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Different influenza subtypes can evolve at very different rates, but the causes are not well understood. In

this paper, we explore whether differences in transmissibility between subtypes can play a role if there are

fitness constraints on antigenic evolution. We investigate the problem using a mathematical model that

separates the interaction of strains through cross-immunity from the process of emergence for new anti-

genic variants. Evolutionary constraints are also included with antigenic mutation incurring a fitness cost.

We show that the transmissibility of a strain can become disproportionately important in dictating the rate

of antigenic drift: strains that spread only slightly more easily can have a much higher rate of emergence.

Further, we see that the effect continues when vaccination is considered; a small increase in the rate of

transmission can make it much harder to control the frequency at which new strains emerge. Our results

not only highlight the importance of considering both transmission and fitness constraints when model-

ling influenza evolution, but may also help in understanding the differences between the emergence of

H1N1 and H3N2 subtypes.
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1. BACKGROUND
The two influenza A subtypes common in humans,

H1N1 and H3N2, frequently escape population immu-

nity by changing their antigenic properties. Between

1983 and 2009, H3N2 fixed more amino acid changes

in antigenic sites than H1N1 [1–4], and vaccines against

H3N2 were updated more often than vaccines against

H1N1 [5,6]. The higher rate of appearance and fixation

of non-synonymous mutations in H3N2 could be owing

to a combination of factors, presumably including effec-

tive virus population size, and selective pressures

according to host prior immunity. However, the root

cause of the epidemiological and evolutionary differences

between subtypes of influenza in humans remains poorly

understood [7,8].

Transmissibility, or more specifically the basic repro-

ductive ratio R0, the average number of secondary cases

generated by the average infective individual in a naı̈ve

population, has been much studied for influenza [9,10].

The probability that a strain will become established is

determined by its effective reproductive ratio, which

depends on R0 and the level of population immunity. Sea-

sons in which H3N2 was the dominant subtype have been

associated with a higher effective reproductive ratio

[11,12]; there are also typically more deaths from pneu-

monia and influenza in seasons where H3N2 is the

dominant strain [13]. Transmissibility must be therefore

considered as a possible mechanism behind the difference

in antigenic drift speeds between the two subtypes.

One strain of influenza may confer partial immunity to

another [14], and multi-strain models can be used to study

the evolutionary dynamics of the disease [15–17]. Here,

we define a new strain to be a virus in which the surface

proteins have undergone sufficient change, as a result of
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mutation, to affect people who were previously immune

to it. We will use such a model to examine the role that

transmission plays in the emergence of new strains.

While multi-strain models are well established, few

allow mutation to directly affect aspects of virus pheno-

type other than antigenicity. Although partially explored

in individual-based simulations [1,18], a previous study

[19] introduced a model to investigate the behaviour of

influenza evolution when mutation affected the ability of

a virus to transmit between hosts.

In studies in vitro, single nucleotide mutations in

other RNA viruses have resulted, on average, in a fitness

reduction [20–22]. If random mutation carries a fitness

cost, there is a possibility that mutations associated with

antigenic change also affect the phenotype in some other

way, reducing viral fitness of antigenic escape mutants

through antagonistic pleiotropy [23]. Alternatively, or

additionally, ‘deleterious hitchhikers’—mutations else-

where on the genome that happen to be picked up in the

process of emergence of the antigenic escape mutant—

could have a negative effect (M. Lässig 2011, personal

communication). The ill-fated side branches of influenza’s

evolutionary tree could be the result of costs incurred by

either mechanism (M. Lässig 2011, personal communi-

cation; [24]). However, new influenza strains appear

every few years [25]; this ongoing antigenic mutation and

survival could be possible through subsequent compensa-

tory mutations [26,27].

Gog [19] developed a simple model of these processes

to show that a high-level fitness loss could in fact stop

viral evolution (‘strain lock’), and that vaccination could

also nudge the system into this state. In this paper, a

two-tier framework is used to separate the interaction of

strains via population immunity, modelled deterministi-

cally, and the emergence of new strains, treated as a

stochastic process. This improves the realism of the fitness

loss and compensatory mutation processes, and makes
This journal is q 2011 The Royal Society
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the model computationally far more tractable, allowing

the examination of a variety of assumptions.

We see that although the rate of emergence increases

almost linearly with transmission in the absence of fitness

constraints, when mutation incurs a cost, small changes in

the R0 of the fully fit virus can have a large impact on

emergence. This is an example of phylodynamics [7],

the relationship between epidemic and evolution

dynamics.

Previous work has shown that often a threshold can

exist where vaccination can slow or pause the emergence

of new strains [19,28,29] and therefore we also look at

how the use of vaccination in slowing antigenic evolution

is affected by change in R0. We show that vaccination can

be far more successful in controlling evolution when fit-

ness costs are present, highlighting the importance of

considering such constraints when modelling influenza

evolution.
2. METHODS
(a) A two-tiered model

A first approach to adding fitness costs to a multi-strain

model, suggested by Gog [19], was to take the one-dimen-

sional line of strains used in many previous models [16,30]

and extend it to a two-dimensional space. Each variant had

an intrinsic fitness, as well as an antigenic type (which chan-

ged in one direction). Mutation to a new antigenic type

caused a reduction in fitness, and compensatory mutations

were included so that strains can also regain fitness lost. A

simple stochastic approximation was included; a test was

imposed on new strains present in less than one individual

to ensure that they did not emerge automatically. This

meant that stochastic effects were present in a basic way,

although the approximation had some drawbacks, which

will be discussed here.

Suppose R0 denotes the basic reproductive ratio of the

fully fit virus, i.e. the top level of strains described by Gog

[19]. This definition of R0 will be used throughout this

paper. A full fitness strain therefore has an effective reproduc-

tive ratio R ¼ R0S/N, where S is the number of individuals

susceptible to the strain, and N is the population size.

Here, as in Gog [19], we assume that antigenic change

incurs a fixed fitness cost, so a new strain has an effective

reproductive ratio R1 ¼ xR , R initially, where x denotes

the relative fitness of the mutant, reducing R by a factor

0 � x � 1.

Let I0 be the number of individuals infected with the new

strain. If large numbers are infective with the dominant

strain, even a low rate of mutation will lead immediately to

I0 . 1. Hence it circumvents the stochastic test, and means

a possible ‘overspill’ effect, whereby a circulating strain can

prop up its weaker mutant, allowing it to persist long enough

to undergo a compensatory mutation, despite the fact that

would not necessarily survive if both fitness loss and compen-

sation were modelled as a branching process. Conversely, if

I0 , 1 always, as can happen when the dominant strain is

endemic at low numbers, the stochastic test will not allow

the weaker mutation to ever emerge if it has R , 1. However,

it has been shown that if emergence is modelled stochastically,

infections with R , 1 may still survive long enough to

subsequently undergo a compensatory mutation [9]. A

further issue, mentioned by Gog [19], is that, for x ¼ 1,

there are still two versions of each strain circulating, whereas
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ideally the two-dimensional space should collapse to a one-

dimensional line as x approaches 1, and revert to a simple

drift model similar to that of Gog & Grenfell [16].

As a simple model of strain emergence leads to the above

issues, yet a fully stochastic process with mutation and com-

pensation is computationally intensive, a balance must be

sought. We shall therefore use a two-tiered model [31],

focusing on the deterministic and stochastic processes

separately.

A discrete-time deterministic model of infection at the

population level forms the top tier; this is described in §2c.

Mutation to a lower fitness strain occurs at a constant rate

but the actual emergence of new strains, including compen-

satory mutation, is dictated by the bottom tier: a stochastic

approximation, which has boiled down the details of emer-

gence to a simpler process. This is outlined in §2b, and

allows calculation of the probability that the new strain

appears and causes an epidemic. This probability is then

used in the top tier of the model as a test of the viability of

a new strain appearing at each point in time.
(b) Emergence process

We consider two routes to emergence, as shown in figure 1.

In particular, we wish to determine whether a strain with

R , 1 can mutate before it goes extinct. Similar problems

have been tackled for evolution in the face of selection

pressure [32] and zoonoses [9,33].

First, we outline a useful result that will be used in the full

problem: the probability that a strain with particular fitness

fails to cause an epidemic. We assume that I0� S/N, and each

infective individual can be considered independent. In the

standard susceptible-infective-recovered model, where the effec-

tive reproductive ratio R is constant, the probability a single

infective individual will fail to generate an epidemic is [34]:

probability of extinction ¼ P ¼
1

R
if R . 1;

1 else:

(

As transmission by each infective individual can be

considered independent, we have:

P ¼ min 1;
1

R

� �I0

( )
: ð2:1Þ

Next, this result can be applied to the full evolutionary

process, with compensatory mutation occurring at rate m.

Let I0(t) be the number of individuals infected with the

reduced fitness strain, which has reproductive ratio R1, and

I2(t) be the number of individuals infected with the compen-

sated strain, with reproductive ratio R2 . R1. Although this

method will work for more general fitness structures, in

this paper we assume full fitness recovery, i.e. R2 ¼ R0S2/N,

where S2 is the number of individuals susceptible to strain 2.

Following Keeling & Rohani [34], if I0 ¼ I(0) ¼ 1, the

probability the reduced fitness strain fails to cause an epi-

demic, P1 can be written as a function of the recovery,

transmission and compensatory mutation processes. P2, the

probability the full fitness strain fails to cause an epidemic,

can be treated the same as P above. Rescaling time by the
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effective
reproductive
ratio epidemic no epidemic

epidemic

compensatory mutation

R

R1<R R1<R

R2<R1

Figure 1. The two routes to emergence: (a) despite reduced fitness R1, virus still causes epidemic; (b) no initial epidemic, but

compensatory mutation occurs before extinction and virus with fitness R2 subsequently causes outbreak.
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infectious period 1/g, we have:

P1 ¼
1

1þ R1 þmg

þ R1

1þ R1 þmg

P2
1

þ mg

1þ R1 þmg

P2; ð2:2Þ

where mg ¼ m/g. Taking the smallest root in [0,1] of this

equation gives us the probability that the reduced fitness

strain fails to cause an epidemic [35],

P1 ¼min

1;1�
ðR1�1�mgÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR1�1�mgÞ2þ4mgR1ð1�P2Þ

q
2R1

8<
:

9=
;;

ð2:3Þ

where P2 ¼min f1,1/R2g.
If I0 = 1 and I0�S/N still, we can again use indepen-

dence of interactions to obtain:

P ½fails to emerge jIð0Þ ¼ I0� ¼ PI0

1 : ð2:4Þ

Also note that if mg ¼ 0 in equation (2.3), we recover the

single strain case P1 ¼minf0,1/R1g, as expected. This is also

true if R1 2 1 2 mg� 4mg(1 2 P2)R1, implying that if there

is little or no fitness cost, with R1 . 1 and mg� 1, the prob-

ability of emergence behaves as if we had a single strain

branching process. Therefore, the step-down and step-up

do not have an unnecessary effect if R1 is not reduced by a

fitness cost.

We can use these results to approximate the probability a

strain will emerge in our full model. Suppose strain a is our

frontmost strain (i.e. the one that emerged most recently),

at each point in time, we know the prevalence, Ia, and sus-

ceptibility to a mutant of this strain, Saþ1. If mutation

occurs at a rate m, we would expect to see

I0 ¼ Iað1� e�mÞ ð2:5Þ

new mutants appear in a single time step. Using the above

results, we can therefore calculate Paþ1 ¼ Paþ1(R1, I0), the

probability that an infective individual fails to emerge with

the new strain a þ 1, with R1 ¼ xSaþ1/N, and I0 as above.
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Computationally, this only requires the following test to

be applied at each time step:

Iaþ1 ¼
0 if Paþ1 . uniform random variable X [ ð0; 1Þ;
1 else:

�

Although we have two routes to emergence (figure 1), and

hence two possible values of R for Iaþ1, it is reasonable to

assume that if the virus does cause an epidemic, its numbers

will end up sufficiently large for it to undergo the compensa-

tory mutation during this epidemic [26,36]. Iaþ1 therefore

represents individuals infective with the full fitness strain.

As in Gog [19], unrealistic strain survival is avoided by

setting any strain that decreases in prevalence to I , 1, with

an R , 1, equal to zero. This avoids the decay to infinitesimal

levels (i.e. attostrains [37]), and potential re-emergence,

which can occur in purely deterministic systems.

(c) Epidemic process

The second tier of the model keeps track of how immunity

changes during epidemics at the population level. To do

this, we use a status-based model with one level of fitness

only [16], with Sa denoting the number of hosts susceptible

to (at least) strain a; Ia the number of hosts infectious with

strain a; and La the force of infection of strain a. We will

use a discrete formulation, as it will make it easier to deal

with the mutation step at each point in time (which is

based on the random number tests in §2b). Our system is

therefore:

S0a ¼ Nð1� e�mÞ þ Sa e�ðLaþmÞ ð2:6Þ

and

I 0a ¼ Sað1� e�baIaÞ þ Ia e�g; ð2:7Þ

where

La ¼
X

k

bkckaIk:

Here S 0a and I 0a represent the values of Sa and Ia at the

next time step. Each time step represents one day, and our

parameters are scaled as such. We assume a fixed population

size N, so m acts as both the birth and death rate. ba



Table 1. Parameters (sources: a [38,39]; g [40]).

variable description value

N population size 10 million
m host birth/death rate (80 � 365

days)21

a coarseness of antigenic space 0.5
cka cross-immunity between strain

k and a
e2ajk2aj

1/g infectious period 5 days

R0 basic reproductive ratio varies
b transmission rate R0g/N
x relative fitness of mutant varies
m mutation rate (4 years)21

35
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Figure 2. (a) Relationship between R0 and emergence rate
predicted by the deterministic model of Gog & Grenfell
[16]; (b) relationship in our model in the absence of fitness
costs.
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represents the transmission rate for strain a. Recovery is at a

fixed rate g. Cross-immunity is given by the term cka. We set

this to decay exponentially with antigenic distance, and we

assume that strains give complete immunity to themselves,

so cka must be such that caa ¼ 1. Table 1 gives the values of

the parameters used in the model. The infectious period in

§2b was given by 1/g, so here g includes both recovery

from infection and natural death. However, for typical

human influenza parameters, the death rate makes a

negligible contribution to g.

A moving strain space, as outlined by Gog [19], is also

used to hasten computation. At each point in time all strains

with I . 0 are identified. By the nature of mutation in the

model, these cluster together and hence form a set of adja-

cent strains on our line. This set is active in the model, in

that the above equations only use the variables corresponding

to these prevalent strains. We update this active set at each

time step. If the backmost (i.e. least recent) strain in the set

falls below one infective, then we drop that variable, and if

a new strain appears (see §2b), we add new variables.

There is also a buffer in practice: if a new strain emerges,

we create variables associated to the next strain on the line,

in anticipation of its emergence.

We approximate the new level of susceptibility by multi-

plying the immunity with the previous strain by the

reduction owing to the imperfection of cross-immunity:

Saþ1 ¼ ðN � SaÞ e�a:

This approximation underestimates immunity (in the

form of reduced transmissibility) slightly [19]; this could

affect accuracy under a high mutation rate, as more frequent

appearance of mutants would mean that the strain space

moves faster. However, it is less of an issue for rates similar

to those considered in this paper.

Drift speed, used to measure the speed of evolution in our

model, is defined as the rate of emergence: the mean number

of strains that appear per year, over twenty 50-year simu-

lations. If the system goes extinct, we only look at the

behaviour up to the point of extinction. Over many runs,

this rate approaches a fixed value for each R0 and x. We

focus on x [ [0.6,1], however, as below these values a ten-

dency to lock or go extinct reduces the accuracy of the mean.
3. RESULTS
In a manner similar to that of Gog [19], our model exhi-

bits three dynamical behaviours: locked, where only one

strain circulates; drifting, with the continuing emergence
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of strains; and extinction, where no strains remain. Once

drift is established, the system is more likely to continue

drifting than switch to the other two, especially when x

is larger. As x is reduced, a drifting system will have an

increasing tendency to fall into a locked state, or go

extinct.

First, to check the basic drift dynamics when there is

no fitness loss (x ¼ 1), this model is compared with a

more basic deterministic model [16] using a continuous

version of equations (2.6) and (2.7). In this simpler

model, the authors could use an analytical method to

calculate drift speed c, and it was shown that:

c ¼ min
l

b� g� mþ 2mðcosh l� 1Þ
l

� �
:

Such a result is not possible for a stochastic system of

equations, but using R0 ¼ b/g, we can compare the above

theoretical result with the speed observed in our model

(using the same values of g, m and m). Simulations were

run for several values of R0, with the model deliberately

started in a drifting state, and calculated rate of emer-

gence over twenty 50-year runs. This gives a measure of

the speed of antigenic drift.

Figure 2 shows that the qualitative relationship

between R0 and speed of emergence is very similar, with

the rate of emergence dependent on R0 [ [1.4,3] in a

near-linear way. Although the model presented in this

paper evolves at a slower rate, this is most probably

owing to the stochastic step that tempers emergence.

However, when fitness costs are introduced we see

something quite different. The left-hand side of figure 3

shows that when x , 1, the impact of R0 can become
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nonlinear. A drop-off appears, along which small changes

in transmission can have a disproportionate effect on the

speed at which strains appear. Moreover, at the base of

this ‘drift cliff ’, the relationship is much flatter, and R0

has even less effect on evolution than it did at when

there were no fitness constraints.

It also shows that, if x and R0 do not vary much

between strains, the appearance of a more fit strain with

larger R0 could immediately impact the rate of emer-

gence, as any subsequent antigenic mutant will find it

much easier to establish itself.

We can elucidate this result by considering the role of

the stochastic step in the rate of emergence. Figure 4

shows the probability a strain emerges for a particular

effective reproductive ratio, R1 ¼ xR0S/N, equal to 1 2 P1

in equation (2.3). As R1 decreases towards 1, it becomes

less likely a new strain will emerge at that step. If S were

fixed this would imply that, for each R0, there is a critical

value of x below which the appearance of strains is relatively

rare. Although a subsequent compensatory mutation and

emergence event can still occur, as shown by the solid

line in figure 4, this is rare for R1 , 1 and the long wait

for the appearance of a new strain slows down the rate of

emergence.

However, in our model, S is not fixed because immu-

nity to each strain varies, and depends heavily on other

circulating infection. Therefore, we can only estimate

this relationship between x and R0. Simulations show

that susceptibility S to new strains falls between 0.75

and 0.9, so, by finding the region where xR0S/N , 1,

this can be used to estimate the location of the drop-off

in the rate of emergence. The right-hand side of

figure 3 shows that this theoretical result agrees with the

simulated behaviour, and hence provides an explanation

for the location of the drop-off in emergence.
(a) Vaccination

Vaccination will be explored by observing how the effects

of pulsed vaccination vary with fitness and transmission.

For each x and R0, we let the system settle in a drifting

state before vaccinating a fixed proportion of the
Proc. R. Soc. B (2012)
population chosen at random all at once, at time T, with

a vaccine most similar to the most recently emerged

strain, and cross-reactive with reduced factor e2ad for a

strain distance d away. Hence, if v is the vaccine strain,

and we vaccinate a proportion p,

new Sa ¼ ð1� p e�aja�vjÞSa:

The number of strains that emerge in the interval

[T,T þ 365] is then counted and this number is compared

with the expected rate of emergence for that x and R0, as

calculated in figure 3, to obtain a relative speed between 0

and 1 as a result of vaccination of the population.

When 20 per cent of the population is vaccinated, the

rate of emergence of the strain with R0 ¼ 1.6 is slowed

much more than that of the one with R0 ¼ 2. Taking the

mean from 200 runs, figure 5 shows that while R0 makes

little difference when x ¼ 1, for x , 1, the infection with

R0 ¼ 2 can be far harder to control.

This is because, for a strain with reduced fitness R1 barely

above 1, vaccination can lower susceptibility and put R1
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below 1, and on the slow side of the drop-off. If R0 ¼ 1.6,

R1 ¼ xR0S/N falls into this region. By contrast, with a

small increase in transmissibility (in this case R0 ¼ 2),

R1 is far enough from 1 so as to be far less affected by

vaccination. Even a 20 per cent reduction in the number

of susceptibles is not enough to push the strain into

the area of the drop-off, showing how R0 has become

disproportionately important.
4. CONCLUSIONS AND DISCUSSION
We have seen that if the fitness losses that hamper RNA

viruses in vitro also affect an influenza virus escaping

host immunity, drift speed can be affected. Not only

does the relative fitness of the virus, x, influence the

rate of antigenic escape, there is a feedback between the

evolutionary and epidemic processes, with susceptibility

and transmission at the population level deciding the

impact x has, and vice versa. As seen in figure 3, under

fitness constraints, R0 can become disproportionately

important in dictating dynamics. This implies that two

strains with identical antigenic space and mutation rates

could evolve at very different rates with only a marginal

difference in R0, unlike that required by the deterministic

model of Gog & Grenfell [16]. This is illustrated by the

drop-off we see between regions of high and low rates of

emergence. We have shown that its location can be esti-

mated from the probability that a strain emerges in a

branching process; the theoretical prediction coincides

well with the simulated results. It also explains the

switch between the two stable patterns (locked and drift-

ing) observed by Gog [19]. As x decreases, the probability

of switching from a drifting to a locked (or extinct) state

becomes much larger, as emergence gets rarer. The

drop-off in the overall rate of emergence reflects this

reduction in tendency to drift. Further, the existence of

such a ‘drift cliff ’ between regions of high and low rates

of emergence may affect the impact of antivirals, which

have been known to reduce the infectious period (and

hence the R0) of influenza [41].

As influenza vaccines are selected around nine months

in advance of each hemisphere’s annual winter epidemic

[42], it would be interesting to see whether there is any

indication in historical data that a particularly transmissi-

ble season elsewhere in those nine months leads to a
Proc. R. Soc. B (2012)
higher rate of emergence of new strains, and hence a vac-

cine update. This may be possible in retrospect, but it

would be difficult to monitor the transmissibility of a

strain in real-time, with the aim of providing an indication

of the level of drift to be expected, as the accuracy of

transmissibility estimates are reduced by reporting errors

and gaps in surveillance [43]. In addition, calculating

R0 is difficult for seasons with milder epidemics [11].

However, even if the theoretical mechanisms suggested

in this paper cannot immediately be applied to real-time

prediction, they could be useful in understanding the

differences between the emergence of H1N1 and H3N2

strains.

Second, we have seen that the disproportionate impact

of transmission continues when the immediate period

post-vaccination is considered; under fitness constraints,

a small increase in R0 can make controlling the rate at

which new strains emerge much harder (figure 5), as

well as controlling the rate at which they spread. However,

it also implies that if strains do lose fitness when escaping

immunity, vaccination could have a greater benefit than a

simpler model would imply.

We have made several assumptions in our model. We

have used status-based variables for tractability, simplify-

ing the immune structure of the population. We have also

imposed a one-dimensional strain structure on influenza

evolution. Although this reflects the sequential appear-

ance of strains implied by the ladder-like phylogenetic

tree of influenza A [7,44], the causes of this phylogeny

are likely to be complex, with several explanations

having been proposed [1,17,18,45] for the observed evol-

ution. By using a simple line of strains, this paper does not

address the issue of strain dimensionality. Instead, it

assumes that, in the long term, through some mechanism

not included here, strain evolution follows a one-dimen-

sional path through antigenic space, with cross-reactivity

between strains decaying exponentially as the distance

between them increases.

Like several status-based models, we have also

assumed that cross-immunity acts to reduce transmission.

We do not consider spatial structure, which may also

affect how transmission rates impact on strain emergence

[12], nor seasonality: this paper presents a single popu-

lation with influenza constantly circulating. Our

parameters, although chosen to be plausible, are also

approximate. In particular, mutation rates can affect the

steepness of the drop-off: an increase leads to easier emer-

gence and a slightly flatter relationship, whereas a slower

rate hinders the appearance of new strains and accentu-

ates the drop (results not shown). Further, the

mechanism of fitness loss and regain, via compensatory

mutation, is necessarily approximate: a better under-

standing, ideally quantitative, of how antigenic escape

might incur a fitness cost is needed if the effects of evol-

utionary constraints are to be modelled more accurately.

If it was the case that the process of emergence involved

several mutations, we would expect that the R ¼ 1 bound-

ary is still important in deciding the viability of a new

strain. Although simplifications have been made, our fra-

mework could easily incorporate new developments in the

understanding of influenza or RNA fitness constraints.

Taking a two-tiered approach, we focused on the emer-

gence process and interaction of strains via epidemic

dynamics separately, combining a stochastic approach
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for the former with an ordinary differential equation model

for the latter. This allowed us to not only draw attention to

the role R0 can have in dictating a strain’s rate of antigenic

escape, but also to show that inclusion of realistic evol-

utionary constraints, as well as careful consideration of

the emergence process, can have implications on the use

of vaccination in reducing the rate of such escape.
We would like to thank Nim Arinaminpathy and two
anonymous referees for useful feedback. This work was
supported by EPSRC (A.K.), RAPIDD (J.R.G.) and the
Royal Society (J.R.G.).
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