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SUPPLEMENTARY TABLES 
 
Supplementary Table 1   

Baseline characteristics of discovery (GoDARTS) and  replication Cohorts 

(GoDARTS and UKPDS).  Data are mean ± SD. 

Variable 
Discovery 
GoDARTS 

(1024) 

Replication 1 
GoDARTS 

(1783) 

Replication  2 
UKPDS 
(1113) 

Age 62.8±9.8 61.0±11.7 57.5±9.6 

Male Percentage 54.9% 57.7% 53.2% 

BMI 31.5±5.7 31.9±5.9 30.2±5.9 

Baseline A1c 8.94±1.38 8.95±1.37 8.43±1.93 

Adherence 82.9±16.1 82.3±16.1 NA 

Creatinine Clearance 89.1±31.3 96.7±37.4 95.9±34.0 

Responder Percentage 53.7% 51.4% 35.2% 

Monotherapy Percentage 67.3% 72.4% 25.5% 
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Supplementary Table 2   
SNPs associated with metformin response in logistic regression analysis (with p-

value <10-4).  ‘EffAllele’ (effective allele) is based on the dbSNP plus strand coding; 

‘Gene’ covers any gene within 50kb vicinity of the SNP 

CHR SNP POSITION EffAllele OR P Gene 
1 rs12128858 34496515 C 0.5071 2.01E-05 C1orf94    
1 rs7533876 102883521 A 0.5062 5.17E-06     
1 rs41404544 110944334 C 0.4341 5.58E-05 KCNA2    
1 rs265128 215683383 A 0.5853 8.31E-05 GPATCH2    
2 rs737447 44959521 G 1.798 3.29E-05     
2 rs4952726 44961125 C 1.793 3.73E-05     
2 rs13420376 144288475 T 1.898 1.37E-05 ARHGAP15    
3 rs41521446 2808324 G 0.6114 5.22E-05 CNTN4    
3 rs1963348 64190295 A 0.6701 8.94E-05 PRICKLE2    
3 rs3911778 64205473 A 0.6678 8.03E-05 PRICKLE2    
3 rs7613991 69845276 T 0.6787 4.72E-05 MITF    
3 rs9853615 135002671 G 1.56 6.85E-06 TF SRPRB RAB6B  
3 rs1464937 135019345 C 1.493 4.99E-05 TF SRPRB RAB6B  
3 rs12637089 141370658 T 0.5363 7.30E-05 CLSTN2    
4 rs10007566 24677262 T 0.637 3.39E-06 LGI2    
5 rs4701486 25563999 G 0.6456 4.83E-05     
5 rs3843467 55892132 T 1.606 9.91E-05     
5 rs13187208 121014320 A 0.5283 4.76E-05     
6 rs10485258 154155102 T 1.556 8.74E-05     
7 rs4540325 4718366 T 0.6288 2.04E-06 FOXK1    
7 rs2214096 95521055 G 1.561 6.28E-05 DYNC1I1    
8 rs17741463 73163435 A 1.563 6.61E-05 TRPA1    
8 rs1713669 96027813 G 0.6773 4.29E-05 TP53INP1    
8 rs527234 96032974 G 0.6761 4.27E-05 TP53INP1    
9 rs2274526 263233 C 0.6423 6.08E-05 DOCK8    
9 rs10966249 2415127 T 1.493 4.78E-05     
9 rs7039085 2417960 A 1.511 5.72E-05     
9 rs2210396 2419859 C 1.502 6.71E-05     
9 rs2376118 2420189 G 1.514 5.93E-05     
9 rs16925655 7235728 T 0.4234 2.94E-06     
9 rs1928206 7265202 G 0.6011 2.64E-05     
9 rs16925783 7278704 A 0.4526 1.23E-05     
9 rs1008981 10536814 C 0.548 5.04E-06 PTPRD    
9 rs957252 26049028 A 1.547 1.17E-05     
9 rs9406901 26052582 A 1.52 5.22E-05     
9 rs10984415 120923988 A 1.761 6.82E-05 DBC1    
9 rs230150 120986331 C 1.756 2.66E-05 DBC1    
9 rs230089 120995897 A 1.749 2.12E-05 DBC1    
10 rs4750058 11508447 A 1.486 6.11E-05 USP6NL    
10 rs7096907 19066847 T 0.5964 5.73E-05     
10 rs10763188 56681358 T 1.553 6.68E-05     
10 rs17123393 109565848 T 0.3917 3.96E-05     
11 rs875973 45083359 C 1.458 9.29E-05 PRDM11    
11 rs12787445 107539334 G 1.604 8.81E-07 ACAT1 NPAT   
11 rs6589007 107545314 A 1.635 2.69E-07 ACAT1 NPAT   
11 rs2083707 107571340 A 1.589 1.80E-06 ACAT1 NPAT ATM  
11 rs609557 107589723 G 1.632 2.47E-07 NPAT ATM   
11 rs228606 107593057 T 0.6773 5.07E-05 NPAT ATM   
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Supplementary Table 2 (continued) 

 

CHR SNP POSITION EffAllele OR P Gene 
11 rs183460 107595920 A 1.631 2.98E-07 NPAT ATM   
11 rs228591 107602543 A 1.632 2.65E-07 NPAT ATM   
11 rs618499 107654049 A 1.585 1.49E-06 ATM    
11 rs624366 107659307 G 1.648 1.69E-07 ATM    
11 rs645485 107674073 A 1.638 2.37E-07 ATM    
11 rs673281 107687279 G 1.579 1.95E-06 ATM    
11 rs227073 107717902 G 1.622 4.06E-07 ATM C11orf65   
11 rs227075 107723406 T 1.582 1.73E-06 ATM C11orf65   
11 rs419716 107726309 A 1.633 2.85E-07 ATM C11orf65   
11 rs227041 107728011 C 1.633 2.85E-07 ATM C11orf65   
11 rs664143 107730871 A 1.582 1.73E-06 ATM C11orf65   
11 rs652541 107731235 A 1.594 1.23E-06 ATM C11orf65   
11 rs573890 107756573 C 1.625 3.90E-07 ATM C11orf65   
11 rs227077 107758462 C 1.63 3.35E-07 ATM C11orf65   
11 rs7931930 107773496 G 1.635 2.78E-07 ATM C11orf65   
11 rs11212617 107788371 C 1.646 1.92E-07 ATM C11orf65   
11 rs3765632 107858228 A 1.546 5.50E-06 C11orf65 KDELC2 EXPH5  
11 rs11212676 107866788 A 0.6798 6.66E-05 C11orf65 KDELC2 EXPH5  
11 rs893279 107870392 T 0.6864 9.68E-05 C11orf65 KDELC2 EXPH5  
13 rs1328673 46513595 T 1.507 7.13E-05     
13 rs2039095 46516635 C 0.6871 9.83E-05     
13 rs9562700 46518957 A 0.6812 4.98E-05     
13 rs11148026 46538811 A 0.6746 4.11E-05     
13 rs1469595 46538887 A 0.6746 4.11E-05     
13 rs9595590 46540197 A 0.6746 4.11E-05     
13 rs7994733 46541595 C 1.503 8.40E-05     
13 rs1431768 46567351 A 1.501 8.37E-05     
13 rs9540636 65571144 T 0.6652 4.32E-05     
13 rs9540668 65623234 G 0.6759 6.74E-05     
15 rs2113931 59896761 A 0.5719 5.22E-05 VPS13C    
16 rs4500723 51259514 T 1.499 4.08E-05     
16 rs4386133 51264345 A 1.467 8.04E-05     
16 rs12932515 51270048 T 1.474 8.91E-05     
16 rs11642888 51359637 C 1.47 5.96E-05     
16 rs7196680 51359682 C 1.461 7.78E-05     
17 rs9303683 30560283 A 0.6838 6.38E-05 UNC45B AMAC1 SLFN5 
17 rs1383541 30563938 C 0.6549 8.67E-06 UNC45B AMAC1 SLFN5 
17 rs11080325 30587822 A 0.6796 7.66E-05 UNC45B AMAC1 SLFN5 
17 rs11653010 30589462 G 0.6812 8.52E-05 UNC45B AMAC1 SLFN5 
18 rs1626048 3333266 A 2.016 5.53E-05     
18 rs1662830 3335173 G 2.037 4.76E-05     
18 rs9965202 75208922 C 0.5622 1.71E-05 ATP9B NFATC1   
18 rs12604865 75211701 G 0.5612 1.83E-05 ATP9B NFATC1   
18 rs6506757 75212528 T 0.5621 1.94E-05 ATP9B NFATC1   
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Supplementary Table 3  
Full metformin glycaemic response models. The 95% confidence intervals of the Beta 

or Odds Ratio (OR) are shown in square brackets. The variables are coded as:  

(1) the outcome is Treatment A1c in linear model 
(2) the outcome is achieving treatment A1c<=7% (case) in logistic model  
(3) genotype is coded as the dosage of the minor allele  
(4) adherence is coded in 10%  
(5) creatinine CLR is coded in 10mL/min/1.73m2 
(6) group is coded as 1 for monotherapy group and 0 for dual therapy group  
(7) time to baseline is coded in months 
(8) dose is coded in 300mg  
 

Supplementary Table 3a.  The GWA cohort of 1024 GoDARTS patients 
 Linear Model  Logistic Model 
 Beta p  OR p 

rs11212617 -0.18 [-0.26,-0.10] 1.8E-05  1.64 [1.37,1.99] 1.9E-07 
Baseline A1C 0.28 [0.23,0.32] 8.7E-33  0.69 [0.62,0.76] 3.3E-12 
Adherence -0.11 [-0.14,-0.07] 2.7E-8  1.18 [1.09,1.26] 4.3E-05 
Creatinine CLR 0.04 [0.02,0.06] 2.3E-04  0.92[0.87,0.96] 0.0005 
Group -0.22 [-0.35,-0.09] 0.0011  1.97[1.47,2.64] 6.5E-06 
Dose -0.02 [-0.06,0.01] 0.18  0.99[0.96,1.02] 0.96 
Baseline Gap 0.08 [0.006,0.14] 0.03  0.92[0.80,1.06] 0.23 
 

Supplementary Table 3b.  The first replication cohort of 1783 GoDARTS patients 
 Linear Model  Logistic Model 
 Beta p  OR p 

rs11212617 -0.07 [-0.13,-0.01] 0.022  1.21 [1.05,1.38] 0.007 
Baseline A1C 0.20 [0.16,0.23] 2.7E-30  0.74 [0.69,0.80] 4.6E-14 
Adherence -0.11 [-0.14,-0.08] 2.6E-15  1.2 [1.14,1.26] 8.0E-10 
Creatinine CLR 0.03 [0.01,0.04] 1.4E-05  0.95[0.92,0.98] 0.0003 
Group -0.32 [-0.43,-0.22] 6.5E-10  1.97[1.57,2.48] 3.8E-09 
Dose -0.03 [-0.06,-0.01] 0.02  1.01[0.98,1.04] 0.95 
Baseline Gap 0.05 [-0.006,0.10] 0.09  0.90[0.79,1.03] 0.13 
 

Supplementary Table 3c.  The second replication cohort of 1113 UKPDS patients 
 Linear Model  Logistic Model 
 Beta p  OR p 

rs609261 -0.12 [-0.22,-0.02] 0.021  1.37 [1.10,1.72] 0.0057 
Baseline A1C 0.50 [0.46,0.54] 4E-101  0.43 [0.39,0.49] 6.9E-45 
Baseline Gap -0.032[-0.03,-0.01] 5.5E-6  1.08 [1.03,1.14] 8.4E-4 
Group -0.93 [-1.13,-0.73] 8.2E-19  3.19[2.10,4.82] 4.2E-8 
Treatment Gap -0.01[-0.03,0.01] 0.214  1.01[0.97,1.06] 0.55 
Creatinine CLR 0.05 [0.03,0.07] 1.6E-5  0.90[0.85,0.95] 1.0E-4 
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Supplementary Table 4  
Logistic regression analysis of metformin response split by treatment group 

(monotherapy or dual therapy). The 95% confidence intervals of the Odds Ratio (OR) 

are shown in square brackets.  The variables are coded as:  

(1) the outcome is achieving treatment A1c<=7% (case) 
(2) genotype is coded as the dosage of the minor allele 
(3) adherence is coded in 10% 
(4) creatinine CLR is coded in 10mL/min/1.73m2 
(5) time to baseline is coded in months 
(6) dose is coded in 300mg 
 

Supplementary Table 4a.  The GWA cohort of 1024 GoDARTS patients 
 Monotherapy 

(n=689) 
 Dual therapy 

(n=335) 
 OR p  OR p 

rs11212617 1.63 [1.29,2.06] 3.7E-05  1.71 [1.24,2.36] 0.001 
Baseline A1C 0.66 [0.58,0.75] 1.7E-10  0.75 [0.62,0.91] 0.003 
Adherence 1.18 [1.08,1.28] 6.0E-04  1.20 [1.03,1.40] 0.02 
Creatinine CLR 0.93[0.87,0.98] 0.008  0.89[0.82,0.98] 0.02 
Dose 0.99[0.93,1.07] 0.88  1.0[0.87,1.15] 0.95 
Baseline Gap 0.95[0.87,1.10] 0.12  1.0[0.78,1.27] 0.98 
 

Supplementary Table 4b The first replication cohort of 1783 GoDARTS patients 
 Monotherapy 

(n=1291) 
 Dual therapy 

(n=492) 
 OR p  OR p 

rs11212617 1.29 [1.10,1.51] 0.002  1.05 [0.81,1.36] 0.70 
Baseline A1C 0.79 [0.72,0.86] 6.9E-08  0.60 [0.50,0.72] 2.8E-08 
Adherence 1.20 [1.11,1.29] 1.3E-06  1.28 [1.12,1.46] 2.3E-04 
Creatinine CLR 0.95[0.92,0.98] 0.001  0.94[0.88,1.01] 0.09 
Dose 0.98[0.91,1.04] 0.52  1.05[0.94,1.18] 0.38 
Baseline Gap 0.95[0.82,1.10] 0.51  0.81[0.64,1.02] 0.08 
 

Supplementary Table 4c The second replication cohort of 1113 UKPDS  
 Monotherapy 

(n=284) 
 Dual therapy 

(n=829) 
 OR p  OR p 
rs609261 1.82 [1.20,2.78] 0.005  1.23 [0.94,1.62] 0.13 
Baseline A1C 0.53 [0.43,0.65] 1.2E-09  0.39 [0.34,0.46] 3E-36 
Baseline Gap 1.18 [1.03,1.35] 0.02  1.07 [1.02,1.12] 0.007 
Treatment Gap 0.99[0.92,1.08] 0.92  1.02[0.97,1.07] 0.41 
Creatinine CLR 0.83[0.75,0.90] 3.3E-5  0.94[0.88,1.01] 0.09 
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Supplementary Table 5 
Association between rs11212617 and baseline characteristics in the Go-DARTS 

controls. The A allele was the reference allele. *These variables were log transformed. 

 
Phenotype Beta N p 
LDL -0.02671 6148 0.1186 
Cholesterol -0.01793 6148 0.3428 
Triglycerides 0.00182 6148 0.8921 
HDL 0.009234 6148 0.268 
Creatinine -0.1364 6148 0.7004 
DBP -0.1241 6148 0.4979 
SBP 0.04596 6148 0.8966 
Weight -0.1744 6148 0.528 
BMI -0.07395 6148 0.377 
Height 0.05636 6148 0.7474 
A1C -0.003857 6148 0.5882 
Adiponectin* 0.02 2422 0.2555 
Leptin* 0.0006 2422 0.9525 
F-Insulin* -0.04174 1806 0.0485 
Homab* -0.02116 1806 0.1317 
Homas* 0.0418 1806 0.0474 
F-Glucose* -0.009783 1806 0.9525 
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Supplementary Table 6 
Bioinformatic exploration of the functionality of rs11212617 and its proxies. 
 
All the 98 SNPs with strong linkage disequilibrium (r2 >0.8 according to the HapMap 
CEU panel as indicated by the column rsquare in the table) to rs11212617 at the 
associated locus are listed in the table. SNPs were mapped to the genomic 
sequence with UCSC database checking their regulation potential, predicted 
transcription factor binding sites, CpG islands, predicted microRNA target sites, 
validated enhancer, promoter and cross species conservative sites. 
 
In addition, none of the SNPs was identified as potential cis regulator in the three 
published eQTL genome wide association studies of liver, cortex and lymphocytes1-3. 
The observed association could not be explained by the only common copy number 
polymorphism in the region as it is not in linkage disequilibrium with rs11212617 (r2 = 
0.05) according to the HapMap CEU panel4.   
 
 

snpsym chro position ingene coding rsquare conservation regulation 
rs4754298 11 107528494   0.979   
rs6589006 11 107536505 NPAT intron 0.99   

rs12787445 11 107539334 NPAT intron 0.952   
rs6589007 11 107545314 NPAT intron 0.99   
rs2070661 11 107549198 NPAT exon7* 0.958   

rs11212538 11 107551166 NPAT intron 0.934   
rs1850730 11 107556322 NPAT intron 0.99   
rs4623864 11 107556510 NPAT intron 0.99   
rs4753833 11 107562640 NPAT intron 0.99   
rs7118967 11 107563066 NPAT intron 0.957 Yes  
rs3781868 11 107564779 NPAT intron 0.987   
rs2056267 11 107567018 NPAT intron 0.99   

rs11212546 11 107570145 NPAT intron 0.99   
rs2083707 11 107571340 NPAT intron 0.925   
rs1607476 11 107580371 NPAT intron 0.99   
rs4754305 11 107581122 NPAT intron 0.99   

rs11605442 11 107583067 NPAT intron 0.973   
rs11212551 11 107583903 NPAT intron 0.99   

rs609557 11 107589723 NPAT intron 0.99   
rs183459 11 107594407 NPAT intron 0.958   
rs183460 11 107595920 NPAT intron 0.984   
rs228589 11 107598418 NPAT intron 0.987  Yes§ 

rs228590 11 107601351 ATM intron 0.99   
rs228591 11 107602543 ATM intron 0.987   
rs641605 11 107607129 ATM intron 1   
rs623860 11 107611992 ATM intron 0.971   
rs228599 11 107612870 ATM intron 1   
rs600931 11 107622545 ATM intron 1   
rs599406 11 107623444 ATM intron 1   
rs694376 11 107624258 ATM intron 0.904   
rs599164 11 107625649 ATM intron 1   
rs228592 11 107628399 ATM intron 1   
rs672655 11 107634867 ATM intron 1   
rs627418 11 107636435 ATM intron 0.971   
rs664677 11 107648392 ATM intron 0.971   
rs618499 11 107654049 ATM intron 0.959   
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Supplementary Table 6 (continued 1) 
 

snpsym chro position ingene coding rsquare conservation regulation 
rs4987982 11 107656479 ATM intron 1   
rs1003624 11 107657855 ATM intron 1   

rs624366 11 107659307 ATM intron 0.997   
rs654005 11 107660607 ATM intron 1   
rs592955 11 107661683 ATM intron 0.906   
rs609261 11 107663344 ATM intron 1   
rs645485 11 107674073 ATM intron 0.987   
rs619972 11 107674829 ATM intron 1   
rs599558 11 107682748 ATM intron 1   
rs660429 11 107686721 ATM intron 1   
rs673281 11 107687279 ATM intron 0.965   
rs620613 11 107690688 ATM intron 1   
rs595747 11 107699283 ATM intron 0.968   
rs662218 11 107699738 ATM intron 1   
rs662578 11 107699767 ATM intron 1   
rs609655 11 107709463 ATM intron 0.965   
rs227061 11 107710539 ATM intron 1   
rs227062 11 107710593 ATM intron 1   
rs227064 11 107712603 ATM intron 0.965   
rs227068 11 107715319 ATM intron 1   
rs227070 11 107716622 ATM intron 0.965   
rs227072 11 107717303 ATM intron 1   
rs227073 11 107717902 ATM intron 0.997   
rs227074 11 107720305 ATM intron 1   
rs172896 11 107722259 ATM intron 1   
rs227075 11 107723406 ATM intron 0.959   
rs425538 11 107724549 ATM intron 0.968   
rs419716 11 107726309 ATM intron 0.997   
rs374443 11 107726875 ATM intron 1   
rs227041 11 107728011 ATM intron 0.997   
rs227040 11 107728601 ATM intron 0.997   
rs664143 11 107730871 ATM intron 0.965   
rs652541 11 107731235 ATM intron 0.962  Yes 
rs227053 11 107732065 ATM intron 1   
rs227092 11 107741993 ATM 3UTR 0.993   

rs4585 11 107744838 ATM 3UTR† 1   
rs652311 11 107745279   1   
rs227087 11 107749324   1   
rs186595 11 107756421   1   
rs573890 11 107756573   0.99   
rs227077 11 107758462   0.997   

rs10789659 11 107761038 C11orf65 intron 1   
rs113995 11 107762047 C11orf65 intron 1  Yes 
rs227055 11 107766471 C11orf65 intron 0.965   
rs172894 11 107767300 C11orf65 intron 0.971   
rs227056 11 107767607 C11orf65 intron 0.997   
rs186593 11 107767649 C11orf65 intron 0.959   
rs227058 11 107770423 C11orf65 intron 1   
rs172895 11 107771086 C11orf65 intron 1   

rs7931930 11 107773496 C11orf65 intron 1   
rs9667658 11 107781301 C11orf65 intron 1   
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Supplementary Table 6 (continued 2) 

snpsym chro position ingene coding rsquare conservation regulation 
rs2356801 11 107787209 C11orf65 intron 1   

rs11212617 11 107788371 C11orf65 intron 1   
rs10890834 11 107791653 C11orf65 intron 1   

rs1583598 11 107811199 C11orf65 intron 0.968   
rs6589019 11 107830171 C11orf65 intron 0.873   
rs4754324 11 107830658 C11orf65 intron 0.965   
rs7942014 11 107831384 C11orf65 intron 0.965   
rs5023001 11 107840748 C11orf65 intron 0.956   
rs3901851 11 107857545 KDELC2 intron 0.949   
rs3765632 11 107858228 KDELC2 intron 0.919   
rs2118309 11 107872663 KDELC2 intron 0.956   
 
 
Columns ‘ingene’ and ‘coding’ indicate whether a SNP is in the gene transcript and 
whether it is in the exon, intron or UTR region of the transcript. Column ‘conservation’ 
indicates whether a SNP is in genomic region conserved across vertebrate species. 
Column ‘regulation’ indicates whether a SNP is in predicted regulatory elements. 
 
*rs2070661 is a non-synonymous SNP in gene NPAT however no functional change 
is predicted according to SIFT, PolyPhen and PANTHER. 
 
§SNP rs228589, which is in intron 1 of the NPAT gene, is in a predicted promoter of 
ATM, hence having the potential to affect the transcription of ATM5,6.  

 
†Studies have shown that addition of poly A tails to mRNA transcripts requires not 
only the consensus polyadenylation signal AATAAA, but also sequences located 10 
– 30bp downstream, termed the GU-rich element7. Deletion of these sequences have 
a profound effect on the efficiency of polyadenylation8. The sequence of the DCE is 
somewhat variable, but is usually UG rich, and the actual cleavage site is commonly 
preceded by a CA dinucleotide9. Variant rs4585 lies 24bp downstream of an 
alternative polyadenylation site within the ATM transcript. This is within the region 
that is predicted to contain its DCE. Eight of the nucleotides immediately prior to 
rs4584 are U or G, and the SNP itself is preceded by a CA dinucleotide. This raises 
the possibility that rs4585 may influence the polyadenylation dynamics, and thus the 
stability, of ATM transcripts utilising this polyadenylation site. 
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SUPPLEMENTARY FIGURES 
 
Supplementary figure 1.   
 
Sample Ascertainment Flow Chart. There was no difference by rs1121617 genotype 
at each selection/exclusion stage in the definition of the discovery cohort consistent 
with there being no effect of genotype on metformin tolerability 
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Supplementary Figure 2 
 
Quantile-Quantile plots. The genomic control "inflation factor" lambda=1.003 for 
logistic regression. The dashed lines are 95% confidence interval  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 3  

 
Manhattan plot of single marker association test in the 1024 GoDARTS patients 
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SUPPLEMENTARY NOTES 

 

Sample Ascertainment and Covariates 
 

Inclusion criteria.  As shown in the supplementary Figure 1, patients had to fulfill the 

following criteria to be included in the current study: 

1. A pre-treatment HbA1c must be measured within 6 months prior to starting 

metformin and must be greater than 7% and less than 14%. 

2. No new treatment should be started or stopped within 6 months prior to or 

after metformin start 

3. Metformin treatment should continue for at least 6 months 

4. At least one HbA1c measurement must be recorded whilst on metformin and 

within 18 months of commencing metformin. 

 

Covariates.  Age, sex and weight were used to derive the creatinine clearance so 

were not included separately in the models. The covariates that were used in both 

the logistic and linear regression analyses were defined as follows:  

 

1) Baseline HbA1c: The baseline HbA1c value closest to starting metformin, and 

within the time period six months before and seven days after starting 

metformin.  

2) Baseline Gap: The number of days between the baseline HbA1c and start of 

metformin was used to account for the unobserved deterioration of glycaemia 

between the HbA1c measure and intitiation of metformin 

3) Drug Adherence: Adherence was estimated as 

Adherence = sum (days covered by each prescription)/ days in the study 

period in which the days covered by a prescription was calculated by dividing 

the dispensing quantity by daily dose; if one prescription covered a time 

period beyond next prescription start, the extra days were not taken over to 

the calculation for next prescription. 

4) Daily Dose: The average daily dose during the 3 months prior to the minimum 

HbA1c was achieved 

5) Creatinine Clearance: The creatinine clearance rate was calculated using the 

Cockcroft-Gault equation as  

 GFR = (140-age) * (weight in kg) * (0.85 if female) / (72 * creatinine in mg/dL) 
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in which weight and serum creatinine concentration were the average of 

measurements from two years either side of the index date; age was at index 

date.   

 

General Model. The general Metformin drug response outcome model was: 

outcome ~ baseline HbA1c + adherence + daily dose + Creatinine Clearance + 

baseline gap + treatment group + genotype 

 

GWAS Genotyping and Quality Control 
 

DNA samples. Genomic DNA for all cases was shipped to the Sanger Institute, 

Cambridge. Where there was sufficient DNA, quality was validated using the 

Sequenom iPLEX assay designed to genotype four gender SNPs and 26 SNPs 

present on the Illumina Beadchips. DNA concentrations were quantified using a 

PicoGreen assay (Invitrogen) and an aliquot assayed by agarose gel electrophoresis. 

A DNA sample was considered to pass quality control if the DNA concentration was 

greater than or equal to 50 ng/µl, the DNA was not degraded, the gender assignment 

from the iPLEX assay matched that provided in the patient data manifest and 

genotypes were obtained for at least two thirds of the SNPs on the iPLEX.  

 

Genotyping. Samples were genotyped at Affymetrix's service laboratory on the 

Genome-Wide Human SNP Array 6.0. For all samples passing Affymetrix's 

laboratory quality control, raw intensities were renormalized within collections using 

CelQuantileNorm. These normalized intensities were used to call genotypes with an 

updated version of the Chiamo software adapted for Affymetrix 6.0 SNP data.  

 

By Individual QC.  Genotype data quality control was via the protocol that was 

established for the WTCCC2 studies1. A few refinements to the conventional fixed-

threshold based quality control have been made to obtain the more powerful sets of 

samples and SNPs for subsequent GWA analysis. For all individuals, we explicitly 

modelled the data as a mixture of 'normal' and 'outlier' individuals for each of 

ancestry, missing data and heterozygosity, and sex assignment. We fitted each 

model in a Bayesian framework and excluded individuals whose posterior probability 

of belonging to the outlier class was above 0.5. This approach replaces the traditional 

concept of fixed exclusion thresholds for parameters such as call rate, heterozygosity 

and ancestry. 
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Relatedness. To assess relatedness among study individuals, we compared each 

individual with the 100 individuals they were most closely related to (on the basis of 

genome-wide levels of allele sharing) and used a hidden Markov model (HMM) to 

decide, at each position in their genome, whether the two individuals shared 0, 1 or 2 

chromosomes identical by descent (IBD). This allowed a more refined assessment of 

the relatedness between individuals than genome-wide sharing statistics (for 

example, parent-child relationships can be distinguished from those of siblings). 

Individuals were removed from the study iteratively to ensure there was no pair of 

individuals with IBD>= 5%. Within each pair of putatively related individuals, the 

individual with more missing genotypes was removed. 

 

By SNP QC. For each SNP, we considered a measure of the (Fisher) information 

carried by the genotype calls for the underlying allele frequency. This will decrease 

as the number of individuals with low posterior probabilities for the most likely call 

increases, and it can be considered a more refined measure of both missing data 

and minor allele frequency. The measure is calculated automatically by the program 

SNPtest.  SNPs were removed if this information measure was below 0.98 or if the 

estimated minor allele frequency was below 0.01%. SNPs that significantly deviated 

from Hardy Weinberg Equilibrium (p<1x10-6) were also removed and the final data 

set consisted of 705,125 autosomal SNPs. 

 

Concordance. Part of the current GWA sample was used as replication cohort in the 

WTCCC1 T2D case control study2. The overlapping genotyping is on a maximum 

number of 116 SNPs by 1779 individuals, depending on whether the SNP was taken 

into the second stage of the WTCCC1 replication. A total number of 457 

discrepancies out of 163391 informative comparisons were observed, which gives a 

concordance rate of 99.73% between the two studies. Individuals with more than 

10% discordance were removed from the current study. 

 

rs11212617 Association with Quantitative Glycaemic Traits.   
 

We requested unpublished summary statistics for the top SNPs of interest from 

meta-analyses of GWAS datasets, conducted by the Meta-Analyses of Glucose and 

Insulin-related traits Consortium (MAGIC) to identify genetic determinants of 

quantitative glycaemic traits in non-diabetic individuals.  The published fasting trait 

meta-analysis included 20 cohorts with available fasting glucose and insulin 
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measurements and GWAS data, for a total of 35,914-38,237 individuals (depending 

on the SNP and the trait); participating cohorts are listed in the online supplement to 

ref 3.  The unpublished HbA1C meta-analysis includes 23 cohorts with available 

HbA1C measurements and GWAS data, for a total of 36,099 subjects (35,841 with 

valid genotypes for these SNPs).  For the latter, cohorts include: B58C-WTCCC 

(n=1,428), BLSA (n=490), DGI (n=480), EPIC cancer cases (n=957), EPIC cohort 

(n=1,911), Fenland (n=1,378), Framingham (n=1,996), KORA F3 (n=1,644), Lolipop 

(n=770), SardiNIA (n=3,346), 1958BC-T1DGC (n=2,501), ARIC (n=6,777), Croatia 

(n=659), deCODE (n=342), DESIR (n=731), GenomeEUtwin (n=568), HEALTH2000 

(n=1,205), KORA_S4 (n=1,814), NTRNESDA (n=1,452), ORCADES (n=651), 

PROCARDIS (n=831), SHIP (n=3,538) and Sorbs (n=630).  All participants were 

non-diabetic adults of European ancestry from Europe or the United States.  Local 

research ethics committees approved all studies and all participants gave informed 

consent.  In each study HbA1C was measured from whole blood with NGSP-certified 

methods; details on insulin measurement are listed in the supplementary material to 

ref.31.  SNPs were either directly genotyped or imputed from the HapMap CEU phase 

2 reference panel using the software programs MACH or IMPUTE.  QC metrics were 

applied to genotyped (Hardy-Weinberg equilibrium P <10-4 or 10-6 and call-rate <0.90 

or 0.95) and imputed (observed-by-expected variance ratio [r2.hat] <0.3 in MACH, or 

proper-info <0.4 in IMPUTE) SNPs.  In each cohort, a linear regression model was 

fitted using natural log transformed fasting insulin or HOMA-IR, or untransformed 

HbA1C as the dependent variable to evaluate the additive effect of genotyped and 

imputed SNPs, adjusting for age, sex, study-site (when applicable) and family 

structure if present.  Regression estimates for each SNP were combined across 

studies in each meta-analysis using a fixed effect inverse-variance approach, as 

implemented in the METAL software. 

 

Reference to Supplementary Notes 
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