger level difference (D) between them. The48

level difference is the number of levels to reach the common ancestor node in the hierarchy. The49

level difference between close-related patches, i.e. the first level when counting levels, is defined50

as 0. One possible system is illustrated in Figure 1 as an example. Individuals are assumed to be51

homogeneously mixed within each patch. All patches are assumed to have identical within-patch52

population dynamics and environmental conditions [8]. Person-to-person contact, which leads to53

disease transmission, takes place when individuals meet in one of the n patches. Patches interact54

with each other through either coupling or migration. Initially the total population is distributed55

evenly across all n patches and one infectious individual is introduced to the system. Individuals in56

each patch are classified in terms of their infection status: susceptible, infected or recovered, within57

which the numbers of individuals are denoted by S, I and R respectively. The susceptible class58

includes all healthy people with no immunity to the disease, the infected class includes people59

who have caught the disease. For simplicity, infected individuals are assumed to be infectious60

immediately. R denotes the recovered group, with lifelong immunity [13, 15]. We model a non-61

fatal, communicable disease, such as the common cold or influenza virus, spreading much faster62

than the natural demographic process. Therefore our basic framework is the simple SIR model63

(Equation 1) [15,18]:64

dS

dt
= −βIS

dI

dt
= βIS − γI

dR

dt
= γI

(1)

where disease is transmitted through person-to-person contact which is modelled by the adequate65

contact rate for disease transmission (β) and recovery rate (γ). This is the normalised form,66

i.e. all the variables are proportions. It models the pure disease transmission process within a67

homogeneously mixed population without considering other effects, such as demographic effects,68

spatiotemporal effects and so forth. In our system, where the interactions between patches take69

two different forms, we need to consider both effects. The force of infection for the simple SIR70

model is βI. To generalise it to the single patch in our model, we need to consider that the force of71

infection on patch i is affected by the sum of the infection situations on the patches close-related72

to it, i.e.
∑
j

βj,iIj , where j ∈ J , J : the set of indices of the patches close-related to patch i. In this73

model, we allow the adequate contact rate to vary between close-related patches [13] and therefore74



we can examine the effects of different contacting rules on disease dynamics. The range of values75

of β is consistent with that for influenza [15].76

The other process that changes the number of infected individuals in patch is migration. Both77

emigration and immigration are assumed to operate between two patches which are not close-78

related. The per capita migration rates of infected, susceptible and recovered groups in the whole79

system are denoted by θ, φ and ξ respectively. The immigration rate of susceptible individuals80

from another patch to patch i is calculated by a function θki = θCe−CD, where k ∈ K, K: the set81

of indices of the patches linked to patch i by migration. The subscript ki indicates immigration82

and ik emigration. Ce−CD is a normalised general exponential function. It is the simplest form83

for representing the mechanism that the migration rate decays as the level difference between84

two patches increases. C is a constant, which scales the function and D is the level difference85

(described above). Similarly, φki = φCe−CD and ξki = ξCe−CD describe the rates of movement for86

infected and recovered individuals respectively. Finally, all the immigrants from different patches87

are summed and all the emigrants to different patches are subtracted for each disease group to get88

the total proportion of immigrants and emigrants.89

As we described above, because all the patches are homogeneous in population distributions,90

disease spreading behaviours and patterns of between-patch movements, we are able to express91

the population dynamics on an arbitrary patch i into a differential equation form (Equation 2):92

dSi

dt
= −(

∑

j

βjiIi)Si +
∑

k

θkiSk −
∑

k

θikSi

dIi

dt
= (

∑

j

βjiIi)Si − γIi +
∑

k

φkiIk −
∑

k

φikIi

dRi

dt
= γIi +

∑

k

ξkiRk −
∑

k

ξikRi

(2)

All migration parameters have very small values in this paper and therefore have little effect on93

the variability of local population dynamics during the simulation. All simulations are run until94

equilibrium is reached. Here we use two systems with the same number of patches in total: 1)95

branching ratio of four (B = 4) and level of three (L = 3); 2) branching ratio of two (B = 2) and96

level of six (L = 6).97



3 Results98

Figure 2 shows the time series of proportion of infected individuals for β being uniformly dis-99

tributed and normally distributed. More fluctuations and different sizes and durations of the in-100

fection changes are observed with the uniform distribution. It shows smaller but longer epidemics101

in the uniform distribution based model than those when β is drawn from a truncated normal102

distribution.103

In previous work using hierarchical metapopulation models, contacts between patches are based104

solely on migration behaviours [2, 6] and comparison results with and without patch-coupling is105

shown in Figure 3. It clearly shows that patch-coupling accelerates the spread of the disease through106

the system and leads to more cases, even with a smaller contact rate for disease transmission.107

4 Discussion108

Combining close-related patches and migration-related patches, we obtain behaviours not observed109

in previous studies [2,6]. A uniform distribution of β means that we have little prior knowledge of110

the adequate contact rates on patches, so the random chosen value has equal opportunities to stay111

at any point within the lower and upper bounds. We have 64 uniformly distributed random num-112

bers and we expect strong stochasticity. The results illustrated in Figure 2 confirm this. On the113

other hand, 64 normally distributed random numbers tend to surround the mean. Consequently114

we observe some randomness but still see the three-level pattern. In conclusion, estimating the115

adequate contact rates in real life is an important step towards choosing right models for predic-116

tions.117

It was shown by previous studies that patch-coupling is a quick way for the disease dynamics on118

each patch to synchronise [13,14], but observing the effects in a multilevel metapopulation model119

was not realised. We obtained a larger epidemic with even smaller contact rates for transmission in120

a model including patch-coupling. Therefore it demonstrates that epidemics are likely to be much121

worse in a large population where movements are frequent between sub-populations. We suggest122

that health authorities cannot ignore an infectious disease with low transmission rate that occurs123

in a large population where people have more frequent short-trips between subpopulations.124

We promote a model based on both frequent movements and long-lived travels and it shows125

that differentiated contact rates make the disease dynamics more complicated but still tractable.126

Since local information of contact rates are not usually collected [14], we expect that investigations127
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Fig. 1. One example of the multilevel system (B = 2, L = 4). The small ellipses represent the
patches, the black nodes illustrate the different levels and the dashed ellipse represent one example
of close-related patches. SIR means that the simple Susceptible-Infected-Recovered process applies
within each patch. It also shows an example of calculating the value of D, the level difference
between any two patches (see method for description). D = 3 for patch 2 and patch 9 (anticlockwise
numbering) according to the levels they belong to (i.e. you have to move up three levels before
these two patches share a common node).
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Fig. 2. The effects of two different distributions of β on disease spreading. B = 4, L = 3. (Top): two
simulations based on a uniform distribution of β (0.0 < β < 0.6); (Bottom): two simulations based
on a truncated normal distribution of β (mean = 0.3, standard deviation = 0.1, 0.0 < β < 0.6).
It shows that we get smaller but longer epidemic from the uniform distribution based model then
those from the normal distribution. Moreover, the results from the uniform distribution are more
stochastic.
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Fig. 3. Comparison between migration-based model and patch-coupling-migration-based model
for two systems: B = 4, L = 3 (Left); B = 2, L = 6 (Right). For migration-based simulations
(dashed line), β = 0.3 is used; whereas 0.1 < βki < 0.3 is applied for patch-coupling-migration-
based simulations (solid line), which means the adequate contact rate on average is smaller than
three. It shows that even with a smaller contact rate, the size of epidemic is not reduced for
patch-coupling-migration-based model. It also shows that the synchronisation of the system is
more rapid in the patch-coupling-migration-based model.

on such data will be helpful both for validating the model and for facilitating better prediction of128

the spread of diseases through human populations.129
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