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SUMMARY

 

Parasitic helminths have co-evolved with the mammalian
immune system. Current hypotheses suggest that immunological
stimulation in the presence of helminths is balanced by
immuno-regulation and by the broad spectrum of mechanisms
possessed by helminths for countering the host immune
response. The degree to which this balance is perfected, and
the mechanisms by which this is achieved, vary between
helminth species; we suggest that this is reflected not only in
the degree of pathology induced by helminths but also in a
variety of relationships with HIV infection and HIV disease.
Available epidemiological data regarding interactions between
helminths and HIV are largely observational; results are variable
and generally inconclusive. Well designed, controlled intervention
studies are required to provide definitive information on the
species-specific nature of these interactions and on the advantages,
disadvantages and optimal timing of de-worming in relation to
HIV infection.
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INTRODUCTION

 

Helminth and Human Immunodeficiency Virus (HIV) infection
have major effects on the host immune response and co-
infection is widespread (1). They are, however, quite different
in respects that are important to their interactions.

First, helminth infections are caused by diverse species
from three phyla: generalizations regarding the mechanism
and nature of their effects may not be appropriate. HIV is
essentially a single entity.

Second, helminth infection may be, in a sense, normal to
the mammalian immune system. The association between
mammals and helminths is ancient: some species probably
co-evolved with primates and humans; others, co-evolved
with other mammals, may have crossed and adapted to humans
following exposure through domestication of animals. In some
host–helminth relationships adaptation appears almost perfect.
Most people with helminths are unaware of their infection:
the persistence of widespread infection, despite disease caused
by some high intensity infections, is compatible even with a
selective advantage of low intensity infection to the host. By
contrast, HIV infection is not normal; it has attained a
significant prevalence in humans only in the last 25 years
and is universally fatal.

Third, helminths modulate the immune system, but HIV
destroys it. Immune modulation by helminths may have
both beneficial and detrimental effects in relation to human
disease. There is evidence for benefit of helminth infection in
relation to atopic disease (2,3) and to the inflammatory
pathology of autoimmune disease (4–6). Studies of co-
infection with helminths and malaria have produced
conflicting results and interpretation of the findings varies,
but it is possible that helminths may be associated with
some protection against cerebral malaria, although control
of replication of the parasite may be impaired (7,8). On the
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other hand, for bacterial and viral infections, impaired
control of  replication and elimination of  infection may
generally lead to a detrimental outcome (9–12). That HIV
infection is detrimental to the immune response to many
pathogens is quite clear and poor regulation of the immune
system in advanced HIV infection is illustrated by an
increased incidence of hypersensitive drug reactions (13,14).

 

IMMUNOLOGICAL HYPOTHESES

 

During the 1990s it was proposed that helminths might
impair the immune response to HIV, leading to greater
susceptibility to HIV acquisition and more rapid HIV
progression (15). This hypothesis was based on the concept
that a T helper (Th)2 bias, induced by helminths, was a form
of immune ‘dysregulation’ that might be detrimental in
several ways. These included promotion of a Th2 bias with
suppression of protective, Th1 responses to HIV; and
expansion of a population of Th2 lymphocytes that were
more susceptible to HIV infection (16); cells might also be
more susceptible to HIV infection due to increased HIV
coreceptor expression in response to immune activation
(17,18). However, the apparent health of many helminth-
infected people reflects the fact that pathways activated by
helminth infection tend to be balanced by regulatory
mechanisms, with recent interest focused particularly on the
role of regulatory CD4

 

+

 

CD25

 

+

 

 T cells, interleukin (IL)-10
and transforming growth factor (TGF)-

 

β

 

 (2,19). The degree
to which this balance is perfected, allowing long-term
parasite survival with minimal damage to the host, varies
and may be enhanced in individuals born to helminth-
infected mothers compared to those first exposed later in
life (20,21). Thus the sequelae of infection range from an
apparently healthy host despite heavy intensity infection (as
with the filarial infection, 

 

Mansonella perstans

 

, and the
intestinal parasite, 

 

Enterobius vermicularis

 

) to the severe
disease manifestations of advanced schistosomiasis; this
spectrum attests to the complex interactions between  effective
and regulated immune responses and destructive immun-
opathology, which continue to mould the ecological relation-
ship between humans and helminths. With the recent
introduction of HIV into these long-established systems,
pathways involved in both pro-inflammatory and regulatory
responses may influence the outcome of HIV or of helminth
exposure and infection.

Helminth-induced immuno-regulatory mechanisms that
suppress protective responses to HIV could be detrimental.
Although the function, phenotype and antigen-specificity of
CD4

 

+

 

CD25

 

+

 

 regulatory T cells is not yet well defined, they
have been implicated in the modulation of immune responses
to bystander antigens (22) and could suppress HIV-specific
CD4

 

+ 

 

-

 

 

 

and CD8

 

+

 

 -derived cytokine production and lymphocyte

proliferation, suggesting that they may play a role in suppress-
ing antiviral immune responses (23–28). On the other
hand, regulatory activity could have benefits: replication of
proviral DNA depends on activation of host cell transcription
factors (29), so helminth-induced regulatory activity that
suppresses such transcription could be beneficial, particularly
in relation to HIV progression (30).

Conversely, a reduction in numbers or function of regulatory
T cells has been observed in advanced HIV disease (31,32)
and high foxp3 expression (indicative of regulatory T cells)
has been found to correlate inversely with markers of immune
activation, suggesting that loss of  these cells may reduce
suppression of immune activation. Regulatory T cells express
the HIV coreceptor CCR5 and are readily infected by HIV

 

in vitro

 

 (31): perhaps they are preferentially eliminated by
direct HIV infection leading to uncontrolled immune
activation and dysfunction. This might have important
implications for the host–parasite interaction: could prefer-
ential depletion of regulatory cells, for example, create an
environment inimical to parasite survival and reproduction?

Thus immunological data now suggest a range of scenarios
in which helminths and HIV may each either promote or
oppose acquisition or progression of the other condition.

 

EPIDEMIOLOGICAL OBSERVATIONS

 

Initial hypotheses regarding helminths and HIV were developed
largely in the absence of epidemiological data to indicate
whether substantial effects occurred, and amid controversy
as to whether HIV progression was actually more rapid in
regions where helminth prevalence was high (33). Several
studies have now been conducted. To date, only one randomised
trial of the effects of treatment (34) has yet been reported.
It must be anticipated that effects are bi-directional: the
effects of helminths on the immune system may influence
the outcome of exposure to and infection with HIV, and the
effects of  HIV on the immune system may influence the
outcome of  exposure to and infection with helminths.
Further, particularly in the case of cross-sectional and
observational studies, results must be interpreted in the light
of potential confounding, and of the progressive nature of
HIV disease.

 

Effects of helminths on HIV

 

Effects of helminths on susceptibility to HIV infection

 

Studies that have examined co-prevalence of HIV and
helminth infections are summarized in Table 1. The findings
are pertinent to whether helminths increase susceptibility to
HIV, or HIV increases susceptibility to helminths. In either
case, a higher prevalence of HIV might occur in individuals
with helminths.
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Table 1

 

Associations between helminth infections and HIV status

Worm species

Helminth prevalence 
observed by HIV status

HIV-positive HIV-negative

 

P

 

Country (ref) Comment

 

S. haematobium n

 

 = 134

 

n

 

 = 345 Zimbabwe (35) Study in women only
in urine 45% 37% NS
in Papanicolaou smear 10% 5%  0·04
in any genital specimen 23% 13%  0·008

 

n

 

 = 83

 

n

 

 = 166 Kenya (36) Case control study in pregnant women

 

Wuchereria bancrofti

 

29/80 (36%) 22/155 (14%) < 0·001

 

a

 

predominantly hookworm
Schistosomiasis 5/63 (8%) 12/122 (10%) NS
Intestinal helminths

 

a

 

24/57 (42%) 43/89 (48%) NS

 

n

 

 = 100

 

n

 

 = 85

 

b

 

Brazil (37)

 

b

 

Healthy volunteers; presumed 
HIV-negative

 

Strongyloides

 

12% 7% NS
hookworm 4% 7% NS

 

n

 

 = 407

 

n

 

 = 1138 Zimbabwe (38)

 

S

 

. haematobium 27% 28% NS

 

S. mansoni

 

10% 7% NS

 

S. haematobium

 

 & 

 

mansoni

 

9% 8% NS

 

Strongyloides

 

c

 

n

 

 = 78

 

n

 

 = 78 Thailand (39)

 

c

 

When stratified for presence of 
diarrhoea, association with 

 

Strongyloides

 

 seen only in 
people without diarrhoea

 

Opisthorchis

 

18% 8% < 0·05
19% 19% NS

 

n

 

 = 78

 

n

 

 = 26 Ethiopia (40) All participants had diarrhoea

 

Ascaris

 

31% 23% NS

 

Strongyloides

 

5% 4% NS

 

Trichuris

 

6% 8% NS

 

S. mansoni

 

3% 4% NS
hookworm 3% 4% NS

 

n

 

 = 211

 

n

 

 = 213 Brazil (41)

 

Strongyloides

 

10% 6% NS

 

Ascaris

 

2% 5% NS

 

n

 

 = 365

 

n

 

 = 5243 Brazil (42)

 

Ascaris

 

12% 9% NS

 

Trichuris

 

5% 6% NS
hookworm 4% 4% NS

 

S. mansoni

 

2% 2% NS

 

Strongyloides

 

6% 1% < 0·001

 

n

 

 = 52

 

n

 

 = 1187 Ethiopia (43)

 

S. mansoni

 

25% 32% NS

 

n

 

 = 52

 

n

 

 = 48 Honduras (44)

 

Trichuris

 

21% 40%  0·05
hookworm 17% 8% NS

 

Strongyloides

 

8% 0% NS

 

Ascaris

 

2% 21%  0·003

 

n

 

 = 93

 

n

 

 = 2093 Uganda (45) NS after adjusting for geographical 
location and duration of residence.

 

Onchocerca

 

78% 88%  0·015

 

n

 

 = 112

 

n

 

 = 239 Tanzania (46)

 



 

scaris

 

4% 10%  0·04

 

Strongyloides

 

10% 1% < 0·001
hookworm 12% 13% NS

 

S. haematobium n

 

 = 49

 

n

 

 = 846 Congo (47)
by serology 16% 26% NS
by egg count in urine 10% 18% NS

 

S. mansoni

 

: 

 

Schistosoma mansoni

 

; 

 

S. haematobium

 

: 

 

Schistosoma haematobium

 

. NS: no statistically significant effect.
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Until recently, published studies consistently indicated a
lack of epidemiological association between schistosomiasis
and HIV. This was particularly surprising for 

 

Schistosoma
haematobium

 

, where the presence of female genital lesions
and of blood and leucocytosis in seminal fluid (48) were
expected to promote transmission, regardless of possible
immunological effects (49). However, a recent study among
rural Zimbabwean women showed a significant association
between HIV and the presence of 

 

S. haematobium

 

 ova in
genital samples, supporting the hypothesis of a specific effect
on susceptibility to HIV when genital lesions are present (35).

Among nematodes, apart from one study in pregnant
women indicating an association between HIV and 

 

Wuchereria
bancrofti

 

 (36), the only evidence of a positive association is
for 

 

Strongyloides stercoralis

 

 (39,42,46). 

 

Strongyloides

 

 is
unusual among helminths in that it is able to complete
its life-cycle and replicate in an individual human host, and
this may be facilitated by immunosuppression, as discussed
below. Given the lack of observed associations between HIV
and other intestinal nematodes, a permissive effect of HIV
on 

 

Strongyloides

 

 may be the most likely direction of effect.
Other studies suggest a negative association between HIV

and nematode infection (44,46), which could be consistent
either with a 

 

protective

 

 effect of nematodes against HIV
infection or with the generation, by advancing HIV infection,
of  an environment that is inimical to establishment of
nematode infection, nematode development, or the production
of eggs (or microfilariae). In other words, HIV might ‘protect’
against the establishment or survival of a mature nematode
infection, or might lead to under-diagnosis due to reduced
fecundity. This possibility has been examined in relation to
schistosomiasis, as discussed below, but has not yet been
examined in relation to nematodes. Alternatively, the explan-
ation may lie in unexplored confounding factors such as age
and poverty.

An increase in susceptibility to HIV infection caused by
helminths could be obscured in co-prevalence studies if
helminths were also associated with increased HIV progression
rates and hence mortality, balancing or outweighing increased
incidence through loss of co-infected individuals. In this
case, increased HIV prevalence in helminth-infected individuals
would be more prominent early in an HIV epidemic; but
even studies conducted early in the HIV epidemic for their
region fail to show a positive association. In a mature epidemic,
a positive association might be seen in young age groups, the
effect disappearing, or becoming negative with greater age
(i.e. longer duration of HIV infection): this possibility has
not been examined in reported studies.

Thus co-prevalence studies to date fail to support the
hypothesis that helminths generally promote acquisition of
HIV infection in adults. This may be, in part, because studies
were not designed specifically to address this hypothesis.

Prospective studies of the incidence of sexually acquired
HIV infection have not generally investigated associations
with helminths, and this issue has yet to be studied in animal
models 

 

in vivo

 

 (12). An exception is the recent study on female
genital schistosomiasis: after one year of follow-up, seven of
224 women who were HIV-negative at baseline had serocon-
verted; all of these had 

 

S. haematobium-

 

related findings at
baseline (five with genital lesions, two with ova in urine)
compared to 65% of those who did not seroconvert (

 

P =

 

 0·098);
this result, although inconclusive, again supports the hypothesis
of a specific effect on susceptibility when genital lesions are
present (35). One retrospective case-control study has exam-
ined the effect of maternal helminths on vertical HIV trans-
mission. In this study 13 of 44 HIV-exposed infants were
found to be HIV infected at 12–24 months of  age, and a
positive association was observed between vertical transmission
and maternal lymphatic filariasis (

 

Wuchereria bancrofti

 

)
(36). If  confirmed in further studies and for other helminths,
this effect would be of considerable public health importance
and might be amenable to intervention by de-worming during
pregnancy, which is now advocated (for considerations such
as potential effects on maternal anaemia, rather than HIV
infection) (50).

 

Effects of helminths on HIV disease progression

 

Cross–sectional studies of associations between helminth
infection and severity of HIV disease, measured by CD4

 

+

 

 T
cell count and HIV load, suffer from issues of interpretation
that are similar to those for co-prevalence studies. Thus, the
hypothesized adverse effect of helminths on HIV progression
might predict lower CD4 counts and higher viral loads in
co-infected individuals; but higher mortality in co-infected
individuals could obscure or invert such an effect, while
suppression of helminth development or egg production in
individuals with advanced HIV disease could lead to under-
diagnosis and a spurious impression of a protective effect of
helminths. Confounding with behavioural and socio-economic
factors could again provide misleading results.

Most studies so far have presented results for any helminth
compared to no helminth infection. Overall, CD4

 

+

 

 T cell
counts in co-infected individuals have been higher, or similar,
to those in participants with HIV alone and viral load has
been similar, at least after adjusting for measured confounding
factors (Table 2). Thus, at a simplistic level, results do not
support the hypothesis of an adverse effect of co-infection
on HIV disease. Individual studies have addressed aspects of
these associations in more detail. A potentially important
consideration is the effect of intensity of helminth infection.
Wolday and colleagues (54) measured intensity by combining
egg counts from the helminth species encountered (predo-
minantly 

 

Trichuris

 

 and 

 

Ascaris

 

) and found that individuals in
the lowest 33% for intensity had lower viral load than those
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with medium or highest intensity infection (lower, too, than
helminth-free participants, although the statistical significance
of this difference was not presented). On the other hand, in
Uganda, we found no correlation between intensity of 

 

S. mansoni

 

infection and viral load (55); and a study in Zambia
(predominantly 

 

Ascaris

 

 and hookworm) showed no statisti-
cally significant difference in viral load between moderate-
to-high and low intensity infections (51). Another potentially
important consideration is the effect of helminth species.
Our results in Uganda suggested a possible distinction between
species such as hookworm and 

 

Mansonella

 

, where CD4

 

+

 

 T
cell counts might be higher (and, in the case of 

 

Mansonella

 

,
viral load lower) and 

 

Schistosoma

 

 and 

 

Strongyloides

 

, where
CD4

 

+

 

 T cell counts might be similar (or, for 

 

Strongyloides

 

,
lower) and viral load higher (52). These observations require
confirmation, as effects were, at best, marginally statistically
significant, but serve to highlight the potential importance
of effects of intensity, and of species-specific differences. Our
study, conducted within an existing cohort, allowed a retro-
spective assessment of the effects of untreated helminths
(compared to no helminths) on HIV progression measured
by CD4

 

+

 

 T cell decline. No statistically significant effects
were observed.

Prospective studies of the effects of treatment of helminths
are summarized in Table 3. These require consideration of
the progressive nature of HIV disease. So far the presump-
tion that helminths are detrimental has generally led to the
view that helminth infections, once identified, should be
treated. Lawn and colleagues found that viral load increased
progressively over 15 months after successful treatment of
schistosomiasis with praziquantel, and that the increase was
not related to the degree of decline in egg count or serum
circulating cathodic antigen (CCA), suggesting, perhaps, a
lack of association with the treatment. However, lack of a
comparison group made it impossible to distinguish effects
of HIV progression and praziquantel treatment (56). Kalle-
strup and colleagues addressed this issue by randomising
participants with schistosomiasis and HIV infection to
immediate vs. delayed praziquantel treatment. At 3 months
they found no change in viral load in the treated group, but
an increase in the untreated group (34). On the other hand,
we have twice observed a significant transient increase in
viral load approximately one month after de-worming, in
particular, after praziquantel treatment in HIV–

 

Schistosoma

 

co-infection; this could be related to Th2 responses to dying
schistosomes and to loss of the anti-inflammatory effects of

Table 2 Associations between helminth infections and CD4+ T cell count and viral load in HIV-positive subjects

Total number 
of HIV positive 
participants

Number infected and 
helminth species

Effect of co-infection 
with helminths on 
CD4+ T cell count 

Effect of co-infection 
with helminths on 
viral load Country (ref) Comments

111 54 All species Higher (P = 0·02) NS Zambia (51)
(predominant species: 
Ascaris and 
hookworm)

185 143 Schistosomiasis NS Not done Zimbabwe (38) Compared subjects 
with and without 
schistosomiasis

539 290 All species NS Higher (P = 0·03)a Uganda (52) a(NS after
Hookworm Higher (P = 0·007) NS adjustment for 

potential confounding 
factors)

S. mansoni NS NS
Strongyloides NS Higher (P = 0·02)a

Mansonella Higher (P = 0·04)a NS
108 39 All species Higher (P = 0·005) NS Uganda (53)

(predominant species:
S. mansoni and 
hookworm)

56 31 All species NS NS Ethiopia (54)
(predominant species: 
Trichuris and Ascaris)

365 161 All speciesb NS Lower (P = 0·02) Brazil (42) b‘All species’ includes 
protozoa; information 
for all helminths 
without protozoa not 
given

(predominant species: 
Ascaris,Strongyloides,
Trichuris and 
hookworm)

S. mansoni: Schistosoma mansoni; S. haematobium: Schistosoma haematobium. NS: no statistically significant effect.
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Table 3 Associations between helminths and worm infections: prospective studies of treatment

Number of 
participants 
and helminth 
species Treatment

Follow-up 
time

Comparison 
made

Change in 
CD4 with 
treatment

Change in viral 
load (VL) with 
treatment Country (ref) Comments

130 participants 
with S. mansoni 
and/or 
S. haematobium

Prazi 40 mg/kg 3 months Untreated 
vs. treated

No 
significant 
change in 
either group

No change in 
treated group; 
increase in 
untreated group

Zimbabwe (34) P = 0·03 for 
difference in 
change in viral load 
between treated and 
untreated groups

54 participants 
(predominantly
Ascaris and 
hookworm)

Two treatments, 
1 mth apart, with 
alb (3 days,400, 
200, 200 mg) and 
prazi (40 mg/kg, 
divided)

9 weeks Uninfected 
vs. infected

No 
significant 
change in 
either group

No significant 
change in either 
group

Zambia (51)
VL declined after 
treatment in 6 
people with high 
intensity infection

234 participants 
with helminths

Alb 400 mg stata 6 months Successfully 
treated vs. 
persistently 
infected 

NS NS
Uganda (52)

aPlus additional 
specific treatment 
for S. mansoni or 
Strongyloides if  
indicated. In the 
cohort as a whole, 
CD4 count declined 
over 6 months 
(P < 0·001); viral 
load showed no 
significant change

97 Hookworm Alb 400 mg stat NS NS

159 S. mansoni Prazi 40 mg/kg Larger 
decrease if  
cleared 
(P = 0·05)

NS

53 Strongyloides Alb 400 mg bd 3/7 NS NS

40 Mansonella None NS Increase if  
cleared, 
decrease if  
persisted 
(P = 0·005)

31 participants 
with helminths 
(predominantly 
Trichuris and 
Ascaris)

Three treatments, 
3 mth apart, with 
alb 200 mg daily, 
3 days; plus prazi 
(40 mg/kg, 
divided, for 
schistosomiasis)

6 months Uninfected 
vs. 
successfully 
treated vs. 
persistently 
infected

No change 
in any group

Decrease in 
successfully 
treated group; 
increase in 
uninfected and 
persistently 
infected groups 
(P = 0·04)b

Ethiopia (54)
bP-value for 
comparison with 
successfully treated 
group.

30 men with 
S. mansoni

Single dose of 
prazi 40 mg/kg

1–15 months None Not 
reported

Increased Kenya (56) No correlation 
between changein 
VL and change in 
egg count or CCA 
concentration 

S. mansoni: Schistosoma mansoni; S. haematobium: Schistosoma haematobium. Alb: albendazole. prazi: praziquantel. NS: no statistically 
significant difference between the groups compared.
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schistosome-induced IL-10 (53,55). This may be important
with regard to the treatment of helminths in HIV-infected
women during pregnancy, as a transient rise in viral load
might have the reverse of the desired effect on vertical HIV
transmission. Modjarrad and colleagues compared changes
in CD4 counts and viral load over an approximately 9-week
period between participants who were treated for helminths
(predominantly hookworm and Ascaris) and participants
without helminths, who were untreated. They found little
change in CD4 count or viral load in either group (51). In
other studies, comparisons have been made, within helminth-
infected groups, between those treated successfully and those
with persistent infection. Wolday and colleagues (Ascaris
and Trichuris) observed a decrease in viral load following
successful treatment, and an increase with persistent
infection (54), but no such effect was observed for the
common species (S. mansoni, hookworm, Strongyloides and
Mansonella) in our study in Uganda. In fact, in Uganda,
particular interest again attached to Mansonella. This
species was not susceptible to the treatments given, and, being
regarded as non-pathogenic, was not specifically treated.
Persistence of infection was associated with a decline in viral
load, and spontaneous clearing of infection with an increase
(52).

Thus cross-sectional, retrospective and prospective data
to date fail to support the hypothesis that helminth infection,
in general, promotes HIV progression, but the findings
reported by Kallestrup and colleagues, together with studies
in a macaque model, point to a detrimental effect of schis-
tosomiasis (12,34). In the macaque, effects were observed
principally in association with initial viral inoculation and
with the development of adult worms and egg-laying following
new or renewed schistosome infection; this is perhaps in keeping
with the tendency of schistosome eggs to induce pathological
inflammatory responses. Further, there is some evidence
that schistosomiasis may be associated with increased sus-
ceptibility to tuberculosis in people with HIV infection (57):
if  this is the case, schistosomiasis could promote HIV
progression indirectly, by increasing susceptibility to addi-
tional co-infections with a more potent influence on viral
replication (58,59). Schistosomiasis aside, there are some
hints that high intensity infections with certain helminth
species may be associated with higher viral loads, which may
decline with treatment, but, to be convincing, these findings
would need to be confirmed in larger studies. The vast
majority of HIV-infected adults with helminths have low
intensity infections, so the effects, if  any, of low-intensity
infections are pertinent. As suggested by Modjarrad and
colleagues, the effects of high intensity helminth infections
may be best explored, and most relevant, among children
with HIV, where both worm burden and viral load tend to
be high (51). There are hints, too, of differences in effect

between helminth species, and even of possible benefits of
helminth infection; these need to be investigated in more
focused, prospective studies; uncertainty regarding the
advantages and disadvantages of  treatment suggest that
placebo-controlled trials would be justified.

Effects of helminths on vaccination against HIV
No vaccine against HIV is yet ready for implementation
(60), but there is evidence that helminth infection can alter
both cellular and antibody responses to other, existing
vaccines (61–69); suppression of responses and switching to
a Th2 profile have both been observed. Effects may differ for
vaccines given orally (where effects of intestinal helminths
on the mucosa may suppress the development of the
response (66,67)), compared with parenteral vaccines; and
for live vectors (viral vectors, Salmonella or Bacille Calmette
Guérin (BCG)), where there could be effects on the replica-
tion of the vector and hence the dose of vaccine antigen
experienced (69). Results of on-going studies of interactions
between helminths and existing vaccines, including the role
and timing of de-worming in determining vaccine efficacy,
are likely to be pertinent as HIV vaccines are developed,
tested and implemented; however, it is unlikely that helminth
infection accounts for the poor immunogenicity of vaccine
candidates tested in Africa to date: recent phase 1 trials of
DNA/modified vaccinia Ankara (MVA) vaccines showed
poor immunogenicity in both Africa and Europe (70–72).

Effects of HIV on helminths

HIV-induced CD4+ T-lymphocyte depletion, immune
activation and changes in Th1/Th2 and regulatory responses
should, in theory, affect the epidemiology of  helminth-
associated disease in co-infected individuals. Anticipated
effects might include changes in immunopathology, reduced
efficacy of  treatment and impaired resistance to infection
or re-infection. However, to date, there is surprisingly little
evidence of  effects of  HIV on these parameters. Most
information available is from Schistosoma, Onchocerca and
Strongyloides infections, as follows.

Animal models of  immunosuppression suggest that
granuloma formation and consequently schistosome egg
excretion might be reduced in HIV infection (73). Initial
studies in humans supported this hypothesis (47,74,75) with
evidence of reduced egg excretion in HIV-infected subjects.
Recent case reports describe symptomatic schistosomal infection
as an immune reconstitution phenomenon following antiret-
roviral therapy: these also imply that pathological responses
to schistosomes and schistosome eggs are suppressed in
advanced HIV disease and recover with reconstitution of
the immune response (76,77). However, other studies have
failed to demonstrate an effect of HIV on egg excretion or liver
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fibrosis (38,43,55,78). Similarly, efficacy of praziquantel,
which is considered to act, in part, by exposing worms to
immunologically mediated killing (79), has not been found
to be impaired in HIV-infected people (75,80). Karanja and
colleagues demonstrated a small effect of HIV on the acqui-
sition of  resistance to re-infection in heavily exposed
Kenyan adults, which may in part be explained by suppres-
sion of  post-treatment S. mansoni-specific cytokine and
antibody responses (81–83).

Studies from Uganda have explored associations between
Onchocerca volvulus infection and HIV status. Reduced
Onchocerca-specific cytokine and antibody responses were
found in HIV-co-infected individuals, which were more marked
in subjects with lower CD4+ counts, but skin microfilarial
densities were marginally lower in HIV-positive subjects and
it is difficult to exclude confounding by differences in exposure,
or reduced onchocercal fecundity in the presence of HIV
(84–86). Kipp and colleagues found more severe onchocercal
skin disease in co-infected patients, but this finding was based
on only six HIV-infected subjects (87). There was no effect
of HIV on ivermectin efficacy (85).

The effect of HIV on Strongyloides infection is of partic-
ular interest because of the severe manifestations of dissem-
inated S. stercoralis infection seen following immunosuppression
by corticosteroids, malignancy and HTLV-1 infection.
Although well described in HIV-infected subjects without
evidence of other mechanisms of immunosuppression, the
syndrome is less common than might be expected in regions
of high co-prevalence (88). Animal models suggest that host
immunosuppression facilitates dissemination by promoting
a switch towards direct development of Strongyloides larvae
into infective L3 larvae, thereby by-passing the free-living
adult stage and allowing auto-infection of  the host (89).
Following on from this work, we studied Strongyloides
development among HIV-infected adults in Uganda (90).
Charcoal stool cultures positive for Strongyloides were
dissected and the ratio of infective L3 larvae to free-living
adults was assessed. We expected that subjects with lower
CD4+ counts would have a higher proportion of infective L3
larvae, in keeping with animal models. In fact, the opposite
was found, with a positive correlation between direct devel-
opment and CD4+ count. This may explain the low inci-
dence of hyperinfection in HIV-infected adults, and attests
to differences in the nature of the immune deficit between
advanced HIV infection and other immunosuppressive
states: corticosteroid-induced immunosuppression is asso-
ciated with prominent expression of regulatory cytokines,
such as IL-10 (91), and HTLV-1 infection with depletion of
type 2 cytokines (92), but in HIV infection, regulatory T
cells may be preferentially destroyed (31) and type 2
cytokine responses may be relatively preserved (93). There
was no association between CD4+ count and total number

of larvae per culture in the Ugandan study (MB, unpub-
lished observations), which further argues against either an
increase in Strongyloides fecundity or burden. Thus although
the association between Strongyloides and HIV observed in
some co-prevalence studies may be due to increased suscep-
tibility to Strongyloides, this may be mediated by a mechanism
other than auto-infection. Recent case reports of symptomatic
strongyloidiasis presenting as an immune reconstitution
syndrome after initiation of antiretroviral therapy (ART)
suggest a protective effect of HIV-induced immunosuppres-
sion on some aspects of Strongyloides pathogenesis (94–96).

Thus results to date indicate that effects of HIV on the
pathological consequences of, and susceptibility to, helminth
infections may be minor compared with effects on viral,
bacterial and fungal infections, where a major component of
the increased susceptibility is loss of control of replication:
these organisms, unlike most helminths, complete their life-cycle
within the host. The hypothesis, suggested above, that
progressive impairment of immune regulation in HIV disease
can render the host environment less conducive to the
maintenance of parasitic helminth infections has not yet
been investigated.

CONCLUSIONS

Early hypotheses on potential mechanisms for helminth–
HIV interactions were inspired by the Th1/Th2 hypothesis.
These must now be superseded by models that take account
of regulatory mechanisms which are being shown to have a
potent effect on helminth-induced responses and, it emerges,
on HIV.

There is epidemiological evidence for a bi-directional
interaction between helminths and HIV; the direction of
effects is not easy to disentangle in observational studies
and there is a pressing need for well-designed, randomised,
controlled intervention trials. These must take into account
the possibility of differences in effect between helminth spe-
cies, stage and intensity of infection; between effects on the
acquisition, and effects on the progression, of HIV infection;
and perhaps indirect effects of helminths mediated by a possible
increase in susceptibility to additional co-infections such as
malaria (7,8) and tuberculosis (11,57–59,68).

Consider the following suggestion. Host–parasite rela-
tionships (exemplified by Mansonella, perhaps also hook-
worm) that are characterized by minimal pathology, implying
balanced interactions between inflammatory and regulatory
responses, might not promote viral replication; their effect
might be neutral or even protective with regard to HIV
progression; their removal might promote viral replication
by reducing regulatory control of transcription. They might,
however, be associated with less effective immune responses
after initial inoculation of virus or vaccine. Conversely, their
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host–parasite balance might be vulnerable to selective loss
of  components of  the immune response during HIV
progression, leading to lower prevalence with advancing
HIV disease. Host–parasite interactions such as schisto-
somiasis, where inflammatory responses have persisted
through evolution, perhaps due to a selective advantage for
parasite egg excretion, may be more detrimental with regard
to HIV infection and treatment may be beneficial in most
circumstances.

The past decade has brought to light the interest and
complexity of helminth–HIV interactions. The next decade
provides opportunities for definitive studies.
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