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Abstract 

New diagnostics and treatments for malaria have renewed hope in the developing world 

as they promise relief from the debilitating effects of this illness. Accompanying these 

interventions are a growing number of economic evaluations assessing their efficiency. To 

ensure the relevance of economic evaluations to decision making purposes it is imperative 

that they use best available computational and statistical approaches. 

This thesis initially discusses the necessary requirements for economic evaluations to 

ensure they provide appropriate decision recommendations. This is followed by four 

evaluations of malaria diagnostics and treatments using methods new to the context of 

malaria. 

The first study expands the range of factors included in the evaluation of diagnostic tests, 

addressing compromised adherence to test results and societal costs associated with 

antimalarial use. 

The second analysis demonstrates how models can be designed as decision support tools 

allowing stakeholders to enter local data along with other parameter estimates, priorities 

and values. Both Bayesian and deterministic models are presented for comparison. 

The third analysis demonstrates the use of multilevel models for economic evaluations 

based on multi-centre trials. The chapter compares the results of a multilevel model 

evaluating treatments for severe malaria with those obtained in a standard analysis. 

The fourth study uses a Markov model to evaluate the efficiency of Home Management of 

Malaria programmes. The use of a Markov model addresses the restricted portrayal of 

malaria infection and illness that has characterised many previous evaluations. 

In addition to contributing to a better understanding of the cost-effectiveness of the latest 

malaria treatments and diagnostic tests, this thesis seeks to bridge the growing gap 

between recent methodological advances in the field of economic evaluation, and the 

relative paucity of evaluations producing practical and effective policy recommendations 

for areas of the world where the burden of malaria and other diseases is heaviest. 
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Preface 

This thesis is the product of three years' work evaluating several malaria diagnostics and 

treatments from an economic perspective. At the start ofthis period a number of areas in 

the economic evaluation of malaria treatment and diagnostics that needed improvement 

were suggested by health economists at LSHTM. Other issues were identified by reviewing 

the existing literature. To address these issues, several potentially useful methods not 

previously applied to malaria interventions were selected. As these related to different 

interventions and contexts, it was decided to pursue these in individual analyses. Data for 

these analyses were obtained by collaborating with investigators carrying out clinical trials 

of antimalarials, rapid diagnostic tests, and distribution strategies. The main body ofthe 

thesis is comprised of these studies. 

While the individual analyses differ in the interventions they assess and the methods they 

use, they all represent enhancements to the economic evaluation of malaria interventions 

by reflecting two common themes. First, economic evaluations should be as 

comprehensive as possible, embracing factors beyond immediate costs and consequences 

to ensure that they are relevant to decision making purposes. Second, evaluations should 

ensure that their results are as responsive as possible to variation in local circumstances. 

Readers well versed in economic evaluations in the context of developed countries will be 

familiar with many of the methods used in these analyses. In the context of malaria 

however, economic evaluation and decision making practices have lagged far behind those 

used in the developed world, despite the colossal health burden malaria places on much of 

the population. This thesis contributes to knowledge by drawing on methods developed 

recently in high income countries and applying them to decision making related to malaria. 
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Thesis structure 

The thesis is divided into two sections. The first section, comprised of four chapters, 

provides an overview of the past and present dilemmas policy makers face regarding the 

use of malaria treatment and diagnostics; it then describes different approaches decision 

makers take in addressing such dilemmas. Chapter 2 reviews the literature of economic 

evaluations previously carried out to appraise malaria diagnostics and treatments, and 

their relevance to decision making purposes with the aim of identifying the areas for 

improvement. Chapter 3 explores the theoretical underpinnings of economic evaluation 

frameworks with a focus on those relevant for use in the context of malaria diagnosis and 

treatment. Chapter 3 goes on to explore different approaches to handling uncertainty in 

decision models and the incorporation of data into the analyses. Drawing on Chapter 3, 

Chapter 4 provides a presentation of the aims, objectives and methods of the studies that 

form the core of the thesis. 

In the second section, four independent analyses demonstrate different decision models, 

all representing methods that are new in the context of malaria treatment and diagnostics. 

The four studies address some of the most urgent questions that policy makers face in 

relation to malaria control. Each ofthese studies deals with different issues; they are 

presented in the order in which they were conducted and to a certain extent build on each 

others' methodologies. 

The concluding chapter discusses the re-orientation of economic evaluations to decision 

making requirements. The chapter argues for using advanced modelling and information

technology capacities in the malaria context to enhance the relevance of economic 

evaluations in particular locations, circumstances and preferences. The limitations of the 

methods used in the thesis are also acknowledged followed by the final conclusions and 

suggestions for further research. 
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1. Malaria, research and decision making 

1.1 Introduction 

This thesis focuses on the development of economic models to inform decision making 

regarding malaria diagnostic and treatment strategies. This chapter opens with a historical 

overview ofthe interactions between malaria research and policy making highlighting the 

current dilemmas concerning the adoption of the most recently developed classes of drugs 

and diagnostics. The focus is particularly, but not exclusively, on Sub Saharan Africa (SSA) 

where the burden of malaria is highest. The focus is also uniquely on interventions 

targeting P./a/ciparum malaria that is responsible for almost all malaria related mortality. 

This is followed by a brief summary of malaria pathology, epidemiology, and the general 

burden of malaria on the economy. Given the focus on practical decision models in this 

thesis, the subsequent section reviews different approaches to decision making to assess 

how policy makers can make use of such models when considering the adoption of new 

health care interventions. 

1.2 A historical overview of malaria research and policy 

The vast majority of the estimated one million annual deaths from malaria occur amongst 

African children (Breman, Alilio et al. 2004). Pregnant women are also highly susceptible to 

the parasite, as are older children and adults in epidemic prone areas. In addition to direct 

morbidity and mortality, malaria's adverse impact permeates societies through a variety of 

mechanisms, feeding into vicious cycles of poverty and poor health (Breman 2001). This 

has been observed at the micro-level by identifying factors such as impaired productivity 

and household health expenditure on malaria prevention and treatment (Chima, Goodman 

et al. 2003). It has been seen at the macro-level by correlating malaria endemicity and 

poor national economic performance (Sachs and Malaney 2002; Malaney, Spielman et al. 

2004). 

20 



In much of SSA, malaria is almost synonymous with disease and poor health, with vast 

amounts of scarce resources being used to mitigate its effects. Households across the 

continent spend a considerable part of their income on malaria prevention and treatments 

(Chima, Goodman and Mills 2003). Many African governments devote a significant 

proportion of highly constrained health budgets to malaria control. At the international 

level unprecedented funding is being made available to both malaria related research and 

for its control of the disease, funding which could also be used for alternative health needs 

(Waddington, Martin et al. 2005). 

Notwithstanding the numerous ebbs and flows, malaria has been at the centre of health 

research and policy in SSA and elsewhere for over a century. This period can be divided 

into three distinct phases defined by two elements: (1) the overall approach to malaria 

control; and (2) the interactions between research and decision making (Gilles and Lucas 

1998; Alilio, Bygbjerg et al. 2004). 

1.2.1 Early discoveries 

In the late 19th and early 20
th 

centuries, the fundamentals of malaria pathology, 

transmission and control were discovered. The presence of Plasmodium parasites in febrile 

patients was first detected by Laveran in 1880 (Gilles and Lucas 1998), though establishing 

that mosquitoes were the vectors for the parasites took another two decades and can be 

attributed to either Grassi or Ross - a matter of unresolved contention. The isolation of 

DDT was achieved in the 1880s although it was only recognized as an insecticide by Paul 

Muller in 1934. Chloroquine (CQ), the mainstay of malaria treatment for decades to follow, 

was first created in Germany in 1936 under the name of Sontochin, and later re-branded 

and mass produced in the USA in 1946 (White 1992). 

With respect to research and development, these remained the most significant events 

until the latter decades of the 20th century. In implementing these technologies during this 

phase, it was often the same pioneers in research, such as Ronald Ross, whom also led the 

way operationally in attempts to control the disease (Alilio, Bygbjerg et al. 2004). In pre

independence Africa, control of the disease was attempted only on a limited scale and 
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mostly where it was in the interest of the colonial powers for military and commercial 

purposes (Gilles and Lucas 1998, White 1992). 

1.2.2 Centrally run vertical programmes 

Building on these discoveries, the middle of the 20th century saw a proliferation of vertical 

programmes in blanket applications of DDT and CO for eradication of the disease that 

proved successful in many temperate climates where transmission was seasonal. Leading 

these programmes were national governments functioning both independently or in 

collaboration with the World Health Organization (WHO). The most concerted effort was 

made with the Malaria Eradication Programme between 1956 and 1969. 

While control efforts proved successful in Europe, the US and parts of the Mediterranean, 

other areas such as South Asia, notably India and Sri Lanka, initially saw good outcomes 

but soon suffered large setbacks (Kager 2002). SSA was excluded altogether from the WHO 

eradication programme as it was deemed unprepared. Nevertheless, the WHO did pursue 

a limited eradication program in Zimbabwe, South Africa and Ethiopia where it was 

deemed feasible (Alilio, Bygbjerg et al. 2004). These few attempts failed and it was quickly 

recognised that it was too ambitious an objective for SSA and resources would be better 

used for control of malaria, primarily through rapid detection and treatment of patients 

suspected to be suffering from malaria. 

The availability of Co, an effective, safe and cheap antimalarial, was conducive to partial 

achievement of this aim. The drug was disseminated widely within and beyond the formal 

health sector, allowing patients with fever and other symptoms suggestive of malaria 

access to affordable and effective treatment. The dissemination of CO was further 

accelerated with the focus on primary health care, spurred by the Alma Ata convention in 

1978. 

Consequently, CO was readily used to treat all malaria suspected patients. Furthermore, 

the antipyretic characteristic of the drug alleviated symptoms for other non-malarial 

causes of illness. This additional benefit coincided well with the promotion of presumptive 

treatment strategies, where in the absence of an alternative obvious cause, all febrile 
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illnesses were treated as malaria. From the decision makers' perspective, CQ was the ideal 

drug with almost no apparent down-side to its use. 

With the availability of DDT and CQ, two relatively simple and effective interventions, and 

the previous success with eradicating malaria in many parts of the world, research into 

malaria during this period fell into a lull. However, the golden age of these two 

interventions would soon end, as DDT was largely abandoned and CQ became ineffective, 

causing a surge in morbidity and mortality amongst what became a highly susceptible 

population (Trape 2001). 

DDT was the first to face a decline in its effectiveness, as some of the mosquito vectors 

developed resistance to its toxicity. Furthermore, uproar over environmental concerns 

resulted in DDT being phased out long before it was ever deployed on a large scale in SSA -

notwithstanding a number of promising trials demonstrating its potential role in reducing 

malaria transmission (Curtis and Lines 2000). The golden age for CQ came to an end with 

the spread of parasites resistant to its therapeutic powers, initially in Southeast Asia, and 

later in most parts of Africa. Eventually CQ resistance spread to almost all other malarious 

regions of the world (0' Alessandro and Buttiens 2001; Arrow, Panosian et al. 2004). 

1.2.3 Proliferation of research and decision making bodies 

In the later decades of the 20 th century, the persistent burden of malaria gradually re

ignited research into alternative interventions for diagnosis, treatment, and vector control. 

This was accompanied by the emergence of multilateral national and non-governmental 

bodies merging malaria related research with policy making (Alilio, Bygbjerg et al. 2004). In 

addition to product research and development, bodies such as the Multi/oterollnitiotive on 

Malaria (MIM) and the WHO Tropical Disease Research programme (fOR) and later Roll 

Back Malaria (RBM) partnership, encouraged the education and training of health 

researchers, professionals and policy makers in SSA and elsewhere in the developing 

world, thus further empowering decision making bodies across the continent. 

The major challenge facing these entities was the demise of CQ as an effective first line 

treatment, requiring the introduction of alternative therapies. Unfortunately, none of the 
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alternate options combined all the advantages of CQ. Perhaps due to a reluctance to part 

with Co, the process of consideration and adoption of new antimalarials was slow. In 

Kenya it took over 14 years from the initial evidence documenting CQ resistance to the 

final policy change (Shretta, Omumbo et al. 2000). In Tanzania the first line treatment had 

to be changed twice in the space of 5 years as by the time the first change was formally 

adopted, the new drug was already facing high treatment failure rates (Williams, Durrheim 

et al. 2004; Mubyazi and Gonzalez-Block 2005). The introduction of new first line drugs and 

the rapid development of resistance to these became a menacing feature of malaria 

control in SSA and Southeast Asia in particular (Bloland, Kachur et al. 2003). 

Despite these setbacks, the last decade has seen a vast increase in global activities relating 

to malaria control- specifically in the proliferation of malaria-based agencies, and 

unprecedented funding for these. Bates and Herrington (2007) provide a fairly optimistic 

overview of malaria control in recent years, describing how the decision making process 

has been transformed from one dominated by centralized bodies and special interests to 

one that is more transparent, inclusive, and reactive to local circumstances. 

Despite the proliferation of decision making bodies, new interventions and strategies often 

continue to be promoted on a continent wide scale, even though their use may not be 

appropriate in all circumstances. This has been cautioned against in the case of rapid 

diagnostic tests (Bell et aI., 2002), artemisinin combination therapy (Whitty and Staedke, 

2005) and home management of malaria programmes (Hopkins, Talisuna et aI., 2007). The 

shifting of decision making powers to local bodies could ensure that only those 

interventions that are best suited to local circumstances are adopted. 

1.3 The introduction of artemisinin combination therapies and rapid 

diagnostic tests 

Other developments have also provided further promise of improved malaria control. 

Since the late 1990s, a new class of drugs has been introduced with the promise of filling 

the gap left by the demise of CQ as an effective antimalarial. Artemisinin compounds, 
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identified in Chinese herbal medicine as an effective treatment for fever, have been 

developed for use as antimalarials and have proved highly effective in rapid elimination of 

infection. To further ensure therapeutic success and reduce the probability of resistance 

emerging to them, artemisinin compounds are being used in combination with other 

antimalarials. 

Presently, artemisinin combination therapies (ACTs) hold much promise for effective 

treatment of malaria as has been demonstrated in much of Southeast Asia (Nosten and 

Ashley 2004) and more recently in a number of locations in Africa (Barnes, Durrheim et al. 

2005; Bhattarai, Ali et al. 2007). ACTs are now being heavily promoted for first line use in 

the treatment of uncomplicated malaria across SSA by the WHO and other influential 

bodies such as the Global Fund to Fight AIDS, Tuberculosis and Malaria, and the US 

Institute of Medicine (WHO 2001; Arrow, Panosian et al. 2004; WHO 2006b). 

A host of arguments, however, have been made that ACTs should not be given as 

presumptive treatment, and that countries should rely more heavily on parasitological 

diagnosis prior to their use (Bloland, Kachur et al. 2003; Amexo, Tolhurst et al. 2004; 

Breman, Alilio et al. 2004; Nosten and Ashley 2004; Whitty and Staedke 2005). Three main 

areas of concern have been raised. First, these therapies come at a cost significantly 

higher than any of their predecessors, raising concerns around the sustainability of using 

them as first line treatment. Second, there is the possibility of encouraging resistance to 

artemisinin compounds, with very limited options for their substitution in the near future 

(Bloland and Kachur 2003). Third there are safety concerns regarding their widespread 

use, particularly amongst young children and pregnant women (Price 1999). The increased 

focus on improved diagnostics has also emphasised the potential benefit of demonstrating 

when fevers are not caused by malaria parasites - allowing clinicians to consider and treat 

alternative causes of illness (Shillcutt, Morel et al. 2008). 

The arguments in favour of improving diagnostiC practices have coincided with the 

increasing availability of rapid diagnostic tests (RDTs), which are competing with the 

traditional use of microscopy for the detection of parasitaemia. RDTs allow for fast and 
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relatively accurate diagnosis and require only minimal training and infrastructure for their 

use (Moody 2002). 

With an increased demand for ACTs and ROTs, and a vast rise in available funding from 

donor organizations (Waddington, Martin et al. 2005), a growing variety of ACTs and ROTs 

are becoming available on the market. This increase in antimalarials and diagnostic tools is 

accompanied by a host of evaluations considering their efficacy, effectiveness and costs in 

a variety of settings. The consequence is a relatively large body of data accumulating 

rapidly on ACTs and ROTs. These data, however, are not amenable for use by decision 

makers due to their fragmentation in three main areas: (1) the specific antimalarial or ROT; 

(2) the target sub-groups in the population; (3) the geographical location. 

In terms of the particular intervention, the variety of available tests and proposed drug 

combinations in the ACT class hampers efforts to agree in broad terms on their efficiency. 

This was recently demonstrated in a meta-analysis of artemether-Iumefantrine in a four 

dose regimen which concluded that this was less effective than the non-artemisinin 

antimalarials it was compared to (Omari, Gamble et al. 2004). This was followed shortly by 

a meta-analysis of the six dose regimen of the very same combination that came to the 

opposite conclusion (Omari 2005). Similarly, while overall ROTs have been shown to be of 

sufficiently high accuracy to be considered for use in routine practice (Murray, Gasser et al. 

2008), individual studies of ROTs detecting the same antigens and even of the same brand 

have reported discrepant results (Tjitra, Suprianto et al. 2001; Guthmann, Ruiz et al. 2002; 

Swarthout, Counihan et al. 2007). 

Regarding the target population, there are a number of factors relating to patient profiles 

that will influence the interventions' effectiveness. The patient's age for instance might 

determine how susceptible they are to infection and subsequent development of disease 

due to acquired immunity (Greenwood, Bojang et al. 2005). This will influence both the 

efficiency of the treatment used, and also the utility of using diagnostic tests to confirm 

the existence of malaria parasites. 
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Other patient characteristics that might influence efficiency are HIV status and pregnancy. 

The interaction between HIV and malaria is garnering attention and is likely to influence 

the efficiency of both diagnostics and treatment (Kublin and Steketee 2006; Laufer, van 

Oosterhout et al. 2006; Van Geertruyden, Mulenga et al. 2006a; Van Geertruyden. 

Mulenga et al. 2006b). Pregnant women can lose their immunity to malaria, therefore fast 

and accurate demonstration of parasitaemia is critical. Furthermore there have been 

concerns regarding the safety of certain antimalarials for this subgroup, therefore 

presumptively treating them where prevalence is low may be inappropriate (Breman 2001; 

Brentlinger, Behrens et al. 2006). 

Regional differences such as those in transmission patterns and resistance to partner drugs 

will also influence intervention effectiveness (Francis, Nsobya et al. 2006). ACTs will be less 

effective when the partner drug in the combination is one that is locally failing in mono

therapy (Whitty and Staedke 2005). Presumptively treating all febrile patients where 

transmission is very low is also unlikely to be efficient. Competing interventions and health 

needs, as well as the available health budget, will all impact on whether the use of specific 

malaria diagnostics and treatments are an efficient use of resources. These are all factors 

that vary widely by location. 

Many of these factors are highly temporally dynamic, adding a further complication. 

Treatment efficacies for instance vary, as do transmission intensities and host immunity in 

the population. These variations are due to factors such as emerging resistance, 

urbanization and climate change. Given these circumstances it is clear that no single choice 

of drug, diagnostic, or case-management strategy will be appropriate for all patients, at all 

times and all locations. An expensive ACT may not be the most appropriate first line drug 

in all settings, for instance, in the treatment of semi-immune adults in areas of low 

resistance to cheaper drugs. On the other hand its use in presumptively treating certain 

subgroups, such as young children in high transmission areas, may be beneficial. 

There is a sense of urgency to these issues, both to curb the ongoing toll of malaria and 

other non-malarial febrile illnesses (NMFls) in the most vulnerable populations in SSA, but 

also to temper the drive for the immediate widespread deployment of ACT and RDTs 
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across SSA. Health care systems already buckling under the strain of illnesses such as 

malaria cannot afford to pursue ill-suited strategies to tackle them. 

As this section has discussed, malaria research and policy making has evolved dramatically 

over the past century from the days when a single body advocated a small number of 

uniform interventions across the continent. Today policy makers face a mixed blessing of 

numerous options for diagnosis and treatment of malaria, with an abundance of data on 

the interventions under conSideration, and on a host of other factors that should influence 

their decisions. With more choice comes more decisions for which, as will be discussed in 

later chapters, many standard economic evaluations fail to provide adequate answers or 

recommendations. 

So far this chapter has provided an overview of malaria, research and policy. The next 

section will provide an overview of malaria pathology and epidemiology, and the impact 

malaria has on the economy as a whole. This is followed by a description of the different 

approaches to incorporating research with decision making in formulating policy, such as 

choice of malaria diagnostics and treatment strategies. 

1.4 Overview of malaria pathology 

1.4.1 The malaria life cycle and interventions for its control 

While establishing a precise definition of clinical malaria has proved challenging, the initial 

cause of illness is straightforward - an infection with a protozoan parasite from the genus 

Plasmodium (Greenwood, Bojang et al. 2005). Almost all human infections are caused by 

four species of the parasite, with P.falciparum causing the greatest health burden. The life 

cycle of the parasite is such that it evolves through a number of stages in both its human 

and mosquito hosts, as depicted in Figure 1-1. 
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Figure 1-1: The life cycle of malaria. Taken from http://www.emro.who.intIRBM/AboutMalaria
QuickOverview.htm - Accessed 15/11107 

From the public health perspective the different stages ofthe malaria life cycle are 

targeted by different interventions, aiming at either clinical care or at reduction of 

transmission between humans and vectors (Shiff 2002). 

After infection from the bite of a female anopheline mosquito, a number of sporo2oites 

migrate to the liver where they remain for an average period of 6.5 days. The initial liver 

stage sees the reproduction of the parasite; at this pOint the host is asymptomatic 

(therefore also unaffected by treatment). The only public health intervention relevant to 

this stage is the development of malaria vaccines that would terminate the cycle at this 

point (Moorthy, Good et al. 2004). 

At the next stage the parasite develops into mero2oites that enter the bloodstream, and 

release tens of thousands of merozoites, first invading red blood cells and then attaching 

themselves to walls of small blood vessels, potentially blocking the blood flow to organs. 

This process repeats itself cyclically with parasite loads increasing exponentially. At this 

stage the host can become symptomatic at varying degrees of severity, ranging from mild 

fever to severe illness and death. Antimalarial guidelines target rapid provision of the 

drugs to halt this cycle and reduce the parasite load . Different drugs perform this action at 
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varying speeds and effectiveness, while some will have a further advantage of a limited 

prophylactic effect (White 2005). More persistent drugs, however, also expose themselves 

to a greater risk of development of parasite resistance as they drop below therapeutic 

levels. 

Undisturbed, the parasites would enter the next stage where they are differentiated into 

male and female gametocytes. Although benign to the host, these are the forms 

responsible for transmission back to mosquitoes. From a public health perspective, 

therefore, an antimalarial that reduces gametocyte load could also contribute to reduced 

transmission. This is a particular characteristic of artemisinin compounds, which suggests 

they might have the additional benefit of reducing overall transmission (Obua, Okell et al. 

2008). 

A female mosquito that is infected with gametocytes during feeding will then carry the 

parasite as it evolves back to the sporozoite stage for re-infection of another host. The 

main interventions aimed at reducing transmission are targeted at vector control, either by 

reducing the number of mosquitoes altogether, as in the widespread spraying of 

insecticides and with the elimination of breeding grounds, or by protection of susceptible 

humans through indoor residual spraying or the use of insecticide treated bed-nets. A 

range of other interventions are in development that also aim at eliminating transmission, 

perhaps most notably genetically modified mosquitoes that are fully refractory to 

Plasmodium paraSites (Greenwood, Bojang et al. 2005). 

1.4.2 Clinical manifestations 

Infection in the human host can manifest itself in a number of ways. Most well known are 

the intermittent febrile episodes termed uncomplicated malaria. A typical clinical episode 

will consist of a series of febrile episodes of varying length and frequency, depending in 

part on the species and on host susceptibility (Arrow, Panosian et al. 2004). Other 

accompanying symptoms can include head and body pains, cough and diarrhoea (Snow 

and Marsh 1998). 
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More acute infections can induce seizures and coma, referred to as cerebral malaria, with 

estimated case fatality rates ranging between 10%-40% (Arrow, Panosian et al. 2004). 

Another manifestation, usually associated with repeated infections, is severe anaemia, also 

a life threatening condition. The third and increasingly recognised manifestation of severe 

malaria amongst African children is respiratary distress and metabalic acidosis (English, 

Waruiru et al. 1996). While not the most common form of severe malaria, this is the most 

fatal, particularly when coinciding with other manifestations of the infection (Greenwood, 

Bojang et al. 2005). 

1.4.3 Long term morbidity 

In addition to the above symptoms directly associated with the infection, a number of 

long-term conditions are possible. Higher prevalence of anaemia is closely correlated with 

infection rates, also among non-febrile individuals, as is a compromised immune system 

and higher susceptibility to other diseases (Winstanley, Ward et al. 2004). Long term 

neurological impairment can also follow cerebral malaria (Arrow, Panosian et al. 2004). 

Pregnant women are particularly susceptible to infection, with higher risk of adverse 

outcomes for both themselves and their infants, expressed in anaemia amongst mothers, 

and in higher probability of stillbirths for infants. Parasitaemia amongst pregnant women is 

also associated with low birth weight, itself linked with risk of neo-natal mortality and 

morbidity later in life (Molineaux, Muir et al. 1988). 

1.4.4 Host immunity 

The cause of malaria illness will by definition be malaria parasites, though in endemic 

areas, where the vast majority of infections will not result in clinical manifestations, the 

prevalence of parasitaemia amongst asymptomatic individuals in high transmission areas 

can be as high as 90% (Bottius, Guanzirolli et al. 1996). Older children and adults in these 

areas will develop immunity to the parasites, often showing no clinical manifestation 

beyond benign mild febrile episodes, indistinguishable from fever resulting from other 

causes. 

31 



The host's degree of susceptibility to infection and development of severe disease is 

largely a product of immunity to parasites due to prior infections, thus age and 

transmission intensity will playa role in determining the outcome of infection. While these 

factors go part way in explaining the diversity in outcome, much remains to be understood 

as infected hosts of similar characteristics will often experience remarkably different 

outcomes (Arrow, Panosian et al. 2004). Broadly however, immunity to severe 

manifestations and death is acquired early on in life while immunity to other less severe 

manifestations is more gradual (Gupta, Snow et al. 1999). 

1.5 Case definition and diagnosis of malaria 

In non-endemic areas the definition for clinical malaria is relatively simple - the presence 

of Plasmodium parasites accompanied by a history of fever (Marsh and Snow 1999). This, 

however, is insufficient in high transmission areas where a large proportion of the 

population can be parasitaemic and asymptomatic at any given time. Attempts to resolve 

this by using parasite load cut-off points have proven controversial as parasite densities do 

not always correlate directly with clinical incidence or with disease severity. A more recent 

method has somewhat improved this with the use of logistic regression to estimate the 

risk of fever as a continuous function of parasite density (Mwangi, Ross et al. 2005). While 

this can provide more accurate measures of the overall burden of malaria in the total 

population, it is still an inaccurate tool for determining whether a particular patient's cause 

of illness is their infection with Plasmodium parasites. 

The ambiguity in case definition and diagnosis is further exacerbated by the inability in 

many instances to obtain a diagnosis of parasitaemia due to limited infrastructure, with 

clinicians relying entirely on non-specific clinical symptoms for treatment decisions. 

Attempts to construct algorithms to improve the specificity of clinical diagnosis of malaria 

have so far proved unsuccessful (Chandra mohan, Jaffar et al. 2002). 

Given these difficulties, when CO was still effective and resistance was not yet a looming 

threat, presumptive treatment for all age groups and in all endemic areas was a rational 

policy, particularly given CO's antipyretic qualities relieving symptoms of other illnesses. 
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This however, may well have contributed to the confusion of malaria with other illnesses 

on the part of patients and clinicians, as patients given an antimalarial felt their symptoms 

alleviated. The confounding of malaria and febrile illness is not limited to patients and 

clinicians in remote areas where diagnostics are inaccessible, but permeates the world of 

malaria research and control in assessments of disease burden and the implementation of 

malaria control measures. 

1.6 Consequences of overdiagnosis of malaria 

Febrile illnesses treated as malaria account for approximately 20%-40% of outpatient visits 

in SSA (Chima, Goodman et al. 2003). There is a shortage of data concerning the exact 

break down into malaria and other NMFls. There are, however, a number of studies in SSA 

suggesting that malaria is being grossly over diagnosed, especially in low transmission 

areas (Biritwum, Welbeck et al. 2000; Makani, Matuja et al. 2003; Reyburn, Mbakilwa et al. 

2007). This raises concerns regarding detrimental consequences for patients suffering from 

N MFls, where the case fatality rate can be higher than that for malaria, particularly when 

receiving antimalarials instead of appropriate treatment (Makani, Matuja et al. 2003). 

The overdiagnosis of malaria has ramifications beyond the patient at hand. 

Notwithstanding the potential benefit of treating a febrile patient with an antimalarial, 

there are societal costs associated with each treatment given, described here as the "harm 

of treatment". This potential harm associated with the provision of an antimalarial or 

antibiotic includes the potential for drug toxicity (Price 1999), the contribution to the 

development of parasite (or bacterial) resistance (Bloland, Kachur et al. 2003), and the 

opportunity cost of the use of scarce resources. 

From a public health perspective, the confusion surrounding case definition and diagnosis 

also results in considerable variation in total estimates of morbidity and mortality, with the 

speculated number of clinical episodes of malaria ranging from 400 million to 5 billion 

clinical episodes annually, leading to anything between 1 and 3 million deaths a year 

(Breman 2001). The magnitude of even the lowest of these estimates justifies placing 

malaria high on health agendas; however this uncertainty can also lead to pursuit of highly 
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inappropriate strategies, where billions of clinical episodes might be incorrectly treated 

and up to two million lives might be lost every year after incorrect diagnosis with malaria. 

Assessments of the true burden of malaria are continuously challenged by factors such as 

urbanization (Roberts, Macintyre et al. 2003), climate change (Tanser, Sharp et aI., 2003), 

and the widespread implementation of interventions such as insecticide treated bed-nets 

(Curtis, Jana-Kara and Maxwell, 2003). These all affect transmission intensity and 

consequently prevalence of malaria and host immunity, posing substantial difficulties to 

policy makers considering treatment and diagnostic strategies, and raises concerns as to 

how they might account for such variation in their decision making process. 

1.7 The impact of malaria on the economy 

In addition to the direct health burden malaria places on populations at risk, there are 

further ramifications that can be detected across the entire economy. A number of studies 

have been carried out, exploring the impact malaria has on the economy at both the micro 

and macro levels. These studies express a range of views on how malaria affects the 

general economy, and the possible outcomes for strategies that might reduce or eliminate 

the presence of malaria. 

One of the earliest evaluations to take a macro-economic approach is an analysis of the 

impact of malaria eradication in Sri Lanka on average income per capita (Barlow 1968). 

Following Barlow's estimate of the increase in child survival rates, the long term projection 

was that population growth would lead to a downturn in income per capita, suggesting 

that from a purely economic perspective, malaria eradication would result in poorer 

economic performance. 

Two more recent studies have assessed the overall economic burden of malaria by 

assessing its impact on growth rates. Gallup and Sachs (2001) carried out a regression 

analysis for the correlation between malaria and economic growth. Their results suggest 

that countries with intensive malaria grew 1.3% less per person per year, and a reduction 
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of 10% in malaria was associated with 0.3% higher growth (Gallup and Sachs 2001). 

McCarthy, Wolf and Wu (2000) also carried out a regression analysis but allowed for two 

way causality between morbidity and economic growth rates, resulting in a lower estimate 

of 0.25% reduction and far greater variability in results (McMarthy, Wolf et al. 2000). 

Another approach to determining the impact of malaria on the economy is through micro

analyses that sum up total household or government expenditure on treatment and 

productivity losses related to malaria morbidity and mortality. Shepard et al (1991) used 

such an approach based on costing from four countries to extrapolate to the total burden 

of malaria in Africa, estimating the total cost at 1.1 billion USD (Shepard, Ettling et al. 

1991). Chima, Goodman and Mills (2003) later summarised the findings of such analyses, 

demonstrating their shortcomings in adequately evaluating the true costs of malaria to the 

economy, notably the overestimation of the productivity losses associated with 

uncomplicated malaria, and the underestimation of the economic burden of severe 

malaria (Chima, Goodman et al. 2003). 

Factors such as the impact of malaria on long term educational attainment and subsequent 

productivity have yet to be thoroughly explored, although the overall negative correlation 

between malaria and average schooling years has been demonstrated, and can be 

assumed to have a substantial negative impact on the economy as a whole (Lucas 2006). 

1.B Approaches to decision making 

The high profile of malaria on the international agenda, and its overdiagnosis in clinical 

care and burden of disease assessments, are one potential source of bias in the decision 

making process concerning the adoption of new malaria control interventions. Another 

potentially biasing factor is the influence of the decades of presumptive treatment with 

CQ, being affordable, accessible, and effective for both malaria and other febrile illnesses. 

This may well have resulted in a temptation to fill the void left by CQ by distributing newer 

antimalarials in a similar fashion. Such biases sway policy makers when their decisions are 

made on a purely intuitive basis. Use of analytic decision models can ensure that these 
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factors are accounted for in a more rational manner. In this section a brief overview is 

given on how policy makers could draw on research to inform their decision-making in the 

face of the pressing and complex issues they are expected to act on. 

Deciding on policy such as switching first line drugs for malaria involves the consideration 

of a multitude of factors, many of which exhibit high levels of uncertainty. Other inputs 

might be of a more value laden nature; for instance, where policy makers might have to 

trade off future costs and benefits for present ones, often at an unequal weight. Under 

such circumstances of uncertainty and the presence of value laden factors, a number of 

distinct approaches to decision and policy making can be found. 

1.8.1 The status quo bias 

When having to choose between competing strategies, the simplest reaction would be to 

maintain the status quo, a common response when facing conditions of change and 

uncertainty (Samuelson and Zeckhauser 1988). In fact the 'status quo bias' has been 

estimated to increase with the complexity of a situation and the number of proposed 

alternatives. The ongoing harmful consequences of the status quo can continue to remain 

low on the political agenda when both policy makers and the public have already resigned 

themselves to this reality. Only when the issues reach some threshold of unacceptability 

and recapture public attention is the decision maker shaken into action, albeit later than 

might have been warranted. 

This pattern was evident in the reluctance to switch to the use of new antimalarials even 

when the existing ones were increasingly recognised to be ineffective, as described by 

Shretta et al. (2000), examining the policy change from CQ to SP in Kenya, in relation to the 

evidence on CQ resistance. The authors identified studies spanning a period of 14 years 

prior to the final change from Co. which demonstrated the fall in its efficacy. However, 

only when the evidence became irrefutable with a number of studies with failure rates as 

high as 72% and adverse clinical outcomes, were policy makers more proactive in their 

decision making. 
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1.8.2 Intuitive decision making 

The dominant form of decision making in private life is an intuitive one, which simply relies 

on our capacity to digest numerous sources of information relating the probabilities and 

outcomes of different events occurring, and subsequently react in the most adequate 

manner (Hammond 2000). Although a highly complex process, this is how everyday 

decisions are routinely made. Facts, uncertainties and values are all constantly merged 

together, often in a manner that even the individual decision maker cannot tease apart. A 

parent to a febrile child, for instance, will intuitively merge their subjective assessment of 

the probability ofthis being malaria or a different illness, and the probability of a severe 

outcome, along with factors such as the different costs associated with the possible 

responses (buy medication at the drug store, spend a day at the outpatient clinic etc.), and 

act accordingly. 

While this form of decision making might suffice in private life, it has a number of 

limitations when facing broad policy considerations in the public sphere. First, most people 

have a fairly limited capacity to analyze intuitively even mildly uncertain situations, 

particularly when these involve a number of factors, often with conditional probability of 

occurrence. This has been repeatedly demonstrated in the literature relating to heuristics 

and decision analysiS (Tversky and Khanerman 1974). The misinterpretation of diagnostic 

test results, for example, is a recurrent problem in clinical practice, when clinicians all too 

often confuse test sensitivity with its positive predictive value1 (Altman and Bland 1994). 

This is but one example amongst many that are revealed when decision making processes 

are mapped out systematically (Hammond et aI., 1997). 

Second, given these potentially flawed decision making processes, these are often 

accompanied by a complete lack of transparency, as it can be unclear what information 

1 A positive test that is 97% sensitive does not mean that there is a 97% chance that the patient is 

carrying the condition of interest. The latter probability, or predictive value, is an amalgamation of 

test sensitivity, specificity, and the prevalence of the condition amongst the population. 
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entered the decision making process and the value attributed to different inputs. This can 

impede the identification of influential but uncertain parameters that might require better 

estimation in future decision making. The lack of transparency also implies less 

accountability for bad decisions, absolving the decision maker from scrutiny in how 

decisions were reached, and avoiding the need to invest appropriate resources in 

considering the different options. Despite these limitations this form of decision making 

has been acceptable and even revered in both clinical medicine and policy, and only in 

recent years has it made way to slightly more analytical approaches (Davies and Nutley 

1999). 

1.8.3 'TIABIM' (Taking into account and bearing in mind) 

In recent years it has become the norm in both clinical medicine and policy to adopt, or at 

least pay lip-service to, more evidence-based approaches to decision making. The TIABIM 

approach (Dowie 2005) is often carried out by compiling some of the relevant evidence 

systematically so that parameters such as clinical efficacy and costs are fed to decision 

makers, to be subjected to an intuitive synergy with a range of other factors. 

The proliferation of 'Health Impact Assessment' reports is indicative of the will to 

incorporate evidence on a range offactors in the decision making process (Dowie 2003). 

While this represents some progress from entirely intuition based decision making 

practices, it still places unfair and often impossible demands on policy makers to 

synthesise all evidence for and against the intervention in what remains a highly intuitive 

manner. As will later be described, many economic evaluations opt for a very narrow 

scope of factors to be included in the analysis, such as immediate intervention costs and 

intermediate measures of outcome. Antimalarials for instance, are often evaluated based 

on their parasite clearance rate in a particular place and time, leaving the onus on the 

decision maker to intuitively merge this with other factors such as the possibility of 

emerging resistance, and extrapolate the significance of these for the long term or to other 

settings. 
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As with the intuitive decision making approach described earlier, the drawbacks of this 

approach relate both to the process itself, and the ability to scrutinize it for improvement. 

In order to improve both the quality of the decisions and their transparency, a more 

analytical approach is required. 

1.8.4 Decision analysis 

According to the Society of Medical Decision Making, decision analysis (DA) can be defined 

as "a methodology for making decisions by identifying alternatives and assessing them 

with regard to both the likelihood of possible outcomes and the costs and benefits of the 

outcomes.,,2 

DA facilitates the handling of situations where a decision is required despite high levels of 

uncertainty concerning factors that determine final outcomes, which denies the decision 

maker an obvious choice of action. In its simplest form, decision analysis requires the use 

of a model representing the alternative courses of action, the identification of all possible 

outcomes related to these options, and the assignment of probabilities and payoffs to each 

of these. Once relevant parameters have been identified and placed in the model, an 

expression of the uncertainty surrounding these is required in the form of the probability 

of different values for the parameter. The analysis then requires that these be 

complemented by the utilities for the different outcomes, as defined by the decision 

makers (Lindley 2000). The option with the highest expected payoff is the one 

recommended for adoption. 

In addition to this primary function, such models allow further exploration of how results 

are affected by individual parameter uncertainty. This can be beneficial for both policy and 

research purposes in providing indication as to which parameters are most influential for 

the final outcome, and which would benefit most from further research. 

2 http://www.smdm.org Accessed July 18th 2007 
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While the use of DA represents an improvement in systematic and rigorous policy making 

over intuitive decision making, paradoxically it can at times appear as insufficiently 

scientific from the researcher's perspective. For instance, one of the defining 

characteristics of the DA approach is that it requires a departure from a classical scientific 

method, where a parameter estimate will be accepted as true if the null-hypothesis is 

disproved following the finding of a p value below 0.05. In DA, the luxury of maintaining 

these standards for determining whether a hypothesis is true or false cannot be afforded, 

as decisions will still be required even in the absence of conclusive evidence. Instead, the 

probability of the truth of the hypothesis is introduced into the analysis, allowing this 

uncertainty to carry through to final decision recommendations (Dowie 2005). 

DA is characterised by a decision oriented approach, in that its starting point is structuring 

the problem in an analytic manner, usually a decision model, and then seeking out the best 

available evidence to populate it. Consequently, the use of decision models has been 

greeted with a number of criticisms. These include the possible use of clinical trials with 

insufficient statistical power to inform parameter values, the use of observational studies 

with potential biases, and the validity and transparency of the models (Buxton, Drummond 

et al. 1997). There is an underlying concern that too many of these factors are left to the 

discretion of the modeller. At the extreme, the lesser degree of scientific rigour can lead to 

manipulation of decision recommendations and potentially the abuse of the methods to 

promote commercial agendas (Kassirer and Angell 1994). 

While these are all valid concerns, the use of decision models must be compared to the 

prevailing decision making processes, characterised by far less systematic approaches, 

where the evidence is at best partly digested by the decision maker who will then having 

'borne everything in mind', conclude that one course of action is preferable to another. 

The existence of biases and commercial interests in such processes is also far less visible. 

1.9 Decision analysis and economic evaluations 

Decision analysis is a general approach to problem solving. While there are a variety of 

types of economic evaluation frameworks (see Chapter 3), most function by applying the 
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same approach as that of DA - identifying the alternative options involved, estimating the 

probabilities of different outcomes for each choice of action, and assigning costs and 

benefits to these outcomes. 

How informative economic evaluations are for policy making purposes will depend on their 

framework, content, and how they handle variability and uncertainty in parameter 

estimates. Economic evaluations often limit themselves to the inclusion of immediate costs 

and intermediate measures of outcome, providing decision makers with measures such as 

the 'cost per patient correctly diagnosed', that they will have difficulty in interpreting in 

relation to other considerations (Drummond, O'Brien et aI., 2005). Other factors that have 

significant bearing on the effectiveness of an intervention such as patient and/or clinician 

adherence to its use are often excluded from analyses, which instead focus only on the 

efficacy in trial circumstances. Evaluations could alternatively seek greater decision 

relevance by trying to incorporate longer term costs and benefits and ensure their 

relevance to the particular intervention and population being considered. 

The general theme of this thesis is that economic evaluations should as far as possible seek 

to maximize their relevance to decision making context. Doing so requires that all major 

factors are included in the scope of the analysis, rather than being left for intuitive 

integration, regardless of the difficulties in estimating these. Another requirement is that 

evaluations be based on data applicable to the location and population of interest. 

Practical considerations however usually imply that data collection is limited to a small 

number of sites, with an inevitable delay between data collection and its publication, to 

allow for meticulous data collection methods, analysis, and the existence of a safeguard in 

the form of a peer review process (Buxton, Drummond et al. 1997). While parameter 

estimates derived from this process can claim internal validity, evaluations based on such 

estimates will potentially have limited generalisability of results and may be based on 

outdated data. This is of particular significance in the context of malaria where many of the 

factors that inform an evaluation are highly dynamic, both temporally and geographically. 

Some of the most recently published evaluations of ACTs and ROTs, for instance, are based 

on data from 2005, when ACTs were over twice the cost at the time of publication 
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(Rolland, Checchi et al. 2006; Lubell, Reyburn et al. 2007), and these costs are expected to 

continue to fall in the near future. 

This is but one in a long list of variable factors, that also includes treatment effectiveness, 

transmission intensities and ROT accuracy (due to the development of new brands). 

Consequently policy makers consulting the most recently published evaluations are likely 

to be misinformed by evaluations that were relevant in a different time and place. 

1.10 Chapter conclusion 

This chapter has given an overview of the history of malaria research and policy. It further 

outlines the different modes of decision making and how they shape policy. Devising 

malaria diagnostic and treatment strategies, policy makers can follow different approaches 

to decision making. The more intuitive practices that characterise decision making in 

health care as a whole are particularly vulnerable to bias, especially in the context of 

malaria, towards overdiagnosis at the expense of other illnesses. Other barriers to 

effective decision making are the wide range of factors beyond immediate costs and 

benefits that are associated with malaria control, and the significant variation in the 

manifestation of malaria in different geographical areas and over time. 

As was described, an increasing number of decision making bodies focused on malaria 

control are proliferating in much ofthe developing world. This has the potential to ensure 

that only those interventions that are most suited to local circumstances are indeed 

adopted. This contrasts sharply with the past decision making structures which can be 

characterised as monolithic and unresponsive to local variation. 

This thesis sets out to ensure that decision making tools are available to enhance this 

potential further, by making use of some of the most recent methods used in the 

developed world for the evaluation of new health care interventions, to ensure that 

decision models are comprehensive in the range of input factors they account for, and that 

the output they provide is responsive to the different circumstances pervade in the areas 

where the interventions are considered for use. 



2. Review of the literature on economic evaluation of malaria 

diagnostics and treabnenls 

2.1 Aims of the review 

The aims of this chapter are to review the literature concerned with economic evaluations 

of malaria treatment and diagnosis, and discuss the modelling approaches they have 

employed, with a focus on their value for decision making. This is concluded by outlining 

the gaps and weaknesses in the existing literature that this thesis addresses in subsequent 

analyses. Annex 1 provides details of the methods and results of each of the studies. 

2.2 Review scope and structure 

There is a wide range of methodologies for conducting economic evaluations which have 

been categorized and described below. The category order, however, does not indicate 

their merit or relevance to decision making requirements, but does reflect how 

comprehensive the analyses are, ranging from those that included only immediate trial 

results for the patients in particular, to those that model the long term impacts of the 

interventions for society in general. The main focus of the review is on the methods used 

in the studies and how these can be enhanced in future evaluations. The actual study 

results are less relevant and are summarised briefly in Annex 1. 

The review opens with trial based evaluations that did not make extensive use of 

modelling techniques. These evaluations rely almost entirely on patient level data on cost 

and effectiveness data from a single trial to draw conclusions regarding the comparative 

efficiency of the interventions under investigation. Following these are those evaluations 

that compile data from a range of secondary sources to estimate the costs and 
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effectiveness of interventions of interest, without making use of a formal decision model 

structure, but rather calculate average and incremental cost-effectiveness ratios. 

The third category consists of decision tree based evaluations. Numerous analyses made 

use of this structure, although it should be noted that this does not necessarily imply that a 

decision analytic approach has been adopted. Some analyses have made a limited use of 

decision trees simply for breaking down and portraying complex problems3
. The fourth 

category consists of system dynamic models. The main defining feature for these models is 

their treatment of disease transmission and the risk of infection as endogenous to the 

model, making use of mathematical tools such as differential equations to define the 

relationship between model variables. 

This order of categories represents to a certain extent the model complexity, therefore 

where an analysis used more than one of these methods it was placed in the higher 

category. Each of the following sections provides a brief introduction to the general 

approach, and a discussion of the methods that were applied in the evaluations. 

2.3 Search strategy 

Search strategy: The literature review was completed in February 2008 and aimed to 

identify a" relevant published economic evaluations of malaria treatment and diagnostics 

to date. A number of non-published studies were also identified by consultation with 

experts in the field. 

3 The terminology and categorization varies in the literature, and the term 'decision modelling' is 

often used to encompass all evaluations based on a range of secondary sources; a distinction is 

made here between evaluations that limit their aim to providing a measure such as an incremental 

cost-effectiveness ratio, and those that provide actual decision recommendations, for instance by 

incorporating the policy makers' willingness to pay for the benefits provided. 
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2.3.1 Inclusion criteria 

Intervention: 

• Use of antimalarial drugs for the treatment of P.falciparum malaria, being the cause 

of most of the total health burden of malaria due to its higher mortality rate than 

the other Plasmodium species 

• Use of diagnostic tests to determine parasitaemia 

• Implementation of different strategies for the management of malaria suspected 

patients 

Study criteria for indusion: 

• Economic evaluations based on RCT results 

• Evaluations based on the modelling of secondary data 

• Location - Low and middle income countries 

Databases searched: Pubmed, Cochrane, Embase, 1021, HEED, WoS. These were initially 

searched in April 2006 and results were updated in February 2008. 

MeSH terms: Economic evaluation, Cost/cost analysis, malaria/Drug therapy, diagnosis, 

antimalarial 

Text search terms: malaria, plasmodium falciparum, febrile illness, economic 

evaluation/analysis, artemisinin, rapid diagnostic test, ROT, Immunochormatic tests, 

microscopy, presumptive treatment. 

Where text searches were used these were done by searching for each phrase individually, 

then combining search results. 

References from the relevant studies were used to identify any further papers. Results 

were also compared with researchers working on related topics. 
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2.4 Search results 

Twenty-two economic evaluations of antimalarial drugs and diagnostics were identified in 

total. Three additional studies relating to costs or outcomes, that did not qualify as 

economic evaluations, are also presented as they introduced noteworthy methodologies. 

2.4.1 Category 1- Trial based evaluations 

Seven studies used primary data from single trials to determine cost-effectiveness of 

malaria treatment, diagnostics and case-management strategies (Jonkman, Chibwe et al. 

1995; Homado, Fungladda et al. 1999; Bualombai, Prajakwong et al. 2003; Gogtay, Kadam 

et al. 2003; Fernando, Karunaweera et al. 2004; Wiseman, Kim et al. 2006; Chanda, Masiye 

et al. 2007). There is an apparent advantage to such evaluations in that they are widely 

accepted as robust given their high internal validity, drawing conclusions directly from a 

trial with a design that is supposed to ensure a statistically significant result. 

Nonetheless three main areas of concern in trial based economic evaluations may be 

gleaned from these studies: (1) the adequacy of the effectiveness measures; (2) the 

generalisability of results to other settings; and (3) the interpretations of reSUlting cost

effectiveness ratios. In addition there is the special case of multi-centre studies, with the 

challenges they pose to interpretation of variability between study sites (Chanda, Masiye 

et al. 2007). 

Determining intervention effectiveness on the basis of clinical trial results can be 

problematic for four reasons. First, clinical trials often assess treatment efficacy rather 

than effectiveness. Thus they might not represent routine clinical practice in terms of the 

patients being treated, who are often selected by stringent criteria, or the care they are 

given, which will be protocol driven rather than that being delivered in the routine 

provision of care (Soto 2002). 

Second, due to budget and time constraints, clinical trials will often have a shorter than 

ideal period of follow-up, relying on intermediate outcomes to determine the impact of 

interventions which may in fact not reflect final health outcome (Brennan and Akehurst 

2000). In the case of antimalarials, duration of follow up is often shorter than ideal due to 
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the likelihood of reinfection, which without the appropriate technology, cannot be 

distinguished from recrudescence. 

Third, choice of the 'gold standard' against which effectiveness is measured in the trial 

could have undue impact on results. In both Bualombai et al. (2003) and Fernando et al. 

(2004), RDT accuracy was measured against the performance of microscopy, both as 

comparator for routine diagnosis, as well as functioning as the gold standard. Use of the 

same technology as comparator and gold standard is likely to bias results against RDTs, as 

was demonstrated by Bell et al. (2005) in a re-evaluation of a previous trial comparing 

diagnostic accuracy for ROTs and microscopy, but including peR as the gold standard. 

Fourth, the generalisability of results to other settings is of much concern when cost

effectiveness estimates are drawn from a single setting (Sculpher, Pang et al. 2004). While 

authors often express the need for further studies in other locations, results are often used 

to provide more general policy recommendations. Honrado et al. (1999) for instance, 

concluded on the basis of their trial, which included a total of 137 patients in a single 

setting, that artesunate is more cost-effective and should be recommended for use in 

treating uncomplicated Plasmodium Jalciparum malaria in clinics across Thailand. Similarly 

Gogtay et al. (2007) saw their analysis as sufficient to inform policy makers regarding the 

cost-effectiveness of the different treatments Itat least for referral centres like ours" 

(p.879). 

A variety of factors impede the ability to generalise trial results to other settings. In the 

context of malaria, of most significance are transmission intensity, host immunity, and 

parasite resistance to antimalarial drugs (Snow 2000; Whitty and Staedke 2005). 

Transmission intenSity will be of particular significance under a strategy of presumptive 

treatment due to the varying proportion of patients that benefit from treatment. In a 

recent study in Tanzanian highlands, it was found that while parasitaemia rates were under 

1.5% amongst febrile patients, over half of these still received an antimalarial (Reyburn, 

Mbakilwa et al. 2007). Levels of resistance also affect results and can vary widely even in 

close geographical or temporal proximity (Amin, Hughes et al. 2004). 
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Regarding diagnostics, variation in transmission intensity will result in different prior 

probabilities of infection, which together with test accu racy determine the test predictive 

values. Differences in host immunity will also determine the likelihood of infection being 

the cause of illness and the severity of disease. Where immunity is high there will be lesser 

benefit in demonstrating parasitaemia. For these reasons results obtained in any single 

trial are unlikely to be easily generalisable to other settings 

The use of numerous centres in RCTs is one method of increasing the generalisability of 

results. Despite the potential such studies hold, they also pose greater methodological 

challenges in how the variability between study sites is addressed. In the multi-centre 

study of Chanda, Masiye et al. (2007), the data from all sites were simply pooled, 

potentially masking significant site differences in costs and effectiveness. 

A number of shortcomings in how results were interpreted were found in the studies 

presented. The Jonkman study on switching to a strategy of biological confirmation did not 

include a measure of effectiveness at all (Jonkman 1995). This study therefore, is a cost 

analysis, not an economic evaluation, as it does not incorporate a measure of outcome 

other than the final expenditure under each strategy. Consequently, the lower expenditure 

with the strategy of microscopical confirmation gives no real indication on the implications 

for patients' health outcome which may be compromised under the strategy. The study 

could lead policy makers to erroneously conclude that the intervention is justified from an 

economic perspective. 

Secondly, the policy context in which results are to be interpreted needs to be explicitly 

stated. Both evaluations of diagnostic tests limit their measure of effectiveness to test 

accuracy rather than final health outcome. Such analyses can be appropriate where it has 

previously been decided that a positive test is a prerequisite for treatment, as is the case in 

a number of countries in Southeast Asia and in South Africa. They do not, however, 

evaluate the benefit of a strategy of parasitological confirmation in terms of final health 

outcome, and do not allow for a comparison with presumptive treatment or other 

competing interventions. 
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Some of the above concerns can be addressed by entering external data and assumptions, 

so that outcomes of greater interest can be estimated. 

2.4.2 Category II: Simple cost-effectiveness analysis using multiple data 

sources 

This category consists of either trial based studies that incorporate additional external data 

in the analysis, or studies that rely entirely on secondary sources to estimate intervention 

costs and effectiveness, without the formal use of a decision analytic model. These data 

are aggregated to estimate incremental cost-effectiveness ratios (ICERs) and other 

variables of interest (Goodman, Coleman et al. 2000; Pang and Piovesan-Alves 2001; 

Agnamey, Brasseur et al. 2005; Mulligan, Morel et al. 2005). 

The greater flexibility and scope in data sources allows the analyst in these studies to 

answer broader questions than the efficacy of an intervention in a specific clinical trial. 

Instead, a wider variety of inputs such as varying disease prevalence, population age 

structure or the value placed on the outcome of interventions, can all provide results that 

may be of more interest to decision makers. 

The extrapolation to final health outcome, introducing measures such as Disability 

adjusted Life Years (DALYs) or Quality Adjusted Life Years (QALYs), allows for the 

incorporation of individual or societal values of the improvements these interventions 

provide in terms of health related quality of life (discussed in detail in Chapter 3). 

Extrapolating to final health outcomes also allows for comparisons of a range of different 

interventions competing for the same resources such as national malaria control 

programme budgets. 

Goodman et al. (2000) in particular provide a comprehensive example of how these cross

intervention comparisons can be achieved. Following the launch of Roll Back Malaria, the 

review set out to calculate the cost-effectiveness ratios (cost per DALY averted) for a range 

of malaria related interventions targeting diagnosis, treatment and vector control. The aim 

of the work was to inform policy makers on how best to prioritise these interventions 

given the expected increased funding for malaria control. Calculating the costs and 
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effectiveness for such a broad range of interventions required that the analysis draw on a 

wide range of published and unpublished material, and where necessary make use of 

expert opinion. Where such broad analyses are done, these inevitably rely on multiple 

assumptions where data are lacking, and value judgments which might be contentious (e.g. 

discount rates for future health gains). 

Use of these data sources and assumptions is in stark contrast to trial based evaluations 

that limit their analyses to parameters for which primary data are available. Although the 

data and methods used in the former might appear less scientific, they do provide policy 

makers with the kind of information they need to make appropriate decisions. The 

challenge in such analyses is to make the uncertainties and assumptions as explicit as 

possible and handle the uncertainty surrounding parameter estimates adequately. 

Decision analysis is one of the most frequently used approaches to facilitate this. 

2.4.3 Category III: Decision analytic models 

The differences between the studies in this category and the previous one are limited to 

the structure used to converge the different factors accounted for in the analysis. The 

analyses in this category make use offormal decision analytic models to incorporate all 

relevant factors to produce an explicit recommendation as to which is the best course of 

action given numerous choices and uncertain events. Ten studies were identified that took 

a decision analytic approach, two of which employed additional modelling methods and 

will be discussed in the next section (Sudre, Breman et al. 1992; Cho Min and Saul 2000; 

Wilkins, Folb et al. 2002; Muheki, MCintyre et al. 2004; Rolland, Checchi et al. 2006; 

Zurovac, Larson et al. 2006; Shillcutt, Morel et al. 2008). 

One of the primary tools used in decision analytic modelling is the simple decision tree. 

These have a decision node at the origin (Le. the policy/clinical options branching out of 

that point) followed by pathways representing the different possible sequence of events 

up to defined end points where the costs and benefits can be evaluated for that pathway. 

The probability of each of these events occurring is entered into the model, based on 

clinical trial data, secondary sources and expert opinion. Each of the outcomes is assigned 
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a value such as costs and/or utilities. The different branches are then summarised using 

both their probabilities and outcomes. The branch with the highest expected payoff will be 

that recommended for policy adoption. 

Figure 2-1 illustrates a simple decision tree aiming to shed light on whether a febrile 

patient should be treated presumptively, or tested prior to treatment. The square node 

represents a decision node, the circle ones chance events, and the triangular ones terminal 

nodes. 
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Figure 2-1 - A simple decision tree for the management of malaria suspected patients. The monetary 
values to the left of each triangular ('terminal') node represents the cost of reaching this point. The 
utility of each terminal node is fixed as either 0 or 1, dependent on whether the patient has been 
appropriately treated. These are then 'folded back' to the branches coming out of the decision node to 
summarize their costs and utilities. Tn this case the 'test' option, at a lower cost of$2.6 and a higher 
utility of 0.96, would be preferred. NMFT - non-malarial febrile iHness. 

This process requires the modeller to explicitly state the probabilities, costs and utilities for 

each specific uncertain event and outcome. Once these are entered the outcome can be 

subjected to sensitivity analysis to test any of the values entered. The results are then 

available to decision makers in a transparent and unambiguous manner (Lindley 1985). 

The earliest attempt at conducting a decision analysis on the use of antimalarials was that 

by Breman, Sudre et al. (1992), comparing CQ to sulfadoxine-pyrimethamine (SP) and to 

amodiaquine for the treatment of children in SSA, under the circumstances of increasingly 

prevalent CQ resistant P.falciparum. The model included a limited number of variables, 
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illustrating the simplest of scenarios - a single treatment of febrile children, comparing the 

outcome for the different drugs in terms of cost per cure and cost per death averted. 

A later decision tree evaluation, by Wilkins, Folb et al. (2002), was a more detailed study of 

the average cost-effectiveness of SP and CQ. Using a range of data sources such as in vivo 

efficacy trials for the drugs in the location of interest (Mpumalanga, South Africa), 

diagnosis costs and patient travel costs, the authors constructed a decision tree to 

simulate comprehensive treatment costs for each of the drugs. Treatment failure might 

lead to the return of the patient to the health care facility (probability assigned after 

consultation with local health workers) with either severe or uncomplicated malaria, 

followed by treatment with quinine. 

While the advantages of using a decision analytical approach are apparent in these studies, 

there are a number of issues and possible shortcomings that warrant further discussion. 

Model structure - choice of parameter. Trying to include high numbers of parameters 

results in unwieldy trees that may be difficult to manage. To avoid this, analysts must use 

their discretion to decide on those parameters that are deemed most significant. This 

however, opens the model to criticism regarding their subjectivity, in that 

inclusion/exclusion of some parameters and not others might lead to contradictory results. 

For instance, choice of costs that follow treatment failure could be seen as arbitrary (e.g. in 

Wilkins et al. (2002) with the inclusion of administrative and support costs, comprising 

over half of total recurrent antimalarial costs, but not productivity or home care costs). 

How probabilities are obtained. The potential drawbacks of relying entirely on trial data 

were discussed in an earlier section. Other sources of data for probabilities can be the 

published literature, or expert opinion. Muheki et al. (2004) demonstrate the use of Delphi 

surveys to quantify expert opinion for parameter estimation where no empirical data are 

obtainable. While it could be argued that the use of such methods lacks statistical rigour, 

they can be employed to address questions that no trial could have answered. 

Handling parameter uncertainty. In the Cho-Min and Saul (2000) study, handling of 

uncertainty surrounding model parameters and structure is limited to a one way sensitivity 
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analysis for treatment efficacy. In a study based entirely on modelling secondary data, 

there is considerable scope for introducing a range of likely values, which was not explored 

in this analysis. In the context of malaria treatment where there are such large elements of 

uncertainty, these must be allowed to carry through the analysis rather than adhering to 

simple point estimates. 

Wilkins et al. (2002), Rafael et al. (2006) and Shillcutt et al. (2008) all used probability 

sensitivity analyses (PSA), where probability distributions are assigned to input parameters 

and Monte Carlo simulations are repeatedly carried out for parameter estimates. In 

addition to introducing a range of likely values, the use of probability distributions also 

allows the assignment of distribution densities reflecting the nature ofthe parameter, for 

example treatment costs often being highly skewed to the right (Fenwick, Claxton et al. 

2000). 

In the most comprehensive analysis of its kind, Shillcutt et al. (2008) used a decision tree 

analysis to estimate the cost-effectiveness of the use of RDT and microscopy in conjunction 

with ACTs, in comparison to the predominant practice of presumptive treatment. In 

contrast to almost all other analyses, the authors also incorporate the health outcomes of 

NMFls. This introduced in to the analysis what is perhaps as significant a factor as the 

outcomes for true malaria cases, but also a range of additional uncertainties and 

assumptions, such as the diagnoses of these illnesses and their health outcomes with and 

without appropriate treatment. While in their analysis the authors did not have data to 

estimate these parameters adequately, the uncertainty surrounding them did indicate that 

this was an important issue requiring further research. 

Rafael et al. (2006), although not a proper economic evaluation as it did not account for 

financial expenditure, is also noteworthy due to the incorporation of the harm associated 

with the use of antimalarials, placing a necessary constraint on what could otherwise be 

unrestrained use of drugs. 

Linear/one way movement. Decision tree structures imply linearity in the progression of 

events. This may be far removed from reality. In a number of these studies the decision 
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tree depicted linear care seeking patterns in the confines of the formal sector. In reality 

health care seeking behaviour is less manageable as transition between the different 

states can be far more complex and care seeking patterns often involve the informal sector 

where the bulk of malaria treatment takes place (Chima et aI., 2003). 

Choice and interpretation of outcomes. In deciding between the adoption of different 

interventions, there will seldom be one that dominates the other on all accounts (usually 

cost and effectiveness). For this reason the choice of measure of outcome can be a 

decisive factor, as comparing interventions on the basis of either cost minimization, 

average cost, or incremental costs can all provide different results. 

A number of studies in this category used average costs to determine cost-effectiveness. 

This can be misleading as in some instances an intervention with higher average cost will 

still be considered cost-effective as decision makers might be willing to accept the 

incremental cost as a justified investment for the attainment of the incremental benefits 

provided by the more expensive intervention. 

Rolland et al. (2006) and to a greater extent Shillcutt et al. (2008) incorporate in the 

analysis policy makers' willingness to pay for the benefits the intervention provides. This 

was incorporated with the use of the net benefit approach, where the results in terms of 

ICERs are plotted against the policy makers' willingness to pay for the benefits in a 

probabilistic manner (Le. the probability the intervention will be cost-effective if the policy 

maker is willing to pay $X per DALY averted). 

2.4.4 Category IV: System dynamiC models 

Decision trees were developed mostly in the context of clinical options for individual 

patients at a specific point in time and may be less suitable for long term planning where 

variations in factors such as seasonality or emergence of drug resistance will alter final 

outcomes. None of the previous analyses consider, for instance, the dynamic nature of 

drug efficacy due to growth of paraSite resistance to antimalarials, or changes to 

transmission intensity following changes in control strategies. To incorporate these, 

models must increase their complexity by adding a temporal dimension. This and other 
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similarly complex dynamics can be addressed with the use of differential equations and 

other mathematical operations to simulate the relationships between variables (Mortimer, 

Smith et al. 2003). 

A number of papers were found that attempted a temporal analysis of changing first line 

drugs, including both the most appropriate choice of drug, and the best point in time for 

switching to its use (Schapira, Beales et al. 1993; Goodman, Coleman et al. 2001a; 

Mortimer, Smith et al. 2003; Laxminarayan 2004; Morel, Lauer et al. 2005; Tediosi, Maire 

et al. 2006; Yeung 2006). 

Laxminarayan (2005) produced a mathematical model of malarial transmission, immunity, 

and drug resistance, which was used to compare the economic consequences of treatment 

strategies (replacing CQ with ACTs or with SP and later ACTs when resistance to SP 

develops). The study also explored the economic impact of different levels of coverage 

with ACT given their high costs and the increasing likelihood of evolving resistance. 

The model provided a macro view to identify the best timing for introducing ACTs and the 

ideal coverage levels. The model, however, was not designed to provide more detailed 

decision recommendations as it did not account for other factors such as different age 

structures or varying transmission levels. 

Morel et al. (2005) estimated the cost and effectiveness of each of the interventions 

drawing on a range of secondary data sources, including trial results, expert opinion and 

the WHO-CHOICE database for regional cost data (Edejer, Baltussen et al. 2003). The 

effectiveness estimates were based on the WHO PopMod model (Lauer, Rohrich et al. 

2003), that uses differential equations to estimate transition of populations between 

different disease states and evaluating the changes resulting from the introduction of 

interventions. 

This form of analysis does not presume the existence of a 'current practice' as the baseline 

for an incremental cost-effectiveness analysis, but rather evaluates all interventions, 

existing or under consideration, for efficiency against a counterfactual situation of doing 

nothing. The results of the analysis indicated that while the use of ACT on its own is the 
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single most cost-effective intervention, maximum effectiveness would be achieved by 

investing in other interventions as well rather than attempting to increase ACT coverage to 

100%. 

The greater generalisability and scope of these analyses does have a drawback, in that they 

become increasingly detached from local variation in circumstances; this was particularly 

true in the case of Morel et al. (2005) with the use of generalised cost-effectiveness 

analysis. The result is a blurring of the impact of local variation of factors that can be as 

specific as the time children in the area go to sleep (Le. protected under insecticide

treated bednets), which could affect parameters of interest significantly. Trying to improve 

the accuracy of these models to reflect better real life events can require extremely 

complex structures which are not amenable to further adaptation (Mortimer, Smith et al. 

2003). 

A further strength of the study by Morel et al. (2005) and the one by Goodman et al. 

(2001a) (unrelated to the use of system dynamic modelling), is the use of DALVs as the 

measure of outcome, providing policy makers with a reference point - in this case 

$25/DALV averted, as a threshold to consider an intervention cost-effective. In addition 

policy makers' time preferences were also included in these analyses to allow for a 

higher/lower valuation of more/less immediate costs and benefits. 

System dynamic modelling offers significant potential advantages in the ability to account 

for long term ramifications of the adoption of new health care interventions. They are 

mostly adequate to assess the broader dynamics of factors such as drug efficacy, emerging 

resistance, and general coverage levels. 

A limitation of these models, which relates to the work presented later in the thesis, is that 

the higher technical specification of these models can prohibit their adaptation to different 

circumstances by stakeholders. This trade-off between model complexity and 

methodological validity is discussed further in Chapter 6. 
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2.5 Chapter conclusion 

Despite the overwhelming impact of malaria and NMFls on population health in SSA, and 

severely limited resources to manage these, relatively few economic evaluations of malaria 

treatment and diagnostics were identified, of which only eighteen have been published. 

The review opened with those studies grounded entirely in patient level data from clinical 

trials which estimated of an intervention's cost-effectiveness. At the other extreme were 

evaluations based entirely on secondary data that made use of a variety of modelling 

methods to incorporate a range of factors such as emergence of resistance to 

anti malaria Is. 

Movement along this continuum increased the relevance of results to decision making by 

broadening the scope beyond immediate costs and effectiveness. However this also 

introduced additional assumptions and increased the extent of uncertainties. To handle 

the greater uncertainties involved, a variety of sensitivity analyses were used, as were 

probability distributions rather than point estimates. A small number of analyses 

incorporated the likelihood of different results given policy makers' differing willingness to 

pay for the intervention being evaluated. 

General limitations in existing studies. A number of limitations were apparent in the 

literature. First and most importantly was the need for more responsiveness to different 

sub-groups, environments and to specific ROTs and treatments, rather than trying to 

determine whether ROTs or ACTs were or were not cost-effective for SSA as a whole. 

Secondly, was the need for more comprehensive analyses that included the health 

outcomes for NMFls, the broader societal costs of over-treatment with antimalarials, and 

the costs and effectiveness of interventions as they are likely to manifest in routine 

practice, rather than trial settings. 

Another limitation of many previous evaluations was that they used inappropriate 

frameworks such as cost-effectiveness analysis using natural measures of outcome (e.g. 
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cost per malaria case treated or cost per false negative averted). These frameworks were 

limited in their relevance to decision making as their outcomes were not comparable to 

other interventions. The ability to incorporate other factors to allow for more 

comprehensive analyses in these frameworks, such as resistance to antimalarials, was 

therefore limited. 

Lastly, many of the studies were not amenable to use by policy makers because they were 

setting specific, or conversely overly generalised, not accounting sufficiently for local 

variation in circumstances. Methods to apply results from one setting to another require 

further exploration to improve the integration of emerging local data with existing 

evidence in the models. This can allow policy makers to make better use of existing 

evidence and models to identify the most efficient interventions and strategies for settings 

and populations of interest. 
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3. Theoretical foundations of decision models for malaria 

diagnostics and treabnents 

The aim of this chapter is to introduce the theoretical foundations and concepts that 

underlie decision models, relating to the economic evaluation frameworks they use, how 

to incorporate data such as costs and effectiveness in the analyses, and how uncertainty is 

handled. The generalisability of evaluations based on single and multi-centre trials is also 

discussed. Details of the actual model structures used in subsequent analyses are 

described in later chapters. 

3.1 Overview of economic evaluation frameworks 

Economic evaluations are common Iy used in health systems of the developed world and 

increasingly so by donors and national governments in developing countries to inform 

policy makers on the efficiency of new interventions. The basic premise for these 

evaluations is that finite resources and virtually infinite demand for health care require 

that different treatments and services are evaluated in terms oftheir costs and 

consequences to ensure efficient allocation (Drummond, O'Brien et at. 2005).The concept 

of opportunity costs is central to thiS, expressing the notion that any intervention pursued 

needs to be considered in light of what could have been done with the same resources 

elsewhere. 

Table 3.1 is an adaptation from Morris et at. (2007), showing the different levels of 

opportunity cost that could be considered when funding is diverted towards a particular 

health care intervention, in this case the establishment of a home management of malaria 

(HMM) programme for a district with poor access to health care facilities. 
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How much should be Increase spending lower net incomes - reduced 
spent on health care on health care spending power; higher taxation on 
in total through higher producers lowers incentive to 

taxation innovate and invest in further 
production; reduced salaries; higher 
prices as producers 'pass on' cost of 
taxes to consumers 

Increase spending Benefits forgone from lower 
on health at the investment in education, road safety 
expense of other etc. 
sectors 

How much to allocate Increase the share Benefits forgone from other 
to remote areas with of remote areas geographical areas with higher 

~ high malaria from the total population density 0 
ti endemicity health budget cu 
III 

What share of the Increased spending Benefits forgone from investing in 
district health care on HMM through prevention and cure of other 
budget should be recruitment of illnesses 
provided to the new more community 
HMM programme drug distributors 

Which population and Provide HMM lower returns on the investment as 
sub-groups are services to children older children are more likely to be 
targeted; children of up to 10 years immune. Benefits forgone from 
all ages or only under treating other illnesses to which they 
5 years with lower are more susceptible 
immunity 

How much would levy a charge for The utility forgone on spending and 
carers be willing to regular provision of consumption of other goods and 
spend in cost sharing antimalarials services ~ 

l!! schemes for HMM 
~ 

Table 3-1: Opportunity costs on the way to funding a new antimalarial distribution programme for 
areas with poor access to health care (adapted from Morris et aL 2007). HMM - Home Management of 
Malaria 
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While in most other fields the market is often seen as the ideal medium to ensure the 

allocation of resources reflects their true opportunity cost, it is largely accepted that in the 

sphere of health care, unregulated markets will fail to achieve this. Instead, analytical 

processes are employed to evaluate interventions' costs and consequences in order to 

guide efficient allocation (Rice 1997). 

Economic evaluations aim to compare alternative interventions, usually proposed new 

ones to existing practice, by combining estimates of their costs and consequences to 

assess whether these are a worthwhile use of resources. These estimates can be drawn 

from trial data, existing literature, or expert opinion, and can then be synthesized using a 

variety of modelling techniques to extrapolate results to other settings or longer time 

horizons. 

Depending on the context, the adoption of a new intervention might imply forgoing 

investment in other interventions associated directly with the same aims, or with 

interventions with other benefits, either within or beyond the health sector. Both costs 

and consequences can be assessed from a variety of perspectives -those of the provider, 

the patients, or society as a whole. The context of the necessary decision and the relevant 

perspective will determine the most appropriate framework for use (McPake, 

Kumaranayake et al. 2002). 

3.1.1 Economic evaluation frameworks 

Economic evaluations can be differentiated primarily by the methods used to assess the 

intervention consequences. While in other fields cost-benefit analyses (CBAs) are the 

dominant form of evaluation (Robinson 1993), where both costs and benefits are captured 

using monetary values, it is often perceived as unpalatable to do so in the context of 

health care. Therefore since the 1960s when CBAs first emerged in health care evaluations 

(Warner and Hutton 1980), a variety of methods and frameworks have attempted to 

circumvent the assignment of monetary values to changes in life expectancy and quality. 

The simplest alternative is where intervention consequences are measured in natural 

units, for instance the number of children covered by an insecticide treated bed net 
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programme (Stevens, Wiseman et al. 2005). In this case the evaluation is classified as a 

cost-effectiveness analysis (CEA). Results will normally include the average cost per unit of 

effectiveness, and an incremental cost for an additional unit where one intervention is 

more costly and more effective than the other (e.g. incremental cost per year of bed-net 

coverage). It is then up to the decision maker to consider whether the cost of this 

incremental benefit is an efficient use of resources (Phelps and Mushlin 1991). This 

process, however, is hampered by the fact that the decision maker will often have to 

choose between interventions with very different aims and measurements of outcome. 

To overcome this limitation, intervention consequences can be measured in generic units, 

measuring either changes in quantity or quality of life, or a composite of both as in the 

widely used measures of QAL Ys and DALYs. An evaluation of ITNs could therefore also 

measure its benefits in DALYs averted (Coleman, Goodman et al. 1999), allowing a 

comparison of interventions with entirely different aims. Evaluations that incorporate a 

measure of quality and quantity of health outcome are classified as cost-utility analyses 

(CUAs), and have become the dominant form of evaluation in heath care, with QALYs being 

used primarily in high income countries, and DALYs in low income ones (Drummond et al. 

2005). 

There is considerable variation in the literature on how to classify the different forms of 

evaluations. A common alternative to the classification used here is the use of CEA to 

include all evaluations where outcomes are not measured in monetary terms, with CUA as 

a sub-category of these reserved for those evaluations that follow very particular methods 

for estimating utility of health outcomes, confined to measuring the individual utility a 

patient/society places on the benefit of the intervention of interest. This in practice is only 

true for evaluations using QALYs as a measure of outcome. In this thesis however CUA is 

treated as a separate category from CEAs and includes evaluations that use DALYs as a 

measure of outcome as well. The term cost-effectiveness, however, is used in the broader 

sense, summarising the costs and consequences of an intervention regardless ofthe 

framework used. 
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3.1.2 How results are applied; decision rules 

Economic evaluations are carried out with the aim of making informed choices between 

competing health care interventions. As described above, the different frameworks are 

distinguishable by the methods used to express the interventions' outcomes. The 

significance of these differences becomes most apparent when considering how these 

results are applied in the decision making context. 'Decision rules' are the criteria against 

which the results of the evaluations are assessed to determine whether an intervention is 

considered to be cost-effective. A decision rule can state a threshold below which an 

intervention is considered cost-effective, with or without a measure of uncertainty 

attached. Such thresholds are often referred to in the literature as the ceiling ratio, and in 

economic analyses' notation are assigned the Greek letter A. 

In CBAs the decision rules are a direct product of the analysis. If an intervention has higher 

benefits (in monetary values) than costs, the intervention is a worthwhile investment. 

Where a number of alternative interventions are being proposed these can be evaluated 

by identifying that with the highest net benefit (benefits minus costs) or that with the 

higher benefit-cost ratio (BCR). 

In contrast when outcomes are expressed in natural units as in CEAs, no clear decision rule 

is apparent. In this case the analysis can be used to guide choices only between 

interventions with identical aims, and under the assumption that the budget for these is 

not competing with that for other interventions (Drummond, O'Brien et al. 2005). As this is 

rarely the case, decision makers will be left to consider intuitively whether the benefit of 

an intervention with one aim at a particular cost is more efficient than an intervention with 

different aims and costs. 

CUAs, on the other hand, measure benefits in generic terms that allow direct comparisons 

between interventions with different aims. In this case decision rules can be applied by 

deriving thresholds for the cost per QALY gained or loss of DALY averted, below which an 

intervention is considered cost-effective. There are a number of methods for determining 

this value, but only one of these, the league table approach, is consistent with the aim of 

avoiding the assignment of monetary values to health outcome on a normative basis 
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(Gerard and Mooney, 1993). The other approaches are normative, based on either the 

human capital or revealed preferences (Sachs 2002; Shillcutt, Walker et al. Unpublished), 

sharing the theoretical foundations of CBAs. 

3.1.3 Determining the ceiling ratio using the league table approach 

The league table approach to determining the ceiling ratio requires estimating the ICERs 

for all existing and proposed interventions. These are placed in a league table and the 

health budget is allocated starting with the most cost-effective interventions in descending 

order until the budget is consumed (Drummond, O'Brien et al. 2005). The cost per QALY or 

DALY ofthe last affordable intervention is then assumed to be the decision rule4
• 

Using this approach, the World Bank and later the WHO developed the commonly cited 

thresholds for low income countries of $25 and $150 per DALY averted below which 

interventions are considered 'highly attractive' or 'attractive', respectively (Jamison 1993; 

WHO 2oo6c). 

The league table approach to relies on a number of assumptions regarding the health 

budget - that this is a fixed amount, and that funding can be applied interchangeably 

between interventions, which themselves are divisible. These assumptions, however, 

might not hold, particularly in the context of low income countries. 

First, the fluctuating funding received from donor agencies that often constitute a 

considerable part of the government's own health care spending, makes it difficult to 

calculate an enduring ceiling ratio. Secondly, much of this fund ing may be restricted to 

particular diseases or interventions, so funding may not be interchangeable between all 

interventions. Lastly interventions are often not divisible, and will be rolled out in a 

manner that is highly efficient for some populations and locations, but not for others. In 

4 More precisely this would be the cost for the last marginal QALY gained, assuming all 

interventions are divisible. 
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addition to these limitations are the immense informational requirements - that ICERs for 

all proposed interventions be known, as well as the health budgets to fund these. 

Where ceiling ratios are used, for them to remain relevant they wou Id have to be regularly 

readjusted, otherwise the total health budget would continuously increase to 

accommodate new interventions with ICERs below the decision threshold are introduced 

(Gerard and Mooney 1993). Furthermore the ICERs that determine an intervention's 

ranking in a league table will often be highly dynamic, as prices fluctuate and 

epidemiological realities change. Having static league tables on which decisions are based 

will therefore lead to allocative inefficiencies. This is particularly true in the context of the 

developing world where factors such as subsidies or exchange rate fluctuations can have 

rapid and substantial impact on intervention prices. Static league tables and ceiling ratios 

cannot easily handle such dynamic environments as they take extensive time and 

resources to establish and could rapidly become outdated. 

3.1.4 Normative approaches to determining the ceiling ratio 

The league table approach tries to apply an entirely pragmatic method to determine how 

much should be spent on an additional unit of health outcome, such as a DALY averted, 

avo id ing a priori statements of its monetary worth. The alternative a pproaches to 

determining the ceiling ratio differ from the league table approach in that they assess the 

inherent value placed on, for instance, gaining an additional year of life lived in full health, 

regardless of the available budget and other constraints. 

One method of doing so is through the direct elicitation of either policy makers' or the 

public's willingness to pay (WTP) for the intervention benefits. Similarly revealed 

preferences can be used, where previous decisions made by policy makers are evaluated to 

identify the threshold below which an intervention should be adopted (Behrman, 

Alderman et al. 2004; Drummond, O'Brien et al. 2005). The revealed preference approach 

led initially to some informal estimates for the ceiling ratios of NICE in the UK (Bryan, 

Williams et al. 2007). More recently NICE have formally adopted this threshold as a guide 

to their decisions. 
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Alternatively a human capital approach can be taken using measures such as GNI/capita to 

estimate the value of a DALY averted (Sachs 2002; Shillcutt, Walker et al. Unpublished). 

The benefit of this method is that it is explicitly linked to a country's economic capacity to 

invest in new interventions. It should be noted that both the human capital approach and 

the welfare theory on which the WTP approach is based, form the theoretical foundations 

that underlie CBA. These normative approaches are in contradiction with the desire to 

avoid the assignment of monetary values to health gains, which was to a great extent the 

impetus behind the use of CEAs and CUAs in the first place. 

3.1.5 Incorporating ceiling ratios in CUAs 

Once a ceiling ratio has been established, a variety of methods have been developed to 

incorporate it with the outcomes of CUAs. The simplest use of the ceiling ratio is by 

comparing it to the ICER for a QALY gained or DALY averted from the CUA. Where the ICER 

exceeds the ceiling ratio, the intervention is not considered to be cost-effective. This 

method, however, carries a number of drawbacks, most importantly that it requires a 

single explicit value for the ceiling ratio which are seldom readily available (Gafni and Birch 

2006). Furthermore, use of a point estimate for the ICER does not capture the variability 

and uncertainty surrounding the intervention costs and effectiveness. One method that 

incorporates the uncertainty in the analysis and explores results across a range of ceiling 

ratios is the use of cost-effectiveness acceptability curves (CEACs). This expresses the 

probability that an intervention is cost-effective across a range of ceiling ratios, 

circumventing the need to pin it down to a single value (O'Hagan, Stevens et al. 2000; 

Fenwick, O'Brien et al. 2004). 

A general limitation of the ICER concerns the difficulty in attaching to it measures of 

uncertainty and the subsequent interpretation of changes to its value and sign (Hoch, 

Briggs et al. 2002). Figure 3-1 shows a cost-effectiveness plane with the results of a Monte 

Carlo simulation, where the uncertainty surrounding costs and benefits are obtained 

simultaneously. While most data points are in the north-east quadrant, indicating a more 

costly and more effective intervention, there are a smaller number of data points in the 

other three quadrants. 
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Figure 3-1: A cost-effectiveness plane showing the different possible relationships between the costs and 
effectiveness ofthe interventions being compared 

As the leER is a ratio, whether it is positive or negative will depend on the signs ofthe 

differences in both cost and effectiveness between the two interventions being compared. 

Numerically, any single value of an leER can originate in one of two quadrants. A negative 

leER can be a result of the new intervention being cheaper and more effective, or 

conversely more expensive and less effective. These leERs therefore cannot be simply 

averaged out as identical numerical values can represent outcomes with opposing 

interpretations. 

To overcome this, the net benefit framework was developed to provide a linear value 

where negative and positive results are unequivocal in their interpretation (Stinnett and 

Mullahy 1998). The net benefit framework requires that the ceiling ratio be explicitly 

incorporated in the analysis. It uses this value to convert differences in effectiveness into a 

monetary value that can be fully merged with the difference in cost to provide the net 

monetary benefit of the interventions. Alternatively the same ceiling ratio can convert the 

difference in cost into a measure of health gain to estimate the net health benefit. The two 

methods are entirely equivalent. 

While the new measure was initially proposed to overcome the technical limitations in the 

use of leERs, it has allowed analysts to employ the powerful toolset of econometrics to 

economic evaluation. Recent use of econometric methods in economic evaluation has 

shown they make more efficient use of data and provide greater ability to explore a range 

of issues including sub-group analyses, interaction, and confounding in a more robust 

67 



manner than was previously possible with the use of ICERs (Hoch, Briggs et al. 2002; 

Grieve, Nixon et al. 2005). 

Another consequence of using the incremental net-benefit approach is that this has 

essentially transformed CUAs into CBAs as the health benefits are now formally expressed 

in monetary values (Phelps and Mushlin 1991; Stinnett and Mullahy 1998; Drummond, 

O'Brien et al. 2005). 

3.1.6 The WHO-CHOICE framework 

In low and middle income countries, CEA frameworks continue to dominate, most notably 

that of the World Health Organization. In an effort to promote a better evidence-base for 

its policies and endorsements, the WHO created a framework using standardized CEAs for 

a wide range of interventions ranked in a single league table (Murray, Evans et al. 2000). 

The impetus to creating this framework was partly the fact that despite the theoretical 

literature's focus on a sectoral approach to economic evaluation, most CEAs in practice 

compared new interventions to existing ones in an ad hoc manner that does not allow for 

comparisons of interventions to others with different aims, nor for generalisability of 

results as the baseline interventions used often differed between localities. Furthermore, 

there was no assurance that the baseline intervention was itself cost-effective, therefore 

an incremental analysis concluding that the new intervention appeared efficient might 

only be so due to larger inefficiencies of the baseline intervention. Adopting the new 

intervention in this case would further worsen existing inefficiencies (Hutubessy, Bendib et 

al. 2001). Lastly, a positive ICER, even when lower than the decision threshold, implies that 

adopting a new intervention requires diversion of funding from other existing 

interventions within or outside the health sector. The opportunity cost of this is not 

accounted for in incremental analyses (Sendi, Gafni et al. 2002). 
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As an alternative, WHO recommended the use of generalised cost-effectiveness analysis 

(GCEA)5 using average rather than incremental costs per DALY averted as its measure of 

outcome, based on estimates of how costly and effective the interventions are compared 

to doing nothing, and ignoring all other local constraints. By building up a database of such 

standardized cost-effectiveness analyses, the efficiency of interventions can be compared 

across the entire health sector. 

Describing the development of the framework, Murray et al. (2000) discuss the possible 

uses of such sectoral CEAs. The first is to inform policy makers with fixed budgets of the 

precise cost-effectiveness ratios of a range of interventions so that these can be prioritized 

for funding (Murray, Evans et al. 2000). However, they argue that this is overly ambitious 

as it requires that CEAs account for local constraints, such as pre-existing interventions and 

infrastructure, and other political constraints if they are to provide applicable results. 

Alternatively, they argue that CEAs can take on less ambitious aims and provide more of a 

general indication of cost-effectiveness, as is the aim of the WHO-CHOICE framework. This 

is achieved by comparing interventions to a do-nothing approach rather than to existing 

interventions and relaxing assumptions about other constraints. Results of such analyses 

can be used to provide a general indication as to whether interventions are 'highly cost

effective, cost-ineffective, or somewhere in between' (Edejer, Baltussen et al. 2003; p.6). 

The framework provides a list of guidelines to analysts on how to conduct evaluations to 

ensure that these maintain standard methods that can ensure comparability and 

generalisability of results to build up league tables for relevant interventions on a regional 

basis. Into this league table are introduced a range of ceiling ratios relevant to specified 

regions, determined by economic and epidemiological similarities, to indicate which 

interventions are cost-effective. The ceiling ratios were obtained by using a multiple of 

GOP/capita, based on the work of the Commission on Macroeconomics and Health (Sachs 

2002). 

5 Note that WHO-CHOICE views CUAs as a sub-category of CEAs 
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3.1.7 Drawbacks to the CUAlceiling ratio approach 

Determining ceiling ratios using the league table approach is difficult due to the high 

informational requirements and other limitations described above. The alternative 

normative approaches have been used in only a few instances with very limited success. In 

Canada and Australia, for instance, this was done on the basis of reviewing previous 

decisions and inferring the willingness to pay for a QALY gained. This, however, resulted in 

static values that did not represent the opportunity costs of marginal resources used (Gafni 

and Birch 2006). Another consequence of using a fixed ceiling ratio that was observed in 

these cases was the rapid increase in health expenditure, as had been anticipated in the 

literature (Birch and Gafni 1992; Gafni and Birch 2006). 

More broadly than the methods used to determine the ceiling ratio, there are criticisms of 

the use of CUAs altogether. Labelle and Hurley, for instance, argued that while CUAs have 

allowed for comparisons across the health sector at the individual patient level, they are 

not capable of handling externalities, leading to allocative inefficiencies (Labelle and Hurley 

1992). 

Another potential impediment to the use of CUAs in low income countries is the lack of an 

appropriate measure of outcome. Having a utility measure that accurately represents the 

changes in quality of life as well as life expectancy is a prerequisite for CUAs; conducting 

these with a flawed measure will compromise allocative efficiency. In the developed world, 

tools for the measurement of QALYs have been the subject of extensive research for a 

number of decades. It is widely accepted, for instance, that such measures must be 

culturally specific, so tools such as the EQ-SD for the measurement of health outcome are 

tailored to each country where they are employed, and subjected to considerable review 

(Rasanen, Roine et al. 2006). 

The use of DALYs for the purpose of evaluating health gains in CUAs has come under 

significant criticism as these were developed with an entirely different aim, the assessment 

of the global burden of disease, and might not be entirely compatible with objectives of 

economic evaluation (Barker and Green 1996; Gold, Stevenson et al. 2002; lyttkens 2003; 

Arnesen and Kapiriri 2004; Mont 2007). For instance the initial methods used to estimate 
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quality of life in DALYs can be described as crude at best, with both the valuation of health 

states and factors such as age weighting and discounting being decided on by a small 

group of experts and then applied across an immense range of populations and 

circumstances (Mont 2007). Alterations in these value choices change the global burden of 

disease estimates and subsequent ranking of interventions' cost-effectiveness (Arnesen 

and Kapiriri 2004). 

It can also be argued that the use of this entire framework becomes redundant as the 

impetus behind it in the first place was the avoidance of placing monetary values on health 

outcomes. That this is in fact inevitable is demonstrated both in its 'borrowing' of human 

capital and welfare theory, which form the foundation of CBAs, and in practice with the 

introduction of methods such as the INB and CEACs to CUAs. 

3.1.8 Return of the CBA? 

Phelps and Mushlin (1991) argue that the main difference between CBAs and CUAs is in 

the necessity in CBA to determine in advance a value for the QALY, DALY or year of life lost 

(VLL), whereas in CUAs the cost per QALY can be reported to decision makers and left for 

their consideration. However, there is little use in such a measure without a ceiling ratio to 

indicate whether the outcome is cost-effective. Once a ceiling ratio is introduced with the 

use of, for instance, the INB method, the frameworks produce almost identical results. 

CBAs, however, have an advantage in having a more coherent framework as the decision 

rule is inherent to the analysis and does not require an external value imposed on the 

results. 

A number of additional advantages of CBAs can be identified. Firstly, CBAs are better at 

handling situations with multiple dimensions of health and non-health benefits. Similarly, 

the framework allows direct comparisons of interventions with entirely different aims, 

both within and beyond the health sector (Evans 2004; Mills and Shillcutt 2004). 

Furthermore CBAs can accommodate consequences for both patients at whom the 

intervention is aimed and other bodies affected by it. In the context of malaria this would 

facilitate the incorporation of factors such as the development of resistance to antimalarial 
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drugs, and non-health outcomes such as improved educational capacities of non

parasitaemic children (Hutubessy, Bendib et al. 2001; Kihara, Carter et al. 2006). Given 

these advantages it is perhaps not surprising that the proportion of CBAs out of all 

economic evaluations has been rising in recent years, albeit mostly in the context of high 

income countries (Hutubessy, Bendib et al. 2001). 

The main difficulty with the use of CBAs remains the need to place monetary values on 

health outcome, with a substantial body of literature discussing the different approaches 

to this (Birch and Gafni 1992; Pauly 1993; Robinson 1993; Mcintosh, Donaldson et al. 1999; 

McPake, Kumaranayake et al. 2002; Drummond, O'Brien et al. 2005). Despite the different 

theoretical foundations, empirically it can be concluded that there is a strong correlation 

between the values obtained from use ofthe human capital approach based on a multiple 

of GNI and those obtained from the WTP approach (Shillcutt, Walker et al. Unpublished). 

The revealed preferences approach to WTP was described above in the context of ceiling 

ratios, where previous decisions are used to assess values such as the WTP to avert a loss 

of a QALY. An alternative to revealed preferences are hypothetical WTP estimates, for 

which elicitation tools such as various bidding methods are available (Frew 2003). There is, 

however, evidence to suggest that hypothetical WTP estimates diverge considerably from 

actual WTP as observed in revealed preferences (Onwujekwe 2001). 

The human capital approach also has its weaknesses. The use of measures related to 

income and productivity raises concern around the exacerbation of existing inequalities in 

health and wealth, as it implies that an intervention with the same health outcome can be 

perceived as efficient in a country with high income, but not in one of lower income 

(Shillcutt, Walker et al. Unpublished, Mills and Shillcutt 2004). This contrasts with the use 

of universal values such as the $ls0/DALY threshold that has been applied across the low 

income countries. 

While this argument has a strong intuitive appeal, at least where decisions are made in a 

highly centralised environment, it does not hold as much strength in a decentralised one, 

where a universal value for health outcomes will result in the misallocation of scarce 
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resources. As discussed in Chapter 1, there has indeed been an increasing trend toward 

decentralisation in malaria related decision making. This is evident in the establishment of 

national malaria control programmes across SSA, and country-based applications to The 

Global Fund and other large donors. Use of a value associated with productivity ensures 

that countries as vastly different economically as South Africa and Burundi have 

appropriate indicators for how cost-effective and affordable an intervention is for their 

own purposes. A universal value on the other hand would be inappropriately high for some 

countries, resulting in unaffordable interventions being pursued, or too low in higher 

income countries, leading to the abandonment of interventions that could be adopted. 

3.1.9 Relevance of the economic evaluation frameworks to malaria 

diagnostics and treatments 

There are a number of characteristics of the malaria context that require consideration 

when choosing the relevant framework for economic evaluation. The first factor to be 

considered is the source of funding for these interventions. The rise of malaria on the 

political agendas, both locally and internationally, have assured a considerable increase in 

funding dedicated to malaria specifically, and often to particular aims such as provision of 

antimalarials or vector control. This is true for both foreign donor aid, and also for local 

health financing as most governments in SSA have separate malaria control programmes 

with their own assigned budgets. 

The implication of this is that the main concern becomes technical, rather than allocative 

effiCiency, as the yardstick is how the costs and benefits of these particular interventions 

compare amongst themselves and not with others across the health sector (Hutubessy, 

Bendib et al. 2001). This diminishes the advantage of CUAs as the comparison to other 

interventions is not as relevant, leaving CEAs and CBAs to be considered. CEAs have no 

inherent advantage over CBAs, other than avoiding placing monetary values on health 

outcomes. 

A further advantage of CBAs over the other frameworks is the ability to address a wide 

range of factors beyond immediate costs and benefits of interventions that need to be 
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accounted for in their evaluation. CEAs based on direct health expenditure and DALYs (or 

other health measures) alone might fail to capture broader implications of the 

intervention. 

Despite the advantages of CBA, as shown in Chapter 2 this framework is rarely used for the 

evaluation of malaria diagnosis and treatment, with most analysts opting for either CEA or 

CUA frameworks. The WHO-CHOICE framework is a particularly attractive option as it 

provides a readily available set of tools for analysts to evaluate the cost-effectiveness of 

new interventions. There are, however, a number of limitations in the use of the WHO

CHOICE framework in for the evaluation of malaria diagnostics and treatments. 

First, the framework provides a valuable tool for assessing whether an intervention is likely 

to be cost-effective in relation to competing ones in a very generalised manner. This can 

prove useful only at early stages of consideration of new interventions applied on a large 

scale (Edejer, Baltussen et al. 2003), for instance, the overall use of diagnostic tests as 

opposed to presumptive treatment. The framework, however, is not designed to provide 

specific recommendations such as the best choice of antimalarial or diagnostic test at 

specific sites or for particular target populations. 

Secondly, given the tied-funding often allocated for malaria related interventions, the 

framework is ill-suited to assess whether these are cost-effective, as it assesses them in 

relation to other interventions across the health sector. Consequently malaria 

interventions that would not be considered cost-effective by the WHO-CHOICE and other 

frameworks may still be pursued, given the tied funding and political imperatives to reduce 

the burden of malaria in SSA and other areas affected by the disease. Lastly, the 

framework does not facilitate the incorporation of non-health benefits, such as improved 

productivity and educational achievement amongst non-parasitaemic individuals. 

So whereas it can be argued that the WHO-CHOICE framework can playa valuable role at 

the early stages of consideration of new interventions, it is not appropriate for use at the 

deployment stage, where decision makers must choose between competing interventions, 

or whether to target these for particular subgroups. All methodologies of course carry 
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their own limitations; analysts must ensure they employ those that are most relevant to 

the decision making needs. 

This chapter has so far reviewed the economic evaluation frameworks relevant to malaria 

diagnostic and treatments. The remainder of this chapter provides a brief summary of 

other major theoretical issues relevant to decision modelling, as a background to 

subsequent analyses. These consist of the handling of uncertainty surrounding decision 

models; the use of Bayesian inference to incorporate external data and prior beliefs into 

the analysis; the generalisability of model output to other settings; and the interpretation 

of variation in costs and effectiveness of interventions between sites in multicentre trials. 

3.2 Different levels of uncertainty in modelling and how these are 

handled 

Spiegelhalter and Best (2003) described a classification of the uncertainties surrounding 

cost-effectiveness models by distinguishing between different types of model inputs and 

parameters. In their taxonomy, shared by Briggs (2000), first order variability refers to 

chance variability in a homogenous population. This is inevitable and of little interest as 

the expected outcomes will be an expression of an average value for these. 

Heterogeneity concerns between individual variability resulting from either known or 

unknown patient characteristics. Once these are identified they need not be treated as 

random variables, but rather should be varied systematically to determine changes in 

outcomes such as the intervention's cost-effectiveness in relation to different sub-groups. 

Parameter uncertainty can relate to either 'state of the world' parameters for which a 

value could in theory be determined from the data but this is either entirely or partially 

unavailable, or to assumptions which express judgments on parameters that cannot be 

estimated from the data, often due to their highly subjective nature (e.g. time preferences 

for discount rates; values placed on different health states). 
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State ofthe world parameters are best handled either using a series of one way sensitivity 

analyses, or by using probability distributions to express the range, shape, and best 

estimate for their values (Briggs 2000). Probabilistic sensitivity analysis (PSA) uses Monte 

Carlo simulations to sample these distributions simultaneously and obtain a measure of 

outcome that contains all their variation. The use of such distributions can be a better 

representation of what is known and not known of the parameter as it expresses the 

possible variation as well as its mean or alternative measures of central tendency. 

Assumptions on the other hand should always be dealt with deterministically to compare 

results when these are varied. 

Ignorance concerns the lack of knowledge on parameter interaction. This would lead to 

inappropriate model structuring, misrepresenting the dynamic of the problem. The best 

way of handling this is to work with a number of model structures in order to compare 

results and explore the variation between them (Briggs 2000). 

Model and methodological uncertainties. It is standard procedure in economic evaluation 

to explore parameter uncertainty, with the use of PSA gradually becoming the norm 

instead of one and two way analyses, in high income countries (Claxton, Sculpher et al. 

2005). There is, however, a higher level of uncertainty, relating to the evaluation 

framework and structures used in designing the model that is less frequently questioned, 

even though this can have a greater impact on results (Brisson and Edmunds 2006). 

Methodological choices such as different economic frameworks or whether a discount rate 

is applied and its value where used, can lead to conflicting results (Cohn 1973). Similarly 

choice of comparator will determine the incremental cost-effectiveness of a new 

intervention. Lastly the model structure (decision tree, Markov model etc.) will also 

determine the estimated costs and benefits of the interventions. While it will often be 

impractical to test results for all frameworks and model structures, analysts should be 

aware of how these influence results and provide justifications for the choice of each. 
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3.2.1 The use of Bayesian inference to incorporate external data and prior 

beliefs into the analysis 

The difference between Bayesian and classical inference is often summed up in that 

classical inference will state the likelihood of observing particular data (e.g. treatment A 

was twice as efficacious as treatment B) given a certain hypothesis (e.g. there is no 

difference between the two treatments). Bayesian inference on the other hand, will state 

the probability of a certain hypothesis being true (e.g. treatment two is twice as effective) 

given particular data, such as a trial result showing one treatment being superior to its 

comparator (Berry and Stangl 1996). The latter assertion is far more applicable to decision 

making needs as it is a direct statement of the probability associated with the hypothesis 

of interest. Classical methods, on the other hand, use more convoluted statements of 

probability that are not amenable for use in decision models (Spiegelhalter and Best 2003). 

The 'price' for this extra clarity is that analysts must explicitly state the prior estimates for 

hypotheses of interest, before the introduction of new data. This belief is then updated 

using data emerging from trials to obtain a posterior distribution of the parameter of 

interest. These prior estimates, in the eyes of many classical statisticians, are the main 

drawback of the Bayesian approach, as they are not necessarily based on trial results that 

showed statistical significance, but instead might draw on external data such as the 

broader literature, other studies, or expert opinion (Spiegelhalter, Myles et al. 2000). 

Bayesian methods can be particularly relevant for a temporally dynamic situation where 

parameter estimates will need continuous revision (emerging resistance; reduced 

transmission) and across locations with different epidemiological or demographical 

circumstances, where new data can be used to update prior estimates, rather than 

interpreting them in a void (Sculpher, Pang et al. 2004). 

One of the most natural applications for a Bayesian approach is in the evaluation of 

diagnostic tests, where the sensitivity and specificity of the tests can be obtained in clinical 

trials, but the predictive power of the tests can only be determined by combining these 

with the assessment of the underlying probability of a patient having the disease of 

interest. A more controversial use of a Bayesian approach would be the initial 
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determination of the test accuracies by combining prior beliefs on their sensitivity and 

specificity, with new data on these emerging from trial results. 

3.2.2 Generalisability of economic evaluation results 

Economic evaluations are often based on a single trial from a particular setting, and then 

seek to generalise results to other settings. The data input into these evaluations can 

consist of intervention costs, effectiveness, target population characteristics, similar data 

for comparator interventions, and the value placed on outcomes. The values of these input 

parameters, however, are rarely completely fixed and known. Some of the uncertainty 

stems from limited data, as described above. Some variation, however, will be due to 

heterogeneity, i.e. genuine differences in intervention costs and effectiveness, and other 

characteristics ofthe location and target population (Briggs 2000; Briggs, Sculpher et al. 

2006). For instance, in the context of malaria, transmission intensity can vary widely within 

small areas (Ve, Kyobutungi et al. 2007), resulting in significant implications for population 

susceptibility to infection and the predictive values of diagnostic tests. 

Input parameters can also vary considerably over relatively short periods of time, such as 

the effectiveness and costs of antimalarials. Use of evaluations founded on outdated 

values can result in inappropriate policies being pursued. In Tanzania, for example, over a 

period of less than 6 years, the drug policy for treating uncomplicated malaria was 

changed from one relatively cheap but failing drug to another, as some studies failed to 

use the most recent data for the new drug's efficacy, while others showed the newer drug 

was already failing. Subsequently policy was changed again to a more effective 

combination therapy (Kindermans 2004; Mubyazi and Gonzalez-Block 2005). 

In trying to ensure the relevance of anyone particular evaluation to other settings, a 

growing body of literature is dedicated to identifying methods of improving the 

generalisability of economic evaluations (O'Hagan, Stevens et al. 2000; Sculpher, Pang et 

al. 2004; Drummond, O'Brien et al. 2005; Manca, Rice et al. 2005). One approach is to 

broaden the range of input estimates to accommodate location heterogeneity. Another 

approach has been to seek only general indications of an intervention's efficiency rather 
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than clear decision rules, leaving policy makers to account for relative efficiency amongst a 

broader range of considerations. While such an approach might be useful in the early 

stages of policy deliberations, it inevitably provides less precise information when 

considering a specific intervention in a particular setting. An alternative approach, 

therefore, is to develop models that facilitate the incorporation of data obtained in a 

specific setting providing tailored results relevant specific to different settings (Briggs 

2000; van Gool, Gallego et al. 2007, English and Scott 2008). 

An area of particular relevance to the question of generalisability is how to handle data 

from multi-centre trials. Part of the incentive to conduct such studies, in addition to the 

greater number of participants, is that multi centre studies can claim greater 

generalisability, as their results are not limited to a particular area. While the availability of 

data from a range of sites does offer a better representation of how the interventions 

compare in varying circumstances, this also poses methodological challenges in how the 

variability in outcome is interpreted. Pooling the data is often done, without consideration 

of the variability between sites (Chanda, Masiye et al. 2007). On the other hand, 

completely stratifying results fails to take full advantage of the data to produce a single 

cost-effectiveness result. An alternative approach is the use of multilevel models. As 

described in Chapter 7, such models draw on individual observations from all sites, while 

recognizing their hierarchical nature (Manca, Rice et al. 2005). 

3.3 Chapter conclusion 

Economic evaluations and decision models offer a range of tools that can potentially 

indicate when and where new interventions are an efficient use of scarce resources. This 

chapter has presented the main theoretical foundations of the available economic 

evaluation frameworks and the approaches to handling data and the uncertainty 

surrounding these in decision models. 

It has been argued that the use of CUAs and ceiling ratios requires considerable investment 

in the development of an adequate measure of utility, in obtaining estimates of all 

interventions' ICERs, and in obtaining a ceiling ratio to be used as the decision rule. While a 
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number of developed countries are in the process of establishing their decision rules using 

methods akin to the league table approach, and others have tried and failed, it is 

unrealistic to do so in the highly resource constrained and unstable environment in much 

of the developing world. 

The generalised framework developed by the WHO does allow for some simplification of 

this process, but can be argued to be relevant only at early stages of evaluation, not for 

more practical, country-level choices concerning specific interventions and target 

populations. Other factors such as high fluctuations in funding, much of it targeted at 

specific diseases and interventions, also imply that the CUA framework and league table 

approach in particular are problematic in the malaria context. 

The gradual shifting of CUAs toward CBAs in both theoretical foundations and practical 

methods has been shown, and the inevitability of assigning monetary values to health 

outcomes has also been argued. CBAs, it has been argued, can offer more coherent and 

comprehensive analyses, in particular where intervention consequences might affect a 

wider population than just the patients at which interventions are aimed, and where 

intervention benefits have non-health dimensions. 

The dynamic and variable circumstances prevalent across malarious regions pose a 

number of challenges to how data from any particular setting is applicable at different 

places and times. Such dynamic environments pose considerable challenges to the 

traditional approach of economic evaluation and dissemination of results. Especially in 

highly resource constrained environments, it is imperative that decisions be based on the 

most up-to-date and locally relevant data, if sustainable policies are to be pursued. The use 

of localisable decision support tools is one possible method to ensure that decision 

recommendations are tailored to different settings. For multi-centre trial based 

evaluations, the use of multilevel modelling can facilitate the merging of data from 

different sites into single estimates for costs and effectiveness, while still accounting for 

between site heterogeneity. 

80 



4. Thesis Aims, Objectives and General Methods 

Previous chapters have reviewed the various frameworks and models used in economic 

evaluation of diagnostics and treatments for malaria, identifying their limitations in 

providing relevant decision recommendations. This chapter provides an overview of the 

aims and objectives of the thesis studies, and briefly outlines the methods and models 

developed in this thesis; these are presented in greater detail in subsequent chapters. 

4.1 Thesis aims 

The thesis seeks to improve the quality of economic evaluation of malaria diagnostics and 

treatments by introducing recent methodological innovations drawn from the developed 

world literature. There is a pressing need for these methods, as Chapter 2 showed that 

economic evaluations often claim generalisability beyond what is supported by the data, 

and are insufficiently responsive to local circumstances. Similarly, in rapidly evolving 

environments, evaluations can quickly lose their relevance, unless the most up to date 

information is used to modify their results. Economic evaluations of malaria diagnostics 

and treatments have also often excluded factors that are highly significant to the decision 

making process. 

The thesis aims to develop decision models that incorporate a broader range of factors 

than immediate costs and effectiveness into the analysis, factors which should be 

accounted for when considering the adoption of malaria diagnostics and treatments. The 

thesis also aims to ensure that decision models account for local variations in factors such 

as malaria epidemiology and antimalarial effectiveness. 
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4.2 Main objectives 

The studies in the thesis develop new approaches to modelling the cost-effectiveness of 

malaria diagnostics and treatment with the following objectives: 

• To explore parameters that are of significance to decision making on management of 

febrile patients that have previously been ignored, through an evaluation of ROTs that 

expands to include the degree of adherence to test results and the potential harm 

associated with provision of ACTs 

• To ensure that decision models are relevant to local settings, by constructing decision 

support tools for the evaluation of ROTs and home management of malaria programmes 

• To ensure that multi-centre RCT based economic evaluations are sensitive to local 

variation in trial results, through the use of multilevel modelling applied to a trial 

comparing the use of quinine and artesunate for the treatment of severe malaria 

• To improve the portrayal of disease progression and treatment in decision models, 

through the use of a Markov model for evaluating home management of malaria 

programmes. 

The general methods used to achieve these objectives can be summarised under three 

headings - the economic evaluation framework used, the factors included in the models, 

and the model structures used to assess the impact ofthe interventions being assessed. 

4.3 The CBA framework 

In Chapter 3 the different frameworks used in economic evaluations were discussed, and a 

number of arguments were presented in favour of using cost-benefit analysis in general 

and in the context of malaria in particular. Firstly it was argued that it is difficult to avoid 

valuation of health benefits in the decision making context. Use of CEAs/CUAs does not 

absolve policy makers from the need to decide on a threshold above which an intervention 

is not cost-effective, but merely results in them doing so in an implicit manner. 

82 



CBAs on the other hand allow for the direct incorporation of this value in the analysis. 

There are a number of advantages to this. First the use of a single unit to measure both 

costs and benefits allows for a more coherent analysis. Secondly, the use of CBAs facilitates 

the comparison between interventions with different aims, within and beyond the health 

sector. Lastly the use of monetary values allows for the potential incorporation of non

health benefits. This is of particular importance with regards to malaria, as the impact of 

the disease goes far beyond the immediate health outcomes (Mcintosh 1999). 

4.3.1 Choice of method to assign monetary values to health benefits 

While CBAs offer a more comprehensive and coherent framework for economic 

evaluation, the need remains to determine the value placed on health benefits, a similar 

task to that of determining the ceiling ratio in CUAs. 

In the analyses in this thesis, two monetary values are used for a year of life lost, one being 

the $150 threshold used by the WHO and the World Bank in the context of OAL Ys, and the 

second using GOP per capita as the decision threshold. The World Bank $150/0ALY 

threshold is derived from the World Bank's attempt at defining a set of cost-effective 

interventions relevant to low and middle income countries, termed the Minimimum Care 

Package (Jamison 1993; WHO 1996). While the use of the threshold is appealing due to the 

simplicity of having a single measure for low income countries, there are a number of 

limitations in the way it was derived. These include the limited number of interventions 

considered in the MCP and the variation in comparators used when assessing them 

(Shillcutt, Walker et al. In press). Having a fixed threshold also ignores the variability in 

affordability between the different countries. 

The second threshold used, a multiple of GOP per capita, has stronger theoretical 

foundations, being based on the human capital approach, following the recommendations 

of the Commission on Macroeconomics and Health (Sachs 2002). While in theory this 

reflects individual country capacity to afford different interventions, in practice lower 

income countries tend to devote a smaller proportion of their GOP to health (WHO 2007c). 

The higher threshold implied by the use of GOP/capita could result in unaffordable 

interventions being pursued. 
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The WTP approach (using revealed preferences) was not used because it requires a 

consistent decision making process from which an estimate of the value placed on health 

outcome can be drawn. Given the haphazard nature of health care funding in much of the 

developing world, this is likely to result in inconsistencies in the WTP for health outcomes 

(however the lack of empirical data on WTP does not allow for a demonstration of this). 

4.3.2 Total costs as a summary measure 

The main ways in which the costs and benefits of an intervention can be summarised in a 

CBA are net benefits (benefits minus costs) and cost/benefit or benefit/cost ratios. Most of 

the subsequent analyses in this thesis use a value representing the total costs that arise 

following the adoption of an intervention as the summary measure, as performed in a 

small number of other economic analyses of malaria treatments (Laxminarayan 2004; 

Yeung, Pongtavornpinyo et al. 2004). This value incorporates both the direct expenditure 

on the intervention and other related care, and the costs associated with the intervention 

consequences. For example, patients with malaria wrongly diagnosed or inappropriately 

treated have a higher probability of developing severe illness, and these have a case 

fatality rate assigned reflecting the patient's susceptibility, given their age and 

transmission intensity. If the patient dies, each year of life lost (the difference between 

their age and relevant life expectancy) is accounted for by the monetary value attached. 

This value is added on to the intervention costs providing a value that represents the total 

cost of the intervention. 

The differences between the summary measures for CBAs are not substantial; the reason 

for using total costs was that net benefit is useful when an intervention is compared to a 

baseline of doing nothing, in which case the evaluation determines whether the 

intervention benefits outweigh its costs. In the malaria context, however, presumptive 

treatment is already in place as standard practice across most of Africa and is the baseline 

against which the introduction of ROTs in considered. For this reason it is more practical to 

assign monetary values to all adverse consequences associated with each strategy, add 

these to their direct costs, and determine which is the most efficient based on that with 

the lowest value. 
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4.4 Broadening the range of factors in decision models 

As shown in Chapter 2, one of the main limitations of almost all previous evaluations of 

malaria diagnostics and treatments is that they accounted only for a limited number of 

factors, usually the immediate costs and intermediate outcomes, ignoring a broader range 

of costs and consequences that decision makers might want to consider. The main reason 

for doing so is probably that broadening the analysis will often require drawing on a variety 

of sources, sometimes subjective ones such as expert opinion, rather than drawing data 

from a single trial quantifying immediate costs and benefits. Thus analysts might be 

reluctant to extend their models, fearing that this might render their work 'unscientific' as 

estimates used will not always live up to various standards of statistical rigour. 

Consequently, analyses are often structured around information that is readily available, 

rather than that which is relevant to the decision makers' needs and considerations. 

Furthermore, excluding factors that are difficult to estimate does not render them any less 

relevant to the analysis, but rather places an implicit value on them, and often an extreme 

and unlikely one. This thesis attempts to draw in a number of factors that have been 

ignored in most previous analyses, despite their high relevance to decisions concerning 

malaria diagnostics and treatments. 

4.4.1 Adherence to diagnostic test results 

Economic evaluations must focus on intervention effectiveness rather than efficacy if they 

are to provide practical decision recommendations. One of the main potential pitfalls to 

assessing an intervention's effectiveness pertains to the degree to which it is appropriately 

utilized in practice once it has been put in place (Drummond, O'Brien et al. 2005). In some 

instances economic evaluations have used a fixed value that is assumed to reflect the 

degree of utilization of an intervention, such as 80% capacity utilization in the WHO

CHOICE framework (Edejer, Baltussen et al. 2003). 

Evaluations of the cost-effectiveness of rapid diagnostic tests have never accounted for the 

degree to which clinicians act in a manner consistent with the test result. Such a parameter 
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could be difficult to quantify, and is likely to vary widely in different contexts, which might 

explain why analysts chose to ignore it. The exclusion of this parameter, however, is 

implicitly stating that clinicians' actions are always consistent with test results, a very 

strong assumption, and as most evidence suggests, an incorrect one (Amexo, Tolhurst et 

al. 2004; Ndyomugyenyi, Magnussen et al. 2007; Reyburn, Mbakilwa et al. 2007). An 

evaluation that concludes that ROTs are cost-effective without accounting for the degree 

to which they are not adhered to will misinform policy makers on the desirability of their 

deployment. If policy makers are made aware of the impact of varying degrees of 

adherence on the efficiency of ROTs they could also consider appropriate action, such as 

the implementation of training programmes for clinicians. 

In Chapter 5 an economic evaluation is presented, comparing ROTs, microscopy and 

presumptive treatment for the management of febrile patients. The model evaluating 

these strategies demonstrates how results vary in accordance with different levels of 

adherence to negative test results, such as those obtained in the trial from which the 

model drew much of its data. 

4.4.2 Incorporating adverse treatment outcomes 

Another factor, excluded from all analyses of diagnostic tests so far, is the long term costs 

associated with indiscriminate provision of antimalarials, particularly those associated with 

antimalarial resistance. The main incentive for considering the use of ROTs is precisely the 

drive to reduce unnecessary provision of ACTs. The absence of the adverse consequences 

of using ACTs from evaluations of diagnostic and treatment strategies therefore clearly 

leads to partial results with limited decision relevance, as the main advantage of their use 

is excluded from the analysis. Introducing a value for the long term costs of dispensing 

ACTs can ensure that evaluations account for factors such as the possible development of 

resistance to ACTs, with both adverse health outcomes and the costs of introducing 

replacement drugs. Similarly, there are possible long term adverse outcomes due to drug 

toxicity resulting from consumption of artemisinin derivatives by pregnant women, infants 

and young children (Price 1999). 
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The model presented in Chapter 5 allows for different estimates of the adverse outcomes 

associated with the use of antimalarials to be included in the economic evaluation of 

diagnostic tests. 

4.4.3 Capturing patient costs 

While the literature on methods often recommends that economic evaluations take a 

societal perspective in their analyses (Gold, Siegel et al. 1996; Drummond, O'Brien et al. 

2005), in practice all but three of the malaria related evaluations used that of the provider 

(the exceptions are Laxminarayan 2004, Tediosi et al. 2005, and Yeung 2006). The costs 

included in all other analyses are only those relating to direct health expenditure by the 

provider, and not those pertaining to the patient. The reasons for the exclusion of patient 

and hence societal costs might be the higher informational requirements and the 

difficulties in estimating factors such as time spent on tending the illness and valuing its 

worth. 

Despite these difficulties there is a strong argument in favour of incorporating what 

estimates are available in models, particularly when the competing interventions can have 

different impacts on time demands and financial expenditure for patients and their carers. 

The difference between using an ROT that can be performed almost instantaneously and 

sending a patient to a lab for a blood slide might mean little in terms of provider 

expenditure, but often requires several hours' wait or even a return visit for the patient 

and their carers. 

In two of the models presented, on the evaluation of ROTs (Chapter 6) and of the HMM 

programme (Chapter 8), users can view results using the different perspectives and gain 

better insight into the impact the interventions have on patients, providers or society at 

large. 
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4.4.4 Health outcomes for NMFls 

In many evaluations the distinction between true malaria cases and NMFls has not been 

made, with a tendency to overestimate the prevalence of malaria at the expense of other 

causes of illness. In such instances the effectiveness of antimalarial interventions are 

overrated, and the health outcomes for non-malarial patients ignored. While in clinical 

practice a clinician's presumption that a fever could be malaria might be justified, at higher 

levels of decision-making and analysis it is imperative that the probability that patients 

have other causes of illness, and the consequences of not treating these, be accounted for. 

The challenge this poses however, is that data on the precise breakdown of NMFls is 

severely limited, therefore introducing this into analyses increases the uncertainty 

surrounding the true benefit of the interventions. 

In the analyses carried out in this thesis the probability that a patient's true cause of illness 

is malaria forms the starting point for the models. This allows for greater understanding of 

how justifiable the interventions are in relation to different transmission areas and levels 

of host immunity. Different probabilities are also assigned to the prevalence of bacterial 

illness and the probability that these illnesses become severe; these probabilities are also 

responsive to patient age, influencing the impact of malaria overdiagnosis on health 

outcomes in different age groups. 

One factor which was not included in the models in this thesis, although is indeed 

recognized as having potential impact on the costs and benefits of the interventions being 

evaluated, is the impact of the interventions on transmission intensity. Since the Garki 

Project, which demonstrated that even the best coordinated attempts at reducing 

transmission in highly endemic areas in SSA were unsustainable (Molineaux and Gramiccia 

1980), there has been a consensus that in these areas transmission is unlikely to be 

affected by the rollout of malaria control interventions. As the geographical focus of this 

thesis is mostly SSA, it was decided that this factor would be excluded. This consensus is, 

however, being challenged by the increasing reports of reduced transmission in many 

areas in SSA (Greenwood et al. 2008; Ceesay, Casals-Pascual, et al. 2008). This has been 

hypothesised to be related, for instance, to the widespread presumptive treatment of all 
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febrile illness as malaria, essentially delivering an intermittent preventive treatment 

strategy (Gosling et al. 2008). 

4.5 Approach to modelling 

The third area in which this thesis seeks to improve on existing evaluations is in the model 

structures used, addressing the following issues: 

• The representation of the patient and disease progression paths 

• The adaptability of the models to different locations and target populations 

• The incorporation of prior beliefs and external data in trial based evaluations 

• The generalisability of multi-centre trials and studies. 

4.5.1 Patient progression paths - interaction with profiles 

The first structural change to standard decision tree structures was the introduction of 

dependence between parameters, so that factors such as a patient's age or transmission 

intensity can influence the probabilities for the development of severe illness and case 

fatality rates. This is achieved by entering estimates, for instance for the development of 

severe illness for untreated malaria by age and transmission intensity, in a data table, 

which the model then refers to once a particular age and setting is entered in the model. 

As discussed in Chapter 2, one of the limitations of decision trees is their ability to handle 

only relatively simple dynamics such as single events with linear movement. In the context 

of managing malaria suspected patients, disease progression may not follow a linear 

pattern, predominantly due to recrudescence or re-infection, and the development of 

immunity. Portraying these dynamics in a model requires alternative structures, such as a 

Markov model. 

Secondly, the assumption is simplistic that patients utilize only formal health facilities 

when experiencing symptoms associated with non-severe malaria, and will re-attend when 
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facing treatment failure. In fact, care seeking patterns often include home treatment for 

minor symptoms and alternative treatment for more severe illness, either simultaneously 

or instead of attending a formal health facility (Biritwum, Welbeck et al. 2000). 

A possible benefit of using antimalarials is their provision of a prophylactic effect which can 

reduce the probability of future episodes once the drug has been administered to treat a 

febrile illness (White 2005; Gosling et al. 2008). As the treatment of one febrile episode is 

likely to influence subsequent episodes, a decision tree will fail to capture the full 

consequences of using different antimalarials. 

Markov models have not previously been used in the context of economic evaluations of 

malaria treatments/diagnostics. As figure 4-1 demonstrates, using such a structure allows 

patients to shift between the different states (the arrows indicating the movements 

allowed) according to a transition matrix of the probabilities for each possible movement. 

Such structures can be used either in the place of particular nodes in a decision tree, or in 

place of entire branches. 

Uncomplicated 
malaria 

Severe 
illness 

Figure 4-1 - Dlustration of a Markov model for malaria suspected patients 

90 



In this thesis a Markov model is used to assess the value of home management of malaria 

with ACTs, as opposed to current practice of seeking care at either private or public health 

facilities. Given the repetitive nature of febrile episodes and treatment seeking, use of a 

Markov model is a better representation of this reality. 

4.5.2 Localising decision models instead of generalising results 

The development of localisable decision support tools (DSTs) could allow for the 

incorporation of parameter estimates obtained in the target setting to derive location 

specific results (van Gool, Gallego et al. 2007; Briggs 2000; English and Scott 2008). 

The structure of these models is similar to those used in most standard evaluations, for 

instance a decision tree or a Markov model to assess the costs and consequences of 

different policy options. The novelty of the DST approach is in making 'user friendly' 

models available, to permit adaptation of the analysis to other settings (Briggs 2000). Use 

of such models can also serve as a tool to better engage policy makers and other 

stakeholders in the analysis. This process in itself can increase the validity of some 

parameter estimates and might also increase policy makers' confidence in subsequent 

decision recommendations. 

The deterministic model in Chapter 6 and the model evaluating HMM programmes in 

Chapter 8 were both designed as DSTs and are available for use by stakeholders6
• 

4.5.3 Use of a fully Bayesian approach for the evaluation of malaria 

diagnostic tests 

In Chapter 6, a Bayesian decision model using Win BUGS software is compared to a 

deterministic model for the evaluation of RDTs. The Bayesian model allows for the 

incorporation of prior beliefs on the accuracy of the different tests prior to the 

introduction of new data. This can potentially enhance policy makers' confidence in the 

6 Information on the models is disseminated through publications in peer reviewed journals and 

presentations in relevant conferences; the models are available for download with further 

instructions on their use. 
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results, by allowing their own prior opinions to be merged in the analysis along with new 

data as this becomes available. 

4.5.4 The use of multilevel models to assess the generalisability of multi

centre studies 

The difficulties in interpreting multi-centre trial results were briefly described in Chapter 3. 

Recently, the use of multilevel modelling has been advocated for use in economic 

evaluations to address these challenges (Pinto, Willan and O'brien 2005; Grieve, Nixon et 

al. 2005; Rice and Jones 1997). While this has never been done in the context of malaria, 

there is considerable need for the use of these models where high variability in costs and 

health outcomes can be expected, as has been argued to be the case in this context. 

In Chapter 7, a multi centre trial comparing treatment of severe malaria is evaluated by 

comparing the use of multilevel models to standard methods. 

The frameworks and methods used in the analyses are summarised in Table 4-1. 

APPROPRIATE ADDITIONAL FACTORS APPROACH TO 
FRAMEWORK MODElLING 

ChapterS: • Use ofCBA • Adherence to test • Decision tree 

Broadening the range of • Total cost as results responsive to 

factors in decision measure of • Harm oftreatment patient age, 

models outcome • NMFI outcomes 
transmission setting 

Chapter 6: • Use ofCBA • Adherence to test • Decision support 

The localisation of • Total cost as results tool 

economic evaluations measure of • Harm of treatment • Decision tree 

using DSTs outcome • NMFI outcomes • Use of MCMC 

Chapter 7: • Cost analysis • Multilevel 

Multilevel modelling for regression 

severe malaria modelling 

treatments 

Chapter 8: • CBA • Degrees of access to • Markov model 

Markov model for the • Benefit-cost health care • Decision support 
evaluation of ACTs in ratio as measure • Harm of treatment tool 

HMM programmes of outcome • NMFI outcomes 

Table 4-1: Summary offrameworks and methods used In the analyses. NMFI - Non malarial febrile 
illness 
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4.6 Data collection 

In orderto populate the models developed in the thesis with real data, collaborations with 

recent and ongoing trials were created, where in return for assisting with the economic 

analyses of the trials, full access to the data was granted for the purpose of the thesis. 

Three ofthese trials took place in SSA and one in Southeast Asia. 

As is often the case with clinical trials, the economic component was not a central one, 

therefore trial designs were not always ideal for capturing costs or outcomes relevant to 

routine circumstances. To compensate for this, three field trips to Tanzania and Uganda 

were carried out for prospective and retrospective data collection, from a variety of 

sources in addition to the actual trial data. These included, for instance, interviews with 

MoH officials, hospital and clinic costing, and the assessment oftime and resources spent 

by community drug distributors on treating malaria episodes. In the one instance where 

the trial was still at an early stage when the collaboration was established, an active part 

was taken in its planning and in data collection and entering. The trial in Southeast Asia 

was completed in 2005 and the analysis developed here was based entirely on secondary 

data. 

4.7 Chapter conclusion 

This thesis aims to widen the scope of factors used in the economic evaluation of malaria 

diagnostics and treatments, while seeking to inform policy makers on intervention 

efficiency on a localised basis. The methods described in this chapter can ensure that 

evaluations have greater decision relevance in terms of the content, model structures, and 

how they handle variability and uncertainty. Some of the methods have recently been 

applied in the context of high income countries and are being applied for the first time in 

the context of malaria, as described in the following four chapters. 
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5. Broadening the range of factors in decision models: Non

adherence to diagnostic test results and the potential 

harm of antimalarials 

5.1 Introduction 

A central theme of this thesis is that economic evaluation of malaria diagnostics and 

treatments should aim to encompass the major considerations relevant to decision 

making. As demonstrated in the literature review in Chapter 2, many previous evaluations 

have established their results and decision recommendations based on immediate costs 

and benefits to the patient and provider, obtained from trial results assessing clinical 

efficacy. A potential limitation of such evaluations is the existence of factors external to 

clinical trial settings that can playa significant role in determining whether adopting the 

intervention under consideration is a prudent choice. 

The need to expand analyses beyond immediate costs and consequences is particularly 

acute in the context of malaria management in SSA. A simplistic, linear portrayal of 

infection ~ fever ~ diagnosis~ treatment ~ cure that underlies many evaluations 

ignores the pervasive and multidimensional nature of malaria and the circumstances in 

which its management takes place. Such models will fail to address critical factors along 

this continuum, including the following. First, fever that might not be a product of malaria 

infection, whether parasitaemia is present or not (Mwangi, Ross et al. 2005). On the other 

hand, ongoing, asymptomatic parasitaemia can be the cause of other less apparent 

detrimental health outcomes (AI Serouri, Grantham-McGregor et al. 2000; Breman 2001). 

Secondly, when diagnosing malaria, clinicians might not act in accordance with guidelines 

or diagnostic tests, and often over-diagnose malaria (Amexo, Tolhurst et al. 2004). 
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Thirdly, treatment strategies can have a broader impact on transmission intensity and the 

emergence of resistance to antimalarials, with costs and consequences pertaining to 

society at large (Bloland, Kachur et al. 2003). 

Fourth, 'cure' is subject to interpretation, and can relate either to clearance of symptoms 

or of parasitaemia. Recrudescence and re-infection are routine occurrences, hindering 

attempts to classify treatments as single events ending in either success or failure. The 

time to next infection, for instance, might also influence the choice of antimalarials 

(Dorsey, Njama et al. 2002). 

A fundamental requirement in evaluating diagnostics and treatments of malaria is, 

therefore, to identify and capture factors that are likely to influence their efficiency, many 

of which are not necessarily observable in clinical trials. As described in the literature 

review, the incorporation of possible development of resistance has been realized in 

several of previous economic evaluations of malaria treatments, and has recently also 

been included in evaluations in the context of antibiotics (Smith, Yago et al. 2005). 

In the context of diagnostiCS, however, economic evaluations have been far more modest 

in the range of factors included. The evaluation of malaria diagnostic tests has been limited 

to outcomes pertaining to the immediate patient, and often using proxy measures such as 

patient correctly diagnosed as opposed to estimating their impact on final health outcome. 

This area in particular was therefore identified for research in the thesis. 

The objective of this chapter is to present an evaluation of RDTs compared to microscopy 

and presumptive treatment that accounts for two previously ignored factors, the non

adherence to the results of diagnostic tests in routine practice, and the possible negative 

externalities associated with the use of antimalarials. The intention is to explore the 

impact their inclusion has on the cost-effectiveness of diagnostic tests, and the 

implications of ignoring them in terms of health outcomes and misallocation of scarce 

resources. 
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5.2 Choice of diagnostic test 

The increasing variety of diagnostic tests available for some of the most widespread 

diseases in sub-Saharan Africa, including HIV, tuberculosis and malaria, could potentially 

improve targeting of drugs to those patients most in need. Improved targeting of 

antimalarial drugs in Africa is an increasingly urgent priority as new ACTs are deployed, 

costing significantly more than previous and now generally ineffective antimalarials. 

The widespread practice of treating any non-specific febrile illness as malaria threatens the 

sustainability of ACT deployment; in many settings most antimalarials prescribed go to 

those with no malaria parasites (Amexo, Tolhurst et al. 2004; Hamer, Ndhlovu et al. 2007; 

Reyburn, Mbakilwa et al. 2007). This means that in addition to the unnecessary use of 

scarce resources, other potentially severe causes of febrile illness are ignored. Moreover, it 

exposes patients to potentially toxic reactions to the drugs and is likely to speed up the 

onset of resistance to ACTs, as large numbers of individuals are exposed to parasites in 

sub-therapeutic drug levels (Bloland, Ettling et al. 2000). 

Reflecting these concerns, WHO and a number of national guidelines in SSA now 

recommend that treatment for non-severe malaria should, at least for older children and 

non-pregnant adults, be restricted to those with a positive parasitological test for malaria 

(NMCP 2005; WHO 2006b; Zurovac, Njogu et al. 2008). In many settings this is difficult to 

achieve with current blood slide testing that is time consuming, often inaccurate and only 

available in larger health facilities where a minority of patients seek care (Hetzel, Iteba et 

al. 2007). Recent improvements in ROTs address many of these problems and their current 

cost is less than most courses of ACT (Bell, Wongsrichanalai et al. 2006). Several studies 

have explored the economic consequences of deploying ROTs alongside ACTs and suggest 

they are cost-effective, but critically assume prescribers respond to negative test results by 

not prescribing an ACT(Rafael, Taylor et al. 2006; Rolland, Checchi et al. 2006; Lubell, 

Reyburn et al. 2007; WHO 2007). 
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5.3 The extent and reasons for non-adherence to the results of ROTs 

While these diagnostics might appear to be cost-effective in standard models which 

assume clinicians act on the results, their deployment could consume scarce funding with 

little effect if non-adherence to test results is not accounted for. 

The assumption that prescribers will adhere to test results is highly questionable. In 

Zambia where ROTs were used routinely in settings where microscopy was unavailable, 

antimalarials continued to be prescribed to over a third of patients with negative test 

results (Hamer, Ndhlovu et aL 2007). In Tanzania, a recent randomised trial of ROTs 

compared to blood slide testing found that in low transmission areas, over 90% of all 

antimalarials prescribed were for patients with a negative test result, irrespective of the 

test method used (Reyburn, Mbakilwa et aL 2007). This very high level of overdiagnosis 

extended also to patients with severe illness (Reyburn, Mbatia et al. 2004). 

Diagnostic Support 

• Testing constraints 
• Established processes 
• Lack of supervision ...... _

IIIt4Ia
_ 

Ratient~ntnQ88 
• MIla .. ...., as JRfeIred 

tt,tpe1lenf8 
• low stigma dllNee 

Peer Pressure 
• Experience of 

need to conform 
• Can't miss most 
Imponant disease 

Figure 5-1: MindUne model for the overdiagnosis of malaria. Taken from Chandler et al. 2008. The 
outer quarters show the influencing factors and the inner circles the 'mind-lines' leading to 
overdiagnosis 

The reasons for ignoring both ROT and microscopy negative test results have recently been 

explored by Chandler et aL, who identified a number of factors that contribute to the 

practice of overdiagnosis of malaria (Chandler, Jones et al. 2008). The authors identify 

firstly the spheres of influence on clinicians, such as training programmes, patient 
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expectations and peer-pressure, followed by the mind-lines, meaning the thought patterns 

that are assu med to lead to overdiagnosis. These consist of the ease and acceptability of 

diagnosing malaria, and the fact that missing a case of malaria appears indefensible in face 

of both peers and patients and particularly so given the extensive emphasis placed on 

treating malaria through promotion and training campaigns. Both the influences and the 

mind-lines are illustrated in Figure 5-1. 

5.4 Harm of Treatment 

When conSidering the costs and consequences of diagnosis and treatment, most previous 

evaluations have addressed only those pertaining to the patient and provider, stopping 

short of including the broader benefits to society associated with the reduction in 

antimalarials prescribed, even though these are one of the primary incentives for the 

introduction of ROTs (Bloland, Kachur et al. 2003; Nosten and Ashley 2004). 

As with all drugs, there are a number of possible adverse outcomes surrounding the use of 

antimalarials. Firstly is their possible toxicity, particularly amongst children and pregnant 

women (Price, van Vugt et al. 1999; Johann-Liang and Albrecht 2003). Second is the 

contribution to the risk that this class of drugs also succumbs to parasite resistance 

(Bloland, Kachur et al. 2003). A small number of economic evaluations have incorporated 

the development of resistance in determining the cost-effectiveness of antimalarials 

(Schapira, Beales et al. 1993; Goodman, Coleman et al. 2001a; Coleman, Morel et al. 2004; 

Yeung 2006), but none have done so in the context of diagnostic tests. 

Incorporating this factor in the analysis requires a direct comparison oftreatment 

consequences for the individual patient with those to society more broadly. This in turn 

requires a shared measure to assess these different consequences on a single scale. In a 

unique attempt to do so, Rafael et al. (2006), based on a method presented by Girosi et al. 

(2006), estimated the number of antimalarials used that would eventually lead to the loss 

of a life though adverse consequences of treatment. They concluded that the use of 200 

antimalarials would lead to the loss of a single statistical life (Girosi Rafael et al. 2006; 
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Rafael, Taylor et al. 2006). Thus the benefits associated with provision of 200 ACTs to 

patients whom the clinicians suspect to have malaria is offset against the future loss of a 

single life. This value is supposed to reflect lives lost due to emergent resistance to the 

drug, possible adverse effects, and the opportunity cost in terms of the resources spent on 

the treatment and the cost of introducing new regimens should it fail. Rafael et al. then 

made use of this value in evaluating the number of lives saved with the use of new 

diagnostic tests that reduced the unnecessary use of antimalarials. The authors did not 

proceed to include an economic component to their analysis. 

The method used to obtain this value made use of observations of previous decisions 

made by the medical community regarding diagnostic practices. These were assumed to 

reveal preferences concerning the relative significance of increasing the probability of 

detecting true malaria cases as opposed to reducing the unnecessary use of antimalarials 

and the likelihood of correctly diagnosing other non malarial illnesses. The choice of one 

test over another essentially expresses the trade-off between sensitivity and specificity; 

this trade-off reveals the benefit that is assumed to be gained by a certain increase in 

sensitivity, with a higher proportion of true positive cases being found, as opposed to the 

increase in false positives and unnecessary treatments being used (Girosi et al. 2006). By 

quantifying the degree to which the medical community was willing to accept a lower 

sensitivity in favour of an increase in specificity, an estimate was derived for the number of 

treatments that are assumed to result in a loss of life at some point in the future. 

The method, however, has numerous limitations and the authors identify the area as one 

for further research. First, it assumes that the medical community is tacitly aware of the 

potential long term costs of unnecessary use of antimalarials and is able to quantitavely 

account for this in the trade-off with ensuring that true malaria cases are adequately 

treated. In the context of this thesis use of this method has further limitations - first, there 

was no breakdown into the different components of the harm of treatment, and the 

opportunity cost component is already accounted for in the evaluation as captured in the 

drug price. Secondly, the loss of life associated with the harm of treatment is assumed to 

occur at some point in the future, although the timing for this is not specified. This implies 
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that only partial discounting can be applied - that for the subsequent years from a given 

point of death, but not for the time until that death occurs which is unknown. The value of 

200 antimalarials used leading to the loss of a statistical life is therefore likely to be an 

overestimate and warrants substantial exploration in sensitivity analyses, as shown in the 

analyses in this thesis. 

Despite these limitations, presently this is the only available estimate for the broader costs 

of using antimalarials. In effect, the inclusion of a parameter reflecting these adverse 

outcomes in the analysis places a necessary constraint on the otherwise unrestricted use 

of antimalarials. 

The decisions with respect to diagnostics policy makers face are therefore as follows. 

Firstly, they must decide whether to continue with a strategy of presumptive treatment, or 

whether to opt for use of diagnostic tests prior to provision of ACTs. Secondly, if opting for 

parasitological confirmation, they must consider whether to rely on the use of microscopy 

where this is available, or adopt the use of ROTs in their place. 

The following analysis thus compares the costs and consequences of use of ROTs, 

microscopy and presumptive treatment, allowing for variation in the level of adherence to 

diagnostic tests and the indirect harm associated with the use of antimalarials. Both 

diagnostic methods and presumptive treatments are evaluated as these are all likely to 

continue to playa significant role in the management of febrile patients in the foreseeable 

future. 
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5.5 Methods 

5.5.1 Data 

Data for the analysis were obtained from a randomized control trial carried out in three 

hospitals in northeast Tanzania in 2005. These hospitals serve areas where the 

transmission of malaria has previously been characterised as very low, low and high, with 

parasite prevalence of 2%,5% and 61% respectively, in febrile children under the age of 5 

years presenting at health facilities (Drakeley, Carneiro et al. 2005). 

Patients (n 2416) for whom the clinician had requested a parasitological test for malaria 

were randomised to diagnosis using routine microscopy or an RDT for the detection of Pf 

Histidine Rich Protein 2 antigen (Paracheck-PfGt). In both arms, reference slides were taken 

and later double-read according to research methods to determine diagnostic accuracy of 

the tests. Data on treatments given were recorded and used to compare clinician 

adherence to microscopy results against those for RDTs; the trial is described in further 

detail elsewhere (Reybum, Mbakilwa et al. 2007). The relevant data for the analysis in this 

chapter are prevalence of parasitaemia amongst febrile patients, clinician adherence to 

test results, test accuracies (sensitivity and specificity), and costs of both diagnosis and 

treatment. Costs were obtained from data collected retrospectively in the low and high 

prevalence settings, supplemented where necessary by data from the literature. 

The trial was carried out just before Tanzania rolled out ACTs for first line treatment of 

malaria in health facilities, therefore patients treated for malaria still received standard 

monotherapies (most commonly sulfadoxine-pyrimethamine). In order to ensure policy 

relevance, the analysis here assumed the treatment given was artemether-Iumefantrine, 

which has since been introduced as first line treatment in Tanzania and other countries in 

the region. 

In August and September 2005, the hospitals where the trial was carried out were visited 

to assess the providers' cost of testing and treating patients with malaria suspected illness. 

During this time laboratory staff were observed and interviewed to obtain the resources 
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and time they spent on malaria microscopy. Slide costs were obtained by combining this 

micro-costing (noting all resources used at the point of delivery, and using an ingredients 

approach to calculate their total economic cost) with step-down costing of hospital 

expenditure to estimate indirect laboratory costs. Data for step-down costing were 

obtained from two of the hospitals' accounts and recent independent evaluations of all 

their assets. The cost of utilities and service departments were apportioned using 

measures that reflected their nature, for instance electricity and cleaning services were 

apportioned according to each direct service department's surface area, while transport 

and sustenance costs were apportioned according to staff numbers. These costs were then 

apportioned to the various laboratory tests according to their proportional activity, based 

on staff estimates for the amount of time spent on each type of test, and the number of 

tests carried out each month as found in the laboratory records. 

The cost of ROTs was obtained directly from the manufacturer (Orchid Biomedical Systems, 

Goa, India) and included shipment costs plus 10% for local transport and storage. The time 

required for administration of the tests was assumed to be equivalent to the preparation 

of a blood slide, based on the opinion of laboratory staff who administered both. 

The cost of ACT in 2006 was estimated at $1.6 for an adult course of artemether

lumefantrine (AL), the price negotiated between the World Health Organization and 

Novartis, the manufacturer (WHO 2006a), and adjusted for patient age. These costs were 

used in the analysis in place of costs of currently used antimalarials to simulate the switch 

to AL (Coartem®) in Tanzania as the first line drug for the treatment of uncomplicated 

malaria. 

The cost of treatment for patients diagnosed as malaria negative was estimated from data 

on the treatment cost of trial patients who received an antibiotic but not an antimalarial. 

The geometric mean was used for these as they were highly skewed to the right. The 

costing perspective was that of the provider. Costs were collected in Tanzan ian Shillings of 

2005 and converted to US dollars ($1=1167Tzs for 2005). The cost for clinician 

consultation time was not included as this was found to be similar for patients in all trial 

arms. 
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Parameter Estimate used Source Comment 

Costs collected in 2005 
Costs: Tanzanian Shillings and 

converted to USD ($1=1167Tzs) 

RDT $0.8 Primary 

Microscopy $0.28 Primary 
Low cost partly result of short 
reading time 

ACT $1.6 adult dose, 
(WHO Quantities adjusted for younger 
2006a) age groups 

Test negatives that were 
Antibiotics $0.42 Primary adhered to were assumed to 

receive drug of this cost 
Varies by age, prevalence with 
respect to probability of 

(WHO 
Value ofYLL based on WHO 

False negative untreated malaria becoming 
2006c) 

benchmark for 'attractive' 
severe and CFRs (see below). interventions 

Value of YLL=$150 

Determined by proportion of 

False positive 
NMFls that are bacterial, the 
probability they become severe, 
and CFRs, Value of YLL=$150 

RDT sensitivity 93% Primary 

RDT specificity 96% Primary 

Mic. sensitivity 73% Primary 

Mic. specificity 93% Primary 

Probability untreated 
5 to 14year 

15 years 

malaria becomes Under 5 year old 
old 

old and Source 
severe above 

1% prevalence 0.075 0.050 0.011 

10% 0.075 0.026 0.009 

20% 0.075 0.011 0.006 

30% 0.075 0.010 0.004 Initial estimates 

40% 0.075 0.010 0.003 based on previous 

50% 0.075 0.010 0.002 analyses (Goodman 

60% 0.075 0.010 0.002 et al. 2001; 

70% 0.075 0.010 0.001 
Goodman et al. 

80% 0.075 0.010 0.001 
2006), then 

90% 0.075 0.010 0.001 
classified by 
transmission 

CFR treated severe 
0.05 0.10 0.20 intensity using 

malaria expert opinion 
CFR Untreated 

0.30 0.40 0.50 (Christopher 
severe malaria Whitty, Hugh 

Probability NMFI Reyburn) 

becomes severe 
0.01 0.005 0.010 

CFR NMFI 0.1 0.20 0.30 

Table 5-1: Parameter Inputs. CFR -Case Fatahty Rate; NMFI - Non Malarial Febrile Illness; YLL
Year of life Lost 
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Prevalence was defined as the proportion of febrile patients presenting with parasitaemia, 

and varies with malaria transmission (Marsh and Snow 1999). Prevalence of under 10% 

was classified as likely in low transmission, 10%-50% in moderate, and above 50% in high 

transmission settings. Adherence is defined as the percentage of test negatives that did 

not receive antimalarials, in other words 0% implies all patients with a negative test results 

receive antimalarials, while 100% implies that none ofthem do. Non-adherence to positive 

test results was not examined as this was an extremely rare occurrence «1%). Prescription 

of antibiotics to patients with negative test results was as documented in the trial, i.e. just 

over 50%, independently of provision of an antimalarial. The estimates for test accuracies 

for both RDTs and microscopy were derived by combining data from all three trial sites. 

The parameter estimates used in the analysis and the sources for these are summarised in 
Table 5-1. 

5.5.2 Evaluation framework 

As explained in Chapter 4, the analysis uses a cost-benefit framework, accounting for both 

provider costs, and the monetary value of years of life lost (YLLs) due to incorrect diagnosis 

and inappropriate treatment. This framework allows for a more coherent analysis in 

directly observing the impact of compromised adherence to test results and the harm of 

treatment factor on total costs, without the need for use of cost-effectiveness ratios. As 

both costs and consequences ofthe different strategies are expressed in monetary terms, 

these are differentiated by referring to either direct costs to describe financial 

expenditures alone, or to total costs incorporating both financial expenditures and 

consequences in terms of value of life years lost. The option that incurs the lowest total 

cost is therefore considered the most efficient. 

A decision tree structure was chosen as most adequate to synthesise the data, represent 

alternative options, and indicate the most efficient outcomes (Figure 5-2). A number of 

parameters were made to interact, for instance the probability of developing severe 

malaria responds to prevalence and patient age, as do treatment costs for ACTs. This 
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provides tailored results that are responsive to patient age and location, rather than 

averaged results that mask the differences between sub-populations. 

Patients for whom the test provided an incorrect result to which the clinician did adhere 

were classified as either false positives or false negatives. Their costs were estimated with 

the use of a simple flow chart as illustrated in the lower panel of Figure 5-2, following the 

model used by Goodman et al. (Goodman, Mutemi et al. 2006) and Coleman et al. 

(Coleman, Morel et al. 2004). Probabilities with which to populate this model were derived 

from expert opinion as detailed in Table 5-1. The probability of an episode of malaria being 

self-limiting was determined according to patient age and transmission intensity, with 

varying case fatality rates according to whether or not the patients were admitted as 

inpatients. 
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Figure 5-2: Decision trees in the model. The probabilities for developing severe illness and case 

fatality rates differ with respect to age, transmission intensity, and status as either false negative 

or untreated bacterial illness, as detailed in table 1. 

The death of a patient leads to a number of YLLs, dependent on age and as calculated from 

relevant life expectancy tables (WHO Statistical Information System 2007), and discounted 

at 3% (Gold, Siegel et al. 1996). For the primary analysis, a year of life lost was assigned a 

cost of $150, reflecting WHO's benchmark for an 'attractive' intervention in terms of cost-
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effectiveness (WHO 2006c). All other costs and outcomes accrue instantaneously with no 

further discounting required. The outcomes of the different branches summarise the total 

costs of the patient under each strategy. The benefits of diagnosis are integrated in this 

value (as the averted cost of life years lost), so the intervention with the lowest total cost is 

the most attractive. 

The baseline value used to estimate the harm oftreatment was that estimated by Rafael et 

al. (2006), stating that for every 200 antimalarials given one statistical life is lost. 

Results are stratified by three age groups - children under 5 years, children between 5 to 

14 years, and adults, aged 15 years and above. In addition to the influence of age on 

transition probabilities and case fatality rates, the responsiveness of the model to patient 

age is important for policy considerations, since younger patients are still recommended to 

be treated presumptively in some settings. 

5.5.3 Sensitivity analysis 

Results were tested for sensitivity to variation in all parameters, and a tornado graph was 

produced to identify those with highest influence. The greatest degree of uncertainty 

surrounds the harm of treatment factor. The impact of this uncertainty was tested by both 

increasing the number of treatments associated with the loss of a statistical life by an 

order of magnitude, and also by carrying out a threshold analysis to identify the value at 

which the decision to use an ROT becomes less efficient than presumptive treatment. 
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5.6 Results 

Results are presented here by initially describing the costs and accuracies as found in the 

trial. This is followed by a description of the total cost for each strategy across all 

prevalences, without accounting for compromised adherence or the harm of treatment, 

which are introduced in the subsequent two sections. Last are results of the sensitivity 

analysis exploring the uncertainty surrounding the most influential parameters. 

5.6.1 Costs and accuracies 

Microscopy costs. The cost per slide was $0.26. Labour was the largest cost component, 

though staff took an average of less than 1.5 minutes prior to declaring a slide negative or 

providing a positive result along with a parasitaemia count. 

Rapid diagnostic test costs. ROT costs were $0.81, the most significant component being 

the test itself ($0.60). 

Treatment costs. Geometric mean cost for treatment of patients diagnosed as not having a 

malarial illness was $0.42, as compared to $1.6 for an adult course of Coartem. 

Observed diagnostic accuracy and prevalence. Test specificity was comparably high for 

both tests - 95% for ROT and 93% for microscopy - but ROTs were substantially more 

sensitive (93%) than routine microscopy (71%). 

Choice of strategy without accounting for non-adherence or the harm of treatment. 

Without accounting for the impact of non-adherence and the harm of treatment, results 

confirm previous analyses that suggest that use of ROTs is beneficial for children under five 

years of age at low transmission, and less so at higher ones where presumptive treatment 

is the preferred option (Figure 5-3). Microscopy is the least efficient option in all areas 

above 5% prevalence. For adults both diagnostic tests are equally efficient and far more so 

than presumptive treatment across all but the highest prevalences. 
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Figure 5-3: Total cost for RDTs, microscopy and presumptive treatment across aU prevalences for 
children under five and adults. PT - presumptive treatment 

5.6.2 Adherence 

When compromised adherence is allowed for, the model output shows that non

adherence to test results has a significant effect on their cost-effectiveness, and indicates 

some situations where even modest compromises in adherence to negative test results 

leads to expenditure higher than that incurred with presumptive treatment. This does 

depend critically, however, on transmission setting and age. 

In a low transmission setting, illustrated by a prevalence of 10%, and for a 15 year old 

patient, both tests incurred higher costs than presumptive treatment when adherence was 

below 20%, and application of a test became increasingly attractive as adherence 

improved (Figure 5-4). For instance at an adherence level of 50%, both tests were less 

costly than presumptive treatment (as they were below the presumptive treatment 

threshold), and at this point incurred equal expenditure, approximately $4.6 per patients. 

Above this level of adherence RDTs became marginally more attractive, but despite their 

higher sensitivity, they did not have a significant advantage over microscopy in a low 

transmission setting. 

In a high transmission setting, illustrated here by a prevalence of 60%, and for a 15 year 

old, both tests incurred higher costs than a strategy of presumptive treatment if adherence 

was below approximately 65% (Figure 5-4). As is evident in the graph, the two tests 
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followed different trends as adherence improved further. While adhering to ROTs led to 

substantial cost savings, the cost of microscopy was almost unchanged with improved 

adherence, due primarily to its low sensitivity, which resulted in significant numbers of 

false negatives. 
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Figure 5-4: Model output for a 15 year old patient, demonstrating total costs for ROTs 

and microscopy, with varying levels of adherence in low (left) and high (right) 

transmission intensities. PT - Presumptive treatment. 

Figure 5-5 compares each of the tests directly to presumptive treatment for adults across 

all levels of prevalence and adherence, showing the proportional change in cost when 

using ROTs and microscopy relative to presumptive treatment. The upper left corners in 

both charts indicate that in low prevalence settings, use of either test with high adherence 

to results led to cost savings of over 50% as compared to presumptive treatment. As 

prevalence increases to the medium-high range however, adherence to test results must 

increase more than proportionately in order for their use to remain attractive. At very high 

levels of prevalence both tests appeared more costly irrespective of adherence due 

primarily to imperfect test sensitivities, and presumptive treatment remained the more 

efficient option. 
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Figure 5-5: Cost savings with ROTs (a) and microscopy (b) for an adult patient using 
presumptive treatment as a baseline, across all prevalences and levels of adherence. The 
darker areas indicate that presumptive treatment is more efficient 

The level of adherence to RDTs observed in the trial for instance, of approximately 50%, 

imply that RDTs would increase costs by 62% and 43% in low and high transmission 

settings, respectively. For microscopy the results were similar at low transmission, while in 

a moderate to high transmission setting the cost increase was only 10%. At higher 

prevalence microscopy would become less attractive than presumptive treatment. 

Figures 5-6 shows the most attractive strategy at all prevalences and levels of adherence 

using profiles for patients aged three, seven and twenty five. They indicate that the use of 

either parasitological test for younger patients was unattractive in settings of medium and 

high transmission, even if tests were fully adhered to. 
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Figure 5-6: Most attractive strategy stratified by patient age. Shading indicates which strategy is 
preferred at specific combinations of prevalence and adherence. ROT-rapid diagnostic testj Mic
MicroscoPYj PT- Presumptive treatment 

110 



5.6.3 Harm of treatment 

Harm of treatment was then included in the model. The baseline estimate for this factor 

implies that for every 200 ACTs given, one statistical life is lost in the future (Rafael, Taylor 

et al. 2006). Figure 5-7 shows the difference in total costs with and without the inclusion of 

the harm of treatment factor for the 5-14 year old age group. Inclusion of the harm of 

treatment factor has a substantial impact on results, with a considerably higher surface 

area of the graph indicating RDTs and microscopy being preferred to presumptive 

treatment. 

Most efficient strategy by prevalence/adherence 

W ithout HoT With HoT 
r-------------.--r-r~100% 

A-+--+--+ 90% 
~+-+-+--+ 80% 

f--1----11----1f---i--+ 70% 
A--+--+--+--+--+ 60% 

~-+-+--+--+~--+50% 

~--+--+--+--+--+--+40% 

--+--+--+--+~~f---i--+30% 

--+--+--+--+--+~~~--+20% 

% 

Prevalence 

'#. ;#! ~ ';#! 
l.[") C) C) C) 

N ..q- co 

Prevalence 

100% 
90% 
80% 
70% l> 
60% Q.. 

~ 

50% /I> .... 
II> 

40% ::J 
(') 

30% II> 

20% 
10% c::J ROT 

~ 
0% _ Mi croSCO I)Y 

C) 
C) 

ff3 PT 

Figure 5-7: Preferred strategy with and without the inclusion ofthe harm oftreatment factor 
for patients aged 5 to 14. RDT- rapid diagnostic test; Mic- Microscopy; PT- Presumptive 
treatment 

With respect to younger child ren, without inclusion of the harm of treatment factor, there 

was almost no advantage to using either RDT or microscopy as compared to presumptive 

treatment (Figure 5-6a above). When the harm of treatment associated with over

prescription of antimalarials is included, results change considerably in favour of either 

diagnostic test (Figure 5-8). 
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Figure 5-8: Model output for children under 5 with the inclusion on the harm oftreatment factor. RDT
rapid diagnostic test; Mic- Microscopy; PT - Presumptive treatment 

5.6.4 Sensitivity analysis 

Results were most sensitive to the cost of a YLL and variation of the harm of treatment 

factor. Higher values of YLLs led to scenarios that were more costly and more effective 

being considered more attractive. If the cost ofYLLs is set to zero (i.e. the value of health 

outcomes is ignored), ROTs would never be the most efficient option, while microscopy 

was still attractive although decreasingly so as prevalence increased and adherence fell. 

Figures 5-9a-c demonstrates the circumstances under which each of the strategies is most 

attractive, stratified by the value of a YLL averted and for an adult patient. At a YLL value of 

$25 {'very attractive' (Edejer, Baltussen et al. 2005)), ROTs gained some advantage in the 

mid prevalence range as long as high levels of adherence were maintained, with 

microscopy remaining the preferred option for low prevalence areas even at low levels of 

adherence. Using $150 per year of life lost, ROTs became the preferred option up to a 

prevalence of about 70%, where presumptive treatment became the more efficient option. 

At a value of twice the Tanzanian GNI per capita for the year 2005 (World Bank 2007), an 

alternative rule of thumb (Garber and Phelps 1997), i.e. $680, ROTs dominated across all 

but the lowest levels of adherence and highest levels of prevalence. 
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Figure S-9a,b,c: Most efficient strategy (indicated by shading) by adherence and prevalence, with 

respect to value of a year of life lost. 

Recognizing the uncertainty surrounding the harm of treatment parameter, a second value 

of 2,000 ACT treatments per death was arbitrarily chosen to observe the sensitivity of 

results to a lower estimate of harm of treatment (Figure 5-10). Even with this much lower 

estimate of harm of treatment, both microscopy (not shown) and RDTs remained more 

efficient than presumptive treatment in prevalences of up to 35%, as long as adherence 

was high. In fact in an area of medium transmission intensity, the number of ACTs equating 

to the loss of a statistical life would have to be as low as 7,000 treatments before 

presumptive treatment becomes the more efficient option. 
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Figure 5-10: Total costs for children under 5 with the baseline estimate of the harm oftreatment (left), 
and a low estimate (right). Most efficient strategy indicated by shading 
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5.7 Discussion 

5.7.1 Limitations 

A number of potential limitations of the methods should be acknowledged. First, some of 

the data within the model had to be estimated from indirect sources and expert opinion 

because locally relevant data do not exist in the literature. Data for case fatality rates for 

untreated malaria, for instance, cannot be accurately measured, and the interaction 

between these, transmission intensity and age, adds an additional level of uncertainty. 

While it is imperative that studies provide explicit statements of the estimates used, 

models could also be developed that allow users to enter their own estimates to observe 

the impact of their variation on final results, as is described in detail in Chapter 6. Expert 

opinion could also be gathered from a wider range of individuals using methods such as a 

Delphi survey to produce a consensus, a project which is currently underway (Annex 2). 

Second, the antimalarial effectiveness in the analysis was assumed to be 100% effective. 

This is not an entirely accurate representation as AL and other ACTs do exhibit treatment 

failures, although to a lesser extent than most existing monotherapies (Mutabingwa, 

Anthony et al. 2005). In this instance the effect of a small proportion of treatment failures 

was assumed to have a similar impact on the efficiency of all strategies, therefore was 

excluded from the analysis. 

Thirdly, characterising transmission is prone to numerous difficulties and the methods of 

estimating transmission intensity from hospital data are inevitably not precise. This study 

used prevalence of parasitaemia amongst febrile patients, although this method is subject 

to a number of limitations, most significantly that it does not account for individual 

patients' levels of parasitaemia. This has been suggested to provide a better indication of 

whether the infection is in fact the cause of illness (Marsh and Snow 1999). 

The model was not designed to perform probabilistic sensitivity analyses as the main aim 

of the study was to demonstrate the variation in results in response to changes in the 
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parameters of interest (adherence and the harm of treatment, across a range of 

prevalences). Many of the other parameters in the model would not be suitable for use in 

a PSA as they are not data driven parameters, but rather are determined by choice of 

analytical methods (Briggs 2000). 

A final limitation of the analysis was that it did not encompass patient costs, but on Iy those 

of the provider. This arose because the economic analysis was carried out retrospectively 

and no data were available for patient costs. An ad-hoc attempt was made after the end of 

the trial to measure the time patients spent waiting for microscopy results, and this 

suggested that patients endured waiting times often exceeding several hours and 

sometimes had to return the following day. At that point ROTs were no longer being used 

but it is likely that they can greatly reduce waiting time and productivity losses for patients 

and their carers. 

5.7.2 Implications for policy and future economic evaluation of malaria 

diagnostic tests 

A major barrier to ACT deployment is its high cost. Targeting of drugs to those in greatest 

need will support programme sustainability. Diagnostic tests themselves have a cost, and 

have to be cost-effective if they are to be deployed. This study demonstrates that in the 

trial setting, clinician adherence to test results had a major impact on the cost

effectiveness of both microscopy and ROTs, as did the inclusion of the harm of treatment 

factor, although the impact of both factors varied with age and transmission intensity. 

In the low transmission setting, testing remained attractive even when adherence was 

relatively poor, while at higher prevalences adherence would have to increase more than 

proportionately in order for tests to remain attractive. At very high prevalences, however, 

presumptive treatment remained attractive given the imperfect sensitivity of tests 

(particularly microscopy) under field conditions, where high adherence combined with 

poor sensitivity resulted in increased costs. 
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Policy makers could consider investing in training programmes for clinicians to encourage 

adherence to ROTs, prior to their widespread deployment. One such programme in Zambia 

has shown very positive results (Harvey et al. 2008). Cost assessments of such programmes 

could be combined with the results from this analysis to estimate their own cost

effectiveness. 

Regarding the inclusion of the harm of treatment factor, results of this study indicated that 

particularly amongst young children this could spell the difference between continuing 

with presumptive treatment and embracing a strategy of diagnostic confirmation. This 

population is of particular significance as this is where the majority of malaria cases occur. 

The parameter however is surrounded by considerable uncertainty. The only estimate 

available in the literature employed methods that have significant limitations, as 

acknowledged by the authors (Girosi et al. 2006). More precise quantification of this is 

difficult, for example assessing the relationship of quantities of ACTs used and patient 

compliance with their proper use to the development of resistance. Alternative possible 

methods to quantify this parameter are the use of Delphi surveys to obtain a wide variety 

of expert opinions in an explicit manner, or alternatively estimating the quantities of 

particular antimalarial usage in specified regions and periods, and assessments of the 

subsequent deaths due to subsequent treatment failures due to parasite resistance. 

In this case the parameter was varied by one order of magnitude, followed by a threshold 

analysis to determine the point where presumptive treatment again became more 

efficient. Across a wide range of values the decision recommendation favoured the use of 

ROTs. 

Excluding the harm of treatment parameter would essentially equate to stating that there 

are no long term costs associated with widespread use of antibiotics or antimalarials, an 

assertion that has proved erroneous and exerted high costs in human life with respect to 

the failings of chloroquine and other antimalarials. 

Decision models are often constructed using a relatively limited scope of parameters to 

ensure that all parameter values used are highly defensible. This can mean that only those 
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factors that are readily observable and measurable, ideally in an RCT, and attain statistical 

significance, are included in the analysis. Many RCTs, for instance, now routinely collect 

cost as well as effectiveness data prospectively to obtain more robust estimates for 

subsequent cost-effectiveness analyses7 (Briggs 2000). However even where direct costs 

are adequately captured in a clinical trial, there remains a range of other potentially 

decisive factors commonly excluded from evaluations, for example: 

• Factors that are characteristic of routine practice but not of clinical trials, such as 

compromised adherence to guidelines 

• long term health outcomes for patients 

• Externalities (i.e. intervention costs and consequences that might not relate directly 

or uniquely to the patients or providers, but to carers, families or society at large) 

Capturing these issues in economic evaluations introduces levels of uncertainty that are 

incompatible with standard statistical paradigms that either accept or reject a hypothesis 

at certain arbitrary thresholds. The reason these parameters are excluded is that it is 

difficult to estimate them with a degree of certainty exceeding widely acceptable p values, 

such as the 0.05 threshold. In a more practical decision making context, where factors such 

as these can play an influential role in determining the cost-effectiveness of an 

intervention, it is imperative that these are included in analyses albeit with thorough 

exploration of the uncertainty surrounding them. 

7 As Briggs points out this often requires a larger sample size, as cost data tends to exhibit high 

variance and can be heavily skewed; this raises potential ethical concerns, as difference in 

treatment effectiveness might already be determined, yet additional patients will continue to 

receive the inferior treatment to reach the necessary sample size for cost data. 
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5.8 Chapter conclusion 

An increasing variety of tests are being made available for routine diagnosis of AIDS, 

malaria, tuberculosis and other common diseases. The cost implications of non-adherence 

to test results have largely been ignored in previous evaluations, despite the overwhelming 

evidence that it is a problem throughout Africa. This analysis has demonstrated the 

importance of allowing for compromised adherence, both in terms of its implications for 

expenditure on diagnostics and treatment and for health outcomes. It also provides a 

foundation for estimating how much policy makers might consider spending on 

programmes to improve adherence to test results. 

The inclusion of the harm of treatment factor incorporated a second essential element into 

the evaluation of diagnostic strategies, relating to the benefits of reducing unnecessary use 

of antimalarials. Despite considerable uncertainty around this factor it remains one of the 

primary reasons for considering the use of ROTs and other diagnostic tests and its 

exclusion renders evaluations less relevant for decision making purposes. In modelling the 

costs and consequences of malaria diagnostics and treatments, it is imperative that all 

major factors are accounted for prior to their widespread deployment, as failing to do so 

can lead to inefficient decision-making in areas of the world that can least afford it. 

118 



6. The localisation of economic evaluations using Decision 

Support Tools - comparison of methods 

The aim of this thesis is to develop decision models that incorporate a broader range of 

factors than immediate costs and effectiveness into the analysis, factors which should be 

accounted for when considering the adoption of malaria diagnostics and treatments. The 

thesis also aims to ensure that decision models account for local variations in factors such 

as malaria epidemiology and antimalarial effectiveness. The previous chapter broadened 

factors included in the economic evaluation of malaria diagnostics and treatments. This 

chapter focuses on increasing the relevance of decision models to different settings. In the 

chapter, two alternative models are developed as decision support tools for choosing 

between competing ROTs. These models provides policy makers with the ability to explore 

the decision options they face, the uncertainties involved and the immediate and long 

term outcomes for patients, providers or society as a whole. Two alternative OST designs 

are developed in order to explore the trade-off between complexity and methodological 

validity. 

6.1 Introduction 

Standard economic evaluations make use of decision models that facilitate the 

convergence of two criteria - costs and effectiveness. These models are then used to 

generate results which can be tested for generalisability to other settings; the study might 

then be published declaring one intervention more or less cost-effective than its 

comparator. The data input into evaluations, however, often include highly variable 

parameters such as intervention costs, effectiveness and target population characteristics. 

Variation can be distinguished from parameter uncertainty, where the parameter value is 

unknown (Briggs 2000). Variability poses an impediment to the generalisation of 

evaluation conclusions (Bryan and Brown 1998). While sensitivity analyses can allow for 

some testing of the robustness of results to change in individual parameters, when several 
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parameters vary simultaneously, the ability of policy makers to assess the relevance of the 

study to their own settings becomes questionable. 

In the context of malaria diagnostics for instance, transmission intensity can vary widely 

within small areas (Ve, Kyobutungi et al. 2007), with significant implications for the 

predictive value of diagnostic tests. Input parameters can also vary considerably over 

relatively short periods of time, as has been the case with effectiveness and costs of 

antimalarials. Evaluations of malaria diagnostics and treatments published as recently as 

December 2007 were based on costs of ACT that are now 70% lower (Lubell, Reyburn et al. 

2007; Shillcutt, Morel et al. 2007). Antimalarial efficacy has also varied over relatively short 

periods, sometimes dropping below levels acceptable by WHO standards in a matter of a 

few years from their introduction, as discussed in Chapters 1 and 4. Given the inevitable 

time lag between collection of data and the publication of evaluations, it should be 

recognized that evaluation findings may be out of date, although this is rarely 

acknowledged in, for instance, studies that cite previous findings. Incorporation of most 

recently available data in evaluations can help ensure that better decisions are made, 

avoiding high human and financial costs due to inappropriate policy options being pursued. 

This is of particular significance in low income countries where the pursuit of inappropriate 

strategies is least affordable. 

In addition to variation in data inputs, local decision makers might also have priorities and 

preferences different to those of the analyst regarding which parameters should be 

included in analyses and the values used. For example, an analysis that was carried out 

taking a societal perspective might be less relevant for a decision maker interested in the 

immediate direct expenditure of the health care system. While analysts might have strong 

beliefs as to which perspective is most appropriate, there is also a strong argument in 

favour of allowing decision makers to dictate which perspective is appropriate (Weinstein, 

O'Brien et al. 2003). Similarly, analysts and decision makers might have different 

interpretations of equity and the choice of target population can have significant impact 

on an intervention's viability. While an analyst might carry out the intervention under the 

assumption that all patients should have access to the intervention for the sake of equity, 
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a decision maker might be interested in exploring how costs and effectiveness might 

change when intervention availability is limited to a particular sub-groups. 

An additional reason why standard evaluations are in some instances less relevant to 

decision makers' needs relates to the diffusion of decision making powers away from 

international and national bodies. The decentralisation of health care services has been 

one of the central reforms characterising health systems in both developed and developing 

countries (Bossert 1998). While this has taken on different forms in different systems, it 

has generally led to a diffusion of decision making powers, encouraging decision makers to 

adopt interventions that are better suited to their particular settings than ones that might 

have been centrally dictated. Economic evaluations however often do not reflect this 

reality, in that they continue to seek generalisable conclusions irrespective of local 

variability. 

Whether or not evaluation conclusions do maintain their relevance to other settings, the 

mere existence of such variability can undermine the confidence that policy makers may 

have in using the evaluation for their own settings. Without the ability to systematically 

modify an evaluation to their setting, a decision maker faces one of two options, either to 

accept the results with only minimal ability to question the relevance of the data to her 

own setting, or to reject the conclusions as irrelevant. Both options can result in poor 

decisions being taken. 

Alternatively, evaluations can be adapted for use as decision support tool (OSTs), where 

analysts make use of advancements in IT to make their models available and adaptable for 

stakeholders to use in their own settings. This is being increasingly recognized as an 

alternative to trying to generalise evaluation outcomes beyond what is supported by the 

data (Briggs 2000; Cooper, Sutton et al. 2007; van Gool, Gallego et al. 2007, Scott and 

English 2008). 
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6.2 Overview of DSTs in health care 

There are very few instances where DSTs have been made available to stakeholders for 

adaptation of economic evaluations to their own settings. In the context of malaria, for 

instance, only one such model was identified (Shillcutt, Morel et al. 2007), which appears 

to be more than in other fields of health8
. One area where such models can be found in 

greater abundance is the context of decision support for patients and clinicians in choosing 

between treatment options. In this context the models aim to converge a range of criteria 

for each option (e.g. effectiveness, side-effects, etc.), often by weighting them by 

significance for the patient, and systematically valuing each criterion. 

While there are a number of proposed model frameworks for this, and a large body of 

literature on the theory behind them, there is a large gap between the theoretical 

literature on decision support tools and their application in practice. A review of the 

instances where Analytical Hierarchical Process models have been used (one of the most 

widespread forms of DSTs), reveals that in total these have been documented in use 

approximately 50 times, almost half of which were in the context of individual patient care 

options (Liberatore and Nydick, In press). In those instances where the decisions involved 

resource allocation, this was done in the context of highly specific issues such as a model 

to inform hospitals on choice of ventilators to purchase, without concern for their cost

effectiveness relative to other interventions (Chatburn and Primiano 2001). Many of these 

analyses were also carried out for model testing purposes rather than routine use. 

The use of DSTs for resource allocation is, therefore, a relatively new approach to the 

conduct of economic evaluations. While the model structures required for DSTs are on the 

whole similar to those of standard evaluations, DSTs potentially serve as a powerful tool 

for policy makers and other stakeholders to actively explore policy options with greater 

8 Based on a rapid review of the literature on decision modelling, and the opinion of a number of 

other health economists at LSHTM. 

122 



confidence that the analysis is relevant to their own circumstances and priorities. In the 

following section two methodologies that can be used for constructing DSTs are reviewed. 

6.3 DSTs - choice of methodological approach 

Decision models in standard economic evaluations can be developed broadly as either 

deterministic, stochastic, or fully Bayesian, differing primarily in how data are interpreted 

and represented in parameter estimates and in the treatment of the uncertainties 

surrounding these. While this is true for decision models in general, it has particular 

bearing on how DSTs are designed in terms of the input of local data and policy makers' 

preferences and priorities. 

Data obtained in local trials and studies can be interpreted in one of two ways. A classical 

approach aims to test the parameters individually for statistical significance to ascertain 

how representative they are of the 'true' parameter value. The data can then be 

incorporated as point estimates in a deterministic model (Drummond, O'Brien et al. 2005) 

or as probability distributions in a stochastic one. Either way the parameter estimates rely 

entirely on the given data. A Bayesian approach, on the other hand, takes a broader 

perspective and views the data in light of previous evidence and beliefs. In so doing, it 

treats the data as random points from a probability distribution representing the possible 

parameter values. This distribution can be ascertained by starting with a relevant prior 

distribution representing the initial estimates of parameter values and updating this with 

local data to derive the posterior distribution. The priors might be based on existing data 

from other sites, or derived from expert opinion (Spiegelhalter, Abrams et al. 2004). 

With respect to uncertainty, deterministic models will vary parameter estimates 

individually (or at most 2 or 3 at a time) to observe how the variation influences results. 

Stochastic and Bayesian models, on the other hand, use probability distributions to 

represent the uncertainty surrounding an estimate, and then use sampling methods to 

draw on these simultaneously. Processes such as Markov Chain Monte Carlo simulations 

can then be run to incorporate all parameter uncertainty and prior estimates of their 
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values to allow for a single output with a measure of certainty attached (Spiegelhalter and 

Best 2003). 

The remainder of this chapter explores the strengths and weaknesses of these approaches 

by developing and comparing a deterministic and Bayesian locally adaptable decision 

support tool for the evaluation of strategies for the diagnosis of malaria. The models are 

compared in terms of structural differences, the nature of their output, and how decision 

makers might interact with them when considering policy options. In the next section a 

brief background to the decision problem is given. This is followed by a description of the 

two models and the results they provide9
• The advantages of using a stochastic model 

without the use of priors are captured in the Bayesian approach and therefore a stochastic 

model is not presented independently, although the use of such a model is recognized as a 

valid option. The final section compares the advantages and drawbacks of the two 

approaches. 

6.4 Background to the decision problem: Choice of rapid diagnostic 

tests 

With an increasingly large number of ROTs available on the market, decision-makers must 

consider a number of factors in determining which diagnostic test is likely to be most 

appropriate in a particular context. Some of these relate to qualities of the RDT itself, such 

as target antigen, sensitivity, specificity, shelf-life, heat sensitivity and cost. Other factors 

relate to the demographic and epidemiological circumstances of areas where the tests are 

to be deployed. Some data are available, for example from field studies of different RDTs' 

accuracy in various settings, although this has been shown to vary even within a single 

9 While the deterministic model was developed for practical use and has been disseminated 

amongst stakeholders (Lubell et aI2007b; Lubell et al. 2008b), the Bayesian model was developed 

for illustrative purposes only. 
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country or region, presenting a complicated picture to decision-makers (Reyburn, 

Mbakilwa et al. 2007; Hopkins, Bebell et. 2008). 

Given the variation in availability, performance and prices of diagnostic tests and 

treatments over time and location, and in transmission intensity and host immunity, it is 

unlikely therefore that anyone ROT would maintain its advantage indefinitely or across all 

endemic areas. Similarly, economic evaluations of an ROT carried out in one setting may 

not apply in others, or may lose their relevance within a relatively short time as 

epidemiological patterns and the characteristics of competitor tests change. For these 

reasons, policy makers might benefit from decision aids that incorporate available data 

and parameter estimates for factors that are variable, to provide up-to-date 

recommendations for choice of ROT relevant to their circumstances. 

6.S Factors for consideration in choice of ROT 

The presumptive treatment of fever episodes as malaria results in significant overuse of 

antimalarials and delays diagnosis of other illnesses (Olivar, Oeveloux et al. 1991; 

Chandramohan, Jaffar et al. 2002; Ndyomugyenyi, Magnussen et al. 2007). Therefore, an 

important potential gain from introducing a new diagnostic test is in reducing the 

proportion of febrile patients who receive unnecessary antimalarial treatment. This safely 

reduces the cost of giving unnecessary antimalarials, and may help to avert morbidity 

associated with untreated non-malaria illness. An ideal ROT should therefore have high 

specificity to avoid false-positive results that would prompt unnecessary antimalarial 

treatment. At the same time, it is critical that an ROT must have high sensitivity to ensure 

that true cases of malaria are detected and treated appropriately. 

In reality, improved sensitivity often comes at the expense of reduced specificity, and vice 

versa; however, it is difficult to weigh the implications of this trade-off for an individual 

patient or for public health, as they are often not directly comparable (Girosi, Rafael et al. 

2006). Mistakenly diagnosing a patient as uninfected (a false negative) may have more 

serious clinical consequences than mistakenly diagnosing a patient as infected (a false 
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positive), but this will not always be true. Extensive overuse of antimalarials is also likely to 

come at a considerable cost over the longer term due to increased drug pressure leading 

to possible development of drug resistant parasite strains (Bloland, Kachur et al. 2003). 

The trade-off in sensitivity and specificity is apparent in the reported accuracies of the two 

main classes of ROTs which currently appear most suitable for clinical use, detecting either 

histidine-rich protein-2 (HRP2) or Plasmodium lactate dehydrogenase (pLOH). HRP2 based 

assays have shown good sensitivity in a variety of field settings, and are increasingly 

advocated where reliable microscopy is not available (Bell 2002; Rafael, Taylor et al. 2006). 

Their potential disadvantage, however, is the detection of persistent circulating antigen for 

up to several weeks after parasites have been eradicated, leading to false positive results 

(Mayxay, Pukrittayakamee et al. 2001; Tjitra, Suprianto et al. 2001; Singh, Saxena et al. 

2002). This may limit the usefulness of HRP2-based assays in areas of high malaria 

transmission. pLOH-based ROTs appear to be less sensitive but are more specific than 

HRP2 ones, as this antigen is rapidly cleared from the bloodstream (Piper, Lebras et al. 

1999; Moody, Hunt-Cooke et al. 2000; Swarthout, Counihan et al. 2007). HRP2 and pLOH 

based tests also differ in the parasite species they detect: the HRP2 test detects only 

Plasmodium /alciparum, while the pLOH test detects all four human malaria species. 

For two main reasons, evaluations of diagnostic tests should also account for relevant 

differences in malaria epidemiology and population characteristics. Firstly, transmission 

intensity determines prevalence of parasitaemia and therefore, the probability of a test 

result being correct (the positive and negative predictive values). Secondly, in high 

transmission areas the population develops partial immunity with age (Snow 2000). An 

adult in a high transmission area, for instance, is more likely to be parasitaemic, but much 

less likely to develop severe malaria. A child in a low transmission area, on the other hand, 

is less likely to be parasitaemic but more likely to develop severe malaria once infected. 

The implications and benefits of using an ROT in each setting therefore differ (Zurovac, 

Midia et al. 2006; Lubell, Reyburn et al. 2007; Shillcutt, Morel et al. 2007). 
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6.6 Modelling the costs and consequences of alternative diagnostic 

strategies 

The economic framework adopted for the models followed that presented in Chapter 4. A 

monetary value is placed on adverse health outcomes that arise as a consequence of 

incorrect diagnoses for each test. These are added to the test and treatment costs. The 

societal costs associated with use of antimalarials are summarised in the 'harm of 

treatment' factor, as described in Chapter 5, and this is also added to give the total cost of 

the diagnostic strategy. The total cost for presumptive treatment is also calculated to 

indicate when use of either test is inefficient. 

The most efficient test is then determined by identifying that with the lowest total cost. 

Figure 6-1 shows the possible patient progression paths and related costs following the use 

of a diagnostic strategy. Both the deterministic and Bayesian models are structured in 

accordance with these progression paths. 

Patient progression: 

Associated costs: 

Costof ROT 
Treatment costs : 
'Procurement 
-Harm of treatment 

Non malaria 
illness, self 

limiting 

Non malaria', ; 
illness, 

Severe, CFR 

I Malarla, self 
~ limiting 

-Further medical 
expenses 

'Value ot life 
years lost 

Figure 6-1 Patient progression paths and subsequent costs j ACT - Artemisinln Combination Therapy, 
CFR - Case fatality rates, RDT - Rapid Diagnostic Tests 

The context for the models is Uganda and the models evaluate the efficiency oftwo widely 

available ROTs considered for use in low level health care facilities where microscopy is not 

available, relative to continued presumptive treatment. Data for these models were 
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obtained from a Ugandan trial where the ROTs were being evaluated in different sites with 

a range of transmission intensities (Hopkins, Bebell et al. 2008) . Test accuracies were 

estimated for each of the sites. Costs of ROTs and antimalarials were obtained from the 

Ugandan Ministry of Health (MoH) in 2007, while inpatient care costs were collected at a 

single site in southwest Uganda, adjacent to one of the ROT evaluation sites, as described 

in Chapter 8. Other parameters were obtained from the literature and expert opinion, as 

detailed in Table 6-1. 

Parameter Base estimate Source 

ACT cost $1.8 (adult dose) Uganda MoH 

Antibiotic cost $0.4 (adult dose) Primary data -
Joint Medical 
Store 

ROT 1 cost $.51 Manufacturer 

ROT 2 cost $.55 Manufacturer 

Harm of treatment with ACT or antibiotic Every 200 ACT or (Rafael, Taylor et 
antibiotic doses al. 2006) 
used result in the 
loss of one 
statistical life 

Inpatient care severe malaria $12 Primary data 

Inpatient care severe NMFI $20 Primary data 

Year of life Lost (YLL) $150, $840 (Sachs 2002; 
Evans 2004; WHO 
2006) 

Accuracies Site 1 Site 2 Site 3 Site 4 Site 5 
Source: Hopkins et al. (2008) 
ROT1 Sensitivity 94% 88% 76% 88% 99% 
(number of correct results) (34/36) (323/365) (339/445) (431 1491) (822/832) 
RDT1 Specificity 99.6% 99% 99% 99.6% 95% 
(number of correct results) (960/964) (631 1635) (547/555) (507/509) (159/168) 
RDT2 Sensitivity 100% 97% 99% 98% 99.9% 
(number of correct results) (47/47) (399/411 ) (5411547) (566/575) (874/875) 
RDT1 Specificity 81% 97% 83% 95% 70% 
(number of correct results) (770/953) (570 / 589) (378/453) (403/425) (87/125) 

Table 6-1: Initial parameter estimates used in the models. NMFI - Non malarial febrile illness. 

ACT - Artemisinin Combination Therapy 
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6.6.1 The deterministic model 

This chapter focuses on the model design, while details of the output are of less relevance 

and have been published elsewhere (Lubell, Hopkins et al. 2008b). The model was 

designed using Microso Excel· 2002 and macros were written with Microsoft Visual 

Basic· 6.3. 

A number of functions were added to the standard decision tree structure, making the 

model adaptable to local circumstances and policy makers' considerations and 

preferences. Input variability was introduced for parameters that were assumed to vary by 

locality, and for the particular costs and accuracies of the ROTs under consideration. Users 

could also choose the age group for which they wished to obtain results, as these are likely 

to differ for infants, children, and adults. Parameters with high degrees of uncertainty 

were set initially with best available estimates, which users could modify with their own 

data and estimates. The model accommodated the possibility that clinicians might 

continue to prescribe antimalarials in the face of negative test results by allowing for the 

levels of adherence with negative test results to be altered, as this has been observed to 

occur with diagnostic tests for malaria (Zurovac, Midia et al. 2006; Reyburn, Mbakilwa et 

al. 2007) 

6.6.1.1 The model interface 

All previously mentioned parameters can be varied in the user interface. Other changeable 

parameters include the probability of developing severe illness by age and transmission 

intensity, the case fatality rates for malaria and non-malarial febrile illness, and the 

probability that clinicians adhere to test results. 
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USER DEFINED VARIABLES: 

Adjust costs:accuracies 

v ..... YLL 

CFR ..... 

Total costs for ROTs and presumptive trutment 

S70T---------~--------------~ 
~ 560 
c S5 0 
IJl 54 0 
~ $30 
:s S20 
(,) $10 

$00 
1 .. 'edlLm 130~o Hlgt1 {7M. 

Transmission intensity ('Ie parasitaemlc of febrile patients) 

Cost savings using RO Ts as comp3red with 
presumptive tre3tment 

LO ... 5%) f/edlLm (30 I 

Transmission intensity ('Ie parllsitaemic of febrile patients) 

Figure 6-2. The deterministic model user interface. The panels on the left allow variation ofinput 
parameters; tbe button on the right opens a dialogue box where local data on costs and accuracy can be 
entered. The top right panel depicts the difference between the total cost of each RDT and that of 
presumptive treatment indicated by the trendline. The bottom right panel shows the proportion of cost 
savings of each RDT using presumptive treatment as the baseline; CFR - case fatality rate 

The user can also choose the perspective ofthe analysis. Taking the provider financial 

perspective considers only direct costs oftests and treatment. Alternatively the value of 

years of life lost to patients due to incorrect diagnosis can be added to the analysis and 

varied to capture immediate health benefits for the patients. Finally, a societal perspective 

can be taken, with the incorporation of the harm of treatment factor. 

The model output is displayed on two graphs reflecting the difference in total costs in both 

absolute and relative terms, across three transmission intensities, defined by prevalence of 

parasitaemia amongst febrile patients (Marsh and Snow 1999). Low transmission was 

characterized by a prevalence of 3% parasitaemia, medium by 30%, and high by 70%. This 

allows users to view the most appropriate ROT with respect to regional and seasonal 

variation in transmission intensity. In the top right panel of Figure 6-2, the trendline 

represents the total cost in US$ of presumptive treatment in absolute terms, while each 
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set of bars is the cost for either ROT at each transmission intensity. Where the bars fall 

below the trendline, use of the ROT would, therefore, be more efficient than presumptive 

treatment. In the lower panel the results are displayed in relative terms, using presumptive 

treatment as the baseline, so the bars represent the percentage by which ROTs are more 

efficient than presumptive treatment. Both graphs are included as in some cases the 

difference in relative terms might seem small, but is large in absolute terms, and vice 

versa. 

The user can examine a variety of 'what if scenarios, to explore policy options for different 

sub-populations and settings and also observe how the uncertainty surrounding particular 

parameters influences results. 

When setting the age group to adults for instance, the model suggested that both tests 

were considerably more efficient than presumptively treating the population, across all 

transmission intensities. Should the user choose a younger age group, results (not shown) 

indicated that ROT 1 would hold a strong advantage at low transmission intensity while 

presumptive treatment would still be the preferred option at higher levels. These results 

can all be tested for change according to variation in other parameters, such as the 

probability that clinicians adhere to test results, the value placed on years of life lost, or 

case fatality rates associated with severe malaria. 

The deterministic model therefore enables the user to explore a range of parameter 

estimates and observe how these influence results. It makes explicit the uncertainty of 

parameter values and encourages users to provide their own best estimates. If results are 

visibly robust to changes, this may reduce policy makers' concerns about the uncertainties 

surrounding decision-making. Where results are sensitive to change, this may encourage 

consideration of more detailed policies or investment in further research. 

6.6.2 The Bayesian model 

The Bayesian model was written using Win BUGS 1.4.1. The model was structured in a 

similar way to the deterministic model, with the additional use of probability distributions 

to reflect parameter uncertainties. The model becomes fully Bayesian with the assignment 
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of prior probability distributions to parameters, reflecting the belief in their value before 

introducing new data. There are a number of methods available to formulate priors based 

on stakeholders' opinions (Spiegelhalter, Abrams et al. 2004). Beta distributions for 

instance are best suited for use as priors in parameters that represent a probability (e.g. 

test accuracies). Priors for these can be constructed by consulting expert opinion on their 

assessment of the mode and a threshold above which they are 95% sure that the chosen 

value is the true one. This information can be used to construct the relevant beta 

distribution using appropriate softwarelO
. The same software can be used for constructing 

beta distributions based on trial data where the number of successes and failures initially 

used to obtain the probability are available. 

The priors assigned to the test sensitivities and specificities were based on previous 

evidence (Kolaczinski, Mohammed et al. 2004; Malik, Khan et al. 2004; Bell, Wilson et al. 

2005; Reyburn, Mbakilwa et al. 2007) and expert opinion on the likely values for these 

parameters, and were expressed using beta distributions. They suggest that ROTl has a 

lower sensitivity and higher specificity than ROT2. These estimates were then updated with 

the use of the trial data. The model was later run using a range of hypothetical priors to 

assess how these influence results. 

The model categorises patients into four groups - True Positives, True Negatives, False 

Positives, and False Negatives, in each of the trial sites and for each ROT and presumptive 

treatment. The number of patients in, for instance, a true positive group is a function of a 

binomial distribution TP - dbin(sens,par), where par is the total number of parasitaemic 

patients and sens is the test sensitivity. Similarly for true negatives, TN - dbin(spec,npar) 

reflects the likelihood for values of test specificity given the data on non-parasitaemic 

patients. The priors for these parameters were then updated by the data to provide 

posterior estimates for test sensitivity and specificity (Figure 6-3). 

10 'Beta Buster' is available from The Graduate Group in Epidemiology, The University of California, 

Davis, http://www.epi.ucdavis.edu/diagnostictests/betabuster.htmIAccessed February 7th 

2008 
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RDT1 sensitivity RDT2 sensitivity 

0.86 0.88 0.9 0.92 0.97 0.98 0 .99 

RDT1 specificity RDT2 specificity 

0.975 0.98 0.985 0.99 0.82 0.84 0 .86 0.88 

Figure 6-3 Posterior distributions for RDT sensitivities and specificities 

The model assigns a cost to each of the four categories as in the deterministic model, using 

a gamma distribution instead of point estimates. The use of gamma distributions to 

represent cost data is considered more appropriate than normal distributions given the 

tendency of cost data to be highly skewed to the right (Fryback, Stout et al. 2001). Figure 

6-4 is a simplified illustration of the model structure and parameters for all costs that 

follow the use of each RDT. 

In contrast to the deterministic model and given current software limitations, there is no 

easy way for users to switch between age-groups without manually re-adjusting a number 

of parameter estimates, or duplicating the model with data series for all age-groups. Many 

of the input parameters would vary depending on the age of the patients; in this instance 

data were used that were relevant to adult patients. 
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Figure 64: Model structure for estimation of total costs for each RDT. The parameters inside the plate 
are those that vary by site, notably the number ofparasitaemic patients, and the number in each 
category (true positives etc.). Above the plate are the priors for test accuracy. To the left are other 
parameters that feed into the total RDT cost, notably 'costFN' and 'costFP' for the costs of false 
negatives and false positives respectively, and the value of life years lost on the far left that infonns both 
the cost of patients wrongly diagnosed, and the total cost for antimalarials (costAM) due to adverse 
outcomes of treatment. 'par' is the total number ofparasitaemic patients in each site. 

Using a Markov Chain Monte Carlo simulation, the cost difference between ROTl, Ron 

and presumptive treatment is then repeatedly calculated, and by observing results over a 

high number of iterations, the probability that each of these strategies is most efficient is 

derived. Figure 6-5 depicts results for three locations with different transmission 

intensities, indicating that the probability that ROTl is more efficient is over 80% in the low 

transmission site and diminishes with transmission intensity, whereas ROT 2 is more likely 

to be the most efficient option in the high transmission site. Presumptive treatment shows 

a probability of under 35% of being the preferred strategy in the high transmission site, 

and therefore is least likely to be the preferred strategy in this setting. 
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Figure 6-5 Results from the Bayesian model in WinBUGS (graph generated in Excel). The graph 
indicates the probability that either of the two RDTs or presumptive treatment is most efficient in three 
of the trial sites, with increasing transmission intensity in each. 

One contentious issue that haunts Bayesian analyses is how to assign priors and the 

influence these exert on the data (Spiegelhalter, Abrams and Myles 2004). In this model, as 

is often the case, the influence priors had was relatively small, and only became apparent 

when setting these as extremely strong and divergent from the data. For instance only 

when the priors for the sensitivity and specificity of the ROTs were set at below 50% (i.e. 

flipping a coin would be a better predictor of the true status of the patient) with a very 

tight distribution around this estimate, did the use of presumptive treatment become 

more attractive at low transmission settings. 

Discussion 

Where cost-effectiveness is very context specific, as may be the case with malaria related 

interventions, decision support tools can help identify the most efficient use of scarce 

resources (van Gool, Gallego et al. 2007, English and Scott 2008). The use of decision 

support tools allows for the incorporation of local data and stakeholders' parameter 

estimates into the evaluation of intervention efficiency. This may enhance understanding 

of how variation in these influences results, and promote the intervention's adoption only 

where its benefits truly outweigh its costs. This method of evaluation differs considerably 

from the use of generalised evaluations, in that rather than the analyst aiming to provide 
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definitive generalisable results, policy makers are instead given a mechanism with which 

they can engage to explore the different options under consideration. 

Technically, OSTs are similar to models used in standard evaluations, such as that in 

Chapter 5. The difference lies mostly in the interface of OSTs, which facilitates the 

incorporation of different parameter estimates, and changes to the model structure (e.g. 

changing perspective or the exclusion of factors like the harm of treatment should 

stakeholders choose to ignore this). More importantly however, the use of DST changes 

the focus of decision modelling from the provision of definitive results, to the development 

of adaptable models tailored to local circumstances. This places many decisions that were 

previously at the analyst's discretion, back into the hands of stakeholders and decision 

makers. 

Previous economic evaluations of ROTs are few in number as shown in Chapter 2, and all 

but one (Shillcutt et al. 2008) drew on a single trial to produce their results, under the 

assumption that these would be informative in other settings. The Shillcutt et al. (2008) 

analysis was the first to draw on a range of secondary sources and the model was made 

available on the WHO website for users to apply to their own settings. 

This chapter has presented two OST approaches to the incorporation and interpretation of 

local data in models, and the handling of uncertainty surrounding these. Both approaches 

can provide up-to-date and locally relevant decision recommendations but there are 

significant differences in the respective model structures and outputs. 

The Bayesian model has higher conceptual and technical requirements. For this reason it 

may be considered less appropriate for practical use by decision makers. Its main 

advantage is that where there is considerable variation in parameter estimates between 

local data and previous evidence, the use of priors can moderate these differences 

according to the strength of each component. Where strong priors exist from other 

settings and only weak data exist for the location of interest, the priors will exert greater 

influence on the posterior distribution. For example, previous studies have found 

substantial variations in estimates of ROT accuracy (Cruciani, Nardi et al. 2004; Hopkins, 
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Kambale et al. 2007; Reyburn, Mbakilwa et al. 2007), so a single local study might still 

appear to be an insufficient basis for determining point estimates for parameter values. 

Use of the Bayesian approach will result in more conservative parameter estimates as the 

local data will be anchored by prior evidence from other sites. This might increase policy 

makers' confidence in results by ensuring that local data and parameter estimates are not 

entirely detached from a broader body of evidence. 

As well as incorporating prior evidence into the analysis, the Bayesian model integrates all 

uncertainty simultaneously. This might be more appealing to policy makers interested in 

the 'bottom line' and not in the interaction of individual parameters and results. The 

model output can also provide policy makers with a degree of certainty in its predictions, 

allowing for the incorporation of risk-aversion in policy making. This functionality could 

also be built into the deterministic model, although at the risk of becoming overly complex 

for users who are less familiar with concepts such as probability distributions. 

This trade-off between model complexity and the practicality of use is inherent to all 

decision models, but particularly so in the development of DSTs where it is a priority that 

decision makers can interact competently with the model. The main issue relates to 

potential disparities between the analytical, technical and conceptual demands when using 

the models, and the capacity of decision makers. As both the theoretical foundations and 

technical functions of decision models evolve, there will be ever greater challenges for 

decision makers engaging with 'black box' models and analyses. Keeping the model as 

simple and transparent as possible is likely to increase the confidence that decision makers 

have in the models. In addition to the greater conceptual demands of the Bayesian models, 

the technicalities of using software such as WinBUGS makes it less intuitive, so making use 

of such models would require ongoing expert support to users. 

The deterministic model, on the other hand, appears more transparent as the manner in 

which variation and uncertainty in individual parameters influences results is easily visible. 

Experience of running the model with policy makers and stakeholders suggests that the 
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model facilitates their engagement in the estimation of input parametersll. The risk here is 

that extreme values might be selected, which may be considered accurate locally but have 

no grounding or justification from other settings. This contrasts with the use of probability 

distributions where more extreme values are less likely to be used, and the use of priors 

that draws the values to the confines of existing evidence. 

The extent ofthe trade-off between model complexity and practicality is likely to diminish 

should decision makers become better acquainted with the concepts and methods used in 

economic evaluations, and also with developments in the software available to run DSTs. 

There are a number of programmes that complement Excel enabling the assignment of 

probability distributions to parameter estimates with 'user friendly' control of these. The 

integration with priors as carried out in Win BUGS however is not yet possible. 

In addition to the limitations associated with each particular approach, there are a number 

of broader concerns regarding the ability of policy makers to make use of DSTs, and their 

acceptance of results in the face of other considerations. An assumption has been made 

regarding policy makers' familiarity with concepts such as the handling of uncertainty and 

even the use of probabilities, which might in fact not be the case. Even a basic 

understanding of economic evaluation may be absent, and economic evaluation is often 

confused with more limited cost analyses (Teerawattananon 2007). In this respect the use 

of DSTs can appear to be more of an ideal than a practical tool. Conversely policy makers 

might require more elaborate models that consider factors such as equity or disease 

severity in addition to efficiency. The main shortcoming of the work presented in this 

chapter is that it was not possible to formally test either or both of the models with policy 

makers and evaluate how they are received and used. This is a matter for further research. 

11 The model was presented at a Malaria Consortium workshop in Kampala where strategies for 

malaria diagnostics in Uganda were being evaluated, and later presented at the 2007 American 

Society of Tropical Medicine and Hygiene annual conference. 
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6.7 Chapter conclusion 

Economic evaluations can provide valuable information to policy makers considering the 

adoption of new interventions. In a rapidly evolving and variable environment such as that 

of malaria transmission and control, it is unlikely that standard evaluations can maintain 

their relevance across different regions and over extensive periods of time. The use of 

DSTs allows for the incorporation of local and recent data, and stakeholders' parameter 

estimates, into the evaluation of intervention efficiency. This should enhance 

understanding of how variation in these parameter estimates influence results, and 

promote the intervention's adoption only where its benefits truly outweigh its costs. 

The deterministic model facilitated the exploration of a variety of scenarios for different 

policy options and parameter estimates, offering a potentially valuable learning tool when 

contemplating policy options. The model is likely to be accessible to stakeholders who lack 

modelling expertise or support. 

The Bayesian model had two methodological advantages: the incorporation of prior 

evidence and beliefs into the analysis, and the expression of uncertainty using probability 

distributions that carry through to model outcome. These are likely to contribute to best 

possible decision-making in practice. Conceptually and technically however, this approach 

is more demanding. Where DSTs are developed, the choice of model structure will have to 

balance methodological validity against the practical requirements and limitations of the 

decision making context. 

All decision making practices have their shortcomings, and some of those relating to DSTs 

were described above. While these limitations are genuine, the use of even simple DSTs 

may represent a significant improvement over competing decision making practices, such 

as purely intuitive ones or reliance on outdated and less relevant evaluations. It is against 

these practices that DSTs should be evaluated. Future DSTs could be developed to consider 

additional factors beyond efficiency, such as equity weights, as an integral part of the 

analysis (James, Carrin et al. 2005). In this respect the DSTs presented here are relatively 

simple examples of an alternative form of economic evaluation, one that could be 

comprehensive yet versatile and adaptable to local and evolving circumstances. 



7. Multilevel modelling for the evaluation of artesunate for 

the treatment of severe malaria 

Multi-centre trials offer the benefit of greater generalisability of their results and are now 

routinely employed in assessing antimalarial effectiveness and cost-effectiveness (Adjuik et 

al. 2002; Dondorp et al. 2005; Chanda et al. 2007). They do, however, pose analytical 

challenges in how any variation in results between centres is accounted for. Multilevel 

modelling (MLM) can potentially address these challenges, but despite its methodological 

strengths it has been used in only a handful of instances in economic evaluations in 

general, and never in the context of malaria. The aim of this chapter is to explore the 

application of this approach to the evaluation of a multi-centre trial of antimalarials. The 

chapter provides a brief background to the use of econometric methods in economic 

evaluations in general, with a focus on the use of MLM in the context of multi-centre trials. 

In the subsequent section, MLM is applied to a trial comparing treatments for severe 

malaria. The data are analysed using standard methods and a series of regression models 

increasing in complexity building up to a random slope multilevel model. 

7.1 Introduction to multilevel modelling 

Randomized controlled trials (RCTs) are increasingly undertaken in a large number of sites, 

often located in different countries. In addition to the potentially larger sample size, such 

multi-centre trials aim to increase the degree to which their results can claim to be 

generalisable beyond anyone particular trial setting (Grieve, Nixon et al. 2005). An 

increasing number of RCTs are also incorporating an economic component so they can 

assess not only the efficacy of the interventions, but also their costs and cost-effectiveness 

(Manca, Rice et al. 2005). The advantage of doing so is that this provides cost data that can 

claim greater internal validity as compared with gathering cost data either retrospectively 

or from secondary sources. 
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Consequently, a multitude of patient level data on cost and effectiveness from a range of 

settings becomes available. While this might appear to provide a greater degree of 

certainty in parameter estimates, there are a number of challenges to the inference of 

parameter estimates drawn from multi-centre data. 

The simplest method to handle these data is to pool them into a single measure of central 

tendency with an expression of the uncertainty surrounding it. This takes full advantage of 

the entirety of observations, minimising the error term and confidence interval around the 

estimate. Having data from a range of sites can also suggest greater external validity as the 

inferences are made from a larger number of locations, suggesting the results should be a 

better representation of the true parameter value. 

Using as an example a hypothetical multi -centre trial of an intermittent preventive 

treatment (IPT) intervention, the relationship between the number of doses given and the 

subsequent net monetary benefit can be explored. As Figure 7-1 shows, there appears to 

be a strong positive correlation between the number of doses given per year and the 

subsequent net monetary benefit. With a narrow standard error of 0.035 around the 

coefficient for the slope, the estimate appears very precise (95% CI 0.731-0.735). 
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Figure 7-1 - OLS regression for the effect oftreatment on Net Monetary Benefit 
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This pooling, however, can mask genuine variation between the centres where the trial 

took place (heterogeneity). Transmission intensity for instance is likely to have a significant 

impact on individuals' initial susceptibility to infection, and how likely they are to develop 

severe illness (Marsh and Snow 1999). Similarly, provision of IPT might be more costly in 

areas where the population is harder to access. Furthermore, it might be found that there 

is an interaction between these factors, so that areas that are harder and more costly to 

access systematically feature higher prevalence of malaria, as is known to occur when 

comparing rural and urban settings in similar geographical regions (Roca-Feltrer, Carneiro 

et al. 2008). Pooling these results could lead to incorrect inferences, and unduly narrow 

error terms around these estimates (Rice and Jones 1997; Grieve, Nixon et al. 2005). 

Pooling data ignores any hierarchical structures that might be present, as individuals for 

instance can be clustered within centres, and centres within countries, which for anyone 

of a variety of reasons may influence outcomes of interest. Costs, for example, either for 

existing or new interventions, can vary across centres and countries (Grieve, Nixon et al. 

2005). Hospital financing structures can influence the case mix, for instance. Where 

patients are charged per service, the case mix is likely to be more severe, influencing the 

intervention effectiveness. 

Returning to the IPT example, Figure 7-2 depicts the same hypothetical data shown in 

Figure 7-1, in this instance broken down by centres. As is evident, differences between 

centres can be seen not only in the pOint estimates for particular coefficients, but also in 

the direction of the association and in the variance of individuals around the centre mean, 

implying different strengths of association. 
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Figure 7-2: The effect of treatment on net benefit in each site varies considerably, as indicated by the 
regression lines for each ofthe centres. In centre one there is a strong negative association between the 
number of doses and the net monetary benefit. Centre four on the hand has a higher net benefit with a 
positive correlation, although the individual observations appear more widely dispersed 

The figure suggests that the pooling of the data might lead to erroneous correlations that 

would be further supported by the narrow error term attached . In Figure 7-2 on the other 

hand, the data are completely stratified . This stratification, however, implies that a smaller 

number of observations are available for inference. In contrast to the pooled estimate that 

was supported by narrow error terms, here the error terms are wide, as seen in Table 7-1. 

0.08 
0.43 

-0.21 o 10 
5.49 0.80 
0.14 0.15 
4.80 1.30 2.65 
0.40 0 21 -0.07 

Table 7-1: Regression coefficients and the uncertainty surrounding these for each centre individually 

The coefficient for the slope in this example represents the incremental net benefit, 

therefore where this is negative the intervention is not considered efficient. The loss of 

power following stratification means that on Iy the first of the four sites has a coefficient 

for the slope that is statistically significant at the p=O.OS level, and the analysis as a whole 

provides ambiguous results. Furthermore, where differences between sites are evident, an 
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analysis that stops short of explaining these can appear incomplete. Most importantly, 

stratifying the results implies that the aim of attaining generalisable results may be lost. 

This illustrative example is perhaps an extreme one, where the association between the 

explanatory and dependent variable changes from positive and strong, to an uncertain 

one, once the data are stratified by centre. The issues raised however are likely to underlie 

most multi-centre analyses, where a choice has to be made between either pooling data 

and masking differences between sites, or stratifying results and leaving the reader to 

decipher how significant any differences might be between them, their causes, and how to 

interpret the greater uncertainty attached to the estimates. 

Multilevel Modelling offers a third approach, drawing on the individual observations 

available across all second level units, without making an assumption that these are all 

independent observations by recognizing their hierarchical nature (Manca, Rice et al. 2005) 

The advantages of using MLM can be summarized as follows12
: 

1. When obtaining pooled estimates, the error around these will be broader, 

reflecting the heterogeneity of the parameters at the different sites 

2. For stratified results, use of MLM will result in both a certain convergence of the 

site coefficients towards the mean, and also in shrunken error terms around the 

estimates as these will borrow strength from the other sites 

3. Covariates can be used to explain the variation in different sites; these can then be 

used to predict results in other settings. As opposed to single level multiple 

regression, the use of MLM ensures that these explanatory variables are associated 

with the appropriate level 

12 Much of the information in this chapter on MLM was gathered from an extensive online course 

made available by the University of Bristol Centre for Multilevel Modelling 

http://www.cmm.bristol.ac.uk/learning-training/course.shtmI Accessed July 2008 
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At the heart of MLM lie the relationships between three different types of residuals that 

reflect the dispersion of the data within and amongst the higher level units. These can be 

illustrated graphically as the vertical differences between a) the individual observations 

and the pooled regression line (the left-most arrow in Figure 7-3); b) the average distance 

between the centre regression line and the pooled one (middle arrow); c) the distance 

between each data point and its respective centre regression line (right most arrow). Each 

of these sets of residuals is su mmed up in a distribution, the mean of which is by definition 

zero (as the explanatory variables seek to determine the value of the dependent variable 

while the residual is the unexplained variance that cancels each other out) . 
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Figure 7-3: Pooled and stratified regression lines; the arrows depict the different residuals. This dataset 
depicts a simpler scenario than the previous one. Here, the incremental net benefit of IPT is assumed to 
be fixed, as indicated by the parallel slopes, although the baseline for each site is different as indicated 
by the vertical differences between the site average slopes. 

One of the advantages of MLM is the ability to infer how much of the variation, and 

therefore the association, is derived from the clustering of the data around the individual 

site mean, as opposed to their association with the predicted pooled effect. This 

relationship is summarised in the intra-class coefficient (ICCl, a product of the centre 

" 
variation divided by the total variation, as shown in equation 1, where (Jp.- is the centre 

variation around the overall mean and (J - is the variation of the individual observations 

around the overall mean 
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J'CC = 
(1) 

Most importantly, with a better understanding of the strength of these different 

associations, MLM can infer the degree to which the estimates of the coefficients for each 

site should be influenced by the data from all other sites. Where for instance the number 

of observations in a particular centre is low, orthe variance around the mean is high, the 

estimate for the site would be pulled in to a large extent towards the pooled estimate. This 

is termed shrinkage, referring to both the convergence of site effects towards the pooled 

effect (Figure 7-4), and also to the reduced measures of uncertainty surrounding the 

individual centre estimates that borrow strength from the pooled data. 

Conversely, the pooled estimate increases its confidence intervals, as the model now 

recognizes the heterogeneity in site effects and the inappropriateness of pooling the data 

without accounting for this variation. The degree of both the shrinkage in individual site 

variation and the increased uncertainty of the pooled estimate is a product of the different 

components of the ICC. 
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Figure 74: The individual centre regression lines are less dispersed than in the stratified results in 
Figure 7-3 
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7.2 How does MLM differ from multiple regression analysis? 

To a certain extent hierarchical structures can be modelled with single level, multiple 

regression, using either the higher level units themselves as explanatory variables, or 

factors that are generally determined at that level. If, for instance, it is thought that 

treatment outcome is likely to be influenced by factors relevant at the higher level, such as 

HIV prevalence in each country, this can be addressed by either including a variable that 

represents the country effect on outcome, or by introducing a variable representing HIV 

prevalence for each individual observation. 

Introducing dummy variables for each country will estimate the effect these have on 

outcome (a fixed effect model) by controlling for this in estimating the treatment 

coefficient. This is essentially an analysis of variance (ANOVA). There are a number of 

limitations to this approach. First, if the number of countries in the analysis is high, the 

model becomes unwieldy, particularly if the analysis aims to estimate not only the country 

influence, but also the interaction with other factors (e.g. level of health care facility), in 

which case the large number of coefficients is unlikely to produce robust results. Second, it 

can be shown that it is impossible to simultaneously control for higher level clusters 

(countries; hospitals etc.) and at the same time include factors that are determined at that 

level in the model, such as HIV prevalence (Rice and Jones 1997). 

While the use of a series of dummy variables to represent for instance a range of countries 

is essentially multiple regression, these variables all represent different values for a single 

categorical variable. One of the main advantages of using regression over standard 

methods is that a range of different factors can be included in the analysis, both to explain 

some of the remaining variance after treatment is accounted for, and also to control for 

other factors that might for instance be confounders in the apparent treatment effect. The 

extension of the pooled model is simply a matter of adding the variables of interest and 

estimating their coefficients. The model's goodness of fit can then be tested as compared 

with the simpler model. 
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There are however limitations on the number of variables that can be included if the 

model is to maintain its validity. First, variables to be included should be stated in advance, 

as apparently convincing correlations may arise by chance; the inclusion of large numbers 

of variables in the hope of identifying correlations is a likely cause of type I errors. Second, 

the inclusion of additional variables weakens the strength of the association for existing 

ones, as the number of observations relative to the number of variables diminishes 

(Kirkwood and Sterne 2003). These restrictions are true regardless of hierarchical data 

structures. Where such structures are known to exist, however, there is an additional 

concern around the use of single level multiple regression. This relates to the inclusion of 

factors that are associated with higher level units being assigned to lower level ones, and 

giving them undue strength in a single level analysis. 

Most importantly however, is the assumption underlying multiple regression (and all single 

level models), that the observations are independent of each other - in other words that 

they are not clustered in higher level units. As was shown with the IPT example, where this 

is not the case the use of single level model can result in erroneous inferences. 

In the remainder ofthis chapter the use of MLM will be compared to a standard analysis of 

cost data for a multi-centre trial for the treatment of severe malaria. 

7.3 Use of MLM in estimating the cost of treatments for severe 

malaria 

7.3.1 Background 

ACTs are now recommended for first line treatment of uncomplicated falciparum malaria 

in all malaria endemic countries. They have repeatedly been shown to be more effective 

and cost-effective than their predecessors (Honrado, Fungladda et al. 1999; Agnamey, 

Brasseur et al. 2005; Wiseman, Kim et al. 2006; Yeung 2006), require only once a day 

dosing and are associated with few adverse effects (Johann-Liang and Albrecht 2003). For 

severe malaria, quinine has been the traditional"gold-standard" treatment in both 
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developed and developing countries (Dondorp Nosten et al. 2005). Quinine is effective, but 

it is not simple to administer and it has a narrow therapeutic ratio. It is associated with a 

significant risk of local toxicity following intramuscular injection, and significant risks of 

systemic toxicity (hypoglycaemia, hypotension if administered rapidly). Quinine must be 

given three times daily either by constant rate intravenous infusion or intramuscular 

injection to the anterior thigh, a painful and potentially damaging procedure (Anstey, Price 

et al. 2006). 

A growing body of evidence, summarised in recent reviews, demonstrates the 

considerable superiority of artesunate relative to quinine in terms of mortality rates 

without an increase in rates of adverse outcomes (Cochrane review estimate; RR 0.62, 95% 

CI 0.51 to 0.75 (Jones, Donegan et al. 2007)). The studies so far have included mostly adults 

in Asia, although of the 1461 patients enrolled into the large multi-centre SEAQUAMAT 

trial, 202 were children, for whom results were similar (Dondorp, Nosten et al. 2005). 

The SEAQUAMAT study was conducted across ten sites in four South East Asian countries. 

In total, mortality in patients treated with artesunate was 35% lower than in quinine 

recipients. The implication was that for every 13 patients treated with artesunate instead 

of quinine, one death would be averted. Despite these promising results, and endorsement 

by the WHO treatment guidelines (WHO 2006), even within Asia most local guidelines 

continued to specify quinine as the drug of choice for severe malaria. The second most 

frequently recommended treatment for severe malaria is artemether, even though its 

advantage over quinine in terms of mortality has been shown to be limited (Hien, Day et al. 

1996; Pittler and Ernst 1999). Artesunate has only recently been added to the policy 

guidelines of a limited number of countries in Asia (WHO 2007). 

In order to explore the cost-effectiveness of artesunate for the treatment of severe 

malaria, an economic evaluation was carried out using the SEAQUAMAT trial data as a 

foundation for the analysis. This was carried out using standard methods, averaging costs 

and health outcomes to calculate the cost per death averted for the use of artesu nate. The 

evaluation concluded that artesunate is a highly cost-effective intervention, as the cost of 

averting a death was below $150 (see Annex 3). 
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The evaluation, however, did not account for the variation between sites, and this was 

identified as an area for further research using MLM. Ideally the measure of outcome for 

such an analysis would be the net-benefit as this encompasses both cost and health 

outcomes. The distribution of net-benefit in this instance however is bimodal, and does 

not approximate a Gaussian one, and so is not amenable to regression analysis. 

The aim of this analysis was therefore to examine the costs of switching from quinine to 

artesunate from an economic perspective. This is explored by comparing the results for a 

pooled analysis, with a stratified one, and finally using a multilevel model. Differences in 

costs can be of high relevance for policy makers who might be deterred from switching to 

artesunate without a clear idea of its financial implications. 

7.4 Methodology 

Interventions. The interventions being considered were quinine and artesunate for 

treatment of severe malaria. The drugs were given intravenously. 

Trial data. The SEAQUAMAT study was carried out between 2003-2005 in one site each in 

Bangladesh, India, Indonesia and seven sites in Myanmar (Dondorp, Nosten et al. 2005). 

Relevant data from the trial for this analysis were drugs and dosages used, the equipment 

needed to administer the treatments, and the length of stay in hospital as inpatients (WHO 

2008). 

Cost data. Costs for artesunate were obtained from the producer and included shipment 

costs. Quinine costs and those for Lv. sets and syringes to administer the drugs were 

obtained from the International Drug Price Indicator Guide (MSH 2007). Drug costs were 

increased by 15% to account for taxes and an extra 10% for wastage (Gold, Siegel et al. 

1996). Standard inpatient care costs for each country (excluding drugs) were obtained 

from the WHO-CHOICE database; these included "hotel" costs - those for personnel, 

capital and nourishment [22]. These costs were then assigned to each individual patient, 

according to the dosage they were given and their length of stay as an inpatient. 
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It was assumed that apart from the cost of trial drugs, the inpatient cost per day was the 

same for both treatment arms in each site. Labour costs were also assumed to be equal, 

although artesunate is simpler to administer (Anstey et al. 2006). Costs were converted 

from local units to US dollars at the relevant year, adjusted for inflation using the 

consumer price index, and reported in 2008USD. Table 7-2 shows the values used. 

Item Unit cost Source and notes 

Quinine vial $0.19 International Drug Price 

Quinine tab $0.04 Indicator Guide. Accessed 

2/6/08 

Artesunate vial $1.2 Quote from the producer 

Artesunate tab $0.17 

Cost per inpatient day Bangladesh $4.6 WHO-Choice estimates by 

India $8.4 country and hospital level. 

Indonesia $2.0 Accessed 23/5/08 

Myanmar $1.7 

(mean of all 

Myanmar sites) 

Quinine administration $1.2 1x 5ml syringe and 2 x 

equipment needles, 1 x infusion set, 1 x 

(500ml or 1000ml) bag of IV 

solution 

Artesunate administration $0.3 1x 5 ml syringe, 2 x needles, 

equipment 

Table 7-2: Costs for treatment, equipment and inpatient care used in the analysis 

Analysis 

The framework was a cost analysis used to determine the incremental cost per inpatient 

with severe malaria treated with artesunate instead of quinine. Differences in costs 

between the two arms were initially summarised by averaging all costs, both pooled and 

stratified by site, and then re-calculated using regression analysis and MLM for 

comparison. 
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Regression models. The first model used was an ordinary least squares regression for 

costs dependent on treatment, pooling patients from all sites (Equation 2). These results 

should approximate those used in standard calculations of differences in pooled costs: 

With this specification, x is a dummy variable representing the treatment arm for patient i, 

the intercept coefficient (Po) represents the cost for the baseline arm, in this instance the 

use of quinine, while the coefficient for the slope (P1) provides the incremental cost for 

the use of artesunate. Use of the regression framework provides an elegant summary of 

the uncertainty surrounding the values, which are a product of the variation between the 

individual data pOints and the regression line and the number of observations. This 

uncertainty is summarised in the standard errors for the two coefficients and can be 

expanded with the use of chosen confidence intervals to assess whether the correlation is 

a statistically significant one. This uncertainty differs from the error term (E'i) which is the 

residual distance for each individual patient from the regression line. 

For reasons discussed above, pooling the data when these originate from a hierarchical 

structure can lead to imprecise inferences. The first possible adaptation, still using a single 

level model, is to stratify the observations by introducing a range of dummy variables that 

represent each of the sites. These variables are assumed to control for factors at the site 

level, without explicitly stating what these are in the model. The result is an extended 

model where each of the sites (apart from one chosen reference site) is represented by a 

variable that takes on a value of 0 or 1 (Equation 3). 

(3) 

Use of the stratified model becomes restrictive when introducing other factors, firstly since 

they become unwieldy, and more so due to possible interaction between the other factors 

and the effect of the sites. These problems are avoided with the use of MLM, where the 

model structure reflects the hierarchical structure of the data, and where higher level units 

are assumed to be random samples of a broader population. The first MLM was a random 

intercept one, which assumed that the base cost per patient treated with quinine varies by 

152 



site, while the use of artesunate incurs the same additional costs in all sites. In Equation 

(4) the subscript of y is now ij, where i represents an individual patient in centre j. The 

fixed part of the model consists of the same fixed elements as Equation (2), while the 

additional random term u has been introduced representing the random variation in the 

intercept by site. 

(4) 

The assumption however that ~1 is fixed can be restrictive, therefore allowing it to vary can 

indicate whether its effect varies significantly by site and the extent to which the data can 

be aggregated. The random slope model produces an additional parameter which is a 

measure of the covariance between the slope and the intercept; this can determine 

whether for instance sites that have higher costs for quinine might experience even higher 

costs for artesunate, thus fanning out the regression lines. 

Testing for model fit. A number of tests are available to examine the significance of 

individual coefficients and of the model in totality. One method uses the -2loglikelihood 

statistic, which is compared across the different models being assessed, and combines this 

with their degrees of freedom (based on the number of parameters in each model). These 

values are then tested using a chi squared test of significance (Centre for Multilevel 

Modelling 2008). The limitation of this approach is that models have to share structures in 

order to be compared. Furthermore, the calculation of the degrees of freedom is done 

without consideration of whether these factors do in fact have any effect in the model. 

More recently the Deviance Information Criterion (DIC) has been developed for 

comparisons of models that differ in structures such as number of explanatory variables, 

distributional assumptions, and number of levels (Spiegelhalter, Best et al. 2002). The DIC 

functions by examining the deviance of the data from the predictions, and penalizes for 

model complexity in a single stage, rather than the 2 stage process required for the -

210glikelihood statistic. Furthermore, the DIC estimates the number of effective degrees of 

freedom, and penalizes the model only for these. Lower DICs indicate a better model fit. 

The DIC was compared for each model to identify the most appropriate one. 

The regression analyses were carried out using MLwiN 2.10. 
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7.S Results 

Treatment costs - standard summary. The differences in treatment costs by site, the 

uncertainty surrounding the point estimates, and the pooled result are shown in Figure 7-

5. The pooled estimate shows quinine to be less costly, with a 95% confidence interval that 

clears the vertical axis, suggesting a statistically significant result. However, the figure also 

shows substantial differences between the sites, with four out often sites having a lower 

mean cost for artesunate than quinine. The uncertainty within each site also appears to be 

high, with seven of the sites having confidence intervals that cross over the vertical axis of 

zero difference. Inferring from the pooled estimate that artesunate is significantly costlier 

seems, therefore, questionable . 
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Figure 7-5: Differences in treatment costs and 95% confidence intervals across aU sites and the pooled 
estimate (bottom). 
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7.5.1 Regression analyses 

The simplest regression model pools the data from all sites and uses the treatment as an 

explanatory dummy variable and cost as the dependent variable. The output in MLwiN is 

shown in Table 7-3. In the regression equation, the intercept is the predicted cost for the 

use of quinine. The cost for artesunate is that for quinine plus the second coefficient, 

which represents the difference in cost between them. These results are almost identical 

to those obtained in the standard analysis. The standard error for the incremental cost of 

artesunate suggests that there is a statistically significant difference in costs between the 

two treatments. 

~ Equations 

Total+admin j = ·+0.092 1.302) + 4.013(1.8-l2)Artesunate i + e
1 

e, -- N(O, 0';) 0'; = 1238. "'94(45.834) 

-2*loglikelihood= 14551.369(1461 of 1461 cases in use) 

Table 7-3: MLwiN output for total cost regressed on treatment using a single level model for the pooled 

data. The top line shows the estimates for the coefficients, with their standard errors in brackets. ei is 
the error terms for the individual observations, which is shown to assume a normal distribution (N) with 

2 
variation of cr • . 

The random term represents the departure of each data point from the predicted 

regression line. In the second line this is shown to assume a normal distribution with mean 

o and variance of 1239, i.e. a standard deviation of 35.2. The bottom line is the -

2*loglikelihood statistic which can be used to compare the model fit with other similar 

models. 

The same model was used for each site individually, producing almost identical estimates 

to those shown in Figure 7-5 for the individual sites. 
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The second model used is an AN OVA, where the effect of each site is accounted for by 

introducing dummy variables to represent each one of them, apart from one reference 

site, in this case that in Bangladesh (Table 7-4) . The model controls for the effect of sites 

on baseline differences, but assumes a fixed incremental difference for treatment with 

artesunate. Thus for the reference site, Bangladesh, the use of quinine costs $37.3 per 

patient, while artesunate implies an incremental cost of $4.2. For India, the incremental 

cost is significantly higher, adding a further $25.9. The standard errors for all coefficients 

indicate significant differences between almost all sites and the reference one, 

Bangladesh. 

Total+admin, = _ 7.3.,2(1.665) - 4.221( 1.6_ O)Artesunate/ + 15. 69(2.990)India, + 25 959(2.340) Indonesia, + 
-1.184( A 6)Myn.l, + -1 8 125(3. -11 )Myn.21 + - 16.561(4.44:!)MY1L3 / + -4.092('i .251 )Myn.4/ + 
-.L643(4.+l01Myn.5, 4- -11 225(.U09)Myn.6(;- -1.U90(2.71S)Myn.7/ el 

e, - N(O, cr~ cr; = 966.247(35.-50) 

-2*loglikelihood= 14188.206(1461 of 1461 cases in use) 

Table 7-4: MLwiN output for a single level model with dummy variables representing each ofthe sites. 

The top line shows the estimates for the coefficients, with their standard errors in brackets.e i is the 
error terms for the individual observations, which is shown to assume a normal distribution (N) with 

2 
variation of (j .. . 

This model and the previous ones were compared to see which better fits the data . The -

2*loglikelihood statistic for the second model is indeed lower, therefore differentiating 

between sites has explained some of the variability in the data. The superiority of this 

model is confirmed by subjecting the difference between the two statistics to a chi 

squared test with 9 degrees of freedom (the number of variables in the model minus one) . 

This produces a p value of <0.0001. 

The next model fitted was a multilevel random intercept one. As shown in Table 7-5, this 

contrasts with the previous model where each site was represented by a dummy variable 

with its fixed effect estimated . In this instance the sites were assumed to be drawn from a 

larger population of sites, with a variance summarised in the added random term 11. The 

subscript 0 indicates that this relates to the randomness of the intercept (Po) , and 
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subscriptj refers to each of the sites. In contrast to the previous ANOVA model, the MLM 

model provides an overall estimate for the incremental cost of artesunate, $4.2, and the 

95% CI can be calculated as $1 to $7.4. These estimates are almost identical to those of the 

pooled model. Looking at the -2*loglikelihood statistic, however, this model does not 

appear to be a better fit than the ANOVA one. 

Total+adminij = POj + 4.221(1.635)ArtesunateIj + e if 

P Oj = 33.830(5.3~9) + U Oj 

u Oj~ NCO, cr~o) cr~o = 265.802(125.059) 

e Ij - NCO, cr!) cr~ = 9~2.833(36.115) 
-2 *loglikelihood = 14232.328(1461 of 1461 cases in use) 

Table 7-5: MLwiN output for the random intercept model. The top line shows the estimates for the 

coefficients, with their standard errors in brackets. eij is the error term for individual observations 
within each centrej. IJ 0) represents the level 2 random departures (or residuals) of the sites from the 

2 2 
mean intercept. Cf4 is the variance for the individual residuals and (juo the variance for the site residuals 

There are now two terms for the variances, one for the individual residuals around the site 

2 2 at. 
mean, (j~ , and one for the site residuals around the overall mean, CfuG . The ratio at-a:; 

provides the intrac/ass correlation, i.e. the percentage ofthe overall variation explained by 

differences between sites. In this instance ICC=0.21, therefore 21% of the variation is due 

to differences in cost between sites, rather than random variation of individuals. 

Both the previous models allowed the baseline to vary (i.e. the cost for quinine), but 

assumed the incremental cost for the use of artesunate to be fixed . The final model to be 

fitted was a random slope model, where this restriction was relaxed and the coefficient for 

the slope was also supplemented by a random element. 
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Total+adm.ill,; = PO} + P I],A.l1"eSlUlate,} + e i} 

P O} =3-1- 3:!9f.:" 0-1--, +u o} 

PI} = 3 18-( 1 910, + u IJ 

e 'J ~ N (O. cr;) cr; = 9-0 9-:!( 36 131 ) 

-2 *loglzkeiLhood = 1-1-23 0 9-1-2( 1-1-61 of 1-1-6 1 ca se s in lise) 

Table 7-6: MLwiN output for the random slopes model. The top line shows the estimates for the 

coefficients, with their standard errors in brackets. eij is the error term for individual observations 
within each centrej. U IlJ represents the level 2 random departures (or residuals) ofthe sites from the 
mean intercept, while IJ \J represents the random departure from the mean slope, and both terms are 
assumed to foUow a normal distribution, with C> estimating tbe covariance between the two residuals. , 
0'; is the variance for the individual observation errors. 

In this model, the incremental cost is slightly lower than the previous models, and most 

importantly the difference is no longer statistically significant (p=O.l1). The random slope 

model output also shows that there is no significant covariation between the intercept and 

the slope, therefore increases in the cost of quinine were not correlated with even higher 

incremental cost for artesunate. 

Figure 7-6 shows a comparison of all the model outputs. First, the pooled data shows that 

quinine is less costly than artesunate, as indicated by the downward sloping regression 

line. This result is identical to the standard method of averaging pooled data. The next 

panel shows the results of single level regression for each site individually, where the 

incremental costs appear to vary widely between the sites. The ANOVA method assumes a 

fixed baseline, but then provides a completely stratified incremental cost for each site, 

therefore the dispersion is wide. In the random intercept model, the sites borrow strength 

from each other according to the ICC, therefore they have shrunk towards the overall 

mean as in panel A. Finally the random slope model allows for different baseline costs, 

although the variance between sites in relation to the variance within sites is small as the 

regression lines are almost parallel. Having been moderated by data from other sites, 

overall the sites are less dispersed . 
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Figure 7-6:Graphs representing the incremental cost by: a. pooling the data; b. Stratifying the data; c. 
using ANOV A; d. a multilevel random intercept model; e. a random slope model 

7.5.2 Testing model fit using Die 

The Die for each of the models reviewed above are presented in Table 7-7, showing that 

the Die reduced in size with the MLM models, with a very slight advantage for the random 

slope model. There are general rules of thumb as to what constitutes a significantly better 

model based on differences in Dies (Spiegelhalter and Best 2002). A difference of 1 or 2 

implies that the models have a close to equivalently good fit. Differences of 3 to 5 are 

substantial enough to suggest that the model with the lower Die is a superior fit. 

The difference between the two MLM models, for instance, is small enough to consider 

both models in obtaining results, while they both supply considerably superior inferences 

to both the ANOVA and pooled models. 

Model Incremental cost Degrees of freedom ole 

Pooled 4.013 3 14557 

ANOVA Varies by site 10.82 14217 

Random intercept 4.221 11.96 14213 

Random slope 3.187 11.71 14211 

Table 7-7: DIe for the models compared 
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7.6 Discussion 

The aim of this chapter was to explore the use of MLM in the context of a multi-centre 

malaria trial. The analysis presented a series of models for the comparison of costs of 

treating severe malaria with either quinine or artesunate. The analysis demonstrated that 

use of MLM provided results that were different from those of a standard analysis, with 

implications for subsequent decision recommendations. 

Whereas in a standard pooled analysis artesunate was found to be more expensive, with a 

high degree of certainty attached, the use of MLM showed this difference to be smaller 

and no longer statistically significant. In dozens of countries where average health 

expenditure is below $13 per capita per year (Jha and Mills 2002), an intervention that is 

expected to cost $4 more than its existing comparator may be viewed as prohibitively 

expensive. Policy makers who might have opted to reject the use of artesunate due to its 

higher costs as shown in a standard analysis, may find that a smaller difference, and one 

that is not statistically significant, may make the drug switch more acceptable. 

MLM was also shown to influence the cost estimates of the individual sites, as these had 

shrunk towards the overall mean. This thesis has consistently argued that economic 

evaluations of malaria diagnostics and treatments must account for site variation in order 

to provide best decision recommendations. Where trials are carried out in a multitude of 

sites, policy makers might be interested more in the data arising from their own setting. 

Use of MLM allows for the incorporation of individual site results with those of other sites, 

while accounting for their individual variance and weight to determine the degree to which 

they should be drawn towards the overall mean. 

MLM has not previously been used in the context of the evaluation of malaria related 

interventions, and has only been used in a handful of economic evaluations of health care 

interventions in general (Manca, Rice et al. 2005). Its use, however, has the potential to 

address many of the shortcomings of analyses that pool data clustered in higher level 
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units. The danger in pooling data is that it ignores the variability between sites and 

provides erroneously precise estimates of the measure of outcome. This is a particular 

problem in the context of malaria, where high variability can be present in both 

susceptibility to illness due to malaria prevalence and population immunity, and in the 

effectiveness of treatment due to factors like antimalarial resistance. 

7.6.1 Limitations 

In retrospect the dataset used for this analysis was not the most appropriate to explore the 

use of multilevel modelling. Firstly, one of the main advantages of using MLM, and indeed 

regression analysis as a whole, is the ability to introduce a range of factors that are 

assumed to influence cost and outcomes, both at the individual and at higher levels. MLM 

is particularly suited to represent these factors by placing them at the appropriate level. 

When this is not done, as in single level models, the effect of these factors is 

overestimated (Rasbash, Steele et al. 2005). In this analysis, however, no other factors 

were available that could be used as explanatory variables in the cost analysis, because the 

trial did not plan to collect cost related data, and most the inputs in the analysis were 

collected retrospectively. 

A second limitation related to this is that the number of sites in the analysis was at the 

lower end of what is considered applicable to MLM. A larger number of higher level units 

would allow exploration of other factors that influence the difference in costs between the 

two treatments. 

Third, ideally net-benefit would be used as the primary measure of outcome, capturing 

both costs and health consequences, and incorporating the decision threshold into the 

analysis. As the net-benefit in this instance was distributed in a bimodal manner (being 

very high for patients that survived, and negative for those that died), this parameter could 

not be used in regression analyses that assume a Gaussian distribution of the dependent 

variable. When attempting to use the net-benefit parameter, this resulted in negative 

variances in the fitting process. In interventions that use continuous rather than 
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dichotomous outcomes, the use of net-benefit is likely to be more feasible. An alternative 

approach in the future would be the use of a multivariate response model where both 

costs and outcomes are modelled simultaneously and then combined to calculate the ICER 

(Rice and Jones 1997). 

The analysis of cost differences alone implies that this is not a complete economic 

evaluation, but rather a cost analysis with perhaps lesser decision relevance. An economic 

evaluation ofthis trial has been completed (lubell, Yeung et al. In press, and Annex 3) but 

no attempt was made at using MlM, and pooled estimates were used for both costs and 

outcomes as there was no a priori plan to stratify the data since no differences in 

treatment effect were anticipated. 

There are a number of other advantages to the use of MlM that were not explored in this 

study. First is that the presence of missing data does not invalidate the observation (as 

long as the data are missing randomly). Similarly MlM can be employed even if the data 

are unbalanced, with differences in sample sizes in the different higher level units (Centre 

for Multilevel Modelling 2008). Multilevel models have also been shown to be better at 

predicting outcomes in new sites than both pooled and stratified analyses (Gelman 2005). 

7.7 Chapter conclusion 

The challenges posed in the interpretation of multi-centre trials are considerable. In this 

chapter the use of MlM for estimating cost differences between two antimalarials in 

different trial sites was explored, and found to be potentially decisive in the inferences 

made. Considering the results for each site individually resulted in very high variability 

between the sites and considerable uncertainty around the estimates. Pooling the data 

resulted in artesunate being significantly more expensive than quinine. When using MlM 

to account for the variability between sites, the mean difference was found to be smaller 

and no longer statistically significant, indicating that artesunate may in fact be less costly. 
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While this study, with its focus on costs alone, was mostly carried out for illustrative 

purposes, this information could be of high interest to policy makers reluctant to switch to 

artesunate for cost considerations, despite the evidence suggesting it to be clinically 

superior. The cost-effectiveness of artesunate for the treatment of malaria was found to 

be in the range of $140 per death averted, a highly efficient intervention by any standard. 

The analysis here confirmed that not only can the use of artesunate be cost-effective, it is 

in fact not as costly as would appear in standard analyses, with a small chance of it being 

cost saving, a result that only became apparent when MLM was used instead of standard 

regression. 
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8. Markov model for the evaluation of ACTs in the Ugandan 

HMM programme 

As evident in previous chapters and the literature review, decision trees are the most 

commonly used structure in economic evaluation to represent a health problem and the 

alternative interventions to address it. For a number of reasons, however, the evaluation 

of interventions and strategies in the context of malaria requires a more complex decision 

model. This is particularly true in the case of Home Management of Malaria (HMM) 

programmes that address recurrent events (febrile episodes) where patients can 

repeatedly transit between different health states over a long period of time. 

Decision trees are most appropriate to represent events that occur in a linear fashion . 

Constructing the tree to allow for a return to previous states rapidly results in unwieldy 

structures. Such a structure would become further convoluted where the choice of action 

in one event (e.g. provision of an antimalarial to a febrile patient) influences the 

probability and outcome for subsequent ones, for example by providing a prophylactic 

effect. In addition decision trees do not account for temporality, and so are less suited to 

evaluating costs and benefits that occur along the progression path with respect to the 

amount of time spent in each condition prior to transiting to other states. 

Markov models offer an alternative structure better suited to address these 

characteristics. As reviewed in Chapter 4, Markov models' basic building blocks are a 

predefined number of mutually exclusive health states, through which a patient, or more 

often a simulated cohort of patients, will transition in a series of cycles (Sonnenberg and 

Beck 1993). The proportion ofthe cohort that shifts to each state is determined by 

transition probabilities which determine how likely a patient is to either remain in the 

state, or transit to a different one. 

Each one of the states is assigned attributes such as costs and quality of life. These values, 

along with the number of patients in each state, determine the total costs and health 
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consequences in each cycle. The model can then be run for either a predetermined 

number of cycles, or until all patients enter an absorbing state (most commonly death). By 

running this process for the alternative interventions, and summing all costs and 

consequences during all cycles for each of these, a comparison can be made between their 

costs and consequences to identify the most efficient option. 

In this analysis a Markov model is used to assess the cost-effectiveness of the Ugandan 

HMM programme, with either an ACT or SP+CQ being distributed, and using a baseline 

comparator of no HMM programme. 

8.1 Background 

Following the Abuja commitment to ensure prompt provision of effective antimalarials to 

60% of childhood fevers (World Health Organization 2003), eighteen countries in SSA have 

so far implemented home management of malaria (HMM) programmes (Ajayi, Browne et 

al. 2008). While the design of these programmes varies, the overall aim is shared, namely 

bringing effective antimalarials closer to communities for rapid access whenever a child 

has a fever suggestive of malaria. As the drive continues to introduce ACTs for first line 

treatment of malaria, in place of failing antimalarials, the use of ACTs is being considered 

in many HMM programmes as well as in health care facilities (Uganda Ministry of Health 

2005; Ajayi, Browne et al. 2008). 

Despite the high levels of support for the implementation of HMM in SSA, as evident in the 

RBM strategies (WHO 2004), so far there is only limited evidence to endorse this strategy 

(Kidane and Morrow 2000; Sirima, Konate et al. 2003). A recent review of studies on HMM 

systems in SSA did not find conclusive evidence oftheir effectiveness, although the drugs, 

delivery systems and settings in the studies differed considerably, as did methods used to 

evaluate them (Hopkins, Talisuna et al. 2007). None of the studies identified in the review 

had included ACTs in the programme. 
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8.1.1 The Ugandan HMM programme 

Since 2002, Uganda has stepped up its efforts to meet the Abuja declaration aim of 

ensuring rapid access to antimalarials, with the implementation of an HMM programme 

across the country (Fapohunda, Plowman et al. 2004). The primary distribution mechanism 

for the antimalarials are community drug distributors (COOs). Initially the HMM 

programme in Uganda used a combination of chloroquine and sulphadoxine

pyrimethamine (HOMAPAK®), although artemether-Iumefantrine (AL) is now being 

gradually rolled out in the HMM programme, as well as in health facilities where it is 

already recommended for first line treatment (Uganda Ministry of Health 2005). 

The COOs are volunteers who are trained to recognize malaria symptoms and danger signs 

of severe malaria, and either provide carers with effective antimalarials to use at home, or 

refer the patient to a health care facility. COOs are not formally paid for their work, 

although the Uganda guidelines on implementation of HMM do state that reducing the 

attrition rate can be achieved through provision of financial and other incentives by local 

governments (Uganda Ministry of Health 2005). 

These individuals collect the drugs from central storage sites and store them in their 

homes. There are approximately 2 COOs assigned to each village. The COOs are responsible 

for replenishing drug supplies in their homes from regional storage sites as these are used 

up. There is no official reimbursement mechanism in place for this. The COOs receive 2 

weeks of training for their responsibilities as a whole, and a 2 day workshop relating to 

HMM and ACTs in particular. Their duties as described in the MoH guidelines on training 

COOs are listed in Box 8-1. 

A number of studies have been carried out in Uganda to evaluate the effectiveness of 

HMM in increasing access to antimalarials, and their acceptability in the community, 

showing that the programme has improved access to antimalarials (Fapohunda, Plowman 

et al. 2004; Ajayi et al. 2008; Nsungwa-Sabiiti, Peterson et al. 2007). However, no studies 

have been carried out to evaluate the impact of the MoH H MM programme on health 

outcomes. 
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• Treating children who have fever/malaria 

• Educating mothers on the need for prompt treatment and compliance with the 
treatment regimen 

• Identifying children who need to be referred to the health facilities and advising 
the caretakers on the need for referral 

• Following up treated children to ensure that they comply with the treatment and 
advice 

• Recording treatment given, its outcome and reporting to the nearest health 
facility 

• Working with the community to collect the medicines from the nearest health 
facility or distribution centre 

Box 8-1: Responsibilities of the CDD in Uganda' s HMM programme (Taken from the MoR guidelines 
(Uganda Ministry of Health 2005» 

Recently, a trial evaluating the effectiveness of a small scale HMM programme was 

conducted in Kampala, with the intent of exploring the health benefits of an HMM strategy 

using an ACT and a highly effective distribution mechanism (Staedke et at. In press) . The 

baseline comparator was standard care, where carers were asked to treat fevers as they 

normally would in the absence of HMM support. Results for this study were mixed and can 

be briefly summarised as follows: 

1. Access to effective antimalarials for febrile children was superior in the HMM arm 

2. There was significantly more over-treatment of non-malarial febrile illness in the 

HMM arm than in standard care 

3. Modest clinical benefit was seen in the HMM arm in the form of lower 

parasitaemia, and a small and non-significant benefit in reduced hospital 

admissions 

4. The cost ofthe delivery system for HMM was considerable. 
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Despite the highly effective drug delivery system used in the trial, the benefits in the HMM 

arm in terms of health outcome were few. From an economic perspective, when an 

intervention is found to be more costly and equally or less effective than its comparator, it 

is considered to be dominated with no justification for its adoption. In this instance such a 

conclusion may not be warranted due to the unique trial circumstances. Firstly, the cost 

the distribution system was far higher than that of the MoH programme. Secondly, the 

relatively low prevalence of malaria in the area implied less potential benefit from 

implementing an HMM programme. Lastly, with good access to health services in their 

urban environment (including the adjacent Mulago Hospital), children were more likely to 

receive accurate diagnoses and appropriate treatment for both malaria and non-malarial 

febrile illnesses, and they were less likely to succumb to severe illness. Nevertheless, these 

results urge caution before full scale implementation of ACTs in HMM, particularly in urban 

areas. 

8.1.2 Considerations for policy regarding use of ACTs in HMM 

Despite the promise of effective treatment for malaria cases, the incorporation of ACTs 

into HMM programmes raises the same concerns as in the context of their use in health 

care facilities, primarily regarding their higher costs, risk of adverse effects, and the 

possibility of parasites developing resistance to the drugs. In the context of HMM, 

presumptive treatment with ACT can be of even greater concern as a higher degree of 

malaria over-diagnosis than that already observed in health facilities can be expected 

(Reyburn, Mbatia et al. 2004; D'Alessandro, Talisuna et al. 2005). Consequently, the 

provision of antimalarials in all cases of fever may delay care seeking for other non

malarial febrile illness (NMFI), which can be associated with higher mortality as is the case 

of pneumonia (Kallander, Hildenwall et al. 2008). 

The decision therefore that many policy makers in SSA are facing is whether to roll out 

ACTs in H MM systems, a strategy that Uganda, for instance, is in the process of adopting, 

despite the lack of evidence to support its effectiveness. More broadly, however, HMM 

programmes as a whole have never been subjected to an economic evaluation. It is 
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unlikely however that there will be a single answer to whether HMM is in fact an efficient 

strategy, as this would most likely be determined by a number of locally specific factors. 

The choice of antimalarial is the first and most obvious factor that will determine the cost

effectiveness of HMM programmes, in response to the antimalarial's cost, effectiveness, 

and possible prophylactic effect. The endemicity of malaria will also be highly influential, in 

that in areas where this is low, febrile illnesses are most likely to have alternative causes. 

Presumptive treatment with antimalarials in such settings might not only be ineffective 

and inefficient, but can also delay seeking alternative treatment for the real cause of 

illness. 

Lastly, the degree to which alternative care is available will also influence the cost

effectiveness of HMM. While HMM is likely to be beneficial where access to health care is 

poor, where high quality care from health facilities is available, both malaria and non

malarial febrile illness can be effectively diagnosed and treated (Shillcutt, Morel et al. 

2008). This can potentially render an HMM programme less advantageous. Similarly, the 

benefits of HMM will be greater in areas where inpatient care for severe illness is not 

readily available, as opposed to urban areas where access to higher level health facilities 

should reduce the probability of severe consequences of malaria and NMFls. 

This chapter uses a Markov model to identify the circumstances under which HMM is 

appropriate with respect to these factors. Use of the model is demonstrated with data 

from Uganda, although the model was developed as a DST that can be adapted to other 

settings. 
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8.2 Methods 

8.2.1 Evaluation framework 

The economic framework the model uses is a cost-benefit analysis to calculate the benefit

cost ratio (BCR) for implementation of HMM compared to standard care. Results are 

presented across a range of malaria incidence levels and degrees of access to care. Health 

outcomes are measured using the number of years of life lost (YLLs), with monetary values 

attached in accordance with the WHO benchmark of $150 as applied to DALYs (WHO 

200Gc). YLLs were calculated for each arm across all cycles. The number of YLLs for each 

death was derived from the relevant life expectancy table, in this instance that for Uganda 

in the year 2007 (United Nations Population Division 2005) and discounted at 3% as 

recommended in the WHO-CHOICE framework (Edejer, Baltussen et al. 2003). 

The BCR is specified numerically in instances where HMM is more costly and more 

effective than standard care. In such instances the BCR can be above 1, indicating that the 

use of HMM has incremental benefits that outweigh its incremental costs, or below 1 

indicating higher incremental costs than benefits. The other possible configurations of 

differences in costs and benefits were specified with the use of categories rather than 

specifying a numeric BCR. This was done primarily because a numeric value is of less 

interest where, for instance, the costs of HMM are higher and the effectiveness is lower. 

This also avoided ambiguity around the interpretation of the ratio, where a positive value 

could be a result of higher costs and effectiveness, or lower costs and effectiveness. The 

possible outcomes are, therefore, as follows: 

1. HMM dominates, i.e. is more effective and less costly 

2. H MM is more effective and more costly, and the incremental benefit is higher than the 

incremental cost, therefore the BCR is above 1 
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3. HMM is more effective and more costly, although with a monetary value for benefits 

that is less than the incremental cost, therefore the BCR is positive but has a value 

between 0 and 1 

4. H MM is less costly but less effective 

5. H MM is dominated implying that it is both less effective and more costly than standard 

treatment 

From a decision makers perspective, the first two outcomes would justify the adoption of 

the intervention unequivocally, subject to budget constraints. Outcome 3 suggests that 

although HMM is more effective, its incremental cost is higher than the incremental gain, 

therefore its adoption is not justified. Outcome 4, where both costs and effectiveness are 

lower for H MM, can be more ambiguous. Although there could be economic gains in 

implementing such an intervention, since an alternative use of the resources saved might 

provide greater health returns, there is a strong ethical objection to switching from a more 

effective strategy to a less effective one. Outcome 5 would suggest that HMM should be 

rejected. 

This classification is taken from the CEA/CUA literature (Drummond, O'Brien et al. 2005), 

where costs and consequences are treated as separate entities. In the example in this 

chapter, while the BCR is useful as a summary measure where the benefits of HMM 

outweigh the costs, the more complex classification provides a clearer indication of where 

the use of HMM is more or less advantageous on either cost or health outcomes basis 

alone. 

8.2.2 Model structure 

The model assumes patients can be in one of 9 mutually exclusive health states, as 

depicted in Figure 8-1. The probabilities for transition between these states are affected by 

the prevalence of malaria, the efficacy and prophylactic effect of the antimalarials used, 

the estimated number of non-malarial febrile illnesses per year, and case-fatality rates for 

severe illness. 
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Figure 8-1: Markov health states and possible transitions between them. NMFI - Non malarial febrile 
illness; Proph - prophylactic effect (followed by number of weeks) 

Three of these states are 'tunnel states', where the patient benefits from a prophylactic 

effect of the antimalarial, however a patient can only remain in this state for one cycle. A 

child can benefit from a prophylactic effect after receiving an antimalarial regardless of 

their actual cause of fever, therefore they may transition there from both uncomplicated 

malaria and NMFI states. If however a child with an NMFI does not receive presumptive 

treatment they will return to the susceptible state, unless they had progressed to severe 

illness. The tunnel effect circumvents one of the main limitations of Markov models, that 

the model has no 'memory' of where an individual patient was in a preceding cycle 

(Sonnenberg and Beck, 1993). Use of the tunnel states allows for the model to determine 

how many weeks a patient benefits from the prophylactic effect ofthe drug, based on the 

antimalarial being evaluated. 

The model is run using weekly cycles, where during each week a cohort of 1000 patients 

transits through the different health states, with the proportion in each state determined 
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by the transition probabilities. This is repeated to simulate the transitions over 5 years, the 

number of years for which children are targeted for treatment in the HMM programme. 

8.2.3 Input parameters 

The following input parameters were used in constructing the model (details on their 

estimation for the Ugandan HMM programme are provided below): 

• Cost of HMM distribution per child per month 

• Cost, effectiveness, and prophylactic effect of the drugs used in the HMM arm and 

those used in health facilities 

• Costs of outpatient care for patients with uncomplicated malaria in health facilities 

• Cost of inpatient care for patients with severe malaria and severe NMFI 

• Patient expenditure for both HMM and standard care 

• Transition probabilities between the different Markov health states for patients 

receiving effective treatment (antimalarials for malaria cases, antibiotic for 

bacterial NMFls) 

• Transition probabilities for patients with malaria and NMFls that do not receive 

appropriate treatment 

• Number of NMFls per year and the proportion of NMFls that are bacterial 

• The value assigned to a year of life lost (or the equivalent loss due to disability). 

These inputs are combined with the Markov states to define the transition probabilities 

between the states and the cost and outcomes associated with them. 
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8.2.4 Perspective of the analysis 

The model is designed to facilitate the comparison of interventions from a number of 

perspectives. The provider perspective uses the provider costs for HMM distribution, 

drugs, OPDs and inpatient care, and is combined with the value of YLLs averted th rough 

each arm. The patient perspective uses the same measure of effectiveness, but only 

patient expenditure. The societal perspective combines the costs of patients and 

providers, and adds a cost in the form of the harm of treatment, as discussed in Chapter 5. 

8.2.5 Model output 

The comparison between HMM and standard care is made across different levels of 

malaria incidence and varying degrees of access to high quality health facilities, as shown 

in Figure 8-2. 

Malaria Incidence. Results are presented across a range of incidence levels, reflecting the 

available estimates of incidence for children under 5 years of age in malaria endemic areas 

(Roca-Feltrer et al. 2008; Fapohunda et al. 2004). These were reported as being 0.1 to 1.9 

per child per annum. 

Access to health facilities. This measure is an abstraction and is not based on actual data. 

The different levels are defined by the proportion of patients who receive high quality 

care, i.e. correct diagnosis and the recommended first line treatment for malaria cases, or 

antibiotics for bacterial infection, as opposed to those who do not receive appropriate 

treatment (Le. facilities with no diagnostic capacity and the availability of only failing 

antimalarials). At a level of 20%, for instance, the transition probabilities for 80% of the 

patients in the model would be based on the estimates of health outcomes for malaria and 

other illness without appropriate treatment (Table 8-5). The other 20% of patients would 

have different transition probabilities, based on the estimates of health outcomes for 

patients receiving correct diagnoses and treatment at health facilities. 

The model provides output in the form of a chart indicating where HMM is likely to be 

cost-effective, in relation to malaria incidence and the availability of high quality health 

facilities. The chart indicates the results given different configurations of these two factors. 
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Adjust other model parameters 

Drug C05t Effed:lvenes 

1 Amodiaquin $O.~ 80% 

2 SP+CQ $0.2 75% 

3 AL $0.9 92% 
4 Plperaqulne $0.5 !lO% 
5 CQ $0.1 60% 

6 Custom 1 $4.0 fiO% 
7 Custom 2 $0.1 100% 

Prohpylactlc 
I (weeks) 

2 
1 

0.5 

3 

10 

0.1 
6 

Perapec:tlve: 

YalueYU: 

HMMDrvc 

Health flldllty DnI& 

HMM dominates 
Benefit cost ratio above 1 

Benefit cost ratio below 1 

HMM less costlv but less effective 
HMM dominated 

Figure 8-2: Model interface. The lower panel is the model output indicating the circumstances in which 

HMM is likely to be appropriate. Above this are the controls where costs and transition probabUities 

can be adjusted and drugs can be chosen for both HMM and health facilities. 

The model was designed as a decision support tool and allowed for the incorporation of 

data from different settings, choice of antimalarial to be used in HMM and in health 

facilities, and for different estimates of the transition probabilities. In this analysis the data 

used related to the Uganda HMM programme, evaluating HMM using either HOMAPAK® 

or AL, as compared to standard care with the use of AL in health facilities. 

8.2.6 Data used in the analysis of the Uganda HMM programme 

Costs ofthe Uganda HMM programme. An overview ofthe HMM programme and its costs 

were obtained in an interview with Dr Fred Kato of the Malaria Control Programme, who 

also provided a number of MoH documents detailing the expenditure on the programme. 

These relate to the training of COOs, their monitoring, and the cost of antimalarials 

supplied. The distribution system is based primarily on the work ofthe COOs and although 

they are volunteers, there is an opportunity cost to their time spent on this intervention. 

The MoH data were supplemented therefore by interviews with three COOs to obtain an 
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indication of their own time and expenditure on HMM activities. COD time was then 

assigned a monetary value equivalent to the Ugandan average wage (Drummond et al. 

2005; ILO 2008). 

Costs of high quality outpatient care: A comprehensive estimate for the cost of high 

quality outpatient care was obtained by identifying a recently constructed clinic in the 

vicinity of Jinja, western Uganda, that maintained high quality diagnostic and treatment 

capacities. The clinic was purposely chosen as likely to be at the highest end of what can be 

reasonably expected in the context of outpatient care in SSA. Costs were obtained for 

construction, overheads and variable inputs. Capital costs were annuitized over 5 years to 

obtain a monthly equivalent cost. The average costs per OP visit are dependent on the 

volume of patients seen, so records of patient visits over the previous 3 months were 

sought to assess the volume. The clinic was reported to be running far below capacity so 

the cost per patient was modified to an 80% level of utilization, as per WHO 

recommendations (Edejer et al. 2003). 

The cost of the antimalarials provided in health facilities was taken to be that of AL, the 

current first line treatment for malaria in Uganda. 

Cost of inpatient care for severe malaria and non-malarial febrile illness: A mid-sized 

hospital in Kisiizi, Southwest Uganda, was chosen to calculate the costs for treating 

children with severe illness. The costing process combined micro costing, using patient 

records for treatments received and labour costs for clinicians and nurses on the ward, 

with step-down hospital costing to assess the expenditure of service departments and the 

proportion ofthese dedicated to the paediatric ward. Hospital capital costs were obtained 

from accounting records showing their estimated present value. These were annuitized to 

obtain a monthly equivalent. Average length of stay was computed from patient records 

for both malaria and NMFls. The hospital was functioning at full capacity so the overall 

costs were assigned to the number of patient days per month without adjustments for 

under-utilization. 
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Patient costs. Patient costs were obtained from the trial carried out in Kampala for both 

HMM and standard care (Staedke et aI., in press). In the trial, patients were asked to 

record any expenses related to the management of febrile illness. These included user 

fees, travel expenses, drugs purchased and any other illness related expenditure. 

Productivity losses in the form of time spent caring for children with febrile episodes were 

added based on the time spent caring for children multiplied by the average wage for 

unskilled workers (Drummond et al. 2005; ILO 2008). 

Transition probabilities. The probability of contracting malaria is determined by the 

incidence, estimates for which were obtained as described above. For malaria patients 

who are correctly diagnosed and treated the transition probabilities were taken from the 

literature estimating the effectiveness of AL and HOMAPAK® in Uganda (Staedke, Kamya 

et al. 2001; Obua, Gustafsson et al. 2006; Yeka, Dorsey et al. 2008). 

The probability of developing an NMFI was based on estimates for the incidence of febrile 

episodes per year (Breman 2001), and subtracting the incidence of malarial episodes. 

Transition probabilities for patients with no access to care or incorrectly treated were 

obtained using expert opinion on expected health outcomes for patients with untreated 

malarial and non-malarial febrile illness. For non-malarial febrile illness, expert opinion was 

sought on the proportional breakdown of these into viral and bacterial illness, along with 

the transition probabilities for these to severe illness and death. These estimates are 

provisional as they are taken from the first round of a Delphi survey that aims to collect a 

wider range of expert opinion in a systematic manner. The protocol and questionnaire for 

this are presented in Annex 2. 

Prophylactic effects. Estimates for the prophylactic effect of the antimalarials were taken 

from the literature (White 2005). These were used to determine the number of weekly 

cycles, following receipt of an antimalarial, during which the child is protected from re

infection. 

The probability of remaining in a Markov state or returning to the susceptible state, where 

this is possible, is determined by subtracting the probabilities that the patient leaves the 
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state through other possible paths, such as developing severe illness, from 100%. The 

parameter estimates and sources used are summarised in Table 8-1. 

Costs Estimate Source Notes 
HMM distribution $0.2 per child/month Primary data, Uganda 

MoH documents 
OPD care (excluding $4.5 Primary data -Jinja 
drugs) clinic 

Inpatient care for $20 Primary data- Kisiizi Based on average 
severe ma la ria Hospital length of stay 
Inpatient care for non- $12 Primary data- Kisiizi Based on average 
malaria severe illness Hospital length of stay 

Antimalarial costs HOMAPAK - $0.15 per Uganda MoH 
child/month 
AL - $0.65 per 
child/month 

Antibiotic costs $0.3 Lubell et al. (2008a) 

Transition 
probabilities 
HOMAPAK 28 failure 35% Staedke et al. (2001) Drug effectiveness 
rate measured by 28 day 

AL 28 day failure rate 17.3% Yeka et. al (2008) outcome without 
genotyping 

Untreated malaria 30% These results are from 
becoming severe the first round of the 
CFR untreated severe 62% survey and are likely to 

malaria change in the 

Proportion of NMFI 30% Preliminary Delphi following round as the 

that require antibiotics survey results questionnaire is 
Untreated bacterial 40% modified. 

NMFI becomes severe 
CFR untreated severe 30% 
NMFI 
Prophylactic effects AL 3 days White (2005); Expert 
Prophylactic effect 1 week opinion (ChriS Whitty, 
HOMAPAK Sarah Staedke) 
Life expectancy 52 years UNPD (2005) Averaged for age 

lt05 
Discount rate 3% Gold et al. (1996) 

Table 8-1: Parameter estimates used in the model 
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8.2.7 Sensitivity analysis 

A number of sensitivity analyses were carried out to assess the impact of using different 

antimalarials in both the HMM programme and in health facilities. The drugs were the 

most common antimalarials available and estimates were used for their costs, efficacies 

and prophylactic effects. An analysis was also run using a stylized drug representing an 

ideal antimalarial, with a cost equivalent to that of Co., effectiveness of 100%, and a 

prophylactic effect of 3 weeks. 

Results were initially obtained using the provider's perspective. In the sensitivity analysis, 

first the provider's perspective was broadened to include the harm of treatment factor as 

discussed in Chapter 5. The model was then run using the societal perspective that 

combined costs for patients, providers, and the harm of treatment factor. 

A sensitivity analysis was also carried out to guage the impact of using a 6% discount rate, 

as recommended by the WHO-CHOICE (Edejer, Baltussen et al. 2003). 

The model was designed using Microso Excel GD 2002 and macros were wri en with 

Microso Visual Basic GD 6.3. 

8.3 Results 

8.3.1 Costs 

The costs for the H MM programme as currently run by the MoH and with the use of AL are 

summarised in Table 8-2, showing that the largest expense is that for the drugs 

themselves, even with the current use of HOMAPAK®. Other expenses for the MoH are 

less than $0.1 per child per month. The COOs, who receive no formal payment, shoulder a 

quarter of the total estimated economic costs for the programme when HOMAPAK@ is the 

treatment. Substituting this with AL raises the total cost per child considerably, with the 

cost of the drugs themselves constituting 92% of the programme cost. 
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HOMAPAK@ AL 

Monthly Annual % of total Monthly Annual % of total 

COOs $0.05 $0.60 24% $0.05 $0.60 
MoH (excluding 
drugs) $0.01 $0.12 5% $0.01 $0.12 
Drugs $0.15 $1.80 71% $0.65 $7.80 
Total cost/child $0.21 $2.52 100% $0.71 $8.52 

Table 8-2: Cost per child of the Uganda HMM programme using HOMAP AK® or AL. CDD -
Community drug distributor; MoB - Ministry ofBealth 

7% 

1% 

92% 

100% 

The operational costs for a high quality outpatient clinic are summarised in Table 8-3. The 

cost per patient was estimated by averaging the volume per month over the preceding 3 

months, equalling 332 patients, providing a cost per patient of $7.2. This was adjusted by 

increasing the volume by 30% to reach the 80% recommended utilization rate (based on 

the opinion of the clinic manager regarding the clinic's full capacity), giving an average cost 

of $4.5 per patient. 

Monthly % of total 

Salaries $1,466 61% 

Perishables $460 19% 

Utilities, travel, maintenance $306 13% 

Total recurrent $2,232 93% 

Capital $174 7% 

Total $2,406 100% 

Table 8-3: Total costs of running a high quality outpatient clinic in Jinja, Uganda 

The inpatient care costs of treating malaria and NMFls excluding those for drugs are 

summarised in Table 8-4. When accounting for drugs and the different average length of 

stay for malaria and NMFI patients, the average cost per case of malaria was estimated to 

be $11.2, while the cost for NMFI cases was $20.4. The difference is explained by both the 

slightly lower length of stay for malaria patients, and the lower drug costs of quinine as 

opposed to treatments for severe NMFls. 
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Monthly % of total 

Salaries $3,465 60% 

Perishables $750 13% 

Utilities, travel, maintenance $1,211 21% 

Total recurrent $5,427 94% 

Capital $358 6% 

Total $5,785 100% 

Table 8-4: Monthly cost for running the inpatient care paediatric ward in southeast Uganda 

Total patient expenditure is comprised of the direct costs associated with treating febrile 

episodes, and with opportunity costs in the form of time taken off work by carers . Cost for 

treating febrile episodes was lower in the HMM arm, averaging $0.9, as opposed to $1.5 in 

the standard care arm. The difference in time spent per febrile episode was minor, being 

0.85 days for the HMM arm and 0.96 for the standard care arm. Total cost perfebrile 

episodes were, therefore, $1.9 for patients in the HMM arm and $2.8 for those in standard 

care. 

8.3.2 Model output for the use of HOMAPAK® in HMM 

With the use of the above costs and the baseline transition probabilities, the output chart 

indicates a general diagonal division between the top left area of the graph, areas of high 

access/low incidence, that favour standard care, to bottom right areas of low access and 

high malaria incidence that favour HMM. 

5lBe,neflt cO~l ratio below 1 

Figure 8-3: Model output for the Uganda HMM programme with the use of HOMAPAK® 

Use of HOMAPAK@ in the HMM programme appears to be efficient across all incidence 

levels where there is no access to alternative health care facilities, with BCRs ranging from 
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1.3 in areas with low incidence and zero access to care, up to 17.4 at a high incidence rate 

of 2 malaria attacks per child per year (Figure 8-3). In a" areas of high access to health 

facilities, and particularly where transmission is low, HMM is less costly but less effective 

than standard care. In areas of low incidence HMM is dominated (i.e. is more costly and 

less effective), where access to care is in the range of 20-40%. Conversely, in these levels of 

access to care but where malaria incidence is high, HMM dominates standard care. 

8.3.3 Model output for the use of AL in HMM 

With the use of AL in place of HOMAPAK®, results overall are similar, although HMM is 

slightly less advantageous particularly in areas of low incidence (Fig 8-4) . This is evident in 

the lower BCRs, which drops below 1 in areas of low incidience and with no access to care. 

dominates 

olBI~nelrtt cost ratio above 1 

cost ratio below 1 

les\ costly but less effective 

Figure 8-4: Model output for the Uganda BMM programme with the use of AL 

The advantage of HOMAP AK® over AL can be explained as a consequence of both the 

lower cost ofHOMAP AK® and its prolonged prophylactic effect preventing the contraction 

of further malaria attacks. 

8.3.4 Sensitivity analysis 

The model was run using a range of estimates for antimalarial costs, efficacies and 

prophylactic effects, reflecting those of some of the most readily available antimalarials. 

While these showed some variation in the precise BCRs, there was no substantial impact 

on results. Even the use of a hypothetical, highly effective and cheap antimalarial in the 

HMM arm only marginally improved the cost-effectiveness of HMM so that in areas where 

it already had a positive BCR, this became even higher or dominated standard care (Figure 
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8-5); however, almost all areas where HMM was not a cost-effective option with the use of 

AL or HOMAPAK® remained this way also with the use of an ideal antimalarial. 

HMM dominates 

Benefit cost ratIo above 1 

Benefit co~t ratIo below 1 

HMM less costly but less effectIve 

HMM dominated 

Figure 8-5: Model output for an ideal antimalarial, compared with AL as first line treatment In health 
facilities 

These results, however, did not include the harm of treatment parameter. When 

introducing this into the analysis, the areas where HMM appeared more beneficial were 

vastly reduced, particularly in low transmission areas (Figure 8-6) . The loss of future lives 

associated with the extended use of antimalarials under the HMM strategy implies that it 

is less effective than standard care in all but high incidence areas and where access to 

health care is very limited . 

.l: 

.*l 

I 
.l: 
o .. 

HMM dominates 

Benefit cost ratIo above 1 

Benefit co~t ratio below 1 

HMM less costly but less effectIVe 

HMM dominated ------

Figure 8-6: Model output with the inclusion of the harm of treatment factor, with AL being used in both 
HMM and health facilities 
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Using a higher discount rate of 6% had a marginal effect on the outcome, slightly 

moderating the BCRs where HMM was more costly and more effective than standard 

treatment. This is due to the costs of treatment being restricted to the 5 years during 

which the programme operates, while the number of years of life lost when a patient dies 

were discounted to the full length of the life expectancy of the child, therefore the 

reduction was proportionally greater. 

8.4 Discussion 

8.4.1 Assumptions and limitations 

A number of simplifying assumptions were made; these are believed to have little or no 

effect on the difference between the alternative strategies. Firstly the occurrence of 

neurological sequelae was not accounted for. These were included in the initial iterations 

but were found to have only negligible impact, while considerably complicating the model 

given the need for an additional health state to capture them. Secondly, deaths from 

unrelated causes were ignored in both arms, as the population is of a younger age than is 

found in most of the literature using Markov models, which relates mostly to older 

populations with chronic illnesses. Furthermore, the effect of unrelated deaths was 

assumed to be roughly equal in both arms. 

The comparator of standard care was an abstraction comprised of patients who either had 

access to high quality health facility care, or those that had no access. This is a gross 

simplification of vast diversity in degrees of access to health services and quality of care. As 

the aim was to provide an illustration of the variability in HMM cost-effectiveness rather 

than a precise value, this was assumed to be an adequate representation for these 

purposes. A more precise assessment of the cost-effectiveness of HMM in particular 

settings would require further details of the availa bility of health services, which could 

then be incorporated in the model. 

The model did not account for the development of immunity amongst children less than 5 

years of age. While it has been shown that in high transmission areas children might 

develop partial immunity to severe illness from a very early age (Gupta, Snow et al. 1999), 
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this dynamic is not fully understood and to avoid over complexity in the model this was 

omitted. The likely effect of including this factor would be to further reduce the benefit of 

HMM. Inclusion of this factor would also have allowed for an incremental analysis to 

explore the age groups in which HMM is most cost-effective. 

The model excluded the possibility of a child having both an NMFI and malaria 

simultaneously. With a maximum malaria incidence rate of 2 per year, however, this is not 

likely to be a very common occurrence, therefore for the sake of simplicity this was not 

included in the model. 

Some of the movements between health states in the model were restricted to avoid the 

model becoming overly complex. Patients who were in a malaria state, for instance, could 

not transit straight to an NMFI state, but rather moved back to asymptomatic status, or on 

to severe malaria. Patients were also assumed to stay in malaria and NMFI states for one 

cycle, i.e. the length of all febrile episodes was assumed to be one week. 

Many of the transition probabilities were derived from expert opinion rather than primary 

data. As noted, a Delphi survey is being conducted to obtain a broader range of expert 

opinion; the estimates obtained in this survey will replace the current ones prior to 

dissemination of the analysis. 

The estimates for costs of outpatient and inpatient care were each obtained in a single 

location. Ideally a greater number of facilities would have been surveyed; however time 

and budget constraints limited the ability to do this. The estimates do, however, 

approximate those used in previous analyses in the thesis obtained in Tanzania. Patient 

costs can differ considerably in different settings. The costs used in this analysis were from 

an urban setting where transport costs are likely to be lower, as well as the time spent 

travelling to clinics. 

Perhaps the greatest apparent limitation of this model and others of its kind is the 

multitude of results it provides for the range of configurations available for the variable 

input factors. This however, should be recognized as the reality of decision making rather 

than a fault of the methodology. 
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8.4.2 Use of a Markov model for the evaluation of malaria interventions 

Use of the Markov model allowed for more flexible modelling of febrile illness and its 

management than that available with decision trees. The cyclical nature of febrile illness 

was captured in the transition between the Markov states. This also allowed for the 

incorporation of the antimalarials' prophylactic effect in reducing the probability of 

subsequent malaria episodes and capturing the ongoing costs and effectiveness of the 

alternative strategies rather than those for a single febrile episode as is possible with 

simple decision trees. 

This structure is critical for the evaluation of HMM programmes, as these address 

recurrent febrile illnesses in the home. The use of Markov models, however, may also be 

beneficial in the assessment of treatment in health care facilities where patients will often 

re-attend following treatment failure, and in other malaria related interventions due to the 

recurrent nature of the disease and its various chronic manifestations. 

The model output provides greater detail than commonly found in economic evaluations 

where dichotomous outcomes are the norm, for example being above or below a decision 

threshold. There are, however, a greater number of distinctions that can be useful to 

policy makers, particularly when results are demonstrated across a range of settings 

simultaneously. It can be useful to distinguish between situations where, for instance, 

HMM is more effective and more costly, yet the benefits do not outweigh the costs, and 

those where HMM is less effective but also less costly to the extent that standard 

treatment is not cost-effective. 

Results were presented mostly from the provider's perspective, as this was assumed to be 

the initial concern for decision makers. The analysis, however, also examined results from 

the societal perspective. The inclusion of the potential harm of treatment associated with 

provision of antimalarials is of particular significance in the context of HMM, given the 

expected increase in use of antimalarials, which is itself the aim of the intervention. It is 

imperative, therefore, that due consideration is given to the more comprehensive costs 

and benefits associated with extensive use of the treatments. In practice, the choice of 

perspective did not have a significant impact on results. 
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8.4.3 Policy implications 

HMM programmes are being implemented in most malaria endemic countries across SSA 

in an attempt to ensure that febrile children have rapid access to antimalarials, preventing 

their possible deterioration to severe illness and death. This analysis has explored the 

variation in the cost-effectiveness of the strategy as expressed by the BCRs, dependent on 

transmission intensity and access to health care. The results indicate considerable variation 

in response to these factors, suggesting that widespread roll out of HMM programmes 

might lead to misuse of resources, and in some instances worse health outcomes than 

would otherwise occur. As urbanization brings improved access to health care, and with 

growing evidence of reduction in incidence of malaria (Gosling et al. 2008; Greenwood et 

al. 2008), these results are of potentially high significance. 

The modelling suggested that in many settings HMM was likely to be less effective, but 

also less costly, than providing high quality facility based care. This would suggest that in 

areas where neither services are widely available, HMM might indeed be a good stop-gap. 

In the long run, however, investment in facility based care is likely to provide better health 

returns than continual reliance on HMM for the management of childhood fevers. 

The model also indicated that the advantages of using AL instead of HOMAPAK® in the 

HMM programme were modest. This can be explained by the extended prophylactic effect 

of HOMAPAK®, modifying the advantage of the higher efficacy of AL, and by its lower cost. 

While this analysis suggests that the application of HMM programmes in many settings 

may not be economically justified, much of the advantage of health care facilities over 

HMM emanates from the greater diagnostic capacity, allowing clinicians to distinguish 

between non-malarial and malarial illness and treat patients accordingly (Shillcutt, Morel 

et al. 2008). This capacity could be introduced into HMM programmes with the use of ROTs 

administered by, for instance, COOs. This appears to be the logical next step for HMM 

programmes, with a focus on treating fevers as a whole and not solely the provision of 

antimalarials (Yeung 2008; Bell and Perkins 2008). However, data are needed to support 

such strategies. 
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8.5 Chapter conclusion 

To ensure that evaluations of interventions such as HMM programmes provide 

appropriate decision recommendations, they should adopt model structures that best 

represent the disease they address. The advantage of using a Markov model is that 

patients can transit between the Markov states with the relevant costs and outcomes over 

a long period of time, during which children experienced multiple febrile episodes, both 

malaria and NMFls. 

HMM programmes are being heavily promoted across SSA to improve access to effective 

antimalarials. There are likely to be benefits to this, particularly in areas where malaria is 

rife and where health facilities are not readily accessible. At the same time, as this analysis 

has indicated, there are many instances where the use of H MM programmes may not 

effective or efficient. Promoting the strategy where malaria incidence is low, and where 

alternative care with better diagnostic capacity is available may lead to extended 

overdiagnosis of malaria, missing other causes of illness, and further encouraging the 

development of resistance to antimalarials. 
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9. Discussion 

In the opening chapter this thesis presented different approaches to decision making in 

health care in general, and malaria in particular, arguing for the need for analytic and 

explicit methods to weigh up the multitude of costs and benefits associated with malaria 

treatment and diagnosis. Two basic themes ran through subsequent analyses in the thesis: 

(1) the need to capture the broader and long term impacts of malaria and the 

interventions used to control it; (2) the need to ensure that decision recommendations are 

relevant to the time and place in which they are being used. To realize these needs, 

methods and models new to the context of the evaluation of malaria control were 

employed. Figure 10.1 shows how the themes and analyses tie together in the thesis as a 

whole. 

Figure 9-1: An illustration of the thesis aim, themes and how these were expressed in the analyses. CBA 
- Cost-benefit Analysis; MLM - Multilevel Model; NMFI - Non-Malarial Febrile llInes ; RoT - Harm 
of Treatment; DST - Decision Support Tool 
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The analyses in the thesis have explored these themes, focusing on different areas as 

required by the policy question being raised. 

While each of the analyses has been discussed individually throughout, there are a number 

of general points that relate to the gaps identified in the literature, and the means by 

which this thesis has attempted to address them. The discussion ofthese issues is followed 

by a brief summary of the main findings and policy implications. lastly some of the areas 

identified for further research are presented. 

9.1 Gaps in the literature and strengths and weaknesses of the 

methods used to address these 

The literature review in Chapter 2 examined the methods used in previous economic 

evaluations of malaria diagnostics and treatments. Although a small number of these 

evaluations did employ appropriate frameworks and advanced modelling techniques, on 

the whole, there were multiple shared weaknesses that reduced their relevance for 

decision making purposes. 

9.1.1 Choice of economic evaluation framework 

Almost all previous evaluations of malaria control interventions employed either cost

effectiveness or cost-utility analyses. The limitation of cost-effectiveness analyses using 

disease-specific measures of outcome was one of the shortcomings of many previous 

evaluations. For instance, evaluations of malaria diagnostic tests have used the cost per 

case detected as a measure of outcome (Bualombai, Prajakwon et al. 2003; Rolland, Checci 

et al. 2006; Fernando, Karunawee et al. 2004). Similarly, evaluations of antimalarials have 

looked at cost per patient treated (Sudre, Breman et a11992; Gogtay, Kadam et al. 2003; 

Chanda, Masiye et al. 2007). Other examples of such studies are those for bed-nets and 

internal residual spraying, using measures of outcome such as cost per child protected 

(Guyatt, Kinnear et al. 2002), or the cost per bed-net distributed (Stevens, Wiseman et al. 

2005). The limitation of this framework is that decision makers rarely have any frame of 
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reference when considering these results, as they are not comparable to each other or to 

other interventions. 

Cost-utility analyses partly resolve this by offering generic measures of outcome, allowing 

for comparison of interventions with different aims. However, they still require a decision 

threshold to indicate whether the intervention is cost-effective. The most comprehensive 

studies are those by Goodman et al (2000) and Morel et al. (2005), which evaluated a wide 

range of malaria control measures, with respect to the cost per DALY averted and the 

WHO threshold of $25 and $150 per DALY averted. Shillcutt et al. (2008) used a 

probabilistic sensitivity analysis to juxtapose a range of costs per DALY averted against 

different decision thresholds to indicate where the use of ROTs is likely to be cost

effective. 

As both DALYs and QALYs are continuously being refined, so are the methods for assessing 

the monetary value of averting the loss of a DALY or gaining a QALY (Sachs 2002; Shillcutt, 

Walker et al. Unpublished). However, the incorporation of such measures into the 

evaluations has led these back in to the realm of cost-benefit analysis, even though many 

analysts continue to skirt around the explicit valuation of health outcome in monetary 

terms (Gafni and Birch 2006). 

The use of a cost-benefit framework facilitates more coherent analyses and outcomes, as 

evident in the studies in this thesis. One key advantage is the ability to incorporate a 

greater range of factors beyond immediate costs and benefits into the analysis in a more 

coherent fashion. This was demonstrated with the incorporation ofthe harm oftreatment 

factor, where a monetary cost was assigned to the potential adverse outcomes associated 

with the use of antimalarials, which can be of high significance under strategies of 

presumptive treatment and HMM. The presumptive treatment of children in many low and 

medium transmission areas, for instance, no longer appeared efficient once the harm of 

treatment costs were included in the analysis, as shown in Chapter 5. 

Similarly, as was discussed in Chapter 7, the use of net-benefit as a measure of outcome 

(approximating a CBA) in regression analyses is a particularly useful method to explore the 
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factors that determine an intervention's efficiency (Hoch, Briggs et al 2002). The use of 

CBAs combined with regression analysis represents a potentially superior framework for 

trial based evaluations in general, and for multi-centre trials in particular, with the use of 

multilevel modelling (Manca, Rice et al. 2005). This does, however, require that health 

outcomes are valued in monetary terms, so that the dependent variable can capture both 

costs and outcomes simultaneously. 

9.1.2 Comprehensiveness of the analysis 

Many previous evaluations have chosen to focus on a limited number of parameters, 

notably those which are more readily available for collection in clinical trials, such as 

immediate outcomes measured in natural units and provider costs (Bualombai, Prajakwon 

et al. 2003; Rolland, Checci et al. 2006; Fernando, Karunawee et al. 2004). Other factors, 

however, have been shown to have a critical impact on the efficiency of interventions, and 

their inclusion in the analysis is therefore imperative, rather than being left as 

afterthoughts. This was demonstrated in previous evaluations by Yeung (2006) and 

Coleman et al. (2004), when looking at the impact of parasite resistance to antimalarials on 

the cost-effectiveness of the treatments. 

One factor introduced systematically into the analyses in the thesis is the health outcome 

for patients with non-malarial febrile illness. This was identified as a key issue in the 

evaluation of RDTs by Shillcutt et al. (2008). The confounding of malaria and febrile illness 

has resulted in the disregarding of outcomes for patients with other febrile illnesses who 

are treated with antimalarials under strategies of presumptive treatment. Analyses that 

ignore this will overstate the benefits of antimalarials and ignore the reality that a 

considerable proportion of patients do not benefit from the treatment. Moreover, 

without appropriate treatment these patients are at higher risk for severe outcome from 

their true cause of illness (Amexo, Tolhurst et al. 2004). Throughout the studies in this 

thesis, estimates have been made for the proportion of patients with NMFls and their 

health outcomes as well as for patients with malaria. 
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By expressing the cost-effectiveness of interventions across a range of prevalences of 

malaria amongst febrile patients, the impact of the proportion of NMFls on the efficiency 

of interventions is observable, as shown in Chapters 5 and 6. The main difficulty, however, 

is in estimating the breakdown of NMFls into those illnesses that require antibiotic or 

other treatment, as opposed to those that are likely to be viral and mostly self limiting. 

Localising these assessments in decision models is likely to provide more adequate 

recommendations (English and Scott 2008). Lack of data meant that in the analyses here, 

the estimates for the proportion of NMFls that are bacterial had to be based on expert 

opinion. The Delphi survey underway seeks a broader range of expert opinion on this for 

different age groups and malaria transmission intensities. 

Chapter 6 explored how the apparent efficiency of ROTs and ACTs is challenged when 

analyses are extended beyond a focus on immediately observable costs and consequences, 

and incorporate non-adherence to test results and the harm associated with provision of 

antimalarials. No previous studies have accounted for these factors when evaluating 

diagnostic tests for malaria (or indeed for diagnostic tests for other diseases as far as could 

be found in a brief survey of the literature), despite the evidence of compromised 

adherence to ROTs and microscopy and high rates of over-prescription of antimalarials. 

Including the adherence factor in the analysis of ROTs indicates firstly the reduced 

efficiency of rolling out the tests given current prevailing adherence levels, and the 

potential gains of implementing training programmes to increase adherence. The inclusion 

of the harm of treatment factor allows policy makers to observe the full benefits of using 

ROTs in diminishing the unnecessary use of antimalarials. 

The main weakness in this greater comprehensiveness is that such factors are difficult to 

estimate, introducing further uncertainty into the analysis, and in some instances 

appearing 'unscientific', thus compromising credibility. Furthermore, there will inevitably 

be a wide range of additional costs and consequences that could be introduced, and to a 

certain extent the choice of which to include will be subjective or even arbitrary. The 

adherence factor, for instance, might appear more reliable in its estimates, being directly 
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measurable, and of immediate relevance in that policy makers can act upon it. The harm of 

treatment factor, on the other hand, is both more difficult to assess, and its policy 

implications are less tangible. 

The apparent arbitrariness in choice of parameters and the high uncertainty surrounding 

some of the estimates can indeed raise doubts around the accuracy ofthe analysis, 

particularly if the decision on parameters and estimates are not explicitly specified for 

stakeholders to consider their relevance. This can be partly addressed by presenting a 

range of results across a plausible range of estimates, as was done in the present analyses. 

A further advantage of two of the models in this thesis is their user-friendly design that 

facilitates both the inclusion/exclusion of parameters and their adaptation according to 

the users' own beliefs and opinions. It is possible that this might increase the confidence 

stakeholders have in the validity of results, although this was not tested in the thesis. 

One limitation with respect to the comprehensiveness of the analyses is that the models 

did not respond to changes in transmission intensity that might occur following the 

adoption of the proposed interventions. The main reason this was excluded is that in high 

transmission areas which comprise much of SSA, no individual intervention is believed to 

have the ability to significantly impact transmission (Molineaux and Gramiccia, 1980; Lines 

et al. 2008). Nevertheless, dynamic models that account for transmission changes do 

indeed have much to offer to the evaluation of malaria diagnostics and treatments in areas 

of lower endemicity (Yeung 2006). This is an area however that requires considerable 

research in its own right prior to inclusion in decision models. Two recent doctoral theses 

at lSHTM have focused on these issues and it is hoped that future work can incorporate 

these dynamics in the models (Yeung 2006, Okell et al. 2008). 

9.1.3 Local relevance of results 

Perhaps the greatest potential weakness in the entire approach to economic evaluation is 

the over-generalisation of results. The incentive to do so exists not only for the analyst, 

keen to ensu re that their work has significance beyond a particular setting, but also for the 

reader and decision maker, seeking evidence to support new policies or the adoption of 
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new interventions in their own setting. The reality of malaria epidemiology and control, 

however, is a highly dynamic one with wide regional diversity (Ve, Kyobutungi et al. 2007). 

Malaria incidence is changing continuously, with growing evidence emerging in the last 

few years of its overall reduction across SSA (Gosling et al. 2008; Ceesay, Casals-Pascual, et 

al. 2008). This will have implications not only for numbers of cases, but also for individual 

immunity to severe illness and death once infected. Furthermore, the number of drug 

combinations in the ACT class and RDT brands is continuously growing, rendering 

questions such as 'are RDTs/ACTs cost-effective?' meaningless, without further 

specification of the specific drug or test in question. 

Publications based on data collected at a specific point and time might be uninformative, 

or indeed misleading when applied elsewhere several years later. In this thesis two 

analyses focused on methods to ensure that evaluation results are applicable to different 

settings, the first of which related to modelling based analyses, the second to multi-centre 

trial based evaluations. 

In Chapter 6, decision support tools were constructed for easy adaptation of economic 

evaluation models by decision makers to their own circumstances. Two alternative 

frameworks were described for such DSTs, with a trade-off in complexity and 

methodological validity between the two. In an age of advanced IT capacities and with a 

growing number of individuals trained in at least a basic understanding of health 

economics, the use of DSTs in lieu of static evaluations seems like a natural progression for 

economic evaluation (van Gool, Gallego et al. 2007, English and Scott 2008). The diffusion 

of decision making powers that characterises much of health care reform could facilitate 

this further. While there will always be a need for rigorous peer review processes to assess 

the validity of evaluations, these could be directed at ensuring the quality of the model 

structure, and allowing local stakeholders to populate the models with local data and their 

own assumptions and preferences. 

One limitation to the possible dissemination of DSTs is the degree to which policy makers 

are adept in the use of concepts such as probabilities and measures of outcome such as 

DALVs (Teerawattananon 2007). Similarly, it may be the case that local stakeholders do not 
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have access to higher quality data than the analyst. For this reason DSTs could initially be 

populated with best available data, as was done in the models here, which can then be 

modified as appropriate by local stakeholders and policy makers. 

The main limitation may not be the technical skills required to manage the DSTs, but 

perhaps the degree to which policy makers are comfortable with the economic evaluation 

paradigm as a whole. Cost-effectiveness is indeed only one of several considerations that 

policy makers face in considering the adoption of a new intervention (Musgrove 1999). 

DSTs can however be developed using multi-criteria decision analysis frameworks, which 

account for a broader range of factors beyond cost-effectiveness, such as equity, 

acceptability, or the degree to which an intervention is life-saving (Dowie 2008). 

In Chapter 7, the use of multilevel modelling, a relatively recent tool in economic 

evaluation, was demonstrated forthe evaluation of a multi-centre trial. Multicentre trials 

are increasingly being used to ensure that trial results can claim greater generalisability. 

The interpretation of these results and the handling of variability of costs and effectiveness 

between locations have so far been inadequate, with either pooling or stratification of the 

data being the norm (Manca, Rice et al. 2005). The use of multilevel modelling offers a 

method that addresses the limitations of both approaches. While the analysis had a 

number of limitations, and could not undertake a full exploration of the benefits of MLM, it 

did provide an improved model when compared with the pooled and stratified models, as 

measured by the DIC. 

In Chapter 8, the evaluation of the HMM programme was designed to explicitly show the 

variation in the intervention's efficiency across different sites. In addition to the variation 

in transmission intensity, as assessed in some previous evaluations (Goodman, Coleman et 

al. 2000; Shillcutt, Morel et al. 2008), this analysis explored the impact of varying levels of 

access to high quality care. The method used to portray differences in access to high 

quality care was crude, although it was adequate to show the significant impact that 

access to care has on the efficiency of the intervention, providing a clear visual 

demonstration of how results vary across different circumstances. The limitation of 
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presenting a broad array of results simultaneously, is the difficulty of carrying out 

extensive sensitivity analyses such as PSAs. This could perhaps be overcome with more 

advance use of Excel or the use of alternative software. 

9.1.4 Appropriate model structures 

Almost all evaluations based on modelling disease progression have structured their 

analyses using decision trees to model disease progression with the alternative treatments 

or diagnostics being considered (Cho Min, Lermaharit et al. 2000; Wilkins, Folb et al. 2002; 

Zurovac et al. 2006). Despite the strength and appealing simplicity of decision trees, their 

limitations in the context of malaria and its control are considerable. The linear portrayal 

of the illness does not easily facilitate the evaluation of recurrent events, and quickly 

becomes unwieldy where more than a couple of progression paths are present at each 

node. 

Other evaluations have used mathematical modelling to assess disease progression and 

factor in changes in antimalarial effectiveness due to growing resistance (Schapira, Beals et 

al. 1993) and host susceptibility given changes in transmission and immunity 

(Laxminarayan 2004). 

The Markov model presented in Chapter 8 is the first time such a model has been used in 

the economic evaluation of malaria treatment and diagnostics. Use of the model allowed 

for greater flexibility in the transmission of patients between health states than would be 

allowed by a decision tree structure. Other advantages ofthe model are the ability to 

assess the costs and benefits of the different strategies over extensive periods of time 

rather than those of a single event. Although in this instance the young age of the target 

population meant that modelling the development of immunity was not necessary, this is a 

dynamic that could be incorporated in the model with relative ease. 

9.2 Sources of data 

This thesis used different datasets for each analysis, rather than a single dataset 

throughout. This enabled the thesis to build models based on a range of policy relevant 
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issues already being explored, and to draw at least some of its data from recent or ongoing 

trials. A number of collaborations were established, through offering assistance with 

economic evaluation of existing trials in exchange for use of the data in the thesis. The 

advantage was that each study presented its own challenges in identifying appropriate 

modelling techniques. Furthermore, covering a range of interventions and strategies 

allowed for rapid adaptation of methods from one analysis into another. 

There were two limitations to the use of data from multiple trials. First, not all trials had 

planned for an economic evaluation component, thus it had to be improvised after the 

trials had begun or even after their completion, such as in the evaluation of artesunate for 

the treatment of severe malaria. In some cases the data had to be collected 

retrospectively or estimated using costs of similar interventions and health facilities to 

those originally used in the trials. Second, there was less opportunity to explore both the 

methodological and practical issues of a single trial in greater depth, limiting the extent to 

which practical conclusions and policy guidelines could be produced. 

9.3 Main policy findings and implications 

While the orientation of the thesis is mostly methodological, a number of findings do have 

strong policy implications. 

The incorporation of non-adherence to test results into the evaluation of ROTs had a 

decisive influence on their cost-effectiveness, in many instances severely curtailing it. This 

was particularly true for high transmission settings that characterise much of SSA where 

ROTs are being considered for use. The analysis identified levels of non-adherence at which 

ROTs cease to be efficient, rendering their use a misallocation of scarce resources. This 

strongly emphasises the need for clinician training programmes before widespread 

deployment of ROTs. Such programmes will of course have their own costs and benefits, 

which can be evaluated in light of the study developed here. 
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Similarly, the incorporation of the harm of treatment factor had a substantial impact on 

whether RDTs are justifiable on economic grounds. The explicit incorporation of an indirect 

cost associated with the use of antimalarials provided a necessary restraint on the use of 

antimalarials, a factor that had previously been addressed externally to the evaluation of 

diagnostics and antimalarials. Including this parameter formalises one of the main 

incentives of introducing RDTs - the reduction of unnecessary use of antimalarials. Its 

inclusion makes RDTs more beneficial than would otherwise be the case, for instance 

amongst children in low and medium transmission areas. By incorporating this parameter 

explicitly in the analYSis, policy makers can directly observe its influence when conSidering 

the sub-populations in which RDTs are to be deployed. 

The use of DSTs is likely to hold a number of advantages for policy makers over the 

traditional use of published evaluations. The main conclusion from the work on DSTs is 

their demonstration of the variability in results in response to the settings to which they 

are applied, as shown in Chapters 6 and 8. There rarely are simple policy recommendations 

that will hold true over such variable settings as those that characterise SSA. It is 

recognised that it would be impossible to tailor policies to highly localised levels. The level 

at which policy making can be independently made will vary according to factors such as 

training, drug supply systems and political constraints. Nevertheless, policy makers should 

at least be aware that blanket application of interventions might be inappropriate. 

In Chapter 7 the focus was on the differences in expenditure of treating severe malaria 

with either artesunate or quinine. The supplementary study presented in Annex 3 found 

artesunate to be a highly cost-effective intervention, with a cost per death averted of 

approximately $140. While standard methods showed that artesunate would certainly be 

more expensive than quinine, when using MLM the difference was shown to be smaller 

and not statistically significant, partly alleviating the concern that despite being cost

effective, artesunate might not be affordable. 

In Chapter 8 the Markov Model evaluated the efficiency of HMM programmes in a range of 

circumstances. Despite strong policy support for such programmes, the model results 

suggest that blanket application of this strategy will not always produce the best health 

199 



outcomes, nor will it always be economically efficient. This is likely to be particularly true 

given the current trend of reduced malaria prevalence, and ongoing urbanization 

improving access to care, in much of SSA. 

9.4 Relevance to non-malarial contexts 

While the focus of the analyses in the thesis were all malaria related interventions, most of 

the methods used are applicable to other contexts. The factors introduced into the 

evaluation of diagnostic tests - both non-adherence and the harm of treatment - were 

both influential and are highly relevant to the efficiency of diagnostic tests in many other 

fields. 

DSTs offer a possible progression for economic evaluation in decentralizing health systems. 

In addition to ensuring the relevance of the evaluations to different locations and specific 

interventions, the use of DSTs facilitates re-visiting previous evaluations to verify that 

interventions continue to provide a justifiable return on the investment. This is particularly 

crucial in highly dynamic environments that characterise the developing world. 

The use of multilevel models in the analysis of multi-centre trials has also been scarce in 

the context of economic evaluations, despite their demonstrated advantage over standard 

methods. With the increasing number of clinical trials being carried out in multiple 

locations, it is imperative that these use best available analytical practices as both pooling 

and stratifying results can lead to incorrect inferences. 

9.5 Further research 

A number of areas can be identified for further research, some relating to methodological 

advances, and others to the application of the methods used in this thesis to other aspects 

of malaria control. 

Methodologically, much of the work in this thesis was aimed at increasing the 

comprehensiveness of analyses. Most of the costs and consequences in these analyses, 

however, were estimated at the micro level- patients, health care providers etc., without 

allowing for broader impacts, such as productivity and educational attainment. An 
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alternative to this is a macroeconomic approach which estimates the impact of both the 

disease and its control on the economy as a whole, including factors such as total 

productivity, economic growth, or the health sector as a whole (Chima, Goodman et al 

2003). 

The use of Computable General Equilibrium (CGE) methods is one possible method of 

estimating the costs and consequences of malaria related policies at the macro level, and 

has been demonstrated for use in the context of the development of antimicrobial 

resistance to drugs (Smith and Coast 2005) and of a global influenza pandemic (Keogh

Brown, McDonald et al. Unpublished). Policy analysis in CGE models functions by 

constructing a set of relationships between different sectors of the economy and the 

elasticities attached to these, and then assessing what would happen if some policy is 

introduced as an exogenous 'shock' to the model. The 'post-change' counterfactual 

equilibrium is then compared with the benchmark equilibrium to assess the costs and 

consequences of the policy in terms of macro-economic indicators - national income, 

employment, inflation or other welfare criteria. 

Another area requiring further research is the use of decision models to determine the 

expected value of perfect information (EVPI) (Spiegelhalter, Abrams and Myles 2004). This 

involves estimating the impact of uncertainty surrounding a parameter on results, and 

using this to determine how much should be spent on reducing this uncertainty through 

further research. In the context of malaria this has particular relevance as many of the 

funding bodies face ongoing choices on whether to spend more on research or on 

deployment of the interventions. The use of decision models and EVPI can assist in 

determining this. 

The use of multilevel modelling in this thesis served mostly to demonstrate its applicability 

to multi-centre trials. A similar trial to the present one in this analysis is currently under 

way in SSA, with MLM now planned as an integrated part of the analysis. Many of the 

limitations encountered here should be surmounted - with information collected 

prospectively on costs at both the individual and hospital level. The analysis will also 

account for effectiveness using a more advanced model than the one developed here. 
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An area receiving much recent attention is modelling the feasibility of regional and global 

malaria eradication programmes, and their supplementation with economic models to 

assess the efficiency of such programmes. The challenges involved are immense given the 

uncertainty surrounding the trajectories that malaria epidemiology could take in response 

to large scale elimination and eradication programmes. One of the main questions arising 

is whether a 'meta-model' for this is conceivable, or whether smaller models looking at 

different aspects of eradication should be left segregated. 

While the challenges of drawing together a range of different models and analyses would 

be immense, this remains a venture that would be worth exploring as it could provide a 

better platform for predicting the results of new interventions and strategies than leaving 

the final convergence of the different inputs of models to be done in an intuitive manner. 

The linking of biological and economic models, such as that developed by Yeung (2006), 

show this is feaSible, although further developments will be required to adapt such models 

to the context of malaria eradication. 

Related to the evaluation of eradication programmes, is the need to evaluate different 

combinations of interventions rather than trying to distil the costs and benefits of specific 

ones. In practice the costs of interventions will often depend on whether they are 

deployed in combination with others as overhead costs may be shared, and the 

effectiveness of different interventions can be greater in combination than their sum total 

when implemented alone, or conversely they can cancel each other out. Either way these 

interactions need to be captured in decision models if the true costs and consequences in 

real life are to be estimated. 

The analysis in Chapter 5 showed the decisive influence that adherence to test results had 

on efficiency. A trial currently under way in Uganda is assessing the effectiveness of a 

clinician training programme to encourage better adherence to negative test results, with 

promising interim outcomes (H. Hopkins, personal communication). The cost-effectiveness 

of such programmes can be assessed based on the degree to which they improve 

adherence and therefore the efficiency of ROTs. 
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Chapter 5 also explored the harm of treatment factor. As discussed, there is considerable 

uncertainty surrounding this parameter, mostly as a result of the difficulties in modelling 

the initial emergence of resistance to antimalarials, and its subsequent spread. This is an 

issue of critical importance for any modelling of the cost-effectiveness of malaria 

diagnostics and treatments, demanding greater attention. 

9.6 Conclusion 

Over three billion people across the globe are at risk of malaria (Snow, 2004). Estimates of 

malaria mortality range between 1 and 3 million people per year. At different places and 

times across much ofthe globe, malaria has been believed to be the cause of severe social 

and economic stagnation. The magnitude of the threat has prompted global efforts 

drawing at times on extensive resources, most notably the Global Malaria Eradication 

Programme. Although ultimately the GMEP was deemed a failure, eradication and control 

efforts in endemic areas have continued to draw in extensive proportions of national 

health budgets and international aid money for much of recent decades, and in the past 

few years this has reached an unprecedented scale, with strong support from bodies like 

the GFATM. 

However, the influx of resources to control malaria, and the economic evaluations 

attempting to assist in directing these, have not always ensured best decision making 

practices with respect to the management of malaria and other febrile illnesses. For 

example, one consequence of the high profile malaria has attained is its overdiagnosis, and 

the mismanagement of other febrile illnesses such as pneumonia that can be extremely 

difficult to distinguish from malaria and carry higher mortality rates than malaria. 

Reflecting this tendency, economic evaluations of malaria interventions have often 

excluded health outcomes for patients with non-malarial illnesses who under strategies of 

presumptive treatment received antimalarials rather than treatment for their true cause of 

illness. 
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The high profile malaria control has attained in the aid sector and in the media has also 

encouraged the proclamation of magic bullet solutions, ignoring the variation in 

epidemiology, demography and environment that influence the efficiency of interventions. 

Such overly simplistic attitudes are also reflected in evaluations that have arguably over 

generalized their results beyond specific interventions and circumstances from which they 

drew their data. 

The same sense of urgency to distribute new interventions has led to insufficient attention 

being paid to factors that are not immediately observed in standard trials, although they 

might have significant impacts on the true costs and benefits of the new interventions. 

Control of malaria has evolved and expanded and the need for best available decision 

making tools has never been greater. The methods used to evaluate malaria related 

interventions, however, have not benefitted from recent developments in economic 

evaluation and decision analysis methods. This thesis has attempted to contribute to filling 

this gap, drawing on recent modelling approaches to improve the economic evaluation of 

the latest tools and strategies for the diagnosis and treatment of malaria. 

204 



References 

Agnamey, P., P. Brasseur, et aL (2005). "Economic evaluation of a policy change from 

single-agent treatment for suspected malaria to artesunate-amodiaquine for 

microscopically confirmed uncomplicated falciparum malaria in the Oussouye District of 

south-western SenegaL" Trop Med Int Health 10(9): 926-33. 

Adjuik, M., P. Agnamey, et aL (2002). "Amodiaquine-artesunate versus amodiaquine for 

uncomplicated Plasmodium falciparum malaria in African children: a randomised, 

multicentre triaL" The Lancet 359(9315): 1365-1372. 

Ajayi, I. 0., E. N. Browne, et al. (2008). "Feasibility and acceptability of artemisinin-based 

combination therapy for the home management of malaria in four African sites." Malar J 7: 

6. 

Akhavan, D., P. Musgrove, et aL (1999). "Cost-effective malaria control in Brazil Cost

effectiveness of a Malaria Control Program in the Amazon Basin of Brazil, 1988-1996." 

Social Science & Medicine 49(10): 1385-1399. 

AI Serouri, A. W., S. M. Grantham-McGregor, et aL (2000). "Impact of asymptomatic 

malaria parasitaemia on cognitive function and school achievement of schoolchildren in 

the Yemen Republic." Parasitology 121 ( Pt 4): 337-45. 

Alilio, M. S., I. C. Bygbjerg, et aL (2004). "Are multilateral malaria research and control 

programs the most successful? Lessons from the past 100 years in Africa." Am J Trop Med 

!:!yg 71(2 Suppl): 268-78. 

Alilio, M. S., A. Kitua, et al. (2004). "Malaria control at the district level in Africa: The case 

of the Muheza district in northeastern Tanzania." Am J Trop Med Hyg 71(2): 205-213. 

Alonzo Gonzalez, M., C. Menendez, et al. (2000). "Cost-effectiveness of iron 

supplementation and malaria chemoprophylaxis in the prevention of anaemia and malaria 

among Tanzanian infants." Bull World Health Organ 78(1): 97-107. 

Altman, D. G. and J. M. Bland (1994). "Diagnostic tests 2: Predictive values." BMJ 

309(6947): 102. 

Amexo, M., R. Tolhurst, et aL (2004). "Malaria misdiagnosis: effects on the poor and 

vulnerable." Lancet 364(9448): 1896-8. 

Amin, A. A., D. A. Hughes, et al. (2004). "The difference between effectiveness and efficacy 

of antimalarial drugs in Kenya." Trop Med Int Health 9(9): 967-74. 

205 



Anstey, N. M., R. N. Price, et al. (2006). "Improving the availability of artesunate for 

treatment of severe malaria." Med J Aust 184(1): 3-4. 

Appawu, M. A., K. M. Bosompem, et al. (2003). "Detection of malaria sporozoites by 

standard ELISA and VecTest&trade; dipstick assay in field-collected anopheline mosquitoes 

from a malaria endemic site in Ghana." Trop Med Int Health 8(11): 1012-1017. 

Arnesen, T. and L. Kapiriri (2004). "Can the value choices in DALYs influence global priority

setting?" Health Policy 70(2): 137-49. 

Arrow, J. K., C. B. Panosian, et al. (2004). Saving Lives, Buying Time: Economics of Malaria 

Drugs in an Age of Resistance. 

Avila, P. E., K. Kirchgatter, et al. (2002). "Evaluation of a rapid dipstick test, Malar

Check&trade;, for the diagnosis of Plasmodium falciparum malaria in Brazil." Revista do 

Instituto de Medicina Tropical de Sao Paulo 44(5): 293-296. 

Azazy, A. A. (2004). "Performance and accuracy of an immunodiagnostic antigen detection 

test in diagnosingPlasmodium falciparumamong Yemeni patients." Annals of Saudi 

Medicine 24(1): 50-51. 

Baird, J. K. (2005). "Effectiveness of antimalarial drugs." N Engl J Med 352(15): 1565-77. 

Baltussen, R., W. Brouwer, et al. (2005). "Cost-effectiveness analysis for priority setting in 

health: penny-wise but pound-foolish." Int J Technol Assess Health Care 21(4): 532-4. 

Baltussen, R. and L. Niessen (2006). "Priority setting of health interventions: the need for 

multi-criteria decision analysis." Cost Eff Resour Alloc 4: 14 

Barat, L., J. Chipipa, et al. (1999). "Does the availability of blood slide microscopy for 

malaria at health centers improve the management of persons with fever in Zambia?" Am J 

Trop Med Hyg 60(6): 1024-30. 

Barker, C. and A. Green (1996). "Opening the debate on DALYs (disability-adjusted life 

years)." Health Policy Plan 11(2): 179-83. 

Barlow, R. (1968). "The economic effects of malaria eradication." American Economic 

Review May: 130-148. 

Barnes, K. I., D. N. Durrheim, et al. (2005). "Effect of artemether-Iumefantrine policy and 

improved vector control on malaria burden in KwaZulu-Natal, South Africa." PLoS Med 

2(11): e330. 

206 



Barnum, H. (1978). An Economic Analysis of a Malaria Control Program in the Outer Islands 

of Indonesia. Unpublished. 

Barton, P., 5. Bryan, et al. (2004). "Modelling in the economic evaluation of health care: 

selecting the appropriate approach." J Health Serv Res Policy 9(2): 110-8. 

Bates, I., V. Bekoe, et al. (2004). "Improving the accuracy of malaria-related laboratory 

tests in Ghana." Malar J 3: 38. 

Bates, N. and J. Herrington (2007). "Advocacy for malaria prevention, control, and research 

in the twenty-first century." Am J Trop Med Hyg 77(6 5uppl): 314-20. 

Behrman, J. R., H. Alderman, et aI., Eds. (2004). Hunger and Malnutrition: Copenhagen 

Consensus Challenge Paper. Global Crises Global Solutions. Cambridge, Cambridge 

University Press. 

Bell, D. (2002). "Malaria rapid diagnostic tests: one size may not fit aiL" Clin Microbiol Rev 

15(4): 771; discussion 771-2. 

Bell, D. and R. W. Peeling (2006). "Evaluation of rapid diagnostic tests: malaria." Nat Rev 

Microbiol4(9 Suppl): S34-8. 

Bell, D. and M. D. Perkins (2008). "Making malaria testing relevant: beyond test purchase." 

Trans R Soc Trop Med Hyg. 

Bell, D., C. Wongsrichanalai, et al. (2006). "Ensuring quality and access for malaria 

diagnosis: how can it be achieved?" Nat Rev Microbiol4(9 Suppl): 57-20. 

Bell, D. J. and M. E. Molyneux (2007). "Treatment of childhood Plasmodium falciparum 

malaria: current challenges." Expert Rev Anti Infect Ther 5(1): 141-52. 

Bell, D. R., D. W. Wilson, et al. (2005). "False-positive results of a Plasmodium falciparum 

histidine-rich protein 2-detecting malaria rapid diagnostic test due to high sensitivity in a 

community with fluctuating low parasite density." Am J Trop Med Hyg 73(1): 199-203. 

Berry, D. A. and D. K. Stangl (1996). Bayesian Biostatistics. New York, M. Dekker. 

Bhattarai, A., A. S. Ali, et al. (2007). "Impact of Artemisinin-Based Combination Therapy 

and Insecticide-Treated Nets on Malaria Burden in Zanzibar." PLoS Med 4(11): e309. 

Birch, S. and A. Gafni (1992). "Cost-effectiveness/utility analyses. Do current decision rules 

lead us to where we want to be?" J Health Econ 11(3): 279-96. 

207 



Biritwum, R. B., J. Welbeck, et al. (2000). "Incidence and management of malaria in two 

communities of different socio-economic level, in Accra, Ghana." Ann Trop Med Parasitol 

94(8): 771-8. 

Bloland, P. B., M. Ettling, et al. (2000). "Combination therapy for malaria in Africa: hype or 

hope?" Bull World Health Organ 78(12): 1378-88. 

Bloland, P. B., S. P. Kachur, et al. (2003). "Trends in antimalarial drug deployment in sub

Saharan Africa." J Exp BioI206(Pt 21): 3761-9. 

Bobadilla, J. L., P. Cowley, et al. (1994). "Design, content and financing of an essential 

national package of health services." Bull World Health Organ 72(4): 653-62. 

Bossert, T. (1998). "Analyzing the decentralization of health systems in developing 

countries: decision space, innovation and performance." Soc Sci Med 47(10): 1513-27. 

Bottius, E., A. Guanzirolli, et al. (1996). "Malaria: even more chronic in nature than 

previously thought; evidence for subpatent parasitaemia detectable by the polymerase 

chain reaction." Trans R Soc Trop Med Hvg 90(1): 15-9. 

Breman, J. G. (2001). "The ears of the hippopotamus: manifestations, determinants, and 

estimates of the malaria burden." Am J Trop Med Hyg 64(1-2 Suppl): 1-11. 

Breman, J. G., M. S. Alilio, et al. (2004). "Conquering the intolerable burden of malaria: 

what's new, what's needed: a summary." Am J Trop Med Hyg 71(2 Suppl): 1-15. 

Brennan, A. and R. Akehurst (2000). "Modelling in health economic evaluation. What is its 

place? What is its value?" Pharmacoeconomics 17(5): 445-59. 

Brenner, H. and O. Gefeller (1997). "Variation of sensitivity, specificity, likelihood ratios 

and predictive values with disease prevalence." Stat Med 16(9): 981-91. 

Brentlinger, P. E., C. B. Behrens, et al. (2006). "Challenges in the concurrent management 

of malaria and HIV in pregnancy in sub-Saharan Africa." Lancet Infect Dis 6(2): 100-11. 

Briggs, A. (2000). "Economic evaluation and clinical trials: size matters." Bmi 321(7273): 

1362-3. 

Briggs, A. and M. Sculpher (1998). "An introduction to Markov modelling for economic 

evaluation." Pharmacoeconomics 13(4): 397-409. 

Briggs, A., M. J. Sculpher, et al. (2006). Decision Modelling for Health Economic Evaluation, 

Oxford University Press. 

208 



Briggs, A. H. (2000). "Handling uncertainty in cost-effectiveness models." 

Pharmacoeconomics 17(5): 479-500. 

Brisson, M. and W. J. Edmunds (2006). "Impact of model, methodological, and parameter 

uncertainty in the economic analysis of vaccination programs." Med Decis Making 26(5): 

434-46. 

Bruce-Chwatt, L. J. (1987). "Malaria and its control: present situation and future 

prospects." Annu Rev Public Health 8: 75-110. 

Bruce-Chwatt, L. J. (2002). Essential Malariology, Hodder Arnold. 

Bruce, C. L. J. (1985). Essentials of malariology. New York, John Wiley and Sons. 

Bryan, S. and J. Brown (1998). "Extrapolation of cost-effectiveness information to local 

settings." J Health Serv Res Policy 3(2): 108-12. 

Bryan, S., I. Williams, et al. (2007). "Seeing the NICE side of cost-effectiveness analysis: a 

qualitative investigation of the use of CEA in NICE technology appraisals." Health Econ 

16(2): 179-93. 

Bualombai, P., S. Prajakwong, et al. (2003). "Determining cost-effectiveness and cost 

component of th ree malaria diagnostic models being used in remote non-microscope 

areas." The Southeast Asian J ofTrop Med and Public Health 34(2): 322-33. 

Bustreo, F., A. Harding, et al. (2003). "Can developing countries achieve adequate 

improvements in child health outcomes without engaging the private sector?" World 

Health Organ 81(12): 886-895. 

Butterworth, T. and V. Bishop (1995). "Identifying the characteristics of optimum practice: 

findings from a survey of practice experts in nursing, midwifery and health visiting." J Adv 

Nurs 22(1): 24-32. 

Buxton, M. J., M. F. Drummond, et al. (1997). "Modelling in economic evaluation: an 

unavoidable fact of life." Health Econ 6(3): 217-27. 

Cancre, N., A. Tall, et al. (2000). "Bayesian analysis of an epidemiologic model of 

Plasmodium falciparum malaria infection in Ndiop, Senegal." Am J EpidemioI1S2(8): 760-

70. 

Ceesay, S. J., C. Casals-Pascual, et al. (2008). "Changes in malaria indices between 1999 and 
2007 in The Gambia: a retrospective analysis." Lancet 372(9649): 1545-54. 
Centre for Multilevel Modelling (2008). LEMMA: Multilevel Modelling online course, CMM, 

University of Bristol. 

209 



Chanda, P., F. Masiye, et al. (2007). "A cost-effectiveness analysis of artemether 

lumefantrine for treatment of uncomplicated malaria in Zambia." Malar J 6: 21. 

Chandler, C. I., C. Jones, et al. (2008). "Guidelines and mind lines: why do clinical staff over

diagnose malaria in Tanzania? A qualitative study." Malar J 7(1): 53. 

Chandramohan, D., S. Jaffar, et al. (2002). "Use of clinical algorithms for diagnosing 

malaria." Trop Med Int Health 7(1): 45-52. 

Chatburn, R. L. and F. P. Primiano, Jr. (2001). "Decision analysis for large capital purchases: 

how to buy a ventilator." Respir Care 46(10): 1038-53. 

Chima, R. I., C. A. Goodman, et al. (2003). "The economic impact of malaria in Africa: a 

critical review of the evidence." Health Policy 63(1): 17-36. 

Chiodini, P. L. (1998). "Non-microscopic methods for diagnosis of malaria." Lancet 

351(9096): 80-1. 

Chiodini, P. L., K. Bowers, et al. (2007). "The heat stability of Plasmodium lactate 

dehydrogenase-based and histidine-rich protein 2-based malaria rapid diagnostic tests." 

Trans R Soc Trop Med Hyg 101(4): 331-7. 

Cho Min, N., S. Lertmaharit, et al. (2000). "Ex post and ex ante willingness to pay (WTP) for 

the ICT Malaria Pf/Pv test kit in Myanmar." Southeast Asian J Trop Med Public Health 

31(1): 104-11. 

Cho Min, N. and A. Saul (2000). "Treatment of uncomplicated Plasmodium falciparum 

malaria in Myanmar: a clinical decision analysis." Southeast Asian J Trop Med Public Health 

31(2): 238-45. 

Claxton, K., M. Sculpher, et al. (2005). "Probabilistic sensitivity analysis for NICE technology 

assessment: not an optional extra." Health Econ 14(4): 339-47 

CMM. (2008). "LEMMA: Multilevel Modelling online course." Retrieved July 2008, 2008. 

Coast, J. and R. D. Smith (2003). "Antimicrobial resistance: cost and containment." Expert 

Rev Anti Infect Ther 1(2): 241-51. 

Cohn, E. (1973). "Assessing the costs and benefits of anti-malaria programs: The Indian 

experience." American J of Public Health 63(12): 1086-96. 

Coleman, P. G., C. A. Goodman, et al. (1999). "Rebound mortality and the cost

effectiveness of malaria control: potential impact of increased mortality in late childhood 

following the introduction of insecticide treated nets." Trop Med Int Health 4(3): 175-86. 

210 



Coleman, P. G., C. Morel, et al. (2004). "A threshold analysis of the cost-effectiveness of 

artemisinin-based combination therapies in sub-saharan Africa." Am J Trop Med Hyg 71(2 

Suppl): 196-204. 

Cooper, N. J., A. J. Sutton, et al. (2004). "Comprehensive decision analytical modelling in 

economic evaluation: a Bayesian approach." Health Econ 13(3): 203-26. 

Cooper, N. J., A. J. Sutton, et al. (2007). "Use of evidence in economic decision models: 

practical issues and methodological challenges." Health Econ 16(12): 1277-1286. 

Cross, A. P. and B. Singer (1991). "Modelling the development of resistance of Plasmodium 

falciparum to anti-malarial drugs." Trans R Soc Trop Med Hyg 85(3): 349-55. 

Cruciani, M., S. Nardi, et al. (2004). "Systematic review of the accuracy of the ParaSight-F 

test in the diagnosis of Plasmodium falciparum malaria." Med Sci Monit 10(7): MT81-8. 

Curtis, C. F., B. Jana-Kara, et al. (2003). "Insecticide treated nets: impact on vector 

populations and relevance of initial intensity of transmission and pyrethroid resistance." ! 
Vector Borne Dis 40(1-2): 1-8 

D'Alessandro, U. (1999). "A rational approach to malaria control in pregnancy in sub

Saharan Africa: the need for a link between scientific research and pUblic-health 

interventions." Ann Trop Med Parasitol 93 Suppl1: S75-7. 

D'Alessandro, U. (2001). "Malaria control in Tanzania." Lancet 358(9283): 762-3. 

D'Alessandro, U. (2004). "Treating severe and complicated malaria." BMJ 328(7432): 155. 

D'Alessandro, U. and H. Buttiens (2001). "History and importance of antimalarial drug 

resistance." Trop Med Int Health 6(11): 845-8. 

D'Alessandro, U., A. Talisuna, et al. (2005). "Editorial: Should artemisinin-based 

combination treatment be used in the home-based management of malaria?" Trop Med 

Int Health 10(1): 1-2. 

Daga, S. R., V. B. Pat ii, et al. (2005). "Syndromic management of prolonged fever: a cost

effective approach." Trop Doct 35(1): 31-4. 

Davies, H. T. o. and S. M. Nutley (1999). "The Rise and Rise of Evidence in Health Care." 

Public Money and Management 19(1): 9-16. 

Davis, T. M. E. (2000). "Recognition and management offalciparum malaria." Emergency 

Medicine 12(4): 276-284. 

211 



De Castro, M. c., Y. Yamagata, et al. (2004). "Integrated urban malaria control: A case 

study in Dar Es Salaam, Tanzania." Am J Trop Med Hyg 71(2): 103-117. 

de Savigny, D., C. Mayombana, et al. (2004). "Care-seeking patterns for fatal malaria in 

Tanzania." Malar J 3: art. no.-27. 

Dondorp, A., F. Nosten, et al. (2005). "Artesunate versus quinine for treatment of severe 

falciparum malaria: a randomised triaL" Lancet 366(9487): 717-25. 

Dorsey, G., D. Njama, et al. (2002). "Sulfadoxine/pyrimethamine alone or with 

amodiaquine or artesunate for treatment of uncomplicated malaria: a longitudinal 

randomised trial." Lancet 360(9350): 2031-8. 

Dowie, J. (2003). Health impact: its estimation, assessment and analysis. Public health for 

the 21st century: new perspectives on policy, participation and practice. J. Orme, J. Powell, 

P. Taylor, T. Harrison and M. Gray, Open University Press. 

Dowie, J. (2005). "Research Implications of Science-Informed, Value-Based Decision 

Making." Human and Ecological Risk Assessment, 11(1). 

Dowie, J. (2008) "The future of HTA is MCDA." http:Uknol.google.com/k/jack-dowie!the

future-of-hta-is-mcda/2rrcx2o0qipsa/14# Accessed 20/11/08 

Drakeley, C. J., I. Carneiro, et al. (2005). "Altitude-dependent and independent variations in 

Plasmodium falciparum prevalence in northeastern Tanzania." Journal Infectious Diseases 

191(10): 1589-1598. 

Drakeley, C. J., P. H. Corran, et al. (2005). "Estimating medium- and long-term trends in 

malaria transmission by using serological markers of malaria exposure." Proc Natl Acad Sci 

USA 102(14): 5108-13. 

Drummond, M., G. Torrance, et al. (1993). "Cost-effectiveness league tables: more harm 

than good?" Soc Sci Med 37(1): 33-40. 

Drummond, M. F. and T. O. Jefferson (1996). "Guidelines for authors and peer reviewers of 

economic submissions to the BMJ. The BMJ Economic Evaluation Working Party." Bmj 

313(7052): 275-83. 

Drummond, M. F., B. O'Brien, et al. (2005). Methods for the Economic Evaluation of Health 

Care Programmes, Oxford University Press. 

Dunlop, D. W. (1984). "Theoretical and empirical issues in benefit identification, 

measurement and valuation related to parasitic disease control in poor countries." Soc Sci 

Med 19(10): 1031-7. 

212 



Edejer, T. T., R. Baltussen, et aL (2003). WHO Guide to Cost-effectiveness Analysis. 

English, M., C. Waruiru, et aL (1996). "Transfusion for respiratory distress in life

threatening childhood malaria." Am J Trop Med Hyg 55(5): 525-30. 

English, M. and J. A. Scott (2008). "What Is the Future for Global Case Management 

Guidelines for Common Childhood Diseases?" PLoS Med 5(12) 

Evans, D. (2003). "Hierarchy of evidence: a framework for ranking evidence evaluating 

health care interventions." J Clin Nurs 12(1): 77-84. 

Evans, D. B., Ed. (2004). Perspective Paper 2.1. . Global Crises Global Solutions. Cambridge, 

Cambridge University Press. 

Fapohunda, Bolaji M., Beth Ann Plowman, Robert Azairwe, Geoffrey Bisorbowa, Peter 

Langi, 

Frederick Kato and Xiaotian Wang (2004). Home-Based Management of Fever Strategy in 

Uganda: A Report ofthe 2003 Survey. Arlington, Virginia, USA: MOH, WHO and BASICS" 

Fenwick, E., K. Claxton, et aL (2000). Improving the efficiency and relevance of health 

technology assessment: the role of iterative decision analytic modelling, Centre for Health 

Economics: University of York. 

Fenwick, E., B. J. O'Brien, et al. (2004). "Cost-effectiveness acceptability curves--facts, 

fallacies and frequently asked questions." Health Econ 13(5): 405-15. 

Fernando, S. D., N. D. Karunaweera, et al. (2004). "A cost analysis of the use of the rapid, 

whole-blood, immunochromatographic P.f/P.v assay for the diagnosis of Plasmodium vivax 

malaria in a rural area of Sri Lanka." Ann Trop Med ParasitoI98(1): 5-13. 

Foster, S. and M. Phillips (1998). "Economics and its contribution to the fight against 

Malaria." Ann Trop Med ParasitoI92(4): 391-398. 

Francis, D., S. L. Nsobya, et aL (2006). "Geographic differences in antimalarial drug efficacy 

in Uganda are explained by differences in endemicity and not by known molecular markers 

of drug resistance." J Infect Dis 193(7): 978-86. 

Frew, E. J., D. K. Whynes, et aL (2003). "Eliciting willingness to pay: comparing closed

ended with open-ended and payment scale formats." Med Decis Making 23(2): 150-9. 

Fryback, D. G., J. O. Chinnis, Jr., et al. (2001). "Bayesian cost-effectiveness analysis. An 

example using the GUSTO triaL" Int J Technol Assess Health Care 17(1): 83-97. 

213 



Fryback, D. G., N. K. Stout, et al. (2001). "An elementary introduction to Bayesian 

computing using WinBUGS." IntJ Technol Assess Health Care 17(1): 98-113. 

Gafni, A. and S. Birch (2006). "Incremental cost-effectiveness ratios (ICERs): the silence of 

the lambda." Soc Sci Med 62(9): 2091-100. 

Gallup, J. L. and J. D. Sachs (2001). "The economic burden of malaria." Am J Trop Med Hyg 

64{1-2 Suppl): 85-96. 

Garber, A. M. and C. E. Phelps (1997). "Economic foundations of cost-effectiveness 

analysis." J Health Econ 16(1): 1-31. 

Gerard, K. and G. Mooney (1993). "QALY league tables: handle with care." Health Econ 

2(1): 59-64. 

Gilles, H. M. and A. O. Lucas (1998). "Tropical medicine: 100 years of progress." Br Med 

Bull 54(2): 269-80. 

Girosi, F., M. E. Rafael, et al. (2006). Determining the Priority Global Health Needs and 

Quantifying the Health Benefits Resulting From the Introduction of New Diagnostics in the 

Developing World. RAND Health. RAND. 

Gogtay, N. J., V. S. Kadam, et al. (2003). "A cost-effectiveness analysis of three antimalarial 

treatments for acute, uncomplicated Plasmodium falciparum malaria in Mumbai, India." ! 
Assoc Physicians India 51: 877-9. 

Gold, M. R., J. E. Siegel, et al. (1996). Cost-effectiveness in Health and Medicine. New York, 

Oxford University Press. 

Gold, M. R., D. Stevenson, et al. (2002). "HAlYS and QALYS and DAlYS, Oh My: similarities 

and differences in summary measures of population Health." Annu Rev Public Health 23: 

115-34. 

Goodman, c., P. G. Coleman, et al. (2000). Economic AnalYSis of Malaria Control in Sub

Saharan Africa. Strategic Research Series, Global Forum for Health Research. 

Goodman, C., S. P. Kachur, et al. (2004). "Retail supply of malaria-related drugs in rural 

Tanzania: risks and opportunities." Trop Med Int Health 9(6): 655-63. 

Goodman, c., W. Mutemi, et al. (2006). "The cost-effectiveness of improving malaria home 

management: shopkeeper training in rural Kenya." Health Policy Plan. 

Goodman, C. A., P. G. Coleman, et al. (1999). "Cost-effectiveness of malaria control in sub

Saharan Africa." lancet 354(9176): 378-85. 

214 



Goodman, C. A., P. G. Coleman, et al. (2001a). "Changing the first line drug for malaria 

treatment--cost-effectiveness analysis with highly uncertain inter-temporal trade-offs." 

Health Econ 10(8): 731-49. 

Goodman, C. A., P. G. Coleman, et al. (2001b). "The cost-effectiveness of antenatal malaria 

prevention in sub-Saharan Africa." Am J Trop Med Hyg 64(1-2 Suppl): 45-56. 

Goodman, C. A. and A. J. Mills (1999). "The evidence base on the cost-effectiveness of 

malaria control measures in Africa." Health Policy Plan 14(4): 301-12. 

Goodman, C. A., A. E. Mnzava, et al. (2001). "Comparison of the cost and cost-effectiveness 

of insecticide-treated bednets and residual house-spraying in KwaZulu-Natal, South 

Africa." Trop Med Int Health 6(4): 280-95. 

Goodman, C. A., W. M. Mutemi, et al. (2006). "The cost-effectiveness of improving malaria 

home management: shopkeeper training in rural Kenya." Health Policy Plan 21(4): 275-88. 

Gosling, R. D., C. J. Drakeley, et al. (2008). "Presumptive treatment of fever cases as 

malaria: help or hindrance for malaria control?" Malar J 7: 132. 

Greenwood, B. M., K. Bojang, et al. (2005). "Malaria." Lancet 365(9469): 1487-98. 

Grieve, R., R. Nixon, et al. (2007). "Multilevel models for estimating incremental net 

benefits in multinational studies." Health Econ 16(8): 815-26. 

Grieve, R., R. Nixon, et al. (2005). "Using multilevel models for assessing the variability of 

multinational resource use and cost data." Health Econ 14(2): 185-96. 

Griffith, D. H. 5., D. V. Ramara, et al. (1971). "Contribution of Health to Development." 

International Journal of Health Services 1(253-318). 

Gupta,S., R. W. Snow, et al. (1999). "Immunity to non-cerebral severe malaria is acquired 

after one or two infections." Nat Med 5(3): 340-3. 

Guthmann, J. P., A. Ruiz, et al. (2002). "Validity, reliability and ease of use in the field of five 

rapid tests for the diagnosis of Plasmodium falciparum malaria in Uganda." Transactions Of 

The Royal Society Of Tropical Medicine And Hygiene 96(3): 254-257. 

Hamer, D. H., M. Ndhlovu, et al. (2007). "Improved diagnostic testing and malaria 

treatment practices in Zambia." JAMA 297(20): 2227-31. 

Hammer, J. S. (2001). "THE ECONOMICS OF MALARIA CONTROL." The World Bank Research 

Observer 8(1): 1-22. 

215 



Hammond, K. R. (2000). Human Judgment and Social Policy: Irreducible Uncertainty, 

Inevitable Error. New York, Oxford University Press. 

Hammond, K. R., R. M. Hamm, et al. (1997).4 Direct comparison ofthe efficacy of intuitive 

and analytical cognition in expert judgment. Research on Judgment and Decision Making. 

W. M. Goldstein and R. M. Hogarth, Cambridge University Press 

Hanscheid, T. (2003). "Current strategies to avoid misdiagnosis of malaria." Clinical 

Microbiology And Infection 9(6): 497-504. 

Harvey, S. A., L. Jennings, et al. (200S). "Improving community health worker use of malaria 
rapid diagnostic tests in Zambia: package instructions, job aid and job aid-plus-training." 
Malar J 7: 160. 

Hastings, I. M. (2003). "Malaria control and the evolution of drug resistance: an intriguing 

link." Trends ParasitoI19(2): 70-3. 

Haynes, R. B. (2002). "What kind of evidence is it that Evidence-Based Medicine advocates 

want health care providers and consumers to pay attention to?" BMC Health Serv Res 2(1): 

3. 

Hetzel, M. W., N. Iteba, et al. (2007). "Understanding and improving access to prompt and 

effective malaria treatment and care in rural Tanzania: the ACCESS Programme." Malar J 6: 

S3. 

Hien, T. T., N. P. J. Day, et al. (1996). "A Controlled Trial of Artemether or Quinine in 

Vietnamese Adults with Severe Falciparum Malaria." New England Journal of Medicine 

335(2): 76. 

Hoch, J. 5., A. H. Briggs, et al. (2002). "Something old, something new, something 

borrowed, something blue: a framework for the marriage of health econometrics and cost

effectiveness analysis." Health Econ 11(5): 415-30. 

Honrado, E. R., W. Fungladda, et al. (1999). "Cost-effectiveness analysis of artesunate and 

quinine + tetracycline for the treatment of uncomplicated falciparum malaria in 

Chanthaburi, Thailand." Bull World Health Organ 77(3): 235-43. 

Hopkins, H., L. Bebell, et al. (200S). "Rapid diagnostic tests for malaria at sites of varying 

transmission intensity in Uganda." J Infect Dis 197(4): 510-S. 

Hopkins, H., W. Kambale, et al. (2007). "Comparison of HRP2- and pLDH-based rapid 

diagnostic tests for malaria with longitudinal follow-up in Kampala, Uganda." Am J Trop 

Med Hyg 76(6): 1092-1097. 

216 



Hopkins, H., A. Talisuna, et al. (2007). "Impact of home-based management of malaria on 

health outcomes in Africa: a systematic review of the evidence." Malar J 6: 134. 

Hoshen, M. (2004). "Artesunate combinations for malaria." Lancet 363(9410): 737. 

Hutubessy, R. c., L. M. Bendib, et al. (2001). "Critical issues in the economic evaluation of 

interventions against communicable diseases." Acta Trop 78(3): 191-206. 

Iqbal, J., A. Muneer, et al. (2003). "Performance ofthe optimal test for malaria diagnosis 

among suspected malaria patients at the rural health centers." Am J Trop Med Hyg 68(5): 

624-628. 

James, c., G. Carrin, et al. (2005). "Clarifying Efficiency-Equity Tradeoffs Through Explicit 

Criteria, With a Focus on Developing Countries." Health Care Analysis 13(1). 

Jamison, D. T., W. H. Mosely, et al. (1993). Disease control priorities in developoing 

countries. Oxford, Oxford University Press. 

Jha, P., A. Mills, et al. (2002). "Improving the health of the global poor." Science 295(5562): 
2036-9. 
Johann-Liang, R. and R. Albrecht (2003). "Safety evaluations of drugs containing 

artemisinin derivatives for the treatment of malaria." Clin Infect Dis 36(12): 1626-7; author 

reply 1627-8. 

Jones, K. L., S. Donegan, et al. (2007). "Artesunate versus quinine for treating severe 

malaria." Cochrane Database Syst Rev(4): CD005967. 

Jonkman, A., R. A. Chibwe, et al. (1995). "Cost-saving through microscopy-based versus 

presumptive diagnosis of malaria in adult outpatients in Malawi." Bull World Health Organ 

73(2): 223-7. 

Jowett, M. and N. J. Miller (2005). "The financial burden of malaria in Tanzania: 

implications for future government policy." Int J Health Plann Manage 20(1): 67-84. 

Kachur, S. P., R. A. Khatib, et al. (2004). "Adherence to antimalarial combination therapy 

with sulfadoxine-pyrimethamine and artesunate in rural Tanzania 

Retail supply of malaria-related drugs in rural Tanzania: risks and opportunities 

Trends in antimalarial drug deployment in sub-Saharan Africa." Am J Trop Med Hyg 71(6): 

715-22. 

Kaewsonthi, S., A. G. Harding, et al. (1996). "Assessing the economic impact of a rapid on

site malaria diagnostic test." Southeast Asian J Trop Med Public Health 27(2): 210-5. 

217 



Kager, P. A. (2002). "Malaria control: constraints and opportunities." Trop Med Int Health 

7(12): 1042-6. 

Kallander, K., H. Hildenwall, et al. (2008). "Delayed care seeking for fatal pneumonia in 
children aged under five years in Uganda: a case-series study." Bull World Health Organ 
86(5): 332-8. 
Kassirer, J. P. and M. Angell (1994). "The journal's policy on cost-effectiveness analyses." N 
Engl J Med 331(10): 669-70. 

Keogh-Brown, M., S. McDonald, et al. (Unpublished). 

"The macroeconomic costs of a global influenza pandemic" 

Kidane, G. and R. H. Morrow (2000). "Teaching mothers to provide home treatment of 

malaria in Tigray, Ethiopia: a randomised trial." Lancet 356(9229): 550-5. 

Kihara, M., J. A. Carter, et al. (2006). "The effect of Plasmodium falciparum on cognition: a 

systematic review." Trop Med Int Health 11(4): 386-97. 

Kindermans, J. (2004). Changing national malaria treatment protocols in Africa: What is the 

cost and who will pay? . Campaign for Access to Essential Medicines. MSF. 

Kirkwood, B. R. and J. A. C. Sterne (2003). Essential Medical Statistics, Blackwell Publishing. 

Kublin, J. G. and R. W. Steketee (2006). "HIV infection and malaria--understanding the 

interactions." J Infect Dis 193(1): 1-3. 

Labelle, R. J. and J. E. Hurley (1992). "Implications of basing health-care resource 

allocations on cost-utility analysis in the presence of externalities." J Health Econ 11(3): 

259-77. 

Larson, B. A., A. A. Amin, et al. (2006). "The cost of uncomplicated childhood fevers to 

Kenyan households: implications for reaching international access targets." BMC Public 

Health 6: 314. 

Lauer, J. A., K. Rohrich, et al. (2003). "PopMod: a longitudinal population model with two 

interacting disease states." Cost Eff Resour AIIoc 1(1): 6. 

Laufer, M. K., J. J. van Oosterhout, et al. (2006). "Impact of HIV-associated 

immunosuppression on malaria infection and disease in Malawi." J Infect Dis 193(6): 872-8. 

Laxminarayan, R. (2004). "Act now or later? Economics of malaria resistance." Am J Trop 

Med Hyg 71(2 Suppl): 187-95. 

Laxminarayan, R. and M. L. Weitzman (2002). "On the implications of endogenous 

resistance to medications." J Health Econ 21(4): 709-18. 

218 



Liberatore, M. J. and R. L. Nydick (In press). "The analytic hierarchy process in medical and 

health care decision making: A literature review." European Journal of Operational 

Research. 

Lindley, D. V. (1985). Making Decisions. London, Wiley. 

Lines J, Schapira A, Smith T. (2008) "Tackling malaria today." Bmj 337a(869):435-437 

Lindley, D. V. (2000). "The Philosophy of Statistics." The Statistician 49(3): 293-337. 

Lubell, Y., H. Reyburn, et al. (2007a). "The cost-effectiveness of parasitological diagnosis for 

malaria-suspected patients in an era of combination therapy." Am J Trop Med Hyg 

77(Suppl 6): 128-132. 

Lubell, Y., H. Hopkins, et al. (2007b). Modelling Costs and Benefits of RDTs for the 

Detection of Plasmodium jalciparum in Uganda. American Society of Tropical Medicine and 

Hygiene 56th Annual Meeting. Philadelphia. 

Lubell, V., H. Reyburn, et al. (2008a). "The impact of response to the results of diagnostic 

tests for malaria: cost-benefit analysis." Bmj 336(7637): 202-5. 

Lubell, Y., H. Hopkins, et al. (2008b). "An interactive model for the assessment ofthe 

economic costs and benefits of different rapid diagnostic tests for malaria." Malar J 7: 21. 

Lubell, V., Yeung S., Dondorp A. M., et al. (In press). Cost-effectiveness of artesunate for 

the treatment of severe malaria. Trop Med tnt Health. 

Lucas, A. M. (2006). "Economic Effects of Malaria Eradication: Evidence from the Malarial 

Periphery." Unpublished Manuscript. 

Lyttkens, c. H. (2003). "Time to disable DALYs? On the use of disability-adjusted life-years 

in health policy." Eur J Health Econ 4(3): 195-202. 

Macauley, C. (2005). "Aggressive active case detection: a malaria control strategy based on 

the Brazilian model." Soc Sci Med 60(3): 563-73. 

Makani, J., W. Matuja, et al. (2003). "Admission diagnosis of cerebral malaria in adults in an 

endemic area of Tanzania: implications and clinical description." Q.i.m 96(5): 355-62. 

Malaney, P., A. Spielman, et al. (2004). "The malaria gap." Am J Trop Med Hyg 71(2 Suppl): 

141-6. 

Malaria Consortium (2003). Desk review for RBM essential actions progress ... Investment 

gaps. USAID. 

219 



Malik, E. M., T. A. Mohamed, et al. (2006). "From chloroquine to artemisinin-based 

combination therapy: the Sudanese experience." Malar J 5: 65. 

Malik, S., S. Khan, et al. (2004). "Plasmodium lactate dehydrogenase assay to detect 

malarial parasites." Natl Med J India 17(5): 237-9. 

Manca, A., N. Rice, et al. (2005). "Assessing generalisability by location in trial-based cost

effectiveness analysis: the use of multilevel models." Health Econ 14(5): 471-85. 

Marseille, E., J. Saba, et al. (2006). "The costs and benefits of private sector provision of 

treatment to HIV-infected employees in Kampala, Uganda." Aids 20(6): 907-14. 

Marsh, K. and R. W. Snow (1999). "Malaria transmission and morbidity." Parassitologia 

41(1-3): 241-6. 

Mathers, C. D., C. Bernard, et al. (2002). Global Burden of Disease in 2002: data sources, 

methods and results. Global Programme on Evidence for Health Policy Discussion Paper 

No. 54. WHO. 

Mayxay, M., S. Pukrittayakamee, et al. (2001). "Persistence of Plasmodium falciparum HRP-

2 in successfully treated acute falciparum malaria." Trans Royal Soc Trop Med Hyg 95(2): 

179-182. 

Mayxay, M. F., P. N. Newton, et al. (2004). "An assessment of the use of malaria rapid tests 

by village health volunteers in rural Laos." Trop Med Int Health 9(3): 325-329. 

Mbogo, C. N., R. W. Snow, et al. (1993). "Low-level Plasmodium falciparum transmission 

and the incidence of severe malaria infections on the Kenyan coast." Am J Trap Med Hyg 

49(2): 245-53. 

Mcintosh, E., C. Donaldson, et al. (1999). "Recent advances in the methods of cost-benefit 

analysis in health care. Matching the art to the science." Pharmacoeconomics 15(4): 357-

67. 

McMarthy, F. D., H. Wolf, et al. (2000). Malaria and Growth. Policy Research Working 

Paper 2303, The World Bank. 

McPake, B., L. Kumaranayake, et al. (2002). Health Economics - An International 

Perspective. London and New York, Routledge. 

Mills, A. (1989). THE APPLICATION OF COST-EFFECTIVENESS ANALYSIS TO DISEASE 

CONTROL PROGRAMMES IN DEVELOPING COUNTRIES, WITH SPEICAL REFERENCE TO 

MALARIA CONTROL IN NEPAL. Evaluation and Planning Centre. London, London School of 

Hygiene and Tropical Medicine. PhD Thesis. 

220 



Mills, A. (1991). The economics of malaria control. Malaria: waiting for the vaccine. G. A. T. 

Targett. Chichester and New York, John Wiley and Sons: 141-68. 

Mills, A. and S. D. Shillcutt, Eds. (2004). Communicable Diseases: Copenhagen Consensus 

Challenge Paper. Global Crises Global Solutions. Cambridge, Cambridge University Press. 

MoH Tanzania (2002). National Malaria Medium Strategic Plan 2002-2007. Dar-es-Salaam. 

Molineaux, L. and Gramiccia, G. (1980) The Garki project research on the epidemiology of 

malaria in the Sudan Savanna of West Africa. WHO, Geneva 

Molineaux, L., D. A. Muir, et al. (1988). The epidemiology of malaria and its measurement. 

Malaria, principles and practice of Malariology. Edinburgh, Churchililivingstone: 999-1090. 

Mont, D. (2007). "Measuring health and disability." lancet 369(9573): 1658-63. 

Moody, A. (2002). "Rapid diagnostic tests for malaria parasites." elin Microbiol Rev 15(1): 

66-78. 

Moody, A. H. and P. L. Chiodini (2002). "Non-microscopic method for malaria diagnosis 

using OptiMAL IT, a second-generation dipstick for malaria pLDH antigen detection." 

British Journal of Biomedical Science 59(4): 228-231. 

Moorthy, V. S., M. F. Good, et al. (2004). "Malaria vaccine developments." lancet 

363(9403): 150-6. 

Morel, C. M., J. A. lauer, et al. (2005). "Cost-effectiveness analysis of strategies to combat 

malaria in developing countries." BMJ. 

Morris, S., N. Devlin, et al. (2007). Economic Analysis in Health Care. Wiley and Sons ltd. 

Mortimer, D., R. D. Smith, et al. (2003). Development of an Economic Model of 

Antimicrobial Resistance, University of East Anglia. 

MSH. (2007). International Drug Price Indicator Guide, http://erc.msh.org/dmpguide. 

Mubyazi, G. M. and M. A. Gonzalez-Block (2005). "Research influence on antimalarial drug 

policy change in Tanzania: case study of replacing chloroquine with sulfadoxine

pyrimethamine as the first-line drug." Malar J 4: 51. 

Mugittu, K., M. Ndejembi, et al. (2004). "Therapeutic efficacy of sulfadoxine

pyrimethamine and prevalence of resistance markers in tanzania prior to revision of 

malaria treatment policy: Plasmodium falciparum dihydrofolate reductase and 

dihydropteroate synthase mutations in monitoring in vivo resistance." Am J Trop Med Hyg 

71(6): 696-702. 

221 



Muheki, c., D. Mcintyre, et al. (2004). "Artemisinin-based combination therapy reduces 

expenditure on malaria treatment in KwaZulu Natal, South Africa." Trop Med Int Health 

9(9): 959-66. 

Mulligan, J., C. Morel, et al. (2005). The Cost-Effectiveness of Malaria Control 

Interventions. DISEASE CONTROL PRIORITIES PROJECT. 

Mumba, M., J. Visschedijk, et al. (2003). "A Piot model to analyse case management in 

malaria control programmes." Trop Med Int Health 8(6): 544-551. 

Murray, C. J., D. B. Evans, et al. (2000). "Development of WHO guidelines on generalized 

cost-effectiveness analysis." Health Econ 9(3): 235-51. 

Murray, C. J. L. (2003). WHO Guide to Cost-Effectiveness Analysis. Geneva. 

Murray, C. J. L. and A. Lopez (1996). The Global Burden of Disease: A comprehensive 

assessment of mortality and disability from diseases, injuries and risk factors in 1990 and 

projected to 2020, Harvard University Press. 

Murray, C. K., D. Bell, et al. (2003). "Rapid diagnostic testing for malaria." Trop Med Int 

Health 8(10): 876-883. 

Murray CK, Gasser RA, Jr., Magill AJ, Miller RS. (2008)"Update on rapid diagnostic testing 

for malaria." Clin Microbiol Rev;21(1):97-110. 

Musgrove, P. (1999). "Public spending on health care: how are different criteria related?" 
Health Policy 47(3): 207-23. 
Mutabingwa, T. K. (2001). "Monitoring antimalarial drug resistance within National Malaria 

Control Programmes: the EANMAT experience." Trop Med Int Health 6(11): 891-898. 

Mutabingwa, T. K., D. Anthony, et al. (2005). "Amodiaquine alone, 

amodiaquine+su Ifadoxine-pyrimethamine, amodiaquine+artesunate, and artemether

lumefantrine for outpatient treatment of malaria in Tanzanian children: a four-arm 

randomised effectiveness trial." Lancet 365(9469): 1474-80. 

Mwakibinga, H., M. Mbvundula, et al. (2003). The profile and productivity of The National 

Malaria Control Programme. M. Tanzania. 

Mwangi, T. W., A. Ross, et al. (2005). "Case definitions of clinical malaria under different 

transmission conditions in Kilifi District, Kenya." J Infect Dis 191(11): 1932-9. 

Ndyomugyenyi, R., P. Magnussen, et al. (2007). "Diagnosis and treatment of malaria in 

peripheral health facilities in Uganda: findings from an area of low transmission in south

western Uganda." Malar J 6: 39. 

222 



Nixon, R. M. and S. G. Thompson (2004). "Parametric modelling of cost data in medical 

studies." Stat Med 23(S): 1311-31. 

NMCP (2005). Diagnosis and Treatment of Malaria Orientation Guide for District Trainers 

Malaria control series 10. U. R. o. T. Ministry of Health. 

Nosten, F. and E. Ashley (2004). "The detection and treatment of Plasmodium falciparum 

malaria: Time for change." J Postgrad Med 50(1): 35-39. 

Novartis (2006). Novartis announces initiative to improve access to state-of-the-art anti

malarial treatment Coartem GII Media Release. Basel. 

O'Hagan, A., J. W. Stevens, et al. (2000). "Inference for the cost-effectiveness acceptability 

curve and cost-effectiveness ratio." Pharmacoeconomics 17(4): 339-49. 

Obua, c., L. L. Gustafsson, et al. (2006). "Improved efficacy with amodiaquine instead of 

chloroquine in sulfadoxine/pyrimethamine combination treatment of falciparum malaria in 

Uganda: experience with fixed-dose formulation." Acta Trop 100(1-2): 142-50. 

Obua, c., L. L. Okell, l. c., C. J. Drakeley, et al. (200S). "Reduction of transmission from 

malaria patients by artemisinin combination therapies: a pooled analysis of six randomized 

trials." Malar J 7: 125. 

Okello, D. O. (1994). "Resource utilization patterns in patients with acquired 

immunodeficiency syndrome (AIDS)." East Afr Med J 71(12): S16-7. 

Olivar, M., M. Develoux, et al. (1991). "Presumptive diagnosis of malaria results in a 

significant risk of mistreatment of children in urban SaheL" Trans R Soc Trop Med Hyg 

85(6): 729-30. 

Onwujekwe, 0., R. Chima, et al. (2001). "Hypothetical and actual willingness to pay for 

insecticide-treated nets in five Nigerian communities." Trop Med Int Health 6(7): 545-53. 

Onwujekwe, 0., B. Uzochukwu, et al. (2004). "Is combination therapy for malaria based on 

user-fees worthwhile and equitable to consumers? Assessment of costs and willingness to 

pay in Southeast Nigeria." Acta Trop 91(2): 101-15. 

Pandya, A. P., G. C. Sahu, et al. (2001). "The Para Check-PC Test: - a simple rapid dip stick 

test to detect <i>Plasmodium falciparum</i> infection." Journal of Communicable Diseases 

33(3): 224-225. 

Panosian, C. B. (2005). "Economic access to effective drugs for falciparum malaria." Clin 

Infect Dis 40(5): 713-7. 

223 



Pauly, M. V. (1993). Valuing health care benefits in money terms. Valuing Health Care. F. 

Sloan, Cambridge University Press: 99-124. 

Phelps, C. E. and A. I. Mushlin (1991). "On the (near) equivalence of cost-effectiveness and 

cost-benefit analyses." Int J Technol Assess Health Care 7: 12. 

Phillips, M. and P. A. Phillips-Howard (1996). "Economic implications of resistance to 

antimalarial drugs." Pharmacoeconomics 10(3): 225-38. 

Picard, 1, A. Mills, et al. (1992). "The cost-effectiveness of chemoprophylaxis with 

Maloprim administered by primary health care workers in preventing death from malaria 

amongst rural Gambian children aged less than five years old." Trans R Soc Trop Med Hyg 

86(6): 580-1. 

Piper, R., J. Lebras, et al. (1999). "Immunocapture diagnostic assays for malaria using 

Plasmodium lactate dehydrogenase (pLDH)." Am J Trop Med Hyg 60(1): 109-18. 

Pittler, M. H. and E. Ernst (1999). "Artemetherfor severe malaria: a meta-analysis of 

randomized clinical trials." Clin Infect Dis 28(3): 597-601. 

Price, R., M. van Vugt, et al. (1999). "Adverse effects in patients with acute falciparum 

malaria treated with artemisinin derivatives." Am J Trop Med Hyg 60(4): 547-55. 

Rafael, M. E., T. Taylor, et al. (2006). "Reducing the burden of childhood malaria in Africa: 

the role of improved diagnostics." Nature 444 Suppll: 39-48. 

Raharimalala, L. A., L. Rabarijaona, et al. (2002). "Malaria investigation in a cyclone

affected area in the south-east of Madagascar: entomological, diagnostic and therapeutic 

approaches." Archives de I'lnstitut Pasteur de Madagascar 68(1/2): 79-85. 

Rasanen, P., E. Roine, et al. (2006). "Use of quality-adjusted life years for the estimation of 

effectiveness of health care: A systematic literature review." Int J Technol Assess Health 

Care 22(2): 235-41. 

Reyburn, H., H. Mbakilwa, et al. (2007). "Rapid diagnostic tests compared with malaria 

microscopy for guiding outpatient treatment of febrile illness in Tanzania: randomised 

trial." Bmj 334(7590): 403. 

Reyburn, H., R. Mbatia, et al. (2004). "Qverdiagnosis of malaria in patients with severe 

febrile illness in Tanzania: a prospective study." Bmj 329(7476): 1212. 

Reyburn, H., 1 Ruanda, et al. (2006). "The contribution of microscopy to targeting 

antimalarial treatment in a low transmission area of Tanzania." Malar J 5: 4. 

224 



Rice, N. and A. Jones (1997). "Multilevel models and health economics." Health Econ 6(6): 

561-75. 

Rice, T. (1997). "Can markets give us the health system we want?" J Health Po lit Policy Law 

22(2): 383-426. 

Rimen, M. M., S. Kheng, et al. (2003). "Malaria dipsticks beneficial for IMCI in Cambodia." 

Trop Med Int Health 8(6): 536-543. 

Robert, V., K. Macintyre, et al. (2003). "Malaria transmission in urban sub-Saharan Africa." 

Am J Trop Med Hyg 68(2): 169-76 

Robinson, R. (1993). "Cost-benefit analysis." Bmi 307(6909): 924-6. 

Roca-Feltrer, A., I. Carneiro, et al. (2008). "Estimates of the burden of malaria morbidity in 

Africa in children under the age of 5 years." Trop Med Int Health 13(6). 

Rolland, E., F. Checchi, et al. (2006). "Operational response to malaria epidemics: are rapid 

diagnostic tests cost-effective?" Trop Med Int Health 11(4): 398-408. 

Russell, L. B. (2007). "Is all cost-effectiveness analysis local?" Med Decis Making 27(3): 231-

2. 

Sachs, J. (2002). Macroeconomics and health: Investing in health for economic 

development .. Geneva, World Health Organization. 

Sachs, J. and P. Malaney (2002). "The economic and social burden of malaria." Nature 

415(6872): 680-5. 

Samuelson, W. and R. Zeckhauser (1988). "Status Quo Bias in Decision Making" J Risk 

and Uncertainty 1(1). 

San Pedro, C. (1967/8). "Economic costs and benefits of malaria eradication." Phillipines J 

Pub Health 15: 5-24. 

Schellenberg, J. A., J. Bryce, et al. (2004). "The effect of Integrated Management of 

Childhood Illness on observed quality of care of under-fives in rural Tanzania." Health 

Policy And Planning 19(1): 1-10. 

Schultz, L. J., R. W. Steketee, et al. (1995). "Antimalarials during pregnancy: a cost

effectiveness analysis." Bull World Health Organ 73(2): 207-14. 

Sculpher, M. J., F. S. Pang, et al. (2004). "Generalisability in economic evaluation studies in 

health care: a review and case studies." Health Technol Assess 8(49): iii-iv, 1-192. 

225 



Sendi, P., A. Gafni, et al. (2002). "Opportunity costs and uncertainty in the economic 

evaluation of health care interventions." Health Econ 11(1): 23-31. 

Sendi, P. P. and A. H. Briggs (2001). "Affordability and cost-effectiveness: decision-making 

on the cost-effectiveness plane." Health Econ lO(7): 675-80. 

Sheldon, T. A. (1996). "Problems of using modelling in the economic evaluation of health 

care." Health Econ 5(1): 1-11. 

Shepard, D. S., M. B. Ettling, et al. (1991). "The economic cost of malaria in Africa." Trop 

Med Parasitol 42(3): 199-203. 

Shiff, C. (2002). "Integrated approach to malaria control." Clin Microbiol Rev 15(2): 278-93. 

Shillcutt, S., C. Morel, et al. (2008). "Cost-effectiveness of malaria diagnostic methods in 

sub-Saharan Africa in an era of combination therapy." Bull World Health Organ 86(2): 101-

10. 

Shillcutt, S., C. Morel, et al. (2007). Assessing RDT Cost-Effectiveness, WHO: 

http://www.wpro.who.int/sites/rdtlAssessing+RDT+Cost-Effectiveness.htm 

Shillcutt, S. D., D. Walker, et al. (In press). "Cost-effectiveness in low- and middle-income 

countries: A review of the debates surrounding decision rules". Pharmacoeconomics 

Shrestha, R. K., B. Mugisha, et al. (2006). "Cost-effectiveness of including tuberculin skin 

testing in an IPT program for HIV-infected persons in Uganda." Int J Tuberc Lung Dis 10(6): 

656-62. 

Shretta, R., J. Omumbo, et al. (2000). "Using evidence to change antimalarial drug policy in 

Kenya." Trop Med Int Health 5(11): 755-64. 

Shubhakaran and R. Jakhar (2004). "Cost effective treatment of acute, uncomplicated 

Plasmodium falciparum malaria." J Assoc Physicians India 52: 1009-10; author reply 1010. 

Singh, N., A. Saxena, et al. (2002). "Usefulness of an inexpensive, Paracheck test in 

detecting asymptomatic infectious reservoir of Plasmodium falciparum during dry season 

in an inaccessible terrain in Central India." Journal of Infection 45(3): 165-168. 

Sirima, S. B., A. Konate, et al. (2003). "Early treatment of childhood fevers with pre
packaged antimalarial drugs in the home reduces severe malaria morbidity in Burkina 
Faso." Trop Med Int Health 8(2): 133-9. 

Snow, R. W. (2000). "The burden of malaria: understanding the balance between 

immunity, public health and control." J Med MicrobioI49(12): 1053-5. 

226 



Snow, R. W. and K. Marsh (1998). "New insights into the epidemiology of malaria relevant 

for disease controL" Br Med Bull 54(2): 293-309. 

Sonnenberg, F. A. and J. R. Beck (1993). "Markov models in medical decision making: a 

practical guide." Med Decis Making 13(4): 322-38. 

Soto, J. (2002). "Health economic evaluations using decision analytic modeling. Principles 

and practices--utilization of a checklist to their development and appraisaL" Int J Technol 

Assess Health Care 18(1): 94-111. 

Spiegelhalter, D. J., J. P. Myles, et al. (20oo). "Bayesian methods in health technology 

assessment: a review." Health Technol Assess 4(38): 1-130 

Spiegelhalter, D. J., K. R. Abrams, et al. (2004). Bayesian Approaches to Clinical Trials and 

Health Care Evaluation. Chichester, JohnWiley &Sons. 

Spiegelhalter, D. J., N. G. Best, et al. (2002). "Bayesian measures of model complexity and 

fit." J R Stat Soc 64(4): 583-639 

Spiegelhalter, D. J. and N. G. Best (2003). "Bayesian approaches to multiple sources of 

evidence and uncertainty in complex cost-effectiveness modelling." Stat Med 22(23): 3687-

709. 

Ssengooba, F. (2004). "UGANDA'S MINIMUM HEALTH CARE PACKAGE: RATIONING WITHIN 

THE MINIMUM?" Health Policy and Development 2(1). 

Staedke, S. G., M. R. Kamya, et aL (2001). "Amodiaquine, sulfadoxine/pyrimethamine, and 

combination therapy for treatment of uncomplicated falciparum malaria in Kampala, 

Uganda: a randomised trial." Lancet 358(9279): 368-74. 

Stephens, J. K., K. Phanart, et al. (1999). "A comparison of three malaria diagnostic tests, 

under field conditions in North-west Thailand." Southeast Asian J Trop Med Public Health 

30(4): 625-30. 

Stevens, W., V. Wiseman, et al. (2005). "The costs and effects of a nationwide insecticide

treated net programme: the case of MalawL" Malar J 4(1): 22. 

Stinnett, A. A. and J. Mullahy (1998). "Net health benefits: a new framework for the 

analysis of uncertainty in cost-effectiveness analysis." Med Decis Making 18(2 Suppl): 568-

80. 

Sudre, P., J. G. Breman, et aL (1992). "Treatment of chloroquine-resistant malaria in 

African children: a cost-effectiveness analysis." Int J EpidemioI21(1): 146-54. 

227 



Susi, B., T. Whitman, et al. (2005). "Rapid diagnostic test for Plasmodium falciparum in 32 

Marines medically evacuated from Liberia with a febrile illness." Ann Intern Med 142(6): 

476-7. 

Swarthout, T. D., H. Counihan, et al. (2007). "Paracheck-pf accuracy and recently treated 

Plasmodium falciparum infections: is there a risk of overdiagnosis?" Malar J 6: 58. 

Tan-Torres Edejer, T., R. Baltussen, et al. (2003). Making Choices in Health: WHO Guide to 

Cost-Effectiveness Analyses. Geneva, World Health Organization. 

Tanser, F. c., B. Sharp, et al. (2003). "Potential effect of climate change on malaria 
transmission in Africa." Lancet 362(9398): 1792-8. 

Tediosi, F., N. Maire, et al. (2006). "An approach to model the costs and effects of case 

management of Plasmodium falciparum malaria in sub-saharan Africa." Am J Trop Med 

!:!v& 75(2 Suppl): 90-103. 

Teerawattananon, Y. (2007). Assessing the Feasibility of Using Economic Evaluation in 

Reimbursement of Health Care Services in Thailand School of Medicine, Health Policy and 

Practice Norwich, University of East Anglia. PhD. 

The East African Network for Monitoring Antimalarial Treatment (EANMAT) (2003). "The 

efficacy of antimalarial monotherapies, sulphadoxine-pyrimethamine and amodiaquine in 

East Africa: implications for sub-regional policy." Trop Med Int Health 8(10): 860-867. 

Tjitra, E., S. Suprianto, et al. (2001). "Detection of histidine rich protein 2 and panmalarial 

ICT Malaria Pfjpv test antigens after chloroquine treatment of uncomplicated falciparum 

malaria does not reliably predict treatment outcome in eastern Indonesia." Am J Trop Med 

!:!v& 65(5): 593-8. 

Trape, J. F. (2001). "The public health impact of chloroquine resistance in Africa." Am J 

Trop Med Hyg 64(1-2 Suppl): 12-7. 

Tversky, A. and D. Khanerman (1974). "Judgment under Uncertainty: Heuristics and 

Biases." Science 185. 

Uganda Ministry of Health (2005). IMPLEMENTATION GUIDELINES FOR THE HOME BASED 

MANAGEMENT OF FEVER TRATEGY IN CHILDREN. 

UNICEF (2005). New Hope Against Malaria: Four Country Successes. UNICEF. 

United Nations Population Division (2005). Population, Resources, Environment and 

Development: The 2005 Revision. 

228 



Utzinger, J., Y. Tozan, et al. (2001). "Efficacy and cost-effectiveness of environmental 

management for malaria controL" Trop Med Int Health 6(9): 677-87. 

Van Gool, K., G. Gallego, et al. (2007). "Economic Evidence at the Local Level: Options for 

Making it More Useful." Pharmacoeconomics 25(12): 1055-62. 

Van Geertruyden, J. P., M. Mulenga, et al. (2006). "CD4 T-cell count and HIV-1 infection in 

adults with uncomplicated malaria." J Acguir Immune Defic Svndr 43(3): 363-7. 

Van Geertruyden, J. P., M. Mulenga, et al. (2006). "HIV-1 immune suppression and 

antimalarial treatment outcome in Zambian adults with uncomplicated malaria." J Infect 

Dis 194(7): 917-25. 

Von Seidlein, L., M. Jawara, et al. (2001). "Parasitaemia and gametocytaemia after 

treatment with chloroquine, pyrimethamine/sulfadoxine, and pyrimethamine/sulfadoxine 

combined with artesunate in young Gambians with uncomplicated malaria." Trop Med Int 

Health 6(2): 92-8. 

Vounatsou, P. and T. Smith (1998). "Bayesian analysis of two component mixture 

distributions: application to the estimation of malaria attributable fractions." Appl Stat 

47(4). 

Waddington, c., J. Martin, et al. (2005). Trends in International Funding for Malaria 

Control. Prepared for the Roll Back Malaria Partnership. HLSP. 

Wang, S. J., C. Christian Lengeler, et al. (2005). "Rapid urban malaria appraisal (RUMA) I: 

Epidemiology of urban malaria in Ouagadougou." Malar J 4(1): 43. 

Warner, K. E. and R. C. Hutton (1980). "Cost-benefit and cost-effectiveness analysis in 

health care. Growth and composition of the literature." Med Care 18(11): 1069-84. 

Wasunna, B., D. Zurovac, et al. (2008). "Why don't health workers prescribe ACT? A 

qualitative study of factors affecting the prescription of artemether-Iumefantrine." Malar J 

7: 29. 

Weinstein, M. c., B. O'Brien, et al. (2003). "Principles of Good Practice for Decision Analytic 

Modeling in Health-Care Evaluation: Report of the ISPOR Task Force on Good Research 

Practices-Modeling Studies." Value in Health 6(1): 9-17. 

White, N. J. (1983). "Severe hypoglycemia and hyperinsulinemia in falciparum malaria." N 
Engl J Med 309: 61-66. 

White, N. J. (1992). "Antimalarial drug resistance: the pace quickens." J Antimicrob 

Chemother 30(5): 571-85. 

229 



White, N. J. (1999). "Delaying antimalarial drug resistance with combination 

chemotherapy." 

White, N. J. (2005). "Intermittent presumptive treatment for malaria." PLoS Med 2(1): e3. 
Parassitologia 41(1-3): 301-8. 

Whitty, C. J. and S. G. Staedke (2005). "Artemisinin-based combination treatment for 

malaria in Africa: no perfect solutions." Clin Infect Dis 41(8): 1087-8. 

WHO (1996). "Investing in Health Research and Development: Report of the Ad Hoc 

Committee in Health Research Relating to Future Interventions Options". The World 

Health Organization. Geneva. 

WHO (2001). "Antimalarial drug combination therapy: report of a WHO technical 

consultation". The World Health Organization. Geneva. 

WHO (2002). "African Summit on Roll Back Malaria: The African Declaration and Plan of 

Action." The World Health Organization. Geneva. 

WHO (2003). "Meeting Report: Malaria Rapid Diagnosis, Making it work." The World 

Health Organization. Geneva. 

WHO (2003). The Abuja declaration and the plan of action. WHO/CDS/RBM. The World 

Health Organization. Geneva. 

WHO (2004a). "Scaling up home-based management of malaria: from research to 

implementation". The World Health Organization. Geneva. 

WHO (2004b). "The use of malaria rapid diagnostic tests." Roll Back Malaria, The World 

Health Organization. Geneva. 

WHO (2006a). "Facts on ACTS - January 2006 update." The World Health Organization. 

Geneva. 

WHO (2006b). "Guidelines for the treatment of malaria". The World Health Organization. 

Geneva. 

WHO. (2006c). "WHO CHOICE - CHoosing Interventions that are Cost Effective." Retrieved 

April 30th 2007, from http://www.who.int/choice/en. 

WHO (2007a). Assessing ROT Cost-Effectiveness. The World Health Organization. Geneva. 

WHO (2007b). Global AMDP database - SEARO. Retrieved June 13th 2008 from 

http://www.who.int!malaria!amdp!amdpsearo.htm. 

230 



WHO(2007c) World Health Statistics. The World Health Organization. Geneva 

WHO (2008). CHOosing Interventions that are Cost-Effective: Country Specific Costs. 

Retrieved June 16th 2008 from http://www.who.intlchoice/countrv/en/index.html#G 

WHO-SIS (2007). World Health Statistics 2007, Tanzania Life Expectancy Tables, WHO. 

Retrieved May 12th 2008 from 

http://www3.who.intlwhosis/life/life tables/life tables process.cfm?path=whosis,life 
tables&language=english 

Wilkins, J. J., P. I. Folb, et al. (2002). "An economic comparison of chloroquine and 

sulfadoxine-pyrimethamine as first-line treatment for malaria in South Africa: 

development of a model for estimating recurrent direct costs." Trans R Soc Trop Med Hyg 

96(1): 85-90. 

Willan, A. R., D. Y. Lin, et al. (2005). "Regression methods for cost-effectiveness analysis 

with censored data." Stat Med 24(1): 131-45. 

Williams, H. A., D. Durrheim, et al. (2004). "The process of changing national malaria 

treatment policy: lessons from country-level studies." Health Policy And Planning 19(6): 

356-370. 

Winstanley, P., S. Ward, et al. (2004). "Therapy of falciparum malaria in sub-saharan Africa: 

from molecule to policy." Clin Microbiol Rev 17(3): 612-37, table of contents. 

Wiseman, V., W. A. Hawley, et al. (2003). "The cost-effectiveness of permethrin-treated 

bed nets in an area of intense malaria transmission in western Kenya." Am J Trop Med Hyg 

68(4 Suppl): 161-7. 

Wiseman, V., M. Kim, et al. (2006). "Cost-effectiveness study of three antimalarial drug 

combinations in Tanzania." PLoS Med 3(10): e373. 

Wolfe, E. B., M. E. Parise, et al. (2001). "Cost-effectiveness of sulfadoxine-pyrimethamine 

for the prevention of malaria-associated low birth weight." Am J Trop Med Hyg 64(3-4): 

178-86. 

World Bank (1993). World Development Report. Washington DC. 

World Bank. (2007). "GNI per capita 200S." Retrieved 23/05/07, from 

http://66.102.9.104/search?q=cache:00qbcXpOVb4J:siteresources.worldbank.org/DATAST 

ATISTICS/Resources/GNIPC.pdf. 

World Bank (2007). GNI per capita 2005, Atlas method and PPP, World Bank. 

231 



Worrall, E., A. Rietveld, et al. (2004). "The burden of malaria epidemics and cost

effectiveness of interventions in epidemic situations in Africa." Am J Trop Med Hyg 71(2 

Suppl): 136-40. 

Ye, Y., C. Kyobutungi, et al. (2007). "Micro-epidemiology of Plasmodium fa/ciparum 

malaria: Is there any difference in transmission risk between neighbouring villages?" Malar 

!6: 46. 

Yeka, A., G. Dorsey, et al. (2008). "Artemether-Iumefantrine versus dihydroartemisinin

piperaquine for treating uncomplicated malaria: a randomized trial to guide policy in 

Uganda." PLoS ONE 3(6): e2390. 

Yeung, S. (2006). Antimalarial Drug Resistance and Artemisinin Combination Threapy: A 

bio-economic model for the elucidation of policy Health Policy Unit. London, LSHTM. Ph.D. 

Yeung,S., W. Pongtavornpinyo, et al. (2004). "Antimalarial drug resistance, artemisinin

based combination therapy, and the contribution of modeling to elucidating policy 

choices." Am J Trop Med Hyg 71(2 Suppl): 179-86. 

Zurovac, D., B. A. Larson, et al. (2006). "The financial and clinical implications of adult 

malaria diagnosis using microscopy in Kenya." Trop Med Int Health 11(8): 1185-1194. 

Zurovac, D., B. Midia, et al. (2006). "Microscopy and outpatient malaria case management 

among older children and adults in Kenya." Trop Med Int Health 11(4): 432-40. 

Zurovac, D., J. Njogu, et al. (2008). "Effects of revised diagnostic recommendations on 

malaria treatment practices across age groups in Kenya." Trop Med Int Health 13(6): 784-7. 

Zurovac, D., J. Njogu, et al. (2008). "Translation of artemether-Iumefantrine treatment 

policy into paediatric clinical practice: an early experience from Kenya." Trop Med Int 

Health 13(1): 99-107. 

Zurovac, D. and A. K. Rowe (2006). "Quality of treatment for febrile illness among children 

at outpatient facilities in sub-Saharan Africa." Ann Trop Med ParasitollOO(4): 283-96 

232 



Annex 1: Papers cited in literature review of economic analyses of malaria 

treatments! diagnostics 

Trial based evaluations 

Reference Study summation Cost perspective Summary measure 

Honrado, RCT to determine cost-effectiveness of artesunate and QN + TIC. Follow up Provider Cost/expected number 

Fungladda at 5 and 7 days as later parasitaemia could be due to reinfection or of patients cured 

et at. 1999 recrudescence and due to large proportion of losses to follow up. 

Gogtay, Retrospective CEA comparing CQ, MFQ for the treatment of malaria in a Provider Average cost of 

Kadam et referral centre in Mumbai. The data they used was gathered from a clinical treatment 

at. 2003 trial in that particular hospital, and their initial stated aim is to estimate 

which of the treatments is most appropriate for use at that specific location 

Fernando, A prospective study using immunochromatographic tests (ICTs) for the Provider: Test Cost/patient tested 

Karunawee detection of Pv in a malaria endemic area of Sri lanka. These were carried costs 
Cost/malaria case 

ra et at. out alongside the routine use of blood slides, also used as the 'gold 
detected 

2004 standard'. The authors report the findings for test sensitivity, specificity and 

predictive values, most significantly demonstrating a relatively low rate of 

sensitivity for ICTs for the detection of Pv. 

- - - - - - - -

Methodology 

Simple CEA ratio 

I 
I 

Post-hoc simple 
, 

CEA 

Prospective study -

all patients 

presenting tested 

with both ROT and 

microscopy. 
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Bualombai, Baulombai et al. report on a trial in Thailand comparing the use of two Provider and Cost/malaria case Prospective study -

Prajakwon types of ROTs (detecting either pLDH or HRP2) with the use of microscopy. consumer detected (by species) all patients 

get al. Their measure of effectiveness is test sensitivity, specificity, and its presenting tested 

2003 predictive values. Their analysis took a broader perspective to include 
Diagnostic costs 

with both ROT and 
only 

patient costs. microscopy. 

Chanda et Evaluated the cost-effectiveness of AL vs SP in Zambia using data gathered Provider costs for Average and Prospective 

al. 2007 from patients presenting at public health facilities in six district sites. Main drugs, labour, incremental cost/case observational trial 

outcome measures were treatment success and reduction in demand for second line successfully treated 
Simple CEA ratio 

second line treatment. Results suggest that AL produces successful treatment 

treatment at less cost than SP, implying that AL is more cost-effective with 

an leER of 4.10 US dollars per case successfully treated, and further cost 

savings when including 2nd line treatment costs. 

Wiseman RCT carried out in a Tanzanian hospital to determine c/e of AQ Provider and Total programme costs; Prospective study 

et al. 2006 ,AQ+SP,AQ+AS, AL. Almost uniquely in trial based evaluations captures both provider+patient average & incremental 
Simple CEA ratio 

provider and patient costs cost per case averted 

Jonkman Compared treatment strategies by conducting a trial based cost analysis for Community Cost per treatment Cost analysis 

Chibwe et the implications of switching to a policy of microscopically confirmed strategy 

al. 1995 parasitaemia prior to use of antimalarials in comparison to routine practice 

ofPT 

- ----- _. -
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Simple cost-effectiveness analyses 
-~-

Reference Study summation Cost perspective Summary measures Methodology 

Pang and A cost-minimisation analysis on a community based program for the Societal Least cost Cost minimisation 

Piovesan- utilisation of RDTs and distribution of MFQ by bar staff in peripheral mining analysis 

Alves, 2001 towns in Brazil. 

Agnamey Evaluated the costs of switching from a policy of presumptive treatment Community Day 28 sustained CMA based on 

Brasseur et with CQ or QN to treatment of microscopically confirmed patients with AS- parasite clearance uncontrolled study 

al. 2005 AQ. This was done on a regional basis as a part of an evaluation of changing of AS+AQ efficacy 

Senegalese national guidelines to such a policy. 

Goodman, Compared a range of malaria control interventions. These included Provider: Tests + Cost/DALY averted SimpieCEA, 

Coleman et preventive interventions - ITNs, residual spraying and prophylactic malaria stratification by 
For diagnosis net costs 

al. 2000 treatment, and interventions for improved case management such as treatment costs country income 
only 

improving compliance, changing first line drugs, the introduction of groups, 

combination therapy and improving diagnostic practices. Costs/test transmission 

Mulligan et Updated the previous evaluation, focusing on populations living in a high, Provider and Cost/ DALY averted Modelling multiple 

al. 2005 stable transmission setting, in a low income SSA country. In terms of case- community secondary sources 

management the interventions included changing first line drugs for the 

treatment of uncomplicated malaria, with a focus on using of ACT. 

-- -~-- --- .. _-------~ -----
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Decision analytic models 
------

Reference Study summation Cost perspective Summary measures Methodology 

Cho Min, DT model incorporating secondary data on treatment efficacies and costs for Provider Cost/malaria case Decision analysis 

Lermaharit estimates of their cost-effectiveness, with 3 drug regimens as main choices cured model; one way 

et al. 2000 (SP, CQ and Mefloquine), followed by chance nodes for efficacy (ACR, ETF, sensitivity analyses 
Cost/malaria death 

LTF), then by a chance node for compliance leading to terminal nodes 

(not/cured). Effectiveness was also measured by deaths prevented, taken as 
prevented 

proportion of patients not cured. One way sensitivity analyses were 

conducted for treatment efficacies 

Sudre, The earliest attempt at conducting a decision analysis on the use of Provider Average and Decision analysis 

Breman et al. antimalarials, comparing CQ!SP/AQ for the treatment of children in SSA, incremental costs for modelling 

1992 under the circumstances of increasingly prevalent CQ resistant Pf. The model CQSP,AQ by levels of 

included a limited number of variables, illustrating the simplest of scenarios resistance to CQ 

- a single treatment of febrile children, comparing the outcome for the 
, 

different drugs in terms of cost per cure and cost per death averted. 

Wilkins, Folb Detailed study of the average cost-effectiveness of SP and CQ. Using a range Provider Average cost- Decision tree; 

et al. 2002 of data sources such as in vivo efficacy trials for the drugs in the location of effectiveness ratio. Monte Carlo 

interest (Mpumalanga, South Africa), diagnosis costs and patient travel Cost/case cured simulations 

costs, the authors constructed a decision tree to simulate comprehensive 
L ------------ --- -- -------
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treatment costs for each of the drugs. Treatment failure might lead to the 

return of the patient to the health care facility (probability assigned after 

consultation with local health workers) with either severe or uncomplicated 

malaria, followed by treatment with QN 

Muheki, Conducted an analysis of the cost-effectiveness of switching from SP to AL a Provider Cost/strategy Before/After study 

Mcintyre et resurgence of malaria in 1999 and 2000 required a number of interventions 
Provider 

al. 2004 to bring it back under control, including reverting to the use of DDT in IRS 

programmes. Use of a Delphi survey amongst a number of experts estimated 

the impact of each of these interventions in reducing the incidence of 

malaria. With this estimate, along with cost data for the treatment, the 

authors were able to estimate the cost-effectiveness of the switch to AL. 

Rolland, Compared the use of ROTs in malaria epidemics as a prerequisite to Provider Total costs; cost/false Decision tree 

Checchi et al. treatment with ACT. The authors used data collected in two such epidemics negative averted. modelling 

2006 to populate a decision tree for a hypothetical population facing either COST -EFFECTIVEN ESS 

presumptive treatment or a strategy of parasitological confirmation with with WTP for FP 

ROTs. averted 

Zurovac et A cost analysis Comparing 3 scenarios for different treatment guidelines and Provider Total cost per Decision tree 

al. 2006 adherence to these for the treatment of patients with microscopy confirmed programme 

ACT at different levels of diagnostic accuracy. 

'---
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Shillcutt, Decision tree analysis to estimate the cost-effectiveness of the use of ROT Provider Cost/DALY averted; Decision tree; I 

Morel et and microscopy in conjunction with ACT, in comparison to the predominant probability of Monte Carlo 

2007 practice of presumptive treatment. In contrast to almost all other analyses, acceptance with simulations; net 

the authors also incorporate the health outcomes of non-malarial febrile varying WTP benefit analysis 

illness (NMFls) 

Rafael et al. Compared the use of diagnostic tests of varying accuracy across a range of Societal (for Number of deaths. Decision tree, 

2007 levels of infrastructure (also a proxy measure for coverage). Only analysis to health outcomes Number of probabilistic 

use an estimate of the harm associated with antimalarials. Used probabilistic only) unnecessary sensitivity analysis 

sensitivity analysis to merge all parameter uncertainties (Not an economic antimalarials used 

evaluation - did not account for costs) 

----- J 
Economic evaluations using System Dynamic models 

Reference Study summation Cost perspective Summary Methodology 

measures 

Schapira, Beals Used a relatively simple mathematical model to estimate the costs and number of Provider+cost of Minimum costs Mathematical 

et al. 1993 deaths averted with the use of a succession of different first line drugs in response to death by timing of modelling 

emerging resistance. The model suggests the durations for each of these that would switch to new 

result in lowest costs per death averted AM 

laxminarayan, A mathematical bio-economic model to estimate malaria transmission, host Societal Strategy cost Differential 

2004 immunity, and drug resistance to compare economic consequences of different equation 

treatment strategies (replacing CQ with ACT directly or first with SP and later ACT). modelling 
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The biological side of the model is comprised of calculations for rates of infection to 

resistant and susceptible strains, host immunity, mosquitoes per human and a 

number of other parameters, while the economics side accounts for productivity costs 

in addition to cost of treatment. 

Goodman, Estimated the most appropriate point to switch from CQ to SP, modelling Provider (+ cost Optimal year of DTfor CQjSP 

Coleman et al. development of resistance and subsequent effectiveness of treatments if introduced of policy switch; Cost per with varying 

2001 at different points in time, and the costs this would incur. The model centres on a change) outpatient DALY levels of 

case-management DT for each regimen, with the outcomes at each chance node averted resistance 

determining whether the patient is cured or not, followed by chance nodes for the 

patient's decision to pursue treatment with a second and third line drug in case of 

treatment failure. Costs and DALYs at each terminal node along with the probability of 

reaching each point could then provide an estimate of the cost-effectiveness of the 

regimen 

Coleman, Estimate the incremental cost-effectiveness of introducing ACT, recognising that this Provider + Probability of Modelling 

Morel et ai, must consider the temporal dynamics of drug resistance. As resistance changes and patient direct switch to ACT levels of 

2004 spreads, CE of treatment options will vary accordingly - of particular significance with costs being CE «$150) resistance; 

ACT as resistance to these would be devastating to long term antimalarial efforts. Use at varying levels threshold 

of cost-effectiveness acceptability curves to inform decision makers of the probability of initial R analysis using 

that the use of ACT will be cost-effective, using different (subjective) thresholds DT 

Morel, Lauer Determined the cost-effectiveness of a range of interventions aimed at reducing the Provider Cost/Daly averted Epidemiologica 

L-_ 
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et al. 2005 burden of malaria in SSA. These include treatment with Co., SP and ACT, extending the I population 

use of ITNs, IRS and IPT. The design of the analysis is a generalised cost-effectiveness model + 

analysis, an approach advocated by WHO to facilitate generalisation of results and Generalised 

cross-regional comparisons. CEA 

Tediosi et al. Use a dynamic decision tree structure to capture the influence of treatment strategies Societal DALYSand YLLs Stochastic 

2006 on transmission intensity, looping back into the model to predict the incidence of lost simulation of Pf 

clinical episodes and of mortality while incorporating effects of case management on transmission to 
Cost/capita/year 

persistence of parasites and transmission. Results reflect different levels of coverage determine , 

across a 20 year time horizon costs & health 

outcomes 

Yeung,2006 A bio-economic model that incorporated changes in resistance, transmission, and Societal, Cost/DALY Bio-economic 

subsequent host-immunity to evaluate amongst other outcomes the cost- provider averted model; DT 

effectiveness of introducing ACT in place of monotherapy. The geographical focus of 

the research is a low transmission setting where resistance to existing antimalarials is 

high, although the model was also run to simulate high transmission intensities. 

Adherence and coverage were also central to the analysis, to ensure that it pertained 

to effectiveness and not limited to efficacy 

I - - --- -----
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Annex 2: Delphi Expert Consultation on untreated malaria and 

febrile illness: Probabilities of severe disease and death 

Introduction 
There is a surprising absence of data on the risk of progression from uncomplicated malaria to 

severe disease and death, particularly for untreated cases. Policy and clinical decisions are 

increasingly being guided by models, either of clinical algorithms or economic analyses. These 

models must include estimates of key parameters, but often data are lacking, and assumptions 

must be made based on little or no evidence, or by extrapolating data from different settings 

(e.g. South East Asia when commenting on Africa). Models of malaria often need to include 

information about non-malarial febrile illness since many depend on the outcome of 

antimalarial treatment, when in fact the problem is not malaria, but data on non-malarial febrile 

illnesses are also lacking. 

In the absence of clear data, it seems sensible to investigate if there is a consensus opinion on 

the risk of severe illness and death, and if there is not a consensus, to see the range of opinions 

so that these estimates can be used in clinical and economic models. It seems a good moment 

to do this using a reasonably formal technique of which we can all take ownership collectively 

rather than anyone group taking the lead. We suggest we do this by a Delphi survey. We have 

developed and piloted such a survey, which you will find below. For those of you who are 

interested in the technicalities of Delphi surveys or are not familiar with this method, there is 

additional information behind the questionnaire, but do not feel obliged to wade through it. 

In brief, our aim is to circulate the survey in two rounds to experts in the field. In the first round, 

respondents will be asked to give their best estimates of the various key parameters which 

would be appropriate for use in economic and other models. We will then feed back the results 

of the first round to the same respondents and see if, in the light ofthe initial results, a 

consensus opinion can be achieved, or whether a wide-scatter of opinion continues. 
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The selection of panel members was purposive and entirely non-random, based on our own 

familiarity with potential panellists, their contribution to the literature and their clinical 

experience, aiming to recruit high profile individuals in the malariology community. We have 

chosen a relatively select group of people who have considerable experience in malaria and 

clinical management of patients based on their own immediate practice and knowledge of data 

from other centres. Participation in this Delphi survey will involve providing your opinion on 

how best to define the parameters of interest and your assessment of the parameter values. 

When the Delphi survey is completed, we think it would be useful to submit this as a technical 

publication on which all respondents would be authors. The estimates derived from this survey 

will be useful for economic models of treatment and diagnostic practice, as well as other 

modelling, and will be freely available. 

Round One Questionnaire 

In this first round, we would like you to assign estimates for the probability that untreated 

malaria and febrile illness will progress to severe disease and death, for patients of different 

ages « 5 years, 5-14 years, and> 15 years of age), and in areas of different malaria transmission 

intensity (hypoendemic, mesoendemic, hyper/holoendemic, guided by the definitions provided 

below). We would also like to gather opinions on whether these parameters are defined and 

stratified in the most appropriate manner, or how this might be modified. Please complete the 

following questionnaire by entering in your best estimate of the probabilities as a point 

estimate, and complete each question in full, if possible. 

1. What is the probability that a patient with uncomplicated malaria (excluding pregnant 

women), who does not receive adequate treatment, will progress to severe malaria (any 

manifestation, including severe anaemia and cerebral malaria)? 

In hypoendemic areas (EIR < 1; parasite prevalence < 10% in children aged 2-9 years): 

Age < 5 years: % 

Age 5-14 years: % 

Age> 15 years: ~ 

242 



In mesoendemic areas (EIR 1-100; parasite prevalence 11-50% in children aged 2-9 years): 

Age < 5 years: % 

Age 5-14 years: % 

Age> 15 years: % 

In hyper/holoendemic areas (EIR >100; parasite prevalence >50% in children aged 2-9 years): 

Age < 5 years: % 

Age 5-14 years: % 

Age> 15 years: % 

Additional comments: 

2. What is the probability that a patient with severe malaria, who does not receive treatment, 

will progress to death? 

In hypoendemic areas: 

Age < 5 years: % 

Age 5-14 years: % 

Age> 15 years: % 

In mesoendemic areas: 

Age < 5 years: % 

Age 5-14 years: % 

Age> 15 years: % 
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In hyper/holoendemic areas: 

Age < 5 years: ~ 

Age 5-14 years: ~ 

Age> 15 years: % 

Additional comments: 

3. Do you have additional suggestions on how the probabilities for untreated malaria listed in 

questions 1 and 2 above should be stratified, or what other risk factors should be 

considered? Please provide suggestions below: 

4. What proportion of non-malarial febrile illnesses is likely due to bacterial illnesses that 

could be treated with antibiotics? 

Age < 5 years: % 

Age 5-14 years: ~ 

Age> 15 years: % 

5. What is the probability that non-malarial febrile illness, likely due to bacterial illness 

(including all possible infections, regardless of culture results), will become severe if 

not treated with antibiotics? 

244 



Age < 5 years: % 

Age 5-14 years: % 

Age> 15 years: ~ 

6. What is the probability that severe non-malarial febrile illness, likely due to bacterial 

illness, will lead to death if not treated with antibiotics? 

Age < 5 years: ~ 

Age 5-14 years: % 

Age> 15 years: % 

7. Do you have additional suggestions on how non-malaria febrile illnesses should be 

classified, or the probabilities of progression to severe disease and death estimated? 

Please provide suggestions below: 

8. Please indicate the geographic region from which you are basing your opinions: 

9. Please provide any additional suggestions below: 
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Protocol and notes 

Background to the survey 

Economic evaluations based on decision models are routinely used to inform policy makers on 

choice of malaria diagnostics and treatments. Decision models are frameworks in which 

alternative courses of action are portrayed, and the superior option is identified based on the 

values of input parameters and the relationship between them. These models can be powerful 

tools, synthesizing a wide range of factors and producing clear decision recommendations. As 

such it is imperative that the best available evidence be used to inform parameter values. 

Ideally all parameter values should be obtained from randomized control trials (RCTs), however, 

this is not always feasible or ethically viable. Such is the case with the health outcomes for 

patients with suspected malaria that do not receive correct diagnosis and appropriate 

treatment, which often serve as a baseline for evaluating the gains of malaria diagnostics and 

treatments. This data cannot be collected systematically in trials due to the obvious ethical 

considerations. Although expert opinion obtained via discussions with individual experts has 

been used to obtain estimates for these parameters [1-4], it is generally considered less 

methodologically sound than alternative sources of evidence, such as RCTs and observational 

studies [5,6]. Regarding health outcomes for untreated malaria, expert opinions have varied 

considerably, and furthermore, they have not always made allowance for factors that can be 

highly influential, notably age and transmission intensity. 

The differences in estimates for the probability of untreated malaria deteriorating to severe 

illness and death affect the comparability of evaluations in which they are used, and hence their 

usefulness to policy makers. Obtaining a consensus estimate for these parameters would 

encourage the use of an identical baseline in future evaluations and lend greater credibility to 

their results. 

Delphi surveys are a well-established technique used to develop consensus on parameter values 

of interest. By eliciting the opinion of a range of highly-informed individuals, a consensus on 

parameter values of interest is distilled. The process invites input from a large number of 
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individuals through a systematic, anonymous and iterative feedback dynamic between group 

members. The ultimate aim of consensus building is to minimize the variance around parameter 

values [7]. The approach facilitates a more inclusive and democratic process as opposed to open 

discussions where a small number of individuals can dominate discussion and consequent 

opinion [8]. 

Despite the existence of a large number of uncertain parameters, use of Delphi surveys in the 

context of malaria treatment and diagnostics has been limited. Sudre, Breman and Koplan used 

a Delphi survey when evidence on CQ resistant was beginning to emerge in order to obtain 

probabilities of treatment failure amongst children of different age groups [9]. Muheki, 

MCintyre and Bames used a Delphi survey to assess the contribution of ACT usage to the 

reduction in malaria transmission in KwaZulu Natal [10]. 

This study endeavours to obtain estimates for a number of baseline parameters, reflecting the 

probabilities of patients with untreated malaria and non-malarial febrile illnesses developing 

severe illness, and the consequent case-fatality rates for these. These parameters would be 

used to help evaluate the comparative effectiveness and efficiency of alternative malaria control 

interventions. 

Survey aims and objectives 

This study aims to construct a set of probabilities relating to the transition from untreated, 

uncomplicated malaria and malaria-like febrile illnesses to severe illness and death. The first 

round questionnaire aims at identifying the relevant parameters for estimation in subsequent 

rounds and to obtain initial estimates for these. In subsequent rounds participants revise these 

estimates to distil a clear range of opinions and where possible attain a consensus on these. 

There are two probability sets to be modified and estimated, relating to malaria and non

malarial febrile illness (NMFI). Both malaria and NMFls are included in the study because 

malaria control interventions often have an impact on the management of febrile episodes as a 

whole, many of which have other causes of illness [11-13]. The outcomes of NMFls are 

increasingly accounted for in the evaluation of malaria treatment and diagnostics and estimates 

for their prognosis are equally as important [3, 4, 14]. 
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Regarding the probability for untreated malaria becoming severe and causing death, a number 

of stratifications will likely be considered necessary. The questionnaire has initially been 

designed to stratify by transmission intensity and age [15,16]. Other factors such as HIV 

prevalence might also be suggested as necessary. The first round questionnaires will aim to elicit 

participants' opinions on the factors considered most relevant and methods used to 

differentiate between their different strata. The main anticipated challenge to be conveyed to 

panellists is ensuring the number of stratifications is kept at a minimum to avoid the probability 

set from becoming too unwieldy13. 

The second required probability set will deal with NMFls. There are a number of challenges to 

estimating the probability for these progressing to severe illness. Firstly there is very little data 

on the breakdown of these illnesses and there is likely to be considerable variation in their 

composition, dependent on factors such as age and location. Secondly, in the context of 

decision modelling, trying to capture all possible illnesses in the models will be impractical. For 

these reasons a broader classification is required. Panellists will therefore be consulted on 

whether NMFls can be classified based on whether or not the illnesses require treatment with 

antibiotics. This classification assumes that malaria like illnesses that do not require antibiotics 

(or antimalarials) are by and large self-limiting. Transition probabilities are then sought only for 

illnesses that would require antibiotics. 

Overview of the method 

Delphi surveys use a series of questionnaires distributed amongst participants in a number of 

rounds with the aim of achieving a consensus on an answer to a research problem. The choice 

of participants is a selective one, based on the participant's familiarity with the topic and 

13 Each additional factor such as HIV prevalence multiplies the number of estimates required by the number of strata, so that 

for instance 3 transmission intensities, with three age groups and three levels of HIV prevalence will require 27 assessments for 

the probability of a particular age-TI-HIV configuration developing severe malaria when untreated. 
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representative sampling is not appropriate [17]. There is strong support for ensuring a diverse 

range of opinions spanning the full spectrum of respectable controversy both to ensure 

accuracy and lend credibility to results [18]. 

The first round questionnaire is aimed primarily at constructing appropriate questions and 

definitions for panellists to address in later rounds. It allows for considerable qualitative as well 

as quantitative responses which are summarised and fed back to participants. In subsequent 

rounds, partiCipants will be able to enter their responses and then revise their estimates 

iteratively after reflecting on previous results and other participants' arguments. In the earlier 

days of Delphi surveys four rounds were considered ideal, although in more recent studies two 

or three rounds have been accepted as sufficient. The decision on the number of rounds tends 

to be a pragmatic one [17, 18]. 

Presentation of interim results at each round is controlled by the facilitators, analysing and 

presenting qualitative responses from the first round and summarizing quantitative results for 

subsequent rounds. Use of measures of dispersion as well as central tendency is encouraged in 

order to demonstrate the range of opinions and phenomena such as clustering around 

divergent estimates. There is no firm rule to determine when a consensus is reached; this is 

indicated primarily through a reduction in variance [18]. 

It should be noted that there are a number of potential biases in Delphi surveys. The selection of 

panellists tends to determine the range and nature of views expressed in the surveys [19]. The 

processing and feedback of interim results, particularly of qualitative responses, is managed by 

the facilitator and subject to their own prioritization. Panellists who feel their estimates diverge 

significantly from those reflected in subsequent rounds could withdraw from the process. 

While these and other potential biases have drawn considerable criticism, Delphi surveys retain 

credibility where they are as transparent as possible and demonstrate a clear decision trail 

describing and justifying choices made at all stages [18]. 
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Use of Results 

The survey findings are intended to be used primarily in decision models concerned with 

evaluating the costs and benefits of malaria diagnostics and treatment. The survey is expected 

to produce both measures of central tendency to be used as point estimates, and also 

distributions that can be used as a basis for sensitivity analyses, reflecting how the uncertainty 

surrounding probabilities influences results. 

Survey results will be conveyed to all panellists and made freely available for use in evaluations 

of malaria control interventions through publication in a peer reviewed journal, which all 

panellists will be invited to co-author. 

Further information 

Any queries on the surveyor on filling in the questionnaire can be sent to 

YoeI.Lubell@lshtm.ac.uk. A hard copy of this document can be sent upon request. 
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Annex 3: Cost-effectiveness of artesunate for the treatment of 

severe malaria14 

Y Lubell, S Yeung, AM Dondorp, NP Day, F Nosten, E Tijtra, Md Abul Faiz, E Bin 

Yunus, NM Anstey, SK Mishra, S Mohanty, NJ White and AJ Mills 

Objective: Artesunate has been shown to be superior to quinine for the management of severe 

malaria, in clinical trials conducted in Asia. This study explores the cost-effectiveness of 

artesunate based principally on the findings of a large multi-centre trial carried out in Southeast 

Asia. 

Methods: Trial data were used to compare mortality amongst patients with severe malaria, 

treated with either artesunate or quinine. This was combined with retrospectively collected cost 

data to estimate the incremental cost per death averted with the use of artesunate instead of 

quinine. 

Results: The incremental cost per death averted using artesunate was approximately 140USD. 

Artesunate maintained this high level of cost-effectiveness also when allowing for the 

uncertainty surrounding the cost and effectiveness assessments. 

Conclusion: This analysis confirms the vast superiority of artesunate for treatment of severe 

malaria from an economic as well as a clinical perspective. 

Word count: Abstract -141. Main text - 2513. 

14 In press, Tropical Medicine and International Health 
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Background 

Artemisinin combination therapies (ACT) are now recommended as first line treatment of 

uncomplicated falciparum malaria in almost all malaria endemic countries [1]. They have been 

shown repeatedly to be more effective and cost-effective than their predecessors [2-5], require 

only once a day dosing and are associated with few adverse effects. For severe malaria, quinine 

has been the traditional standard treatment in both developed and developing countries. 

Quinine is an effective antimalarial, but it is not simple to administer, and it has a narrow 

therapeutic ratio. It is associated with a risk of local toxicity following intramuscular injection, 

and significant risks of systemic toxicity (hypoglycaemia, hypotension if administered rapidly). 

Quinine must be given three times daily either by rate-controlled intravenous infusion or 

intramuscular injection to the anterior thigh [6]. A growing body of evidence summarised in 

recent reviews demonstrates the considerable superiority of artesunate relative to quinine in 

terms of mortality rates without increasing rates of neurological deficit (Cochrane review 

estimate; RR 0.62,95% CI 0.51 to 0.75 [7]). The studies so far have included mostly adults in 

Asia, although of the 1461 patients enrolled into the large multi-centre SEAQUAMAT trial, 202 

were children, and benefits were similar in both age-groups [8]. 

The SEAQUAMAT study was conducted across ten sites in four South East Asian countries. A 

large multi-centre trial of similar design is underway to estimate the comparative effectiveness 

of artesunate in children in Sub-Saharan Africa. In the SEAQUAMAT trial, mortality in patients 

treated with artesunate was 35% lower than in quinine recipients. The implication was that, on 

average, for every 13 patients treated with artesunate instead of quinine, one death would be 

averted. 

Despite these promising results, and endorsement by the WHO treatment guidelines, many 

local guidelines in malaria endemic countries continue to recommend quinine as the drug of 

choice for severe malaria [9]. The second most frequently recommended treatment for severe 

malaria is artemether [1], even though its advantage over quinine in terms of mortality has been 

shown to be limited [10, 11]. Artesunate has only recently been added to the policy guidelines 

of a limited number of countries in Asia [1], and its cost-effectiveness has yet to be assessed. 

253 



The aim of this paper is therefore to examine the costs and consequences of switching from 

quinine to artesunate from an economic perspective. 

Methodology 

A cost-effectiveness analysis framework was used to determine the cost per death averted by 

switching from quinine to artesunate for inpatients with severe malaria. 

Interventions. The interventions being considered were quinine and artesunate for treatment 

of severe malaria. The drugs were given intravenously. Once patients had recovered sufficiently 

to take tablets, they continued with the same antimalarial taken orally to complete a course of 7 

days. 

Perspective. The perspective taken was that of the provider, so only costs incurred by the 

hospitals were accounted for, as this was considered of most immediate relevance for decision 

making purposes by ministries of health considering policy change. 

Trial data. The SEAQUAMAT study was a multi-centre trial carried out between 2003-2005 in 

one site each in Bangladesh, India, Indonesia and seven sites in Myanmar and has been 

described in detail elsewhere [8]. Relevant patient-specific data from the trial for this analysis 

include mortality for each of the drugs, dosages used, and the length of stay in hospital as 

inpatients. The incidence of significant neurological sequelae are also summarised although as 

their incidence in the prospective studies was very low, they were not incorporated in the final 

measure of outcome. 

Cost data. The costs included are the provider costs resulting from a switch from quinine to 

artesunate. Costs for artesunate were obtained from the producer and include shipment costs. 

Quinine costs and those for Lv. sets and syringes to administer the drugs were obtained from 

the International Drug Price Indicator Guide [12]. The cost of Lv. sets and syringes used to 

administer the drugs are presented for general comparison, however they are not included in 

the calculation of the cost per death averted due to the variability in routine administration 

practices of the treatments. Drug costs were increased by 15% to account for taxes and an 
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extra 10% for wastage [13]. Standard inpatient care costs for each country were obtained from 

the WHO-CHOICE database and are specific to the level of hospital at each site. These costs 

include "hotel" expenditures - those for personnel, capital and food and exclude drug costs 

[14]. Both drug costs and those for inpatient care were calculated for each patient individually 

based on their length of stay and drug dosage used. 

It was assumed that, apart from the cost of trial drugs, the inpatient costs per day were the 

same for both treatment arms. Labour costs were also assumed to be equal, despite the fact 

that artesunate is considerably easier and simpler to administer. Costs were converted from 

local units to US dollars at the relevant year, adjusted for inflation using the consumer price 

index, and reported in 2008USD. Table 1 shows the unit costs used. 

Item 

Quinine vial (300mg salt) 

Quinine tab (300mg) 

Artesunate vial (60mg) 

Artesunate tab (50mg) 

Artesunate administration 
equipment 

Quinine administration 
equipment 

Cost per inpatient day 

Unit cost (quantity) 

$0.19 (1) 

$0.04 (1) 

$1.2 (1) 

$0.17 (1) 

$0.3 (lx 5ml syringe and 2 
x needles) 

$1.2 (lx 5 ml syringe, 2 x 
needles, 1 x infusion set, 1 
IV solution) 

Bangladesh $5.7 

India $10.25 

Indonesia $2.5 

Myanmar $2.1 (mean) 

Source and notes 

International Drug Price Indicator Guide. 

Accessed 2/6/08 

Quote from the producer, Guilin Pharma, 
Personal communication, 16/5/08 

WHO-CHOICE estimates by country and 
hospital level [14]. Accessed 23/5/08 

Table 5: Costs for treatment, equipment and inpatient care used in the analysis 

Analysis. The number needed to treat (NNT) to avert one death was calculated from the 

difference in mortality between the two arms. This was multiplied by the difference in average 

cost of treating a patient with each of the drugs, providing the incremental cost per death 

averted using artesunate. This figure is equivalent to the incremental cost-effectiveness ratio 
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(leER) calculated using standard methods [15]. The primary outcome is the pooled estimate for 

cost per death averted, merging cost and effectiveness data from all sites. As the trial was a 

multi-centre study, results are also reported stratified by country. 

Discounting. The immediacy of the costs and benefits (deaths averted) meant that no 

discounting was needed. 

Sensitivity analysis. Uncertainty surrounding both outcomes and costs was explored using 

probabilistic sensitivity analysis. The treatment outcome, a binary variable with values 

representing outcomes of either dead or alive, was assigned a beta distribution using the 

mortality frequency to define the distribution parameters. This allows for the greater 

uncertainty in sites that recruited fewer patients. Probability distributions were fitted to the 

cost of antimalarials given to all patients (gamma distributions; these are skewed to the right 

reflecting the tendency of cost data to be positively skewed [16]). Using the @Risk Excel plug-in, 

a Monte Carlo simulation was carried out to observe the impact these uncertainties had on the 

ICER. 

A threshold analysis was carried out to estimate the cost at which artesunate ceases to be cost

effective. This was done using decision thresholds of $575 and £3450 per death averted. These 

values were obtained using WHO's thresholds for the willingness to pay to avert the loss of a 

disability adjusted life year [17,181, multiplied by the average remaining life expectancy for a 

patient that survives their illness, based on life expectancy tables for the relevant countries [19] 

, and discounted at 3% [13]. 

Results 

Health outcomes are shown in Table 2. The mortality amongst patients treated with artesunate 

was considerably lower in all countries; the pooled estimate for mortality amongst the 

artesunate group was 34.7% lower than that for quinine (95% CI18.5-47.6%; p=0.0002). There 

were very few instances of neurological sequelae, 3 in the quinine arm and 7 in the artesunate 

arm. The difference between these was not statistically significant (p=O.2). 
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Country Bangaladesh India Indonesia Myanmar Pooled 
Quinine Mortality 32.5% (75/231) 26.4% (19m) 12.3% (18/146) 18.4% (52/282) 22.4% (1641731) 

Neurological sequelae 0 0 1 2 3 
Artesunate Mortality 23.4% (52/222) 21 .4% (15/70) 6.3% (9/143) 10.5% (31 /295) 14.7% (1071730) 

Neurological sequelae 3 1 1 2 7 

Table 6: Patient outcomes by country and pooled 

The mean costs for each country and the pooled estimate are shown in Table 3. The variation in 

costs is due to both differences in unit costs, and in the average length of stay in each hospital. 

Despite this variation, overall the difference in average cost between the treatment groups was 

fairly consistent, costs being slightly higher for recipients of artesunate. 

Bangaladesh India Indonesia Myanmar Pooled 
Quinine 

Drug cost S5. 0 $5.5 54.6 S4.8 54.8 
Drug administration cost S82 59.3 S9.0 S8.5 58.7 
Inpatient care cost 521.8 545.6 550.2 512.7 527.6 
Total $35.0 $60.4 $63.8 $26.0 $41.1 

Artesunate 
Drug cost 515.8 52 1.6 513.4 $13.0 514.7 
Drug administration cost 51 .1 51.4 51 .0 51.0 51. 1 
Inpatient care cost S27.0 547.3 552.6 51 2.9 S28.3 
Total $44.0 $70.3 $67.0 $26.9 $44.1 

Table 7 - Treatment cost per patient by country. IPcost - cost per inpatient day excluding drugs 

Costs and outcomes are combined in table 4. Given the number of assumptions involved, the 

costs in this table exclude the equipment needed to administer the drugs, making artesunate 

appear even more costly than quinine compared to the totals in Table 3. As previously reported 

[8], treatment with artesunate was associated with a relative risk of 0.65 . The bottom row 

specifies the incremental cost per death averted. The pooled ICER is $135 .6, with a range of 

values from $104 in Myanmar where the largest number of patients were recruited, to $361 in 

India where fewest patients were recruited . 
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Country Bangaladesh India Indonesia Myanmar Pooled 
Mean cost for patients treated with quinine $26.8 $51.1 $54.8 $17 5 $32.4 

Mean cost for patients treated with artesunate $42.8 $68.9 $66.0 $25.8 $43.0 
Relative risk for treatment with artesunate 0.72 0.81 0.51 0.57 0.65 
Numbers needed to treat to avert a death 11 20 17 13 13 
Incremental cost per death averted $177.2 $358.9 $185.7 $104.8 $135.6 

Table 8 - Costs for each of the treatments, combined with the relative risk to produce the numbers needed to 
treat and the incremental cost per death averted. 

Sensitivity analysis 

By assigning a probability distribution to all hospital inpatient care costs and treatment 

outcomes, the uncertainty surrounding these parameters is carried through to the leER for 

artesunate. Using a Monte Carlo simulation, the mean cost per death averted was found to be 

$140.2, approximating the deterministic calculation. By removing the highest and lowest 2.5% 

of observations, a 95% interval was created, ranging from -$120 to $455. The negative values 

indicate those instances where artesunate is more effective and less costly, so providing 

hospitals with savings in costs of treating severe malaria
15

• 

Use of the threshold analysis to estimate the point at which artesunate ceases to be cost

effective showed that if decision makers are willing to pay $575 to avert the loss of a life, 

artesunate would be cost-effective up to a cost of $4.2 per vial, over three times its current 

selling price. For a higher threshold of $3450 the cost could be $24.4, over 20 times its current 

selling price, before the drug ceases to be cost-effective. 

15 Although a negative value could also imply the inverse (artesunate associated with higher mortality 

and lower costs than quinine), in this case artesunate was found to be superior in all iterations of the 

simulation. 
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Discussion 

This economic evaluation confirms the considerable superiority of artesunate over quinine for 

the treatment of severe malaria, at least for adults in South East Asia. The pooled estimate 

suggests that the incremental cost of averting a death using artesunate is approximately $140. 

The variation in results both by country and in the sensitivity analysis do not diminish the 

strength of these results. In fact the sensitivity analysis shows that the use of artesunate can be 

cost saving, in addition to being clinically superior. 

Cost-effectiveness analyses require a comparison of results to decision thresholds to determine 

whether an intervention can be considered a good investment. GOP per capita is increasingly 

considered a benchmark for determining when an intervention is considered cost effective, with 

GOP per capita being compared to the cost of averting the loss of a life year in full health [20]. 

As the mean cost per death averted is well below the GDP per capita of even the poorest 

countries, there is no doubt that the use of artesunate to treat severe malaria represents an 

extremely good investment. This is further supported by the fact that these cost estimates 

suggest a much better return on investment than those for other well accepted malaria related 

interventions, such as $858 per death averted from implementing an environmental control 

programme [21], or a range of $254 to $3437 per death averted for insecticide treated 

mosquito nets [22]. 

A number of simplifying assumptions have been made that reduce the advantage of artesunate. 

First no attempt has been made to quantify and cost the labour requirements of administering 

the drugs. Quinine is administered three times per day and infusions need careful monitoring 

whereas artesunate is given by as a daily bolus injection and therefore requires no special 

nursing attention. Second, the costs for equipment used to administer the drugs, shown to be 

higher for quinine, were not included in the calculation of cost per death averted. This was done 

as quinine can be given by the intramuscular as well as the intravenous route, and patients with 

severe illness will often be given intravenous fluids irrespective of the route of drug 

administration. Although not used in the calculation of cost per death averted, the estimate of 

the different costs of administering the drugs is provided in table 3 and clearly favours 

artesunate. Third, any potential differences in the treatment of adverse events such as 
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hypoglycaemia, a specific adverse effect of quinine [23], have also been ignored but would 

obviously favour artesunate. In the trial hypoglycaemia following treatment was indeed less 

frequent with artesunate (Mantel-Haentzel stratified odds ratio and 95%CI from the 

SEAQUAMAT study; 0·31 [0·12-0·78]), although monitoring for hypoglycaemia would still be 

required for both treatments [6]. 

Despite these assumptions, that all reduce the potential cost-effectiveness of artesunate, the 

cost per death averted demonstrates that it remains a highly attractive intervention. The 

production of a GMP artesunate is currently underwal6 and as the sensitivity analysis shows, 

artesunate would continue to be cost-effective for the treatment of severe malaria even if its 

price was significantly higher. 

Neurological sequelae were reported but not accounted for as these were found not to differ 

significantly and occurred in less than 1% of cases, although importantly there was no evidence 

of a significant increase in risk in the artesunate group (7/730) compared with the quinine group 

(3/731). Reporting the results as cost per Disability Adjusted Life Year (DALY) averted would 

therefore add little to the analysis. 

The perspective taken in this analysis is that of the provider. Ideally, economic evaluations 

would include a broader range of costs and benefits, including costs incurred by patients, and 

how these differ between interventions. In this instance there was no reason to expect major 

differences in costs, and as the data for this were not readily available, this was excluded from 

the analysis. 

Multi-centre trials can pose a number of challenges in analysing and interpreting results. Pooling 

data is not always a valid procedure while stratifying results by site may result in significant loss 

of power and fail to make full use of available data [24]. Pooling cost data raises concerns 

around how prices are standardized, as unit costs can vary widely across countries. In this 

16 Safety and Efficacy Study of IV Artesunate to Treat Malaria 

http://clin ica Itria Is.gov /ct2/show/NCTO029861OAccessed November 11th 2008 
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analysis prices were standardised using official exchange rates and inflating their value fram the 

year in which they were reported to 2008 USD. An alternative approach is the use of 

international dollars that adjust for purchasing power parity, however this has not yet entered 

mainstream use and can cause confusion for those not familiar with purchasing power 

adjustment. 

Some variation in effectiveness between sites was observed, but as there was no prior reason to 

expect significant differences in treatment effects, and the observed differences were not 

statistically significant, pooling the data was considered justifiable. 

Conclusion 

With over a million annual deaths due to malaria, it is imperative that the most effective and 

cost-effective treatments be used for patients with severe illness. Artesunate is considerably 

superior to quinine for the treatment of severe malaria in Asia and has been incorporated into 

the national guidelines in a limited number of countries including China, Vietnam, India, 

Indonesia, Thailand, Lao PDR and PNG. However the guidelines in many countries in the region 

continue to recommend quinine or artemether. This study has demonstrated that from a cost

effectiveness perspective, substituting quinine with artesunate would provide a return on 

investment that few health interventions could match in terms of both immediate health gains 

and minimal, if any, additional cost. There seems no reason to deny patients the best available 

treatment. 
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