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Abstract 

Background: High and low ambient temperature, and increased pollution levels 

have been associated with increases in both overall and cardiovascular 

mortality, but systematic reviews suggested that associations with myocardial 

infarction (MI) specifically are unclear. 

Methods: Using data from the Myocardial Ischaemia National Audit Project 

(MINAP) registry, which aims to record all hospital admissions for acute 

coronary events in England and Wales, daily numbers of MI admissions in 15 

large conurbations in England and Wales during 2003-6 were related first to 

daily mean temperature, and then daily mean levels of five pollutants 

(particulate matter with diameter < 10µm or PM10, ozone, CO, NO2 and SO2). 

Poisson-based regression models were used, allowing for delayed effects and 

adjusted for a number of potential time-varying confounding factors. In a 

subsequent analysis the effects of each pollutant were investigated at an hourly 

temporal resolution, using a case crossover study design. 

Results: 84010 MI events were recorded in the 15 conurbations during the 

study period. Ambient temperature was inversely associated with MI risk in a 

broadly linear relationship, with each 1°C decrease in temperature associated 

with a 2% (95% CI 1.1 to 2.9) increase in MI risk over the current and 

subsequent 28 days. Elderly individuals up to age 85 years and those with 

previous coronary heart disease appeared to be most vulnerable to the effect. 

No detrimental effect of higher temperatures was observed. There was little 

evidence that daily pollutant levels were associated with MI risk. In hourly 

analyses, 10µg/m3 increases in PM10 and NO2 levels were respectively 

associated with 1.0% (0.0 to 2.0) and 2.0% (0.8 to 3.3) increases in MI risk 1-6 

hours later, but this was followed by a period of reduced risk at longer lags. 

Conclusions: Lower temperatures appear to be associated with an increased 

risk of MI; adaptive measures and public health interventions may have a role in 

mitigating this effect. A transiently increased risk of MI a few hours after 

exposure to higher levels of PM10 and NO2 appears to be followed by risk 

reductions at longer lags and may reflect events being triggered a few hours 

earlier than they would have otherwise occurred. 
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1 Background 

1.1 Introduction 

In this chapter, the definition and epidemiology of myocardial infarction are 

outlined, the environmental exposures relevant to this thesis are introduced, 

and the evidence for associations of these environmental exposures with broad 

health outcomes including overall and cardiovascular mortality is briefly 

reviewed. Finally, the aims and objectives of the thesis are described. 

1.2 Myocardial infarction 

1.2.1 Definition, diagnosis, and treatment 

The term myocardial infarction (MI), commonly known as heart attack, refers to 

evidence of myocardial necrosis in the presence of myocardial ischaemia. In the 

majority of cases, this is caused by coronary artery occlusion, due to the rupture 

of built-up plaques from the vessel wall triggering platelet aggregation and clot 

formation (Figure 1.1).1 Symptoms of MI typically include chest pain and 

shortness of breath, though other symptoms can occur, and a proportion of MIs 

have no symptoms at all. 

Figure 1.1: Illustration of myocardial infarction [reproduced from US Federal Government public 
domain illustration

2
] 

 

 

In patients with suspected MI, standard investigations include examination of a 

12-lead electrocardiograph (ECG) trace, and measurement of the levels of 
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biomarkers indicative of tissue death (specifically troponin and/or creatine 

kinase-MB (CK-MB)). Firm diagnosis in a clinical setting is usually based on a 

characteristic rise and fall in levels of one or both of these biomarkers, along 

with typical ECG changes, typical symptoms, or imaging evidence showing loss 

of myocardium.3  MIs can be classified as ST-elevation MI (STEMI) and non-

STEMI. ST-elevation refers to a characteristic of the ECG trace (Figure 1.2). In 

clinical terms, STEMI usually implies complete and persistent occlusion of the 

coronary artery with progressive death of heart tissue; non-STEMI implies 

incomplete or temporary occlusion, though some evidence of myocardial 

necrosis (e.g. raised biomarkers such as troponin or CK-MB) must still be 

present, to distinguish the event from an episode of unstable angina.   

 
Figure 1.2: ECG trace without (A) and with (B) ST-elevation [reproduced from University of New 
Mexico EKG course learning resources

4
] 

 

 

Various treatment options exist for MI. Rapid reperfusion using a thrombolytic 

drug delivered intravenously is an established  standard treatment of choice for 

acute STEMI,5 while non-STEMIs may be treated with anticoagulation and 

antiplatelet agents in the first instance.1 Treatment of MI may also include 

coronary artery bypass grafting (CABG), or percutaneous coronary intervention 

(PCI), also known as angioplasty, in which the obstructed artery is mechanically 

widened using a balloon and/or stents. Long-term drug therapy and lifestyle 

changes may be indicated for secondary prevention. 
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1.2.2 Epidemiology and risk factors  

MI is a manifestation of ischaemic heart disease (IHD), which is the leading 

cause of mortality in both developed and developing countries, accounting for 

7.2 million deaths worldwide each year according to the World Health 

Organization’s 2004 Global Burden of Disease data.6 In the UK an estimated 

146000 myocardial infarctions occur annually, with 60% of diagnoses among 

men and incidence increasing with age.7 

The INTERHEART study, which included over 15000 MI cases and a similar 

number of controls, examined potentially modifiable risk factors for MI in 52 

countries and estimated that, within age groups, smoking, alcohol, physical 

activity, obesity, fruit and vegetable intake, diabetes, hypertension and 

abnormal lipids together accounted for 90% and 94% of the population 

attributable risk of MI in men and women respectively, in all regions.8 

1.3 Health effects of environmental exposures 

A number of environmental exposures have been linked with human health 

outcomes, and relevant to this thesis are the effects of ambient temperature, 

and a range of common pollutant exposures. The nature of these exposures 

and their effects on broad health outcomes are outlined below. 

1.3.1 Ambient temperature 

Ambient temperature in the context of this thesis refers to the air temperature to 

which individuals are exposed in their daily lives, and in practice most large-

scale research studies take outdoor temperature, as measured by weather 

monitoring stations, as the best available proxy for this.  

Ambient outdoor temperature has been shown in a number of studies to affect 

overall mortality rates in the short-term. A noteworthy study conducted in 11 US 

cities demonstrated a U-shaped relationship between temperature and all-

cause mortality: mortality was observed to decrease as temperatures increased 

from the coldest days up to a certain threshold temperature, above which 

mortality increased with temperature (Figure 1.3).9-10  

Other studies in Europe11-12, the US13-14, and a number of lower and middle-

income countries15 have similarly demonstrated increases in mortality at higher 
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and lower temperatures, and specific periods of extreme cold or heat, so-called 

“cold snaps” and “heat waves”, have been associated with mortality peaks.16 

Ambient temperature may have a delayed, or “lagged”, effect on mortality: while 

heat is commonly associated with immediate (same day or next day) increases 

in mortality, cold effects have been found to operate up to several weeks after 

the temperature reduction.17  

Temperature-mortality relationships are unlikely to be explained purely by direct 

hypothermia/hyperthermia deaths. Indeed, as well as overall mortality, ambient 

outdoor temperature has also been linked to mortality from a number of specific 

causes, including cardiovascular diseases (CVDs); again U-shaped 

relationships have been described,18 and studies have shown increases in CVD 

mortality associated both with cold19-22 and hot23-24 outdoor temperatures.  

Figure 1.3: Relative risk of mortality by temperature in 11 US Cities [reproduced from Curriero et 
al

9
] 

 

Note: non-parametric smoothing functions (splines) were used to summarise non-linear 
associations between temperature and mortality 

 

Mortality studies suggest that there may be increased vulnerability to the effects 

of temperature among the elderly,19, 25-27 US studies have also shown an 

increased vulnerability among individual living in lower socioeconomic 

conditions,9, 28 though this may be partly explained by a greater prevalence of 
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air conditioning among those with higher incomes: in Europe, where home air 

conditioning is less common, there is less evidence of a socioeconomic 

gradient.29 Existing medical problems including diabetes and chronic obstructive 

pulmonary disorder also appear to increase the likelihood of temperature-

associated death.13 In the US, the most pronounced cold effects were observed 

in southern cities, and the most pronounced heat effects in and northern cities 

(Figure 1.3),9 suggesting that the temperature-mortality association may be 

affected by latitude. Correspondingly, in Europe, larger effects of cold have 

been observed in warmer southern regions.12, 19 It has been suggested that 

populations familiar with local hot or cold extremes may have established 

adaptation measures, such as using appropriate clothing, installing heating/air 

conditioning, and reducing outdoor activity, and that this may at least partly 

explain the apparent latitude effect.12 

The effects of temperature on morbidity and mortality from MI specifically have 

not been investigated as commonly as the effects on broader outcomes; the 

existing evidence on this specific question is examined in detail in Chapter 2.  

1.3.2 Air pollution 

1.3.2.1 Overview of specific pollutants and their sources 

The term air pollution covers a wide range of exposures with potential health 

consequences, some of which are specific to certain locations (e.g. around 

industrial sources). This thesis concentrates on a smaller subset of pollutants 

which are common to most populated areas, are routinely measured, and have 

relatively well-established associations with various health outcomes; these are 

particulate matter (PM), ozone, carbon monoxide (CO), oxides of nitrogen 

including nitrogen dioxide (NO2), and sulphur dioxide (SO2).
30-31  

PM 

PM consists of solid and liquid particles suspended in air. The composition is 

highly variable and depends on the source; carbon, nitrates, sulphates, organic 

compounds, biological material and various metals are commonly found in PM, 

though many other chemicals and materials have been detected.31 Partly due to 

its compositional heterogeneity, PM is commonly classified not on composition 
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but size, and this is of relevance to its potential health effects: particulate matter 

with diameter less than approximately 10µm (“thoracic particles”, known as 

PM10) can settle in the bronchi and lungs, while particles with diameter less than 

approximately 2.5µm (“fine particles”, PM2.5) can reach the gas exchange 

regions of the lung. Yet smaller particles with diameter <0.1µg (“ultrafine 

particles”, PM0.1) may be able to pass rapidly into the systemic circulation.
32 

PM10 is the most widely monitored class of particulate pollutants; widespread 

monitoring data on fine and ultrafine particles are lacking. Sources of PM are 

extremely wide-ranging, but motor vehicles are a major human source, 

particularly in urban areas. 

Ozone 

Ozone, sometimes known by its chemical formula O3, is an allotrope of oxygen 

consisting of triatomic oxygen molecules. It occurs naturally in the upper 

atmosphere where it is formed by the action of sunlight on common diatomic 

oxygen (O2). Ozone as a pollutant is usually formed indirectly from NO2. 

Molecules of the latter, in the presence of sunlight, can split into NO plus an 

oxygen atom (O) which may then react with an oxygen molecule (O2) to form 

ozone. The resulting NO and ozone are unstable and will under favourable 

conditions rapidly react to regenerate NO2 and oxygen, but this reaction is 

impeded in the presence of various reactive organic compounds. Thus sources 

which emit both NO2 and these reactive organic compounds are the most 

important cause of net ozone level increases. Motor vehicles and certain 

industrial processes are the common culprits. The immediate effects of 

exposure to high concentrations of ozone include irritation of the respiratory 

tract, as well as chest tightness, coughing and wheezing. 

CO 

CO, a colourless and odourless gas, is formed as a result of the incomplete 

combustion of fossil fuels; there are numerous sources, including some natural 

ones such as volcanoes. The main human sources of outdoor CO are petrol-

powered motor vehicle emissions and some industrial processes. Tobacco 

smoking and cooking/heating appliances are important indoor sources. CO has 

a strong affinity for haemoglobin, which can result in impaired transport of 
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oxygen around the body; indoors, undetected CO emissions, for example from 

malfunctioning fuel-burning appliances, can quickly become lethal. 

NO2 and nitrogen oxides 

There are a number of nitrogen oxides (NOx) that have been studied as air 

pollutants: NO, NO2, N2O4, and N2O5 but most studies concentrate on NO2, a 

foul-smelling gas which is the most widely monitored and the most stable of the 

compounds. The most important source of outdoor NO2 in urban areas is motor 

vehicle exhaust, though there are contributions from industry, in particular due 

to electricity generation from fossil fuels. There are also important indoor 

sources of NO2, most notably gas cookers, fireplaces, and tobacco smoke. At 

high levels, NO2 can exacerbate respiratory problems including asthma and 

bronchitis.33 

SO2 

SO2 is an invisible gas with a pungent odour. It reacts easily with water to form 

sulphurous acid and can form other harmful compounds. Breathing in high 

levels of SO2 can thus cause immediate irritation, as well as coughing and 

shortness of breath. Almost all of the SO2 in the air comes from human sources 

– the principal ones being industrial processes, such as electricity generation, 

that involve the burning of fossil fuels which contain sulphur, for example in 

coal-fired power stations. There are few significant indoor sources of SO2; 

indoor levels of the gas are generally low except in industrial settings. 

1.3.2.2 Health effects of air pollution 

As described above, exposure to and inhalation of these chemicals at high 

concentrations results in various well-known immediate effects such as irritation 

and respiratory problems. However, of greater concern in terms of public health 

are the effects of exposure to the lower levels present in the air as a result of 

pollution. Such concern has existed over several decades: the infamous London 

smog of 1952, which caused thousands of deaths, led to the passing of the UK 

Clean Air Act in 1956 and similar legislation elsewhere, which has in turn led to 

huge reductions in ambient pollution levels in many developed countries. 

However, even at the relatively low pollutant levels seen more recently, effects 
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on broad health outcomes have been observed, not only in experimental 

“chamber” studies (which are not reviewed here), but also in population-based 

studies. Early time-series studies demonstrated an effect of short-term changes 

in the levels of pollutants, in particular PM, on overall mortality in both the USA34 

and Europe.35 Two noteworthy prospective cohort studies also reported that 

mortality risk was increased by up to 26% for people living in cities with the 

highest mean pollution levels, after adjusting for individual risk factors such as 

smoking (Figure 1.4).36-37 

 
Figure 1.4: Estimated adjusted mortality-rate ratios and pollution levels in the Six Cities study 
[reproduced from Dockery et al]

36
 

 

 

More specific outcomes have also been investigated, and studies of 

cardiovascular mortality and morbidities have suggested that both day-to-day 
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changes in pollutant levels38-39 and longer-term exposure40-41 may affect risk. A 

major review of the epidemiological evidence on air pollution and cardiovascular 

disease conducted for the UK Department of Health stated that ‘‘a large number 

of time-series studies show very clearly that, with few exceptions, all of the 

commonly measured pollutants (particles, ozone, sulphur dioxide, nitrogen 

dioxide and carbon monoxide) are positively associated with increased mortality 

and hospital admissions for cardiovascular disease”.42 A statement from the 

American Heart Association emphasised the effects of PM, concluding that 

short-term increases in PM levels led to corresponding increases in 

cardiovascular mortality, and in hospital admissions for several cardiovascular 

diseases;31 the authors also reviewed possible mechanisms, with the two main 

theories being: (a) that a systemic inflammatory response to PM might lead, via 

various pathways, to accelerated plaque rupture or thrombosis; and (b) that an 

autonomic nervous system response might result in changes in heart rate and 

heart rate variability (Figure 1.5) 

 
Figure 1.5: Possible mechanisms for an effect of PM on cardiovascular disease [reproduced 
from Brook et al

31
] 
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As with temperature, it has been suggested that older individuals and those with 

lower socioeconomic status may be more vulnerable to pollution effects.36, 43-46 

Pre-existing coronary heart disease may also increase individuals’ vulnerability 

to the effects on cardiovascular mortality in particular;47 indeed thrombotic and 

ischaemic effects have been directly observed among men with coronary heart 

disease exposed to diesel exhaust under controlled conditions.48 

The majority of work on air pollution effects to date has made use of data on 

either overall mortality, or broadly categorised cause-specific mortality. 

Associations between pollutant levels and risk of MI specifically have been less 

commonly investigated. The existing evidence on this is examined in detail in 

Chapter 3. 

1.4 Thesis rationale and aims  

The observed effects of temperature and pollution on overall and cardiovascular 

mortality motivate more focused study regarding the effects on MI for two main 

reasons. First, mortality is likely to reflect only a small proportion of the total 

health impact of environmental exposure since many events do not directly 

result in death; if MI is susceptible to these environmental exposures, mortality 

studies are unlikely to fully capture the effects. Second, a clearer description of 

the effects on MI risk would reveal the extent to which these effects are drivers 

of the broader associations with mortality, and, given the specific 

pathophysiology of MI, may lead to a better understanding of potential triggering 

mechanisms at work.  

1.4.1 Aims 

The thesis has the following principal research aims: 

1. To review and describe the literature to date regarding the effects of 

temperature and air pollution on the specific outcome of MI. 

2. To characterise the short-term effects of temperature and air pollution on 

the risk of MI using new data from a UK setting, accounting for potential 

confounding factors. 

In addition, further objectives of the thesis are: 
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• To gain an understanding of the main analysis methods used to 

investigate the health effects of environmental exposures in population-

based studies, and the strengths and weaknesses of these methods. 

• If strong effects of temperature and pollution effects are found, to perform 

exploratory analyses to consider which subgroups of individuals, if any, 

may be most vulnerable to these effects. 

1.4.2 Organisation of the thesis 

Chapters 2 and 3 describe systematic reviews that were conducted to ascertain 

the current state of knowledge regarding the effects of temperature and air 

pollution respectively on the specific outcome of MI. Chapter 4 describes the 

data sources used for original analyses in this thesis, and the overall methods 

for the research. Chapter 5 provides a descriptive analysis of the data. Chapters 

6, 7 and 8 present the main new analyses performed for the thesis; in each of 

these chapters, the specific statistical methods are detailed, and the results 

presented and discussed. Chapter 6 describes the analysis investigating the 

short-term effects of ambient temperature on MI risk, while Chapters 7 and 8 

present analyses investigating the short-term effects of pollutant levels at a daily 

and then hourly temporal resolution.  Finally Chapter 9 summarises the main 

findings and discussion points from the body of the thesis. 
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1.5 Summary 

• MI, commonly known as heart attack, describes the death of heart tissue 

following an interruption of blood supply to the heart.  

• MI is one of the leading causes of mortality globally, and is more common 

among men and older individuals. There are a number of other known risk 

factors including smoking and abnormal lipids. 

• Both ambient temperature and air pollution have been associated with 

adverse health outcomes including overall and cardiovascular mortality. 

• This thesis will investigate the effects of temperature and pollution on the 

more specific outcome of MI, first through review of the existing evidence, 

and second through original analyses of new data.  
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2 Systematic review of the effects of ambient 

temperature on incidence of myocardial infarction 

2.1 Introduction and aims 

A substantial amount of research has been published on the effects of various 

aspects of weather on human health. The main objective of the systematic 

review presented below was to collate and present published evidence on one 

specific aspect of this wide topic, namely the effects of ambient temperature on 

the risk of myocardial infarction.  

2.2 Methods 

2.2.1 Search strategy 

2.2.1.1 Databases and sources 

Two large databases covering health and medical journals were searched: 

Medline (1950 to present) and EMBASE. Since meteorological exposures were 

being considered, the specialist database GEOBASE was also included. 

GEOBASE covers “development studies, the Earth sciences, ecology, 

geomechanics, human geography, and oceanography,” and was included to 

capture any relevant studies that might have been published in the 

geographical/meteorological rather than the medical literature. Reference lists 

of all relevant studies were also scanned to identify any further studies, and if 

these revealed that search terms had been missed, extra terms were added to 

the main database searches. In order to capture important “grey literature” the 

websites of the following organisations were scanned for relevant reports: World 

Health Organisation; European Union; Health Effects Institute (USA); 

Environmental Protection Agency (USA); National Institutes of Health (USA); 

Department of Health (UK); and Department for Environment, Food, and Rural 

Affairs (UK). As well as searching for original research, the reference lists of any 

relevant reviews appearing in their reports were also examined. 
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2.2.1.2 Search keywords and terms  

Medline is indexed according to MeSH terms. The following MeSH keywords 

were identified as relevant and combined as the primary search: 

[WEATHER or CLIMATE (plus all sub-terms in the MeSH tree)] and 

[MYOCARDIAL INFARCTION {subheadings: chemically induced, mortality, 

physiopathology, prevention and control, epidemiology, aetiology} (plus all sub-terms in the 

MeSH tree)] and HUMANS [not (ADOLESCENT or CHILD or INFANT not ADULT)]; limited 

to article types: JOURNAL ARTICLE or CLASSICAL ARTICLE or GOVERNMENT 

PUBLICATIONS or CLINICAL CONFERENCE or CLINICAL TRIAL or COMPARATIVE 

STUDY or META ANALYSIS; limited to language: ENGLISH 

The EMBASE database has its own classification of headings. Appropriate 

terms were identified leading to the following search: 

[WEATHER or CLIMATE or AIR TEMPERATURE or ENVIRONMENTAL TEMPERATURE 

(plus relevant sub-terms in the classification tree)] and  

[HEART INFARCTION or ACUTE HEART INFARCTION or HEART VENTRICLE 

INFARCTION]; limited to language: ENGLISH 

GEOBASE does not use a classification system, therefore a keyword search 

was used, with the following terms (* at the end of a term indicates that any 

ending is accepted): 

[WEATHER or CLIMAT* or TEMPERATURE or HEAT or COLD] and [MYCARDIAL 

INFARCT* or CORONARY EVENT or HEART ATTACK or Q WAVE INFARCT* or NON-Q 

WAVE INFARCT* or STEMI or MYOCARDIAL THROMBOSIS or CORONARY 

THROMBOSIS] 

A secondary search of Medline was then run to identify any studies where 

myocardial infarction may have been included as part of a wider study of 

cardiovascular outcomes (such studies would likely be indexed under a broader 

term than “myocardial infarction”). Thus this secondary search used the MeSH 

heading CARDIOVASCULAR DISEASES (plus all sub-terms) in place of 

MYOCARDIAL INFARCTION. To further restrict the search output to a 

manageable size and focus on the most relevant studies, the following terms 

were required to be present in the title, abstract, or keywords (* at the end of a 

term indicates that any ending is accepted): 
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(MYOCARDIAL INFARCT* or CORONARY EVENT or HEART ATTACK or Q WAVE 

INFARCT* or NON-Q WAVE INFARCT* or STEMI or CORONARY INFARCT* or HEART 

INFARCT* or MYOCARDIAL THROMBOSIS or CORONARY THROMBOSIS) 

2.2.1.3 Inclusion and exclusion criteria 

In order to capture studies which investigated the effects of ambient 

temperature on the risk of myocardial infarction, specific inclusion and exclusion 

criteria were applied to select studies from the search results.  

Inclusion criteria 

The following study characteristics were required for inclusion: 

1. Includes analysis of original data  

2. Ambient temperature included as an exposure (or a composite measure 

which incorporates this) 

3. Myocardial infarction included as a specific outcome 

4. Manuscript available in English language 

5. Study of adult humans  

Exclusion criteria 

Studies were excluded if they had: 

1. No control for (or stratification by) any potential confounding factors 

2. No measure of precision or p-value associated with main result(s) of 

interest 

The purpose of these exclusion criteria was to systematically exclude studies 

with generally very basic methodology, whose results, even if positive, would 

not provide convincing evidence regarding the effect of temperature on risk of 

MI. Which specific confounding factors should be controlled for was not 

specified, since there is some variation in which factors authors consider 

potentially important, and the dependence of results on the choice of covariates 

included in models could itself be informative. 
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2.2.1.4 Procedure 

Titles and abstracts from the above searches were screened for relevance. Full 

text versions of potentially relevant papers were then obtained where possible 

and assessed with reference to the inclusion and exclusion criteria (see Section 

2.2.1.3). For each study included, the following information was extracted: study 

population, event of interest, number included, age range included, location and 

setting, time period, exposure variables, ascertainment of MI, spatial resolution, 

temporal resolution, adjustment for air pollution and other potential confounders, 

lags considered. In addition, main results were recorded, in particular the effects 

of temperature on risk of myocardial infarction, including effect sizes and 

confidence intervals where possible. Where authors reported several relevant 

results (e.g. for different lag days, or for different subgroups), it was necessary 

to decide which result(s) to record; where a main or final model could be 

identified, this was chosen, otherwise results were recorded from the analysis 

on which the authors focused or that which best represented the overall 

conclusions of the study. Though this was a somewhat subjective process, in all 

cases, any important heterogeneity in the effect estimates between different 

analyses was noted. For context, the temperature range for the location studied 

was recorded where given. Finally, effects of other meteorological variables 

were also noted. 

The search was initially conducted in July 2008. An additional search was 

undertaken in July 2010 to identify major studies published since the systematic 

review (see Section 2.5). 

2.3 Results 

After running the search strategy and screening abstracts for relevance, a total 

of 57 full text articles were obtained for further inspection.  Of these, 42 met the 

primary inclusion criteria (Figure 2.1). 22 of these studies were excluded, four 

because they reported no direct effect estimates, and a further 18 because they 

did not control for any potential confounding factors. One further research paper 

was excluded because the same data were reported in a later paper, leaving a 

total of 19 studies in the main review. 



 

 
Figure 2.1: Flow diagram for search strategy
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The majority of studies selected for inclusion used a time series design to relate 

daily counts of MI events with daily measures of temperature. Analyses most 

Poisson regression modelling, a framework with the flexibility to 

allow adjustment for confounding factors; these studies may provide the best 
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publications investigated longer-term effects of temperature, or weather
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Finally, in section 2.3.3, the excluded studies (which were 
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measures of precision or p-values for the results of interest) are discussed.
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Table 2.1: Daily time series studies with temperature exposures and MI outcomes – description of studies 
First author & Year 
of publication 

Population/data 
source 

Location & Time period Number 
of MI 
events 
included 
(mean 
MIs/day) 

Main temperature 
exposure variable(s) 

Potential confounders 
included 

MI ascertainment Lags 
considered 
(days) 

Studies of Fatal &  
non-fatal events 

       

Gerber 
200649 

County medical 
care registers  

Olmsted County, USA 
1979-2002 

2676 
(0.3) 

Maximum temperature Annual population, 
calendar year, season, 
rain, snowfall 

Diagnoses compatible with MI 
extracted and validated using 
cardiac pain, biomarker, and 
ECG criteria 

None  

Wang  
200650 

Ambulance service 
centre data 

Hiroshima, Japan 
1993-2002 

3755 
(1.0) 

Mean temperature, 
humidity-adjusted 
temperature 

Atmospheric pressure  Diagnosis based on 
anamnestic, clinical, lab, and 
ECG criteria 

None 

Enquselassie 
199351 

MONICA morbidity 
registry (covering 
ages <70 years) 

Hunter Region, New 
South Wales, Australia 
1985-1990 

3889 
(1.9) 

Maximum temperature Calendar month, rainfall Non-fatal definite MI and fatal 
MI/sudden coronary death, 
based on MONICA ECG, 
symptom, and enzyme 
criteria52 

None 

Ohlson 
199153 

Single clinic 
diagnosis register 
(ages <70) 

Orebro, Sweden 
1985-1987 (cold 
seasons only) 

357 
(0.6) 

Windchill adjusted 
temperature (as 
measured at 7pm) 

Day of week, snowfall, 
atmospheric pressure 

Records with ICD8 code 
410.10, 410.99, or ICD9 code 
410A/B/W/X 

None 

Barnett 
200554 

24 MONICA 
morbidity registries 
(covering ages 35-
64 years) 

Europe, China, USA, 
Australia 
1980-1995 

87410 
(0.4 to 
2.8 by 
location) 

Mean temperature Season & trend, day of 
week, humidity 

Non-fatal definite MI and fatal 
definite/possible 
MI/unclassifiable event based 
on MONICA ECG, symptom, 
and enzyme criteria42 

0 to 14 
inclusive 

Morabito 
200555 

Hospitalisations 
database 
(Florentine area) 

Florence, Italy 
1998-2002 

2683 
(1.5) 

Hours of severe 
discomfort (based on 
extremes of apparent 
and windchill 
temperature indices) 

Stratified by season Records with ICD9 =410-
410.92 

0 to 3 inclusive 

Ebi 
200456 

Hospitalisations 
data (covering all 
non-federal 
hospitals) 
 

3 counties in California, 
USA 
1993-1998 

283031 
(4.5 to 
39.4 by 
location) 

Minimum & maximum 
temperature 

Season & trend Records with ICD9 code 410 0, 7, 14, 30  
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Koken 
200357 

Hospital admissions 
data (11 hospitals, 
covering ages 65+ 
years) 

Denver county, USA 
1993-1997 (July and 
August only) 

Not 
reported 

Maximum 
temperature, dewpoint 
temp 

Season & trend, day of 
week, air pollution 
variables  

Primary discharge diagnosis 
(ICD9=410.XX) 

0 to 4 inclusive 

Messner 
200258 

Hospital and GP 
records, and death 
certificates data 
(ages 25-64) 

Northern Sweden 
1985-1992 

3322 
(approx 
0.9**) 

Temperature, change 
in temperature from 
previous day  

Season, humidity, air 
pressure, change in 
humidity and air pressure 
from previous day 

Suspected cases validated 
using symptom, ECG, and 
enzyme marker data 

None 

Danet 
199959 

Lille-WHO MONICA 
morbidity registry 
(covering ages 25-
64 years) 

Nord district, France 
1985-1994 

3314 
(approx 
0.9**) 

Mean temperature Annual population, mean 
atmospheric pressure, 
calendar year 

Non-fatal definite MIs and fatal 
definite/possible MIs, based 
on MONICA ECG, symptom, 
and enzyme criteria

52
 

None 

Fatal events only        

Dilaveris 
200660 

Death certificate 
data 

Athens territory 
2001 

3126 
(8.6) 

Daily 
mean/minimum/maxi
mum temperature 

Atmospheric pressure, 
relative humidity, season 
(based on calendar date) 

Death certificates with ICD10 
codes of I20.0-4, I21.9, I22.0, 
I22.1, I22.8, I22.9) 

Mean of 0, 7  

Sharovsky 
200461 

Death registry data Sao Paulo, Brazil 
1996-1998 

12007 
(16.4) 

Mean temperature Season & trend, relative 
humidity, atmospheric 
pressure, day of week, 
holidays, influenza levels, 
air pollution variables 

Death certificates with MI 
(ICD10 = I21) listed as primary 
cause 

0, and moving 
average of up 
to previous 7 
days 

Rossi 
199962 

Vital statistics 
department 
mortality data 

Milan, Italy 
1985-1989 

Approx 
1600* 
(0.9) 

Mean temperature Season & trend, relative 
humidity, day of week, 
holidays, respiratory 
infection epidemics, 
pollution variables 

Deaths with ICD9 codes of 
410 

Different lags 
considered, 
exact strategy 
unclear 

* derived from reported mean daily rate, and length of period under study 
** derived from reported total number of events, and reported length of study  
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 Table 2.2: Daily time series studies with temperature exposures and MI outcomes – summary/interpretation 
First author & Year # MIs  Long-term local mean 

temp and annual 
range+ (°C) 

Detrimental effect of 
cold? 

Detrimental effect of heat? 
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e
c
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Studies of Fatal &  non-fatal events              
Gerber 200649 2676 7 (-10.8 to 21.2) No No � � � � � � � � � 

Wang 200650 3755 16.7 (5.6 to 28.3) Yes No � � � � � � � � � 

Enquselassie 199351 3889 17.9 (11.9 to 23.7) Yes (fatal MIs only) No �* � � � � � � � � 

Ohlson 199153 357 6.3 (-3.9 to 17.3) No N/A � � � � � � � � � 

Barnett 200554 87410 - Yes No � � � � � � � � � 

Morabito 200555 2683 14.1 (5.8 to 23.5) Yes Yes (for increased hours of 
discomfort) 

� � � � � � � � � 

Ebi 200456 283031 14.7 (10.1 to 18.6) to 
19.3 (14.8 to 24.4) 

Certain regions only (1/3 
regions for night temp; 
2/3 regions for day temp) 

Certain regions only (2/3 
regions for night temp;0/3 
regions for day temp) 

� � � � � � � � � 

Koken 200357 Not 
given 

9.7 (-1.4 to 21.9) N/A Yes 
� � � � � � � � � 

Messner 200258 3322 -1.4 (-15.6 to 13.5) to 
4.6 (-5.5 to 16.5) 

No Yes (change from previous 
day, non-fatal MIs only) 

�** � � � � � � � � 

Danet 199959 3314 10.6 (2.0 to 19.1) Yes No �**
* 

� � � � � � � � 

Fatal events only     
         

Dilaveris 200660 3126 18.0 (8.6 to 28.4) Yes Yes �* � � � � � � � � 

Sharovsky 200461 12007 18.0 (13.9 to 21.8) Yes Yes � � � � � � � � � 

Rossi 199962 Approx 
1600 

12.8 (3.8 to 22.9) Not mentioned Yes 
� � � � � � � � � 

+: 10-year average of the monthly mean temperatures, and of the minimum and maximum monthly mean temperature in the study area, as recorded at the nearest available monitoring station included in 
the Goddard Institute for Space Studies (GISS) Surface Temperature Data63, using data from the years 1991-2000 inclusive 
*: authors adjusted for calendar month, which should have approximately captured any season effect 
**: authors performed a basic adjustment for season in a sensitivity analysis which did not change the conclusions 
***: authors adjusted for annual population and calendar year, which should have approximately captured any long-term trend 
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Table 2.3: Daily time series studies with temperature exposures and MI outcomes – study results 
First author & Year Temperature 

variable$, range [if 
reported] (°C) 

Relative risk or rate 
ratio for temperature 
(95% CI if reported) 

(Change in temperature 
variable to which RR refers) 

Subgroup to which 
RR refers (if 
applicable) 

Lag for 
temp 
effect 
(days)  

Comment 

Studies of Fatal &  
non-fatal events 

      

Gerber 
200649 

tmax 0.93 (0.73, 1.14) >30°C   0 - 

-29 to 39 1.00 (reference) 18-30°C 

 0.97 (0.89, 1.06) 0-17°C 

 1.03 (0.92, 1.14) <0°C  

Wang  
200650 

tmean 1.00 (reference) >20°C  0 - 

-0.9 to 32.7 1.12 (0.99, 1.27) 10-20°C 

 1.17 (1.01, 1.35)                                                     <10°C 

Enquselassie 
199351 

tmax 1.2 (0.9, 1.5)*                  >30°C  fatal MIs 0 - 

<16 to >30 1.0 (reference) 23-27°C  “ 

 1.4 (1.1, 1.8)*              ≤16°C      “ 

    

 1.2 (0.9, 1.4)*              >30°C   non-fatal MIs 

 1.0 (reference) 23-27°C  “ 

 1.0 (0.8,1.3)*                      ≤16°C  “ 

Ohlson 
199153 

Twind 1.00 (reference) ≥0°C  0 - 

<-20 to >0 1.09 (0.82, 1.44)       -10 to -1°C   

 1.10 (0.79, 1.52)                    -20 to -11°C   

 1.12 (0.67, 1.85) <-20°C 

Barnett 
200554 

tmean 1.008 (1.004, 1.012) Per 1°C decrease   Av 0-3  Only a linear temperature effect appears 
to have been considered 1.5 to 23.0 

Morabito 
200555 
 
 
 
 

tmean, discomfort 
hours 

1.03 (p<0.01) Per extra 2 heat discomfort 
hrs     

summer, males, <65y 0 Only a linear effects of the exposure 
variables appear to have been 
considered. However, discomfort hours 
analysis was performed separately for 
winter and summer. 

1.06 (p<0.01) Per extra 2 cold discomfort 
hrs   

winter, females, ³65y 
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Ebi 
200456 

tmin, tmax 1.072 (1.057, 1.086)  Per 3°C decrease [tmin]   males, 55-69y, LA+ 7 Only linear temperature effects appears 
to have been considered. Effects for age 
≥70y and for women were all in the 
same direction as those shown here. 

-1 to 37 [tmin] 1.008 (1.004, 1.012) Per 3°C increase [tmin] males, 55-69y, SF+ 

 1.223 (1.083, 1.381) Per 3°C increase [tmin]  males, 55-69y, Sa+ 

    

 1.025 (1.000, 1.052) Per 3°C increase [tmax]  males, 55-69y, LA+ 

 1.066 (1.023, 1.111) Per 3°C decrease [tmax]  males, 55-69y, SF+ 

 1.109 (1.051, 1.169) Per 3°C decrease [tmax]  males, 55-69y, Sa+ 

Koken 
200357 

tmax 1.175 (1.029, 1.343)  Per 5.9°C increase  ≥65y 0 Analysis was for July/August only 

16.7 to 30.8 
Messner 
200258 

temp, tchange 1.001 (0.993, 1.008)  Per 1°C decrease [temp]  fatal MIs 0 Only linear temperature effects appears 
to have been considered  -38 to 30 [temp] 1.000 (0.997, 1.003)  Per 1°C increase [temp]  non-fatal MIs| 

    

 1.003 (0.979, 1.028)  Per 1°C increase [tchange]  fatal MIs 

 1.015 (1.003, 1.027)  Per 1°C increase [tchange]  non-fatal MIs 

Danet 
199959 

tmean 1.05 (1.02, 1.09)  Per 5°C decrease   0 Only linear temperature effects appears 
to have been considered  -15 to 28 

Fatal events only       
Dilaveris 
200660 

tmean 1.13* 30°C  Mean of 
last 7 
days 

Results are from fitted the regression 
line, which shows minimum event rate at 
23.3°C, with the event rate increasing 
smoothly above and below this 
temperature (levelling off at mean 
temperatures below 10°C) 

1 to 39 1.00 (reference) 23.3°C  

 1.40* 10°C 

 (p<0.001)  

Sharovsky 
200461 

tmean 1.11 (1.06, 1.16)* 23.8-27.3°C   2-day 
average 

- 

11 to 27 1.00 (reference) 21.6-22.6°C 

 1.16 (1.05, 1.27)*         16.4-17.3°C  

 1.17 (1.07, 1.28)* 15.2-16.4°C  

 1.31 (1.19, 1.44) *                       11.0-15.2°C  

Rossi 
199962 

tmean 1.44 (1.10, 1.90)  >27°C  1 Effect of colder temperatures is not 
described 

-6 to 32 1.00 (reference) 14°C  
£: note, % changes were converted to RR by dividing by 100 and adding one 
$: key to abbreviations -  tmax = daily maximum temperature, tmin = daily minimum temperature, tmean = daily mean temperature, discomfort = number of discomfort hours per day, temp = temperature 
(unspecified), tchange = temperature change from previous day, twind = windchill-adjusted temperature, tfelt = felt temperature 
*:  approximate RR, derived from graphical presentation of results 
+: LA = Los Angeles region, SF = San Francisco region, Sa = Sacramento region
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Only one study used a different design: Hirasawa et al64 looked at the 

effectiveness of 10 meteorological parameters in discriminating between days 

with and without MI events in Hokkaido, Japan; however this small study 

identified no useful discriminating factors. The 13 daily time-series studies are 

now considered in more detail. 

2.3.1.1 Methodological considerations 

Variations in methodological aspects of the 13 daily time series studies 

occurred in three main areas: ascertainment and validation of MI outcome 

events; adjustment for potential confounding factors; and flexibility of the fitted 

temperature effect in terms of allowance for non-linear and delayed (or 

“lagged”) effects. 

MI data came from a variety of sources, the primary sources being hospital, 

clinic or medical care databases (n=6), morbidity registries (n=3), ambulance 

data (n=1), and death certificate/mortality data (n=3). Most studies, including all 

of those concentrating purely on mortality data, generally took the cause of 

death as coded in the source data. Such cause of death coding may be 

unreliable and this strategy is likely to have led to non-MI deaths being included 

to some degree. However five studies, with access to symptom, ECG, and 

biomarker records, validated potential MI events using specific diagnostic 

criteria (Table 2.1). 

Adjustment for regular seasonal patterns within years, and for long-term trends 

over a number of years, was performed to varying degrees in a number of 

studies and may, where performed, lead to more reliable estimates of short 

term temperature effects. Without adjustment for season, estimated 

temperature effects are likely to be dominated by longer-term differences (e.g. 

between winter and summer), and other factors which vary seasonally (such as 

other meteorological parameters, and levels of infectious disease) could 

confound associations. Control for long-term trend may be similarly important; 

event rates may change over the long-term, for example, due to changes over 

time in MI ascertainment, recording practices, advances in prevention, or in 

underlying population size; if such changes happened concurrently with long 
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term changes in temperature (e.g. a sequence of increasingly warm years), a 

spurious effect could be estimated.  

A few studies included more specific potential confounders. Potential 

confounders for the relationship between temperature and MI, since they must 

by definition be associated with temperature, are usually other time-varying 

external factors, such as other meteorological parameters, pollution levels such 

as ambient particulate matter and ozone, and levels of infectious diseases such 

as influenza. Of note, only 3 studies57, 61-62 made any adjustment for daily 

pollution levels, which are likely to be associated with daily temperature, and 

which a number of studies have suggested may affect short-term risk of MI. 

Finally, there was variation in the way temperature relationships were 

investigated. Six of the 13 studies appeared to investigate temperature only as 

a linear effect, meaning that U-shaped relationships similar to those reported in 

some mortality studies could not have been detected. In addition, only 7/13 

studies investigated the possibility of the effects of temperature on MI being 

delayed (“lagged”) by one or more days: this is a potentially important 

consideration if the effects of temperature on MI incidence extend beyond 

same-day effects; for example, an extreme cold day may lead to an increase in 

MI incidence over the next several days. Even among studies that considered 

this, the potential lagged effects investigated varied widely, ranging from 1 to 30 

days. 

2.3.1.2 Reported effects of temperature 

The main results of the 13 time series studies investigating the short-term 

effects of temperature are shown in Table 2.2 and Table 2.3. Overall, 8 of the 

12 studies which included data from the winter season reported a statistically 

significant increased risk of MI at colder temperatures, either overall or for some 

subgroup, while statistically significant increases in MI risk with higher 

temperatures were reported in 7 out of the 13 studies. Four studies reported 

separate effects of both heat and cold. The studies can be divided into those 

including data on fatal MIs only, and those including non-fatal events. 
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Studies of fatal events 

Three studies analysed the effects of temperature on death from MI. Sharovsky 

et al61, using mortality data from Sao Paulo, Brazil where the lowest mean 

temperature was 11°C, found that both cold and heat increased the MI risk. 

There were 31% more MI deaths on days in the coldest mean temperature 

category of 11.0-15.2°C compared with 21.6-22.6°C (RR=1.31 [95% CI 1.19 to 

1.44]). On the warmest days (23.8-27.3°C), the authors estimated an 11% 

higher risk of fatal MI with respect to the same reference group (RR=1.11 [1.06, 

1.16]). The study adjusted for daily levels of air pollutants (sulphur dioxide, 

carbon monoxide, and particulate matter), as well as other meteorological 

variables, influenza levels, and day of the week. Dilaveris et al60 also observed 

both cold and heat effects: in an analysis of data from Athens which were 

presented graphically, a minimum death rate was identified at 23.3°C, with the 

death rate increasing at both higher and lower temperatures compared to this 

optimum (daily MI deaths increased by approximately 13% at 30°C and by 40% 

at 10°C). The analysis adjusted for other meteorological factors (humidity and 

atmospheric pressure). Rossi et al62 also performed an analysis including both 

temperature and air pollution variables, using data from Milan, Italy. Fatal MI 

was one of several outcomes in reported in the paper, and comprehensive 

results were not given for the MI outcome. However, the authors did report a 

detrimental effect of hotter daily mean temperature on the risk of fatal MI 

(RR=1.44 [1.10, 1.90] for >27°C vs. 14°C); no effect of cold was mentioned. 

An important potential weakness of these three studies is that MIs were 

ascertained purely through cause of death data as recorded on death 

certificates or death registries, raising the possibility that cause of death coding 

errors could potentially have led to a substantial proportion of unrelated deaths 

being counted as MIs. 

Studies including non-fatal events 

The remaining 10 studies included data on non-fatal MI events. The only 

international study included was Barnett et al,54 in which data from 24 

populations with varying climates within the MONICA project were analysed. 

Significant effect of cold were observed on combined fatal and non-fatal 
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coronary events, with event counts falling as temperatures increased (RR = 

0.993 [0.990, 0.996] per 1°C increase). These results refer to the mean 

temperature over the current and previous three days, which were found to fit 

the data better than other lag structures considered. Koken et al57 analysed the 

effect of maximum temperature on hospital admissions in Denver County, USA, 

restricting to the summer months of July and August only. Air pollution and day 

of the week effects were taken into account. The authors reported that a 5.9°C 

increase in maximum temperature resulted in a 17.5% higher risk of MI on the 

same day (RR=1.175 [1.029, 1.343]). Ebi et al56 analysed separately the effects 

of daily minimum and maximum temperatures in three regions of California. The 

two variables considered are likely to reflect night and day temperatures 

respectively. The results were rather inconsistent: for minimum temperature, 

there was an increase in events at higher temperatures in San Francisco and 

Sacramento, but a significant effect in the opposite direction in Los Angeles; for 

maximum temperature, there was an increase in events at higher temperatures 

for Los Angeles, but a significant effect in the opposite direction in San 

Francisco and Sacramento. These conflicting results may reflect the problem of 

modelling temperature as a purely linear term, which can only identify either a 

cold effect or a heat effect. If, in reality, there are increases in events at both 

extremes of the temperature scale, such an approach would be flawed. The 

authors speculate that other differences between the regions explain the 

discrepancies, for example warmer weather in Los Angeles, and a lower 

prevalence of home temperature control systems in San Francisco.  

Morabito et al55, analysing hospital data from Florence, Italy took the novel 

approach of looking at the effect of the number of “discomfort hours” in the day, 

based on indices incorporating a combination of weather variables. Hours 

above the 90th percentile of the Apparent Temperature Index, or below the 10th 

percentile of the New US/Canada Wind Chill Temperature Index were defined 

as discomfort hours for summer and winter respectively. Discomfort hours 

associated with summer heat appeared to predict an increased admissions rate 

in males aged <65 years (by 3% per 2 hours), but not for those aged ≥65 years. 

Conversely, discomfort hours associated with cold in winter appeared to predict 

increased admissions most strongly among females aged ≥65 years, and there 
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was no effect among males. The authors’ approach is interesting, though the 

presentation of selected subgroups of age and sex may argue against a 

convincing effect. 

Three studies50-51, 59 found that only colder temperatures increased the risk of 

MI. All three mentioned the use of specific criteria (incorporating symptoms, and 

ECG/laboratory results) in the diagnosis of MI: Wang et al50 analysed the effects 

of temperature on ambulance call-outs resulting in an MI diagnosis, adjusting 

for atmospheric pressure, finding a 17% increase in call-outs was reported at 

temperatures on <10°C compared with >20°C in the relatively warm climate of 

Hiroshima City, Japan (RR=1.17 [1.10, 1.35]); Enquselassie et al51, in an 

unadjusted analysis of morbidity data from New South Wales, Australia, found 

an increase in fatal MIs at cold temperatures (RR = 1.4 [1.1, 1.8] for ≤16°C 

compared with 23-27°C) but there was no similar effect for non-fatal events; 

Danet59, studying similar data from Nord District, France (where temperatures 

fell to as low as -15°C), investigated the effect of temperature using only a linear 

term, and found that the daily rate of fatal and non-fatal MIs decreased as 

temperature increased (RR=0.95 [0.92, 0.98] per 5°C increase, adjusted for 

atmospheric pressure). However, adjustments for season and long-term trend, 

as well as other potential confounding factors, were not comprehensive in any 

of the three studies. 

Messner et al58 investigated not only the effect of absolute temperature, but also 

of change from the previous day. This addresses the interesting hypothesis that 

sudden changes may be more harmful than absolute extremes of temperature 

arrived at in a smooth way. The study used data from Northern Sweden, where 

temperatures range from -38°C to +30°C. After adjusting for humidity and 

atmospheric pressure, absolute temperature did not have any effect on the daily 

number of MI cases (validated using common diagnostic criteria). However, 

increases in temperature from the previous day did increase the risk of non-fatal 

MIs (RR=1.015 [1.003, 1.027] per 1°C increase). There was no similar effect for 

fatal MIs. 

Finally, Gerber et al49 looked at the effect of maximum temperature in Olmsted 

County, USA, and found no effect across the broad range of temperature (the 

daily maximum ranged from -29 to +39°C over the period studied, while Ohlson 
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et al53 similarly found no significant effect of cold or of heat in a small Swedish 

study. In both cases confidence intervals were wide so that fairly large effects in 

either direction could not be ruled out, and the latter study did show a non-

significant trend that suggested an increase in the risk of MI at colder “wind 

chill-adjusted” temperatures (RR=1.12 [0.67, 1.85] for <-20°C compared with 

≥0°C) 

2.3.1.3 Potential modifiers of temperature-MI effects 

Role of local climate 

Barnett et al54 considered heterogeneity in the temperature effect across the 24 

populations (from 21 countries) included in their study. There was some 

variation in the estimated size of the risk increase associated with a drop in 

temperature (ranging from a 0 to 1.8% increase in risk per 1°C). Interestingly, 

28% of this variation was explained by local mean temperature (rising to 54% 

when 2 outliers were excluded); in general, locations with higher mean 

temperatures were more vulnerable to cold days. 

This was explored further in the remaining single-location studies by 

considering the 10-year mean temperature and the average annual range 

temperatures (Table 2.2). Studies in the six “warmest” regions all reported a 

detrimental effect of cold;50-51, 55-56, 60-61 of note, these warmer regions also 

tended to have smaller average annual temperature ranges (<20°C in 5/6 

cases). In contrast, considering studies in the six “coolest” regions, which 

tended to  experience a greater range of temperatures across the year (average 

range >20°C in 4/6 cases), only 1 of 5 investigating cold effects reported a 

significant effect of cold49, 53, 58-59, 62 (with one further study57 using data from the 

summer months only).  

No such pattern could be detected for heat effects; indeed, the studies based in 

the regions with the coolest and warmest mean temperatures (Northern 

Sweden and Sao Paulo, Brazil respectively) both reported detrimental effects of 

heat. 
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Vulnerability among subgroups  

A few studies investigated vulnerability to temperature effects according to 

individual-level characteristics. Among those considering the effects of 

temperature separately for different age-groups, there were inconsistent results; 

2 studies, both of which had found significant detrimental effects of cold, 

reported that analyses restricted to the oldest age group gave similar effect size 

estimates to those including all patients,51, 59 though it should be noted that in 

the former study the oldest age group accounted for over half of the events, 

while in the latter the age structure of the study population was not reported. 

Morabito et al55 on the other hand reported that correlations between “cold 

discomfort hours” and MI rates in winter were larger among those aged >65 

years, while correlations between “heat discomfort hours” and MI rates in 

summer were larger among those aged <65 years. Age appeared to affect the 

magnitude of temperature effects in one study in California though the direction 

of the association was not consistent across the three regions studied.56 In the 

same study, analyses were also presented stratified by sex: the estimated 

increase in risk of MI for a 3°C decrease in maximum temperature was greater 

among women in the Sacramento region (15.7% [4.9, 27.6] compared with 

10.9% [5.1, 16.9] for men, among those aged 55-69 years), whereas the 

increase in MI risk following an equivalent temperature drop in San Francisco 

was larger among men (6.6% compared with 2.2% in women). Barnett et al54 

reported that the increase in event rates in cold periods was greater among 

women than men (OR 1.07 [1.03-1.11]), averaging over all 24 included 

populations. The same study found no difference between those with and 

without previous MI. Similarly, Enquselassie et al51 reported that the effects of 

heat and cold among individuals with prior history of ischaemic heart disease 

were similar to effects among all study participants.  

2.3.1.4 Effects of atmospheric pressure and relative humidity 

This section briefly summarises the effects of the two other main weather 

variables covered by studies included in this section. Only a small proportion 

presented results for the effects of non-temperature weather variables on MI 

outcome. 
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Atmospheric pressure 

Wang et al50 included an interaction between atmospheric pressure and 

temperature. An increase in MI risk was seen at lower levels of atmospheric 

pressure, but only on days with temperatures <10°C (RR = 1.37 [1.00, 1.86] for 

pressure ≤1005hPa compared with 1005-1012hPa). Danet et al50 reported a V-

shaped relationship between atmospheric pressure and MI risk. At levels below 

1016 mbar, lower atmospheric pressure was associated with an increased risk 

of MI (RR = 1.12 [1.05, 1.19] per 10mbar drop), whereas at levels above 1016 

mbar the effect was in the opposite direction (RR = 1.11 [1.04, 1.18] per 10mbar 

increase). Only three other studies reported on atmospheric pressure as an 

explanatory variable, and all three found no effect on MI occurrence.53, 58, 61 

Relative humidity 

Sharovsky et al61 found that low relative humidity (measured as the 2-day 

average) was associated with an increase in MI deaths (RR 1.11, 1.03-1.18) for 

the lowest vs highest quintile of relative humidity (58-68 vs. 86-96%). Dilaveris 

et al60 reported the association between relative humidity and MI deaths on a 

monthly timescale only. There was a strong correlation between monthly 

humidity and monthly MI deaths (correlation coefficient = 0.76, p = 0.004), and 

the relationship appeared to be linear with an approximately 13% increase in MI 

deaths per 10% increase in relative humidity after adjusting for other factors. 

The only study that included non-fatal events and reported on the effect of 

relative humidity was Messner et al.58 The authors of this study reported no 

significant effect of either humidity or change from previous day’s humidity, 

though there was a suggestion of an effect of the latter variable on non-fatal 

events alone; a rise in humidity from the previous day was marginally 

associated with a fall in non-fatal MIs (RR = 0.995 [0.990, 1.000] per 1% 

increase, p = 0.06) 
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2.3.2 Other study designs and complex exposure variables 

2.3.2.1 Long-term effects of temperature 

Two studies investigated longer-term effects of temperature. Chang et al65 

included 369 hospitalisations for MI among women aged 20-44 years in 24 

centres covering 4 continents between 1989 and1995; the cases arose from a 

WHO hospital-based case-control study. A time series design was used but 

importantly event counts and mean temperatures were related only on a 

monthly timescale (adjusting for relative humidity and rainfall). Temperature 

effects were investigated in a linear way, and monthly event counts appeared to 

decrease as temperature increased (RR = 0.88 [0.80, 0.97] per 5°C increase), 

suggesting a detrimental effect of cold on this broader timescale. A paper led by 

Gyllerup66 reported results of a regional comparison study, in which MI mortality 

between 1975 and 1984 was compared between 284 municipalities in Sweden 

and related to the number of cold days (<-10°C, adjusted for wind chill) in each 

municipality over the same calendar years. MI mortality was ascertained using a 

national cause of death register. When the municipalities were divided in to 

deciles according to the number of cold days, a trend was evident with 

municipalities in the 3 coldest deciles reported to have standardised mortality 

ratios (SMRs) of >1 (SMR = 1.4 in the coldest decile), and municipalities in the 

7 least cold deciles all having SMRs <1 (SMR = 0.9 for those in the least cold 

decile). 

2.3.2.2 Studies investigating more complex meteorological variables 

A few studies did not investigate the effects of air temperature directly, but used 

as exposures of interest more advanced meteorological variables which may 

reflect not only temperature but the overall characteristics of the daily weather. 

Morabito et al67 considered 808 hospitalisations in the winter months of 

December-February with a primary discharge diagnosis of MI in Tuscany, Italy. 

Daily weather was categorised into 5 categories of air mass by combining 7 

weather variables (dry bulb temperature, cloud cover, saturation deficit, 

atmospheric pressure, wind speed, west-east component of wind, and north-

south component of wind) using principal components analysis techniques. An 
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MI admission index was calculated for each day and represented the number of 

MI admissions relative to the winter average (fixed at 100). The MI admission 

index 1 day after an anticyclonic continental air mass, representing cold and 

clear weather, was 113 and was significantly higher than that 1 day after a 

mixed air mass (92, p<0.05), which represented mild, humid, cloudy weather. 

Particular 2-day sequences of air masses were also associated with large 

increases in the MI admission index, namely anticyclonic continental followed 

by polar continental which represents cold, then cold and blustery days, and 

sequences of days with rapid alternation of anticyclonic/cyclonic which are 

characterised by sudden changes in pressure, humidity and cloud cover. 

Although this more unusual method of classifying weather allowed more 

complete use of the various meteorological parameters, the validity and 

interpretation of these classifications are uncertain. 

Messner,68 in a study in Northern Sweden which included 7076 well-validated 

MIs identified through hospitals and GPs, considered the association between 

arctic oscillation (AO) index and MI incidence. AO is expressed as an index of 

normalised, time-averaged pressure differences between observation stations, 

and can capture various aspects of weather, with a low value bringing cold and 

dry weather, with storms in southern regions, and a high value corresponding to 

warmer, more humid, cloudier, and wetter weather. The results suggested that 

this latter set of conditions was associated with a higher incidence of MIs three 

days later (RR = 1.038 [1.015, 1.062] per unit increase in AO index, 3-day lag), 

though it was unclear whether the model used was flexible enough to allow a 

non-linear or non-monotonic effect of the AO index. Though the effect size 

peaked with a 3-day lag, the  AO index was also reported to be significantly 

associated with MI incidence at lags of 0, 1, 2, 4, and 5 days (p<0.01 in each 

case). 

Kveton69 considered weather fronts as an explanatory variable in an analysis of 

daily MI counts in six hospitals in Czechoslovakia. Although the authors 

reported some effects of weather fronts, the results were difficult to interpret 

without specialist expertise in meteorology so are not considered further here.  
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2.3.3 Excluded studies 

A total of 22 studies were excluded from the main review because they did not 

include any control for confounding factors, or did not present any measures of 

precision or p-values for the results of interest. These studies were of similar 

overall design to those covered in section 2.3.1, i.e. time series studies 

analysing daily counts of MI events and daily measures of one or more 

temperature/weather variable(s). Most were older studies analysed using only 

basic statistical methods without the flexibility to adjust for confounders.  

18 of the excluded studies are summarised in Table 2.4 and overall show 

remarkable consistency; a majority describe a monotonic effect of temperature, 

with event rates higher at colder temperatures, and lower at warmer 

temperatures. However it is possible that any effects described do not reflect 

just well-isolated short-term temperature effects, but rather broader seasonal 

differences in event rates, the potential causes of which could be numerous. A 

further four time series studies are omitted from Table 2.4: three 70-72 did not 

directly present any effect estimates or correlations, while in a fourth18 the 

reference category was unclear, and so results could not be interpreted.



49 

 

Table 2.4: Studies excluded due to lack of control for confounders or lack of precision/p-values for effect estimates 
First author & 
Year of 
publication 

Population/data 
source 

Location & 
Time period 

Number of 
events 
included 

Temperature 
variable and range 
(if available) 

MI ascertainment Statistic Result Temperature 
variable/values to 
which result applies 

Subgroup (if 
applicable) 

Studies of Fatal 
&  non-fatal 
events 

         

Schwartz  
200473 

Medicare files 
(>65s only) 

12 cities, USA 
1986-1994 

Not reported Mean temperature 
<-13 to >30°C 

Records with ICD9 code 
410 

Relative 
risk 

1.04* 
1.00 [ref] 
0.94* 

27°C 
-18°C 
-29°C 
 

- 

Fries  
199874 

Consecutive MI 
admissions to 
intensive care 
units (8 hospitals) 

South West 
Germany 
1990-1992 

693 Felt temperature 
based on 
thermophysical 
model 
<-6.7 to >26.6°C 

Diagnosis based on 2 of 
: chest pain > 30mins, 
supporting ECG, raised 
CK 

Relative 
incidence 

0.95  
1.00 [ref] 
0.86  
(p non-
significant) 

Class 12 (mean 34°C) 
Class 7 (mean 11°C)  
Class 1 (mean -7 °C) 
 

- 

Bull  
197875 

Death registry 
data 

New York, 
England & 
Wales 
1965-1968 &  
1970-1971 
(respectively) 

Not reported Minimum 
temperature, mean 
temperature 
-10 to 20°C (EW+) 
 

Deaths with ICD7 codes 
of 420.1 

Rate ratio 0.9884 
 
 

Per 1°C increase  
  
 

<60y, EW++ 
 
 

Sarna 
197776 

Ischaemic heart 
disease registry 
database 

Helsinki, 
Finland 
1970 

756 Mean temperature 
-19.7 to 21.2°C 

Cases in the registry 
fulfilling minimum 
criteria for MI given by 
WHO 

Rate ratio 1.00 [ref] 
1.15* 
0.94* 
1.11* 
0.96* 
0.89* 
(p non-
significant+) 

1st decile (<-7°C)* 
2nd decile (-7 to -4°C)* 
4th decile (-1 to 2°C)* 
6th decile (5-8°C)* 
8th decile (12-14°C)* 
10th decile (>17°C)* 

- 

Marchant 
199377-78 

Consecutive 
admissions to a 
coronary care 
unit 

Newham, UK 
1988-1991 

633 Minimum 
temperature 
<3 to ≥15°C 

Diagnoses confirmed by 
2 of: supportive ECG, 
CK elevation, chest pain 
>30mins 

O/E ratio 1.52 
0.90 
0.78 
(p<0.001 for 
trend) 

<3°C 
6-8.9°C 
≥15°C 

- 

Thakur 
1987 
 
 
 
 
 

Hospital 
admissions 
records (single 
hospital) 

Panta, India 
1979-1983 

1217 Minimum 
temperature 
3.9 to 44.6°C 

As diagnosed (required 
chest pain plus ECG 
changes, or elevation of 
cardiac enzymes) 

O/E ratio 1.27 
1.11 
0.93 
(p<0.001+) 

≤8°C 
8-16°C 
≥16°C 

- 
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Bull 
197379 

Hospital 
admissions 
records (single 
medical unit) 

Belfast, UK 
1953-1966 

2348 Maximum/minimum 
temperature 
<4.4 to >21.1°C 

Details not given O/E ratio Non-
significant 
(p>0.05+) 
 
1.19 
1.02  
0.72 
(p<0.001+) 
 
1.15 
0.97 
0.91 
(p<0.05+) 

[tmax] 
 
 
[tmax] 
<4.4°C 
10-12.2°C 
≥21.1°C 
 
[tmax] 
<4.4°C 
10-12.2°C 
≥21.1°C 

<55y 
 
 
 
Male, ≥55y 
Male, ≥55y 
Male, ≥55y 
 
 
Female, ≥55y 
Female, ≥55y 
Fenale, ≥55y 

Sotaniemi 
197080 

Hospital 
admissions 
records (single 
medical 
department) 

Oulu, Finland 
1965-1968 

771 Mean temperature 
<-30 to >20°C  

As diagnosed (based on 
anamnestic, clinical, 
lab, and ECG criteria) 

O/E ratio 1.36 
1.11 
1.01 
(p<0.001 for 
≥0 vs. <0°C) 

<-30°C 
-9-0°C 
20-30°C 

- 

Giroux 
200081 
 
 
 
 

Exact source 
unclear;  events 
among persons 
aged 35-64 living 
<25km from 
Toulouse 

Toulouse, 
France 
1985-1986 

282 Temperature 
0 to 27°C 

Records meeting 
MONICA definition of 
MI52 

Events/day 0.66 (sd 0.87) 
0.85 (sd 0.83) 

0-12.9°C 
13-27°C 

- 

Ruscone 
198582 

Coronary care 
unit records (6 
units) 

Milan, Italy 
1979-1980 

2830 Mean/minimum/ma
ximum temperature 
-4.7 to 34.8°C 
[lowest minimum to 
highest maximum] 

Potential cases 
examined for all of: 
typical pain >30mins 
with shock or syncope, 
ECG changes, and CK 
elevation 

Correlation 
coefficient 

-0.21  
-0.22 
-0.22 
(p non-
significant in 
each case for 
Ho: r = 0) 

[tmean] 
[tmin] 
[tmax] 

 

Ruhenstroth-
Bauer 1985

83
 

MI admissions to 
four cardiology 
clinics 

Munich, 
Germany 
1981 Jan-Mar 

162 Mean/minimum/ma
ximum temperature 

Details not given Correlation 
coefficient 

-0.16 
-0.15 
-0.16  

[tmean] 
[tmin] 
[tmax] 

- 

Fatal events 
only 

         

Frost  
199284 

New Zealand 
Department of 
Health death 
statistics 
 
 

Auckland, 
New Zealand 
1984-1985 

Not reported Minimum 
temperature 
4 to 20°C 
 

Deaths with ICD9 codes 
of 410 

Event rate 
(/106) 

 
34* 
30* 
31* 
21* 

[tmin] 
5°C 
10°C 
15°C 
20°C 

 
>65y 
>65y 
>65y 
>65y 
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Auliciems 
1989a85 
 
 
 
 
 

Australian Bureau 
of Statistics data 

Brisbane, 
Australia 
1984-1985 

Not given Mean/minimum 
temperature 
9 to 32°C [lowest 
minimum to highest 
maximum] 

Deaths with ICD9 codes 
of 410  

Event rate 
(/106) 

 
35* 
30* 
25* 
19* 

[tmin] 
5°C 
10°C 
15°C 
20°C 

 
>60y 
>60y 
>60y 
>60y 

Auliciems 
1989b86 

Statistics Canada 
data 

Montreal, 
Canada 
1983-1984 

Not given Mean temperature 
 

Deaths with ICD9 codes 
of 410 

Events/day   
7.26 
6.62 
5.37 
 

[tmean] 
-10 to -5°C 
<5°C 
>15°C 
 

 
- 

Mannino 
198987 

Death certificate 
data 

Wisconsin, 
USA 
1982-1987 

926 Mean temperature 
<-18 to >16°C 

As per death certificate 
(91% certified by 
medical examiner). 
Deaths in health care 
facilities excluded. 

Events/day 
(age 
adjusted) 

0.145* 
0.110* 
0.090* 
(p-trend 
<0.01) 

≤17.8°C 
-0.6 to 7.2°C 
≥16.1°C 

- 

Frost 
199388 

Australian Bureau 
of Statistics, and 
Statistics Canada 
data  

Brisbane, 
Australia 
(1984-1985) 
and Montreal, 
Canada 
(1983-1987) 

Not given Mean temperature 
13-26°C (AU&) 
-15 to 25°C (CA&) 

Deaths with ICD9 codes 
of 410 

Correlation 
coefficient$  

0.55 to 0.77$ 
-0.73 to -0.91$ 
(p<0.01 in 
each case) 
 

0.15 to 0.63$ 
-0.40 to 0.31$ 
(p≤0.01 except 
winter 1983) 

- Summer,AU& 
Winter, AU& 
 
 
 
Summer, CA& 
Winter, CA& 

Baker-Blocker 
198289 

National Center 
For Health 
Statistics 
mortality tapes 

Minneapolis, 
USA 
1973-1977 
(winters only) 

Not given Departure of 
minimum 
temperature from 
long term average 

Deaths with ICD8 codes 
of 410 

Correlation 
coefficient 

No effect in 
4/5 winters 
studied 
(p>0.05) 
 

r=-0.28 for 
winter 1976-
1977 (p<0.01) 

- - 

Bull 
197590 

Office of 
Polulation 
Censuses and 
Surveys Data 

England and 
Wales 
1970-1971 

Not given Minimum 
temperature 

Deaths with ICD8 codes 
of 410 

Correlation 
coefficient 

-0.10* 
 

- At 1 day lag 

+ p-value for heterogeneity across temperature categories 
++: EW = England and Wales  
* approximate figures, derived from graphical presentation of results 
$ correlations were presented for each individual year in the paper, range of values shown here 
& AU = Australia, CA = Canada 



 52 

2.4 Discussion 

The systematic review presented here is the first to focus on the association 

between ambient temperature and the specific outcome of MI. The search 

strategy employed is likely to have identified most major studies focussing on 

this question. Steps were also taken to include papers in which MI was 

investigated as a sub-analysis within a broader study.  

A total of 19 relevant studies were identified, with 14 investigating short-term 

(day-to-day) effects of temperature on MI risk. A number of large and relatively 

well-controlled studies have reported a statistically significant short-term effect 

of ambient temperature on MI risk. The vast majority of studies reported main 

effects on the same day or up to 3 days later, with no study reporting substantial 

effects lagged by more than one week. Over half of the daily time series 

regression studies reported detrimental effects of cold and over half reported 

detrimental effects of heat; indeed a few studies found a U-shaped relationship 

with MI risk increasing at both ends of the temperature scale.  

The size of temperature effects varied. Three studies of MI mortality outcomes 

were among those estimating the largest temperature effects, estimating as 

much as a 31-44% increase in risk at the extremes of the local temperature 

scale compared with intermediate local temperatures. The larger size of these 

mortality effects might reflect an inherent lack of specificity in studies with 

mortality outcomes; some deaths are likely to have been coded as MI based on 

limited information leading to potential misclassification, and if such 

misclassified causes of death were more strongly associated with temperature, 

results may have been exaggerated. On the other hand studies based on 

hospital admissions may have underestimated the true temperature effects if 

difficulties in getting to hospital during temperature extremes led to more out-of-

hospital MI deaths occurring which would not have been included. Although 

studies including non-fatal events generally estimated effects that were smaller 

in magnitude, detrimental effects of both heat and cold were still found in a 

number of these studies; considering the 5 studies in which MI outcomes were 

validated against diagnostic criteria, 1 and 3 studies found significant effects of 

heat and cold respectively. 
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Various mechanisms have been suggested through which cold exposure could 

act as a trigger for myocardial infarction, and it is possible that a number of 

parallel processes contribute to the effect. Experimental studies have found 

increased arterial pressure and blood viscosity during cold exposure,91 as well 

as an increased need for oxygen and consequently an increase in the cardiac 

workload.92 Furthermore, red cell counts, plasma cholesterol and fibrinogen 

concentrations, all of which may be thrombogenic, appear to be elevated on 

exposure to cold.91, 93 Heat exposure has also been shown under controlled 

conditions to lead to increases in red blood cell counts, platelet counts, and 

blood viscosity, as well as increases in heart rate.94 Finally, one study has 

suggested that the density distribution of blood platelet subpopulations may be 

affected, with an observed increase in less dense platelets that were more 

sensitive towards aggregation-inducing agents.95 However there is a lack of 

more recent data regarding the effects of temperature on an updated range of 

clotting measures and more research is needed in this area. 

The majority of studies included used data sources such as hospital databases 

and registries which would have had the potential to capture events across the 

local population, thus their findings should have good generalisability within the 

local settings. There could be a number of reasons for the heterogeneity in 

results between studies. One must consider that the studies included here 

cover a wide range of populations with differing demographic profiles, as well as 

a wide range of geographical locations. There were also many methodological 

differences across the studies included: MI events were identified from sources 

of various types; modelling strategies varied; different definitions of temperature 

were used as the main exposure (such as minimum, maximum, mean, wind-

chill-adjusted); different allowances for non-linear temperature effects were 

made; and different lag days considered.  There was also variation in the level 

of adjustment for potential confounding factors, and inadequate control for 

factors such as air pollution (which was only controlled for in a handful of 

studies) could have led to some spurious results. 

In addition local climate may play a role in the vulnerability to temperature 

effects. One study which incorporated data from 21 countries found that local 

mean temperature explained much of the variation in the magnitude of the 

detrimental effect of cold on MI risk,54 and it was correspondingly observed that, 
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among single-location studies, those conducted in areas with higher long-term 

mean temperatures tended to more frequently report detrimental effects of cold 

than those conducted in warmer areas, and indeed tended to report effect 

estimates with larger magnitude. No such pattern was observed for the effect of 

heat, despite the differing effects of heat that have been reported on overall 

mortality in different locations.11 These findings must be interpreted with 

caution, since the studies included in the review differed in so many ways. 

Nevertheless, increases in systolic blood pressure in response to lower 

temperatures have been found to be larger in warmer countries,96 and studies 

of all-cause mortality have similarly reported local climate to be a strong 

modifier of temperature effects.9, 19 Such effect modification may simply reflect 

better established adaptive measures in colder countries; the Eurowinter Group 

found that, at the same outdoor temperatures, individuals in Finland were more 

likely to have bedroom heating, kept their indoor temperatures higher, and were 

more likely to wear hats, gloves, anoraks, and (among women) trousers, 

compared with individuals in Athens, Greece,12 and the potential benefits of 

such adaptive measures are suggested by the observed improvements in blood 

pressure achieved following installation of home heating in a UK study.97 Others 

have suggested that there may be some biological adaptation to cold,98 and 

cold-adapted individuals have been shown to have reduced activity of the 

sympathetic nervous system in response to cold stress.99 

Long-term effects of temperature were investigated by only two small studies, 

both of which reported increased MI risk associated with exposure to cold; firm 

conclusions cannot be drawn from such limited data. Approaches using more 

complex composite weather parameters were also used in only a handful of 

studies. Though such parameters may be attractive in principal (they seem 

intuitively better equipped to capture the overall weather experience), results 

from these studies proved difficult to interpret and compare in practice; 

furthermore, the practical usefulness of such parameters as part of any public 

health warning system would be dependent upon easily available forecasts. 

This review inevitably has some limitations. First, the search strategy could 

have missed some studies. However, by searching a number of different 

databases, with different indexing systems, and furthermore checking reference 

lists and the websites of major organisations, it is likely that all major studies 
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with MI as the primary outcome should have been picked up. Steps were also 

taken to include studies of cardiovascular diseases more broadly, where an 

analysis of MI was also performed separately. The decision to include only 

papers analysing specific MI outcomes may also have led to some informative 

studies of related outcomes being excluded, though it was felt that this would be 

outweighed by the advantage in interpretability from the very specific focus on 

MI. Second, as with any review of the literature, there may have been 

publication bias: studies finding effects may have been more likely to be 

published. The extent of publication bias is difficult to assess in studies with 

such varied methodology and reporting. Though such concerns should always 

be borne in mind, the goal was not to produce a definitive numerical estimate of 

the effects of temperature on MI risk, but rather to give an overview of the 

evidence available. Finally, non-English-language citations were excluded due 

to resource limitations, though this is unlikely to have led to the omission of any 

major papers in the area. 

There is some public health motivation for further clarifying the effects of 

temperature. Weather forecasting is reasonably accurate up to a few days in 

advance, and with a well understood relationship between temperature and MI, 

those most vulnerable could be warned when the risk of MI was likely to 

increase, and given advice to reduce their personal risk. The UK Met Office 

recently set up a similar targeted warning system for chronic obstructive 

pulmonary disease sufferers in which patients are alerted by an automated 

telephone call when the risk of disease exacerbation is elevated based on the 

ambient temperature; they are given advice on keeping warm, avoiding low 

temperatures, and watching for warning signs of their condition worsening. It is 

claimed that a 20.5 to 48% reduction in hospital admissions has been achieved 

among practices signing up to the scheme.100 Health service providers could 

also be warned in advance where rates of MI were likely to increase, to aid the 

short-term allocation of resources. 

A number of suggestions arise for future research. Though the majority of the 

studies included were of similar basic design (daily time series studies), there 

was wide variation in the methodology and reporting used. More consistent 

adjustment for potential confounders such as season, long-term trend, and air 

pollution; allowance for non-linear and delayed temperature effects; and more 
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consistent reporting standards would make future studies in this area easier to 

compare and interpret. More large studies with this kind of consistent 

methodology and reporting will be required in a number of geographical 

locations to characterise the short-term effects of temperature on MI risk, and 

the relationship of such effects to local climate. There is also a need for more 

studies which take account of potential effect modifiers such as air conditioning 

for heat-related MIs, and home heating and use of cold weather clothing for 

cold-related MIs. Though a few studies have presented stratified or age-

restricted data, there is little direct evidence on how age, and other individual-

level factors such as previous disease, affects an individual’s vulnerability to 

temperature effects. In addition, individual-level studies collecting detailed 

information on factors as clothing and home heating, though expensive and 

difficult to design, would provide valuable data to assess the role of adaptive 

measures. Finally, though the role of more complex weather indicators, such as 

air mass type, remains unclear and difficult to interpret, the effects of such 

factors may be worthy of further investigation, since weather effects on human 

health may not be captured fully by investigating only specific parameters such 

as temperature and humidity; indeed interactions between the various aspects 

of weather may in part help to explain some of the variation in results across 

studies included in this review. 

2.5 Update: studies published since this review 

Two studies, published since this review was undertaken and fulfilling the 

original inclusion criteria, were identified by a literature search update 

performed in July 2010.  

Wolf et al101 analysed data on 9801 fatal and non-fatal MIs occurring in 

Augsburg, Germany between 1995 and 2004 using data from the Augsburg MI 

registry. Lower temperatures were associated with increased MI risk (RR = 1.10 

per 10°C reduction, 95% CI 1.04-1.15). Linear and non-linear effects were 

examined but there was no evidence of non-linearity and no heat effect was 

observed. Effects lagged by up to 5 days were investigated; interestingly, the 

effects of temperature reductions appeared to be more delayed for non-fatal 

than fatal MIs, with the quickest effects being observed at two days lag for the 

non-fatal, but on the same day for fatal MIs. In a smaller study, Abrignani et 
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al102 investigated admissions for acute MI to a single hospital in Sicily between 

1987 and 1998. 3918 events were included and higher minimum daily 

temperature was associated with a reduction in MI risk, consistent with a 

detrimental cold effect, though the effect size was not clear from the study 

report and non-linear temperature effects were not considered. 

Taken together, these two studies are in agreement with the majority of studies 

identified in the review in finding an association between lower temperatures 

and MI risk, but it was noteworthy that neither of the studies, conducted in 

Central and Southern Europe, observed a detrimental effect of higher 

temperatures. 

2.6 Summary 

A systematic review was undertaken focussing on the effects of ambient 

temperature on MI risk. 

19 studies were identified, with 13 investigating the short-term (day-to-day) 

effects of temperature using daily time series data. 

Over half of the daily time series regression studies reported detrimental effects 

of cold and over half reported detrimental effects of heat. 

Overall, there was strong evidence, including from a few large and well 

controlled studies, that ambient temperature influences the risk of MI, but the 

exact nature of the relationship and strength of the effects were unclear. 
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3 Systematic review of the effects of air pollution on 

incidence of myocardial infarction 

3.1 Introduction and aims 

There has been considerable recent research into the effects of air pollution on 

health outcomes, which has been facilitated by an increase in air quality 

monitoring data in many countries. A wide array of outcomes and combinations 

of exposures has been considered, with consistent associations being observed 

between levels of certain pollutants and mortality in particular. Effects on more 

specific outcomes have been less commonly studied. The aim of the systematic 

review presented below was to collate and present published evidence on the 

effects of common air pollutants (including PM, ozone, CO, oxides of nitrogen 

(NO, NO2, NOx), and SO2) on the risk of MI. 

3.2 Methods 

The methods of this review were similar to those of the earlier review into the 

effects of ambient temperature (see Chapter 2), and are therefore summarised 

more briefly here. 

3.2.1 Search strategy 

3.2.1.1 Databases and sources 

Searches of the publication databases Medline (1950 to present), EMBASE, 

and GEOBASE were undertaken. Since the study of air pollution effects on 

health could be considered a form of toxicology, TOXNET, a bibliographic 

database specialising in this discipline, was also searched. Reference lists of all 

relevant studies were scanned to identify any further studies, and where 

appropriate, index terms from such studies were added to the main database 

search. The websites of key research organisations (World Health Organisation; 

European Union; Health Effects Institute (USA); Environmental Protection 

Agency (USA); National Institutes of Health (USA); Department of Health (UK); 
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and Department for Environment, Food, and Rural Affairs (UK)) were also 

searched for relevant reports. 

3.2.1.2 Search keywords and terms  

For Medline and TOXNET, which employ the MeSH classification system, the 

following MeSH terms were used for the primary search: 

 [AIR POLLUTION or AIR POLLUTANTS or OZONE or CARBON MONOXIDE or SULFUR 

DIOXIDE or PARTICULATE MATTER or NITROGEN OXIDES or ENVIRONMENTAL 

EXPOSURE (plus all sub-terms in the MeSH tree)] and 

not TOBACCO SMOKE POLLUTION and 

[MYOCARDIAL INFARCTION {subheadings: chemically induced, mortality, 

physiopathology, prevention and control, epidemiology, aetiology} (plus all sub-terms in the 

MeSH tree)] and  

HUMANS [not (ADOLESCENT or CHILD or INFANT not ADULT)];  

limited to article types: JOURNAL ARTICLE or CLASSICAL ARTICLE or GOVERNMENT 

PUBLICATIONS or CLINICAL CONFERENCE or CLINICAL TRIAL or COMPARATIVE 

STUDY or META ANALYSIS;  

limited to language: ENGLISH 

For EMBASE the following terms were used: 

[AIR POLLUTION or AIR POLLUTANT or AIR POLLUTION CONTROL or OZONE or 

CARBON MONOXIDE or NITROGEN DIOXIDE or NITROGEN OXIDE or SULFUR 

DIOXIDE or PARTICULATE MATTER] and  

[HEART INFARCTION or ACUTE HEART INFARCTION or HEART VENTRICLE 

INFARCTION]; limited to language: ENGLISH 

For GEOBASE, a keyword search was used (* at the end or ? in the middle of a 

term indicate that any letters are accepted in the given position): 

[AIR POLLUT* OR OZONE OR CARBON MONOXIDE OR SUL?UR DIOXIDE OR 

PARTIC* OR NITROGEN DIOXIDE OR NITROGEN OXID* OR NITRIC ACID] and 

[MYCARDIAL INFARCT* or CORONARY EVENT or HEART ATTACK or Q WAVE 

INFARCT* or NON-Q WAVE INFARCT* or STEMI or MYOCARDIAL THROMBOSIS or 

CORONARY THROMBOSIS] 
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As in the previous systematic review (Chapter 2), a secondary search of 

Medline was then run to identify any studies where MI may have been included 

as part of a wider study of cardiovascular outcomes, using the MeSH heading 

CARDIOVASCULAR DISEASES (plus all sub-terms) in place of MYOCARDIAL 

INFARCTION, and restricting to studies where one of the following terms was 

present in the title, abstract, or keywords (* at the end of a term indicates that 

any ending is accepted): 

(MYOCARDIAL INFARCT* or CORONARY EVENT or HEART ATTACK or Q WAVE 

INFARCT* or NON-Q WAVE INFARCT* or STEMI or CORONARY INFARCT* or HEART 

INFARCT* or MYOCARDIAL THROMBOSIS or CORONARY THROMBOSIS) 

3.2.1.3 Inclusion and exclusion criteria 

Inclusion criteria 

The following study characteristics were required for inclusion: 

1. Analysis of original data included 

2. One or more of the following exposures investigated: particulate matter 

or black carbon/black smoke, ozone, carbon monoxide, any oxide of 

nitrogen, sulphur dioxide. Studies using reasonable proxies such as 

exposure to traffic were also included. 

3. Myocardial infarction included as a specific outcome 

4. Manuscript available in English language 

5. Study of adult humans  

Exclusion criteria 

Studies were excluded if they had: 

1. No control for (or stratification by) any potential confounding factors   

2. No measure of precision or p-value associated with main result(s) of 

interest 

3.2.1.4 Procedure 

The procedure was similar to that described for the earlier review or weather 

effects (Chapter 2). Titles and abstracts were screened for relevance, and full 
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text versions obtained where appropriate for assessment with reference to the 

inclusion and exclusion criteria (see Section 3.2.1.3). For each study included, 

the following information was recorded: study population, event of interest, 

number included, age range included, location and setting, time period, 

exposure variables, ascertainment of MI, spatial resolution, temporal resolution, 

adjustment for weather variables and other potential confounders, lags 

considered.  

The main results of each study were also recorded, in particular the effects of 

each pollutant of interest on risk of myocardial infarction, including effect sizes 

and confidence intervals where possible. Where authors reported several 

relevant results (e.g. for different lag days, or for different subgroups), we chose 

results from the main or final model if such a model could be identified, or else 

from the analysis on which the authors focused or that which best represented 

the overall conclusions of the study, noting any important heterogeneity in the 

effect estimates between different analyses.  

The search was initially conducted in July 2008. An additional search was 

undertaken in July 2010 to identify major studies published since the systematic 

review (see Section 3.5). 

3.3 Results 

A total of 27 studies met the inclusion criteria, however one81 was excluded 

because only a basic analysis was performed with no consideration of potential 

confounding factors., leaving 26 in the final review (Figure 3.1). The majority of 

studies were concerned with identifying short-term associations between air 

pollution exposures and MI risk; these studies, generally based on population-

based case-only designs, are considered in Section 3.3.1.  A few papers 

considered longer-term effects of air pollution, including analyses of two 

prospective cohort studies, and three case-control studies; these are covered in 

Section 3.3.2. 
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Figure 3.1: Flow diagram for search strategy 
 

 

 

3.3.1 Short-term effects of air pollution  

19 studies investigated the short term associations between air pollution and MI 

risk (Table 3.1, Table 3.2, and Table 3.3). A number of specific pollutants were 

investigated, the most common being PM10 (10 studies), PM2.5 (5 studies), 

ozone (12 studies), CO (13 studies), NO2 (13 studies), and SO2 (10 studies). 

The number of individual pollutants investigated by a single study ranged from 1 

to 8. The studies fell into two categories in terms of design: 10 were analyses of 

daily time series data, while the remaining 9 used case-crossover designs. 

3.3.1.1 Study designs and methodological considerations 

Both time series and case crossover study designs are based solely on data 

from individuals who have experienced the event of interest (in this case, MI). 

The time series design was introduced in the review of temperature effects 

(Section 2.3.1.1); briefly, such studies typically take as their outcome the daily 

number of events in a defined region, and a regression analysis is performed to 

relate these daily counts to explanatory variables (in this case, pollutant levels) 

and potential confounders.  
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Table 3.1: Studies of short-term effects of air pollution on MI outcomes - description of studies 
First author & 
Year of 
publication 

Population/ data 
source 

Location & Time 
period 

No. of 
events 
included 
(mean/ 
per day) 

Air pollution exposure 
variable(s) 

Potential confounders included MI ascertainment Lags 
considered 
(days, except 
where noted) 

Daily time series studies studies             
Fatal &  non-fatal events         
Cendon 
2006103 

Hospital admissions 
data (112 hospitals: 
infirmaries and 
ICUs);  age >64 only 

Sao Paulo, Brazil 19272* 
(26.4) 

PM10 (24hr av),  Season and trend, temperature (non-
linear, 2 day moving average), humidity, 
day of week 

Events with ICD-10 codes 
suggesting MI in the Public 
Health Data Analysis 
System Division 

0 to 7 
inclusive 

Lanki 
2006104 

MI registers and 
hospital discharge 
registers  

5 European cities 
(1992-2000 (3-7 
yrs period per city) 

26854          
(between 
0.9 to 8.4 
per city) 

PM10, O3 (8hr av, summer 
only), NO2, CO, modeled 
particle number conc. 
(proxy for PM <0.1ug/m3) 

Season and trend, apparent temperature 
(non-linear, same day and average of lag 
days 1-3), barometric pressure, weekday 
indicator, holiday indicator 

Records with ICD9 code 410 
in hospital registers (2 
cities); or records meeting 
MONICA definition of MI in 
MI registers (3 cities)52 

0 to 3 
inclusive 

Koken 
200357 

Hospital admissions 
data (11 hospitals, 
covering ages 65+) 

Denver county, 
USA 1993-1997 
(July/August only) 

1576* 
(5.1) 

PM10, O3, NO2, SO2, CO (all 
24hr av) 

Daily maximum temperature (lag days 0-
4), dewpoint temperature, day of week, 
calendar year, population size 

Primary discharge diagnosis 
(ICD9=410.XX) 

0 to 4 
inclusive 

Mann 
200238 

Records from a 
health maintenance 
organization 

Southern 
California, USA 
1988-1995 

19690 
(6.7*) 

PM10 (24hr av), O3 (8hr av), 
NO2, (24hr av) CO (8hr av)  

Season and trend, temperature (non-
linear, same day), relative humidity, 
calendar year, day of week, annual 
population size 

Records with ICD9 code 410 0 to 5 days 
inclusive 

Ye 
200172 

Hospital emergency 
transports records (4 
hospitals, age 65+) 

Tokyo, Japan 
1980-1995 (July 
and August only) 

3200* 
(3.28) 

PM10, O3, CO, NO2, SO2, 
(all daily av) 

Annual trends, daily maximum 
temperature (lag days 0-4), population 
size. 

As diagnosed by emergency 
physician, based on 
presenting symptoms 

0 (adjusted for 
1-4 inclusive) 

Linn 
2000105 

Hospital admissions 
data 

Los Angeles, USA 
1992-1995 

Not 
reported 

PM10, O3, CO, NO2 (all 24hr 
av) 

Season and trend, day of week, holidays, 
mean temperature (same day), 
barometric pressure, indicators for hot 
days, cold days, rain days 

Records with an All-Patient-
Refined Diagnosis-Related 
Group code of 111, 115, or 
121 

Different lags 
considered, 
exact strategy 
unclear 

Poloniecki 
1997106 

Hospital episode 
statistics 

London, UK 1987-
1994 

68300* 
(26.7) 

O3 (8hr av); NO2, SO2, CO, 
black smoke (all 24hr av) 

Season and trend, temperature (lag day 
1), humidity, day of week, public 
holidays, ‘flu epidemic indicator 

Records with ICD9 code 410 1 

Fatal events only        
Murakami 
2006107 

Vital statistics of 
Japan data (34 
districts) 

34 districts, Japan 
1990-1994 

14430 
(7.9*) 

Suspended particulate 
matter (hourly 
measurements) 

Time of day, temperature (non-linear, 
same day), region 

Records with ICD9 code 410 Exposure 
windows from 
1 to 48 hrs 

Sharovsky 
200461 

Death registry data Sao Paulo, Brazil 
1996-1998 

12007 
(16.4) 

PM10, CO, SO2 (daily av) Season and trend, mean temperature 
(non-linear, up to lag day 7), relative 
humidity, atmospheric pressure, day of 
week, holidays, influenza levels 

Death certificates with MI 
(ICD10 = I21) listed as 
primary cause 

0, and moving 
average of up 
to previous 7 
days 
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Rossi 
199962 

Vital statistics 
department mortality 
data 

Milan, Italy 1985-
1989 

1600* 
(0.9) 

Total suspended particles Season & trend, temperature (non-linear, 
lag days unclear), relative humidity, day 
of week, holidays, epidemics, pollution 

Deaths with ICD9 codes of 
410 

Different lags 
considered, 
exact strategy 
unclear 

Case –crossover studies (fatal &  non-fatal events)           

Barnett 
2006108 

Hospital admissions 
data from 7 cities 

Australia (5 cities) 
and New Zealand 
(2 cities) 1998-
2001 

28818* PM2.5 (24hr av), PM10 (24hr 
av), O3 (8hr av), CO (8hr 
av), NO2 (24hr av) 

Temperature (lag days 0-1), change in 
temperature from previous day, humidity, 
hot and cold days, pressure, day of 
week, holiday, rainfall 

Records with ICD9 code 410 
or ICD10 code I21-22 

Average of 0 
to 1 

Zanobetti 
2006109 

Hospital admissions 
from US Medicare 
programme  (age 65+)  

Boston 
metropolitan area, 
USA 1995-1999 

15578 PM2.5, PM non-traffic 
(modeled), O3, CO, NO2, 
black carbon 

Apparent temperature (non-linear, lag 
day 1); also matched for same day 
temperature), day of week 

Records with ICD9 code of 
410 

0, 1, and 
mean of 0 and 
1 

Peters 
2005110 

Coronary event 
registry (cases 
surviving first 24 
hours only) 

Augsburg, 
Germany 1999-
2001 

851 PM2.5, total number 
concentration (proxy for 
ultrafine particles), O3, SO2, 
CO, NO2 (all 24hr av; 1hr 
av also considered for PM) 

Temperature (non-linear, same day), day 
of week 

Patients meeting MONICA 
definition of MI52 

0 to 5 (also 0 
to 6 hours for 
hourly 
analysis) 

Ruidavets 
2005111 

MI registry Toulouse, France 
1997-1999 

399 O3 (highest 8 hr av of the 
day), SO2 (24hr av) , NO2 
(24hr av0) 

Day of week (matched), min and max 
temperature (same day), humidity, 
influenza levels 

Clinical, ECG and enzyme 
data available to support  
diagnosis 

0 to 3 days 
inclusive 

Sullivan 
2005112 

Community database 
linking emergency 
service and hospital 
outcome data 

Washington State, 
USA 1988-1994 

5793 Increase in short-term 
average PM2.5 (derived from 
fine PM), defined as 
10ug/m3 increase in 1, 2, 4, 
24 hr - averaged PM2.5). 
Similar for SO2 and CO. 

Temperature (non-linear, same day), 
relative humidity,  

Discharge diagnosis of MI 
confirmed by enzyme and 
ECG changes 

0 to 2 days 
inclusive 

Zanobetti 
2005113 

Hospital admissions 
from US Medicare 
programme (age 65+) 

21 cities, USA 
1986-1999 

302453 PM10 (daily av) Day of week (matched), apparent 
temperature (non-linear, lag days 0-1) 

Medicare claims where 
primary diagnosis had ICD9 
code 410 

0 to 2 days 
inclusive 

Peters 
2004114 

KORA MI registry Augsburg, 
Germany 1999-
2001 

691 Exposure to traffic (from 
retrospective diary for the 4 
days preceding event 

None specified Records meeting MONICA 
definition of MI52 

0 to 6 days 
inclusive 

D’Ippoliti 
2003115 

Regional hospital 
admissions data 

Rome, Italy 1995-
1997 

6531 Total suspended particles, 
CO, SO2, NO2 (all 24hr av) 

Day of week (matched), temperature 
(non-linear, lag day 1),  humidity, air 
pressure 

Records with ICD9 code of 
410 

0 to 4, and 
mean of 0-2 
days 

Peters 
2001116 

Coronary care unit 
admissions records 

Greater Boston, 
USA 1995-1996 

772 PM2.5, PM10, ozone, SO2, 
NO2, CO, black carbon 

Season, day of week, minimum daily 
temperature (non-linear, same day), 
relative humidity 

Patients had all of: ≥1 CK 
above upper limit of normal, 
positive MB isoenzymes, 
symptoms 

0 to 5 inc, 
also 0 to 5 hrs 
for hourly 
analysis 

* derived from reported mean daily rate, and length of period under study 
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Table 3.2: Studies of short-term effects of air pollution on MI outomes - summary interpretation 
First author & Year Significant effect of exposure? 
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PM2.5 PM10 O3 CO NO2 SO2 Other particulate 
exposures 

Other non-particle 
exposures 

Daily  time series studies             
Fatal &  non-fatal events             
Cendon 2006103 - No Yes No No Yes - - � � � � � � 

Lanki 2006104 - No No Yes No - No (PNC*) - � � � � � � 

Koken 200357 - No Protective effect No No No - - N/A+ � � � � � 

Mann 200238 - No Protective effect Yes Yes - - - � � � � � � 

Ye 200172 - No No No Yes No - - N/A+ � � � � � 

Linn 2000105 - Yes No Yes Yes - - - � � � � � � 

Poloniecki 1997106 - - No Yes Yes Yes Yes (BS*) - � � � � � � 

Fatal events only 
        

Murakami 2006107 - - - - - - Yes (TSP*) - � � � � � � 

Sharovsky 2004
61
 - No - No - Yes - - � � � � � � 

Rossi 199962 - - - - - - Yes (TSP*) - � � � � � � 

Case -crossover studies (fatal and non-fatal events)           
Barnet  
2006108 

Yes No No Yes Yes - - - 
N/A$ � � � � � 

Zanobetti 2006109 
Yes - No No Yes - 

Yes (BC*) 
- 

N/A$ � � � � � No (PM non-traffic) 
Peters 2005110 No - Protective effect No No Yes No (TNC*) - N/A$ � � � � � 

Ruidavets 2005111 - - No - No No - - N/A$ � � � � � 

Sullivan 2005112 No - - No - No - - N/A$ � � � � � 

Zanobetti 2005113 - Yes - - - - - - N/A$ � � � � � 

Peters 2004114 - - - - - - - Yes (traffic exposure) N/A$ � � � � � 

D’Ippoliti 2003115 - - - Yes No No Yes (TSP*) - N/A$ � � � � � 

Peters 2001116 Yes Yes No No No No No (coarse mass, BC) - N/A$ � � � � � 

* PNC = particle number concentration; TSP = total suspended particulate; TNC = total number concentration; BS = black smoke; BC = black carbon  
+ Adjustment for season not applicable since study used data from summer months only 
$ Case-crossover design allows for season and trend by design 
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Table 3.3: Studies of short-term effects of air pollution on MI outomes - detailed study results 
First author & Year Exposure 

variable 
Relative risk or rate ratio 
(95% CI) 

Exposure increase (or 
category) to which RR refers 

Lag (days)  Comment 

Daily time series studies (Fatal &  non-fatal events)       
Cendon PM10 1.032 (0.978, 1.086) 22.5 [units not given]  Sum of 0-7 

  

  
  

For NO2, cumulative effect estimate hides a significant effect at lag 0, but 
then reduced risk at lags 2-3. For other pollutants, effects appeared to be 
dominated by lag 0 effect. 
Effects shown are for ICU admissions, similar effects seen when infirmary 
admissions were considered; (for PM10 – effect reached significance) 

200611 O3 1.093 (1.011, 1.174) 50.23 
  CO 0.998 (0.933, 1.066) 1.42 

  NO2 1.038 (0.962, 1.114) 54.67 
 SO2 1.129 (1.064, 1.194) 10 
Lanki PM10 1.003 (0.995, 1.011) 10µg/m3 0 No statistically significant effects at lags 1, 2, 3 days for any pollutant. 

 
There was a suggestive effect of PNC, when restricting to the three cities 
using hospital discharge register data, which had higher power. 

200612 O3 0.994 (0.986, 1.002) 10µg/m3 
  CO 1.025 (1, 1.051) 1mg/m3 

  NO2 0.995 (0.985, 1.006) 10µg/m3 

  PNC* 1.005 (0.996, 1.015) 10000 /cm3 

Koken PM10 N.S. (detail not reported)   0 Only the lag value with the strongest effect was given; therefore the effect of 
ozone at 1-4 days lag was not reported. 200313 O3 0.819 (0.726, 0.923) 10ppb 

  CO N.S. (detail not reported)   

  NO2 N.S. (detail not reported)   

  SO2 N.S. (detail not reported)   

Mann PM10 0.999 (0.987, 1.011) 10µg/m3 Not reported - 
20025 O3 0.993 (0.985, 0.997) 10ppb 
  CO 1.035 (1.024, 1.046) 1ppm 

  NO2 1.02 (1.011, 1.03) 10ppb 

Ye PM10 N.S. (detail not reported) - Not reported Model estimates do not directly indicate effect size. We can only conclude 
that there was some positive effect of NO2 on MI outcomes, and no 
significant effect of other pollutants 

200114 O3 N.S. (detail not reported) - 
  CO N.S. (detail not reported) - 

  NO2 0.006 (0.003, 0.010) Not reported 

  SO2 N.S. (detail not reported) - 

Linn PM10 1.01 (1, 1.01) 10µg/m3 0 Part of a wider paper on CVD - the effects seen were not specific to MI 
alone: CO and NO2 were also associated with congestive heart failure, 
asthma and COPD, suggesting just one manifestation of an effect on 
susceptible individuals 

200015 O3 0.965 (0.899, 1.035) 10ppb 
  CO 1.041 (1.023, 1.059) 1ppm 

  NO2 1.056 (1.005, 1.11) 10ppb 

Poloniecki O3 0.993 (0.981, 1.006) 10ppb 1 Futher breakdown indicated that the effects found were only significant in the 
cool season (Oct-Mar). SO2 was independently associated with MI in the 
cool season in all 2-pollutant model combinations. NO2, CO, black smoke 
were not associated in 2-pollutant models, except in combination with O3. 

199716 CO 1.023 (1.007, 1.04) 1ppm 
  NO2 1.009 (1.003, 1.016) 10ppb 

  SO2 1.017 (1.007, 1.027) 10ppb 

Daily time series studies (Fatal events only)     
Murukami TSP* 

(categorized) 
1.00 [reference category] 0-99µg/m3 0-1 hours The effects were similar when exposure windows of up to 6 hours were 

considered; but there was a less clear “dose-response” relationship when 
periods longer than 6 hours were used. 

200617 

 
1.13 (1.07, 1.20) 100-149µg/m3 

  1.18 (1.01, 1.37) 200-249µg/m3 

  1.40 (1.00, 1.97) ≥300µg/m3 
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Sharovsky PM10 1.01 (0.91, 1.11) 10µg/m3 Av of 0-3  - 
200418 CO 1.014 (0.995, 1.03) 1ppm   
  SO2 1.03 (1.005, 1.07) 10µg/m3   

Rossi 199919 TSP 1.10 (1.13, 1.18) 100µg/m3 Av of 3-4  Av of 3-4 day lag best predictor; little effect of concurrent day’s exposure 
Case -crossover studies (Fatal and non-fatal events)       
Barnett   PM2.5 1.073 (1.035, 1.114)  10µg/m3  Av of 0-1 Effect estimates shown are for ages 65+ years, effects were in the same 

direction for those aged <65 years, but none were statistically significant  200620 PM10 N.S. (detail not reported) -   

  O3 N.S. (detail not reported) -   

  CO 1.032 (1.009, 1.055) 1ppm   

  NO2 1.088 (1.02, 1.163) 10ppb   

Zanobetti PM2.5 1.052 (1.007, 1.092) 10µg/m3 Av of 0-1 Results for same-day pollution levels only were in the same direction and of 
similar magnitude; the effect of black carbon was non-significant on the 
same day alone, whereas CO was significantly predictive of MI on the same 
day (though not for days 0 and 1 averaged) 

200621 PM non-traffic 1.0439 (0.9688, 1.1170) 10.28µg/m3 
  O3 0.988 (0.957, 1.017) 10ppb 

  CO 1.124 (0.973, 1.284) 1ppm 

  NO2 1.074 (1.034, 1.104) 10ppb 

  Black carbon 1.0834 (1.0021, 1.1582) 1.69µg/m3 

Peters PM2.5 1.105 (0.987, 1.226) 10µg/m3  2  Strong effect of PM2.5 among the subgroup of never-smokers (RR 1.20, 
1.04-1.39 per 7.7µg/m3). 
Strongest pollution effects seen at 2 days lag as shown. There were no 
statistically significant effects of pollutants on any other lag days. In an hourly 
analysis, there was no effect of PM2.5 or TNC at the hourly level at up to 6 
hours lag. 

200522 O3 0.94 (0.895, 0.987) 10µg/m3 
  CO 1.32 (0.968, 1.801) 1mg/m3 

  NO2 1.033 (0.966, 1.104) 10µg/m3 

  SO2 1.475 (1.069, 2.005)  10µg/m
3
 

  TNC* 1.04 (0.90, 1.20) 6400/cm3 

Ruidavets O3 1.082 (0.98, 1.166) 10µg/m3 0 There was an effect for O3 at 1 day lag (p=0.02), but not longer lags. The O3 
effect only was statistically significant at 0 and 1-day lag when possible 
coronary deaths/sudden deaths/deaths with insufficient data included 

200523 NO2 0.922 (0.81, 1.04) 10µg/m3 
  SO2 0.98 (0.723, 1.323) 10µg/m3 

Sullivan PM2.5 1.01 (0.98, 1.05) 10µg/m3 Av of 0-1 hours The authors also found no effects when increasing the averaging time for the 
exposure variables from 1 to 24hours before the event. 2005

24
 CO 1.04 (0.99, 1.08) 1ppm 

  SO2 0.97 (0.94, 1.01) 10ppb 

Zanobetti 200525  PM10 1.007 (1.003, 1.01) 10µg/m3 0 Dose-response relationship observed. Little effect at lag days 1 or 2.  
Peters 200426 Traffic  2.73 (2.06, 3.61) Odds ratio for traffic exposure  1 hour - 
D’Ippoliti TSP* 1.028 (1.005, 1.052) 10µg/m3 Av of 0-2 For total suspended particulate and CO, the only effect was the same-day; 

for NO2, there was no same-day effect, but a significant effect with 2 days 
lag. Effects of TSP and CO were stronger in the warm season, and among 
those with heart conduction disorders 

200327 CO 1.044 (1, 1.089) 1mg/m3 
  NO2 1.293 (0.97, 1.741) 10µg/m3 

  SO2 N.S. (detail not reported) - 

Peters PM2.5 1.17 (1.035, 1.325) 10µg/m3 2 hr, hourly 
analysis 

Coarse mass and black carbon also investigated but were not significantly 
associated with MI risk 
There was also a significantly elevated risk of MI associated with 24 hr 
average levels lagged by one day (i.e. levels from 24-48 hrs before the 
event), for PM2.5, PM10; and non-significant increased risks for coarse mass, 
black carbon, and NO2. 

200128 PM10 1.109 (1.015, 1.211) 10µg/m3 
  O3 1.062 (0.965, 1.17) 10ppb 

  CO 1.22 (0.89, 1.67) 1ppm 

  NO2 1.019 (0.934, 1.112) 10ppb 

  SO2 0.98 (0.911, 1.058) 10ppb 

*PNC = particle number concentration; TSP = total suspended particulate; TNC = total number concentration; SPM = suspended particulate matter 
Note: estimates converted where possible to:– PM10: per 10µg/m

3
; PM2.5: per 10µg/m

3
; O3: per 10ppb or 10µg/m

3
; CO: per ppm or mg/m

3
; NO2:  per 10ppb or 10µg/m

3
; SO2: per 10ppb or 1µg/m

3 
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A case-crossover study can be thought of as a kind of self-matched case-

control study. For each individual, exposure data are collected for the “hazard” 

period (usually the period immediately before the MI) and for one or more 

“control” periods which were not associated with the event of interest. For 

example, consider an individual who has experienced an MI: the period 

immediately before the MI (say, the 24 hours leading up to the event) might be 

defined as the hazard period for that individual; a control period might be a 

similar 24-hour period 7 days before the event. Exposure data are then 

collected from the hazard period and the control period(s), analogous to 

collecting exposure data from a case and their matched control(s) in an ordinary 

matched case-control study. Analysis can be performed using conditional 

logistic regression models. It should be noted that in reality the choice of 

appropriate control periods in case-crossover studies requires rather more care 

than is implied in the simplified example above, since some control selection 

strategies can lead to biases arising.117 

Air pollutant data originated from monitoring stations and were most commonly 

recorded as 24-hour averages, though 8-hour averages were also frequently 

used (Table 3.1). One study by Peters et al used traffic exposure as the 

exposure of interest and this was ascertained from diary data.114 MI data came 

from more varied sources. Three studies looked exclusively at MI deaths, and 

used death registry and vital statistics data to identify cases: as discussed 

previously (Section 2.3.1.1), mortality studies relying purely on routine cause of 

death coding may be more likely to include a proportion of deaths in which MI 

was not the true cause. The remaining 16 studies included data on both fatal 

and non-fatal MI events. The majority identified MI cases through hospital 

admissions records (n=8 studies), while the remainder used data from other 

hospital records (n=3), MI registers (n=3), and other databases (n=2).  Six 

studies, with access to symptom, ECG, and biomarker records, validated 

potential MI events using specific diagnostic criteria. 

Key potential confounders and the possibility of delayed effects were dealt with 

fairly consistently across studies. In case-crossover studies, confounding by 

season, long-term trend, and factors which do not vary over the short-term, is 

dealt with by design. The majority of time series studies included also adjusted 
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for season and long-term trend, as well as temperature, which is a potential 

confounder since temperature may be associated with both pollution levels and 

MI risk. However the specific way in which authors adjusted for temperature 

was varied; while a few studies allowed for both non-linearity of the temperature 

effect and for delayed (lagged) temperature effects over a number of days, 

others performed only a more basic adjustment (Table 3.1), Lagged effects of 

air pollution itself were included in all studies; in most cases both immediate 

(same day) effects and a number of different lags were considered. 

3.3.1.2 Results of time series studies 

A total of 10 studies included in the review were analyses of time series data. 

The earliest study, by Poloniecki et al,106 included over 68000 London hospital 

admissions for acute MI over a 7 year period, and assessed the effects of 1-day 

lagged pollutants (ozone, SO2, NO2, CO, and black smoke), finding significant 

detrimental effects of all pollutants except for ozone. Estimated effect sizes for 

each pollutant ranged from a 2.7% to a 3.3% increase for an increase in 

pollutant level from the 10th to 90th percentile. Further analyses suggested that 

these effects were limited to the cold season only (October to March). 

Interestingly, though the authors investigated a number of outcomes (including 

angina pectoris, cardiac arrhythmia, heart failure, cerebrovascular diseases, 

and other circulatory diseases), only acute MI was consistently associated with 

all pollutants except ozone. Only SO2 retained a statistically significant effect in 

all 2 pollutant model combinations. 

Three studies investigated a common set of pollutant exposures: PM10, ozone, 

CO, NO2, and SO2. Cendon et al
103 included admissions to ICUs and infirmaries 

in Sao Paulo, Brazil. SO2 and PM10 were significantly associated with both 

outcomes, with ozone associated with an increase in admissions to ICUs but 

not infirmaries, and no effect of CO or NO2. The generally stronger effect of 

pollutants on ICU admissions (compared with infirmaries) may reflect a greater 

specificity of diagnoses in this setting, as well as more severe disease. The 

authors presented cumulative effects over lag days 0-7, though lag days 0 and 

1 contributed the majority of the observed effects. Both Koken et al57 and Ye et 

al72 conducted studies restricted to over-65 year olds and to the months of July 
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and August, located in Denver (USA) and Tokyo (Japan) respectively. The 

former study found no detrimental effect of any pollutant, and actually reported 

a protective effect of ozone (17.5% [95% CI 7.5 to 26.7%] reduction in the 

same-day MI risk for a 9.7ppb increase in ozone levels), while the latter found 

that only NO2 was associated with an increased risk of MI, though the authors 

did not present any directly interpretable effect sizes. 

A further three studies investigated the effects of the four pollutants PM10, 

ozone, CO and NO2. Linn et al
105 looked at the effects of these pollutants on 

hospital admissions for MI over a 3 year period in Los Angeles, USA. Like 

Poloniecki et al,106 the authors found that all pollutants with the exception of 

ozone were associated with an increase in MI risk. However in this paper, which 

looked at a number of cardiovascular outcomes, the effects seen were not 

specific to MI alone: CO and NO2 were also associated with congestive heart 

failure, asthma and COPD, suggesting that the MI effect may have been just 

one manifestation of a more general effect on susceptible individuals. Mann et 

al38 also studied hospital admissions in a region which included Los Angeles, 

USA. MI was not the primary outcome of this study, therefore only brief results 

were reported. Again CO and NO2 were found to be associated with an 

increase in MI risk, though in this study, the authors found no effect of PM10. 

Ozone was significantly protective for MI; a 10ppb increase in ozone levels was 

associated with a 0.7% reduction in MI risk (95% CI 0.3 to 1.5% risk reduction). 

Lanki et al104 found little effect of any of the 4 pollutants in an analysis of 26854 

first MI hospitalisations from 5 European cities, though ozone was considered in 

the summer only. The authors additionally looked at the effects of particle 

number concentration (PNC), a proxy for ultrafine particles (<0.1 µg), which was 

measured for a year in each city and modelled retrospectively to cover the full 

study period. There was no effect of PNC in the main analysis, though in an 

analysis restricted to the 3 cities using hospital discharge (as opposed to MI 

registry) data, there was a suggestion of a detrimental effect of PNC, 

particularly among fatal cases in the under-75s; it seems possible that this 

result, based on cause of death data in a non-specific discharge register, may 

have been influenced by misclassification of other non-MI events.  
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Three studies analysed MI mortality data only. Sharovsky et al61 looked at the 

effects of PM10, CO, and SO2 on MI deaths in Sao Paulo, Brazil. 12007 MI 

deaths over a 3 year period were included. The study included adjustment for a 

number of potential confounders. There was no effect of PM10 or CO, though for 

the latter there was a suggestion of an increase in MI deaths during periods with 

higher CO levels. SO2 was significantly associated with MI mortality: a 10µg/m
3
 -

increase in SO2 levels, averaged over lag days 0-3, was associated with a 3.0% 

increase in MI deaths (95% CI 0.5 to 7.0%). A further two studies looked 

specifically at the effect of total suspended particulate (TSP); Rossi et al62 

included 1600 MI deaths and controlled for a number of potential confounders. 

An effect of TSP (which the authors suggested was approximately equivalent to 

PM13) was found at 3-4 days lag, with a 100µg/m
3
 increase in TSP associated 

with an estimated 10% increase in MI mortality (95% CI 13 to 18). There was 

little effect of exposure on the same day. Murakami et al107 considered the 

effect of a similar exposure at an hourly level, finding that MI rates increased in 

the hour following high TSP levels (and for up to 6 hours); there was an 

apparent dose response relationship with higher TSP threshold levels 

associated with greater increases in MI rates. It is worth reiterating that all of 

these mortality studies may inadvertently have included a higher proportion of 

non-MI events than studies of non-fatal MIs, and this could either dilute or 

exaggerate observed effects. 

3.3.1.3 Results of case-crossover studies 

9 further studies considered short-term air pollution effects on MI risk using a 

case-crossover study design, all of which included non-fatal MI events. The two 

largest studies were based on US hospital admissions data from the Medicare 

programme, which has data on those aged over 65 years only. Zanobetti and 

Schwartz113 studied data from 302453 hospital admissions in 21 US cities, 

considering only PM10 as the exposure of interest, and finding a small but 

statistically significant association with same-day MI risk (0.65% increase in risk 

[95% CI 0.3 to 1.0%] per 10µg/m3 increase in PM10 levels). There did not 

appear to be any lagged effect, at the lags of 1 and 2 days considered in the 

analysis. A second study by the same authors reports results from similar 

Medicare data in Boston (n=15578), this time on a wider range of exposures.109 
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An increase in PM2.5 levels from the 10
th to 90th percentile (averaged over 0 and 

1 days’ lag) was associated with a 8.6% increase in MI risk (95% CI 1.2 to 

15.4). PM “not from traffic” (a modelled exposure) showed no effect and the 

only gaseous pollutant to be significantly associated with MI was NO2, with no 

effect of ozone or CO. 

D’Ippoliti et al115 found that a 10µg/m3 increase in TSP (averaged over 0-2 days 

lag) was associated with a 2.8% (95% CI 0.5 to 5.2%) increase in MI risk in 

Rome, Italy, though further analysis of different lags revealed that the effect was 

actually restricted to the same day. The authors also looked at the effects of 

gaseous pollutants CO, SO2, and NO2, with only CO appearing to be associated 

with MI (4.4% [0.0 to 8.9%] increase in risk per 1µg/m3 increase in CO averaged 

over 0-2 days lag); again the real effect was restricted to the same day. A study 

by Barnett et al108 in Australia and New Zealand made comprehensive 

adjustment for weather, with the authors including relative humidity, pressure, 

and rainfall in their models. Among older patients (aged ≥65 years), higher 

levels of PM2.5, CO, and NO2 were all associated with increased MI risk, though 

there was no effect of PM10 or ozone. Low power may have been an issue for 

Ruidavets et al,111 who found no effect of  ozone, SO2, or NO2 in a very small 

case crossover study (n=399) based in the Toulouse area of France. However a 

suggestion of a detrimental effect of ozone (lagged by one day) was 

strengthened when the authors loosened their definition of MI to include 76 

“possible coronary deaths”.  

Three studies were able to look at the effects of pollutants at an hourly, rather 

than daily, temporal resolution. Peters et al116 studied 772 coronary care 

admissions data from Greater Boston, USA finding an effect of hourly PM2.5 

concentration lagged by 1, and 2 hours. When daily PM2.5 levels were 

considered, there was also a lagged effect at 1 and 2 days before onset. 

Results were similar for PM10, but gaseous pollutants (O3, CO, NO2, and SO2) 

did not show a significant effect on the risk of MI. Since the exact timing of MI 

was determined by patient interview a median of 4 days after the event, this 

may have been subject to some recall error. Furthermore, since only one 

monitoring station was used covering the whole Greater Boston area, the 

measured pollutant levels may not have reflected personal exposure accurately. 
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Nevertheless, the results do raise the possibility that other studies using 24 hour 

mean values and analyses with daily resolution may miss transient immediate 

increased risks associated with hourly pollutant levels. Sullivan et al112 

attempted to confirm these findings in a larger study of 5793 MI events, taken 

from a community database linking emergency service response data with 

hospital outcomes in Washington State, USA. The exact time of the emergency 

call was available, as well as the duration of pain at this point, hence time of 

symptom onset could be estimated. Interestingly, in this larger study, no effect 

of PM2.5 was found, using exposure averaging periods ranging from 1 hour 

before the event, to 24 hours before the event. Even when the authors 

deliberately replicated the methods of Peters et al, no similar effect was found. 

The authors speculate that this may be due to different composition of 

particulate matter in the different regions, or due to differing susceptibilities of 

the populations of the two areas to air pollution effects. A later study by Peters 

et al110 using data from Germany found no effect of PM2.5 in an hourly analysis 

looking at up to 6 hours lag. However, analysis at a daily resolution suggested a 

possible effect of PM2.5 delayed by 2 days, with a 7.7µg/m
3 increase associated 

with an 8% increase in MI risk 2 days later (95% CI -1 to 17%). In this study 

SO2 was also associated with increased MI risk 2 days later, though ozone, CO, 

and NO2 had no effect. 

Finally, Peters et al114 took a slightly different approach; instead of using directly 

measured pollutant levels, the study looked simply at the risks associated with 

exposure to traffic, as recorded in an interview-based diary completed 

retrospectively by the 691 participants, covering the 4 days before the MI. 

Exposure to traffic (defined as the patient using any means of transportation) 

was strongly associated with MI risk; there was a significant immediate effect, 

as well as an effect 1, 2 and 5 hours later (OR = 2.92 [2.22 to 3.83] for exposure 

to traffic 1 hour before the event). Cycling was more strongly associated with MI 

than travel by car or public transport. It should be noted that factors other than 

air pollution may have contributed to the effects found. Though the authors 

attempted to control for severe exertion, being outside, and getting up in the 

morning, there may still have been residual effects of physical exertion or stress 

that could be associated with both travel and MI risk. It is also possible that 
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recall bias could have operated in the data collection process; interviews were 

conducted a median of 9 days after the event and a bus ride or car journey a 

few hours before a subject had an MI may be more likely remembered than one 

on a less eventful day some time earlier. 

3.3.1.4 Summary of studies of short-term effects of air pollution 

Having considered the particular features of individual studies, it is helpful to 

consider the overall evidence regarding each pollutant and its associations with 

MI risk. To aid comparison between studies, effect estimates in this section and 

in Figure 3.2 and Figure 3.3 are rescaled to refer to a standardised increase in 

pollutant levels where possible. 

Particulate pollutants 

Out of 10 studies investigating the effects of PM10 on MI risk, 7 found no effect 

at all (Table 3.2 and Figure 3.2). Zanobetti et al estimated a 0.65% (95% CI 0.3 

to 1.0%) increase in MI admissions on the same day as a 10µg/m3 increase in 

PM10 among those aged ≥65 years,
113 while Linn et al reported an effect of 

similar size for a study population with no age restriction.105 However the Onset 

Study, which used admissions records from a Boston coronary care unit and 

analysed data at an hourly level, found a considerably larger effect, their 

estimate implying an 11% increase in risk for a 10µg/m3 increase in PM10 one 

hour earlier.116 This larger effect was not only observed at the hourly timescale; 

the same authors also found a large and statistically significant effect at a daily 

resolution, in contrast with the lack of effect found by most studies. 
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Figure 3.2: Estimated effects of particulate pollution on MI risk 

 
RR = relative risk 
 

PM2.5 was included as an exposure of interest in 5 studies, all of which were of 

a case-crossover design. 3 of the 5 studies reported that PM2.5 significantly 

increased the risk of MI. Effect sizes of 5 to 7% per 10µg/m3 increase were 

estimated in 2 studies using a daily timescale for analysis,108-109 while a third 

found no effect overall.110 These effects were observed between 0 and 2 days 

after a change in PM2.5 levels. A few studies were able to analyse data at an 

hourly resolution, with 2 finding no effect of PM2.5 on this timescale.
110, 112 As 

with PM10, results from the Onset Study were contrasting: the authors estimated 

a 17% increase in risk 2 hours after a 10µg/m3 increase in PM2.5.
116 

Other particulate exposures were investigated in some studies. Of note, two 

studies looking at proxies for ultrafine particles found no effect on MI risk.104, 110 

On the other hand, total suspended particulate was included as an exposure in 

three studies, and all reported a significant association with MI, either on  the 

same day,107, 115 or with some delay.62 
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Gaseous pollutants 

Ambient ozone was investigated as a risk factor for MI by 12 studies, only one 

of which reported a detrimental effect, with MI admissions to intensive care units 

increasing on days with higher ambient ozone.103 More common were studies 

reporting a protective effect of ozone (Table 3.2 and Figure 3.3). Surprisingly, 

out of 10 studies reporting a numerical estimated odds ratio or relative risk for 

MI associated with an increase in ozone levels, the estimate was <1 in 7 

studies, and this protective effect was statistically significant in 3 studies. 

However, effect sizes varied: while Koken et al57 estimated an 18% reduction in 

MI risk for a 10 parts per billion (ppb) increase in ozone, Mann et al38 estimated 

only a 0.7% risk reduction for an equivalent increase in ozone. It is worth 

recording that the relationship between ozone levels and the levels of other 

pollutants appeared to vary between studies. For example, considering the four 

studies reporting a significant effect of ozone in either direction, Cendon et al103 

(the only study finding a detrimental effect of ozone) recorded positive 

correlations between ozone and other measured pollutants, whereas the 

remaining studies reported correlations that were either negative57, 110 or both 

negative and positive.38 
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Figure 3.3: Estimated effects of gaseous pollutants on MI risk 

 
RR = relative risk 
 

Evidence for an effect of ambient CO, NO2, or SO2 levels on MI risk was mixed, 

however for each of these pollutants, a proportion of studies (6/14, 6/13, and 

4/10 respectively) found a significant detrimental effect, whereas no study found 

an effect in the opposite direction. Only four studies studying multiple pollutants 

found no effect of any of these gases;57, 111-112, 116 one did not report the number 

of cases included but the other three were relatively small studies (n=5793, 772, 

and 399) which may have had limited power. Among studies which measured 

CO levels in parts per million (ppm, as used more commonly than µg/m3 or 

mg/m3), the four studies finding a significant effect presented effect sizes that 

were fairly consistent, each estimating a 2-4% increase in MI risk per 1ppm 

increase in CO.38, 105-106, 108 For NO2, effect sizes ranged from a 1% to a 9% 

increase in risk per 10ppb increase in NO2 levels, though the largest effects 

appeared in study populations restricted to those aged over 65 years.108-109 

Comparison of effect sizes among the four studies reporting an SO2 effect is 

more difficult since different pollutant measures were used between the studies. 
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Finally, it is worth noting that the effects of these gases, where reported, 

appeared to operate relatively quickly: in most cases either on the same or next 

day. 

3.3.1.5 Vulnerability among subgroups 

A number of the studies included in this review performed analyses stratified by 

various factors to assess the vulnerability of particular subgroups to any effects 

of air pollution on MI risk. In general, study reports did not state whether such 

subgroup analyses were pre-planned and their results should thus be 

interpreted cautiously. Most commonly investigated was the role of age.  

Barnett et al,108 who found detrimental effects of PM2.5, CO, and NO2 among 

those aged 65 years and over (Table 3.3), reported that effects for those aged 

<65 years were smaller and non-significant, though it should be noted that 

event rates were lower among this age group so that lack of power could have 

been responsible for the lack of a statistically significant effect. Lanki et al104 

correspondingly reported that the effects of CO and particle number 

concentration were larger among those aged ≥75 years, though only for non-

fatal outcomes (for CO: RR per 0.2mg/m3 = 1.015, 95% CI 1.004-1.026 

compared with 1.001, 0.995-1.008 for those aged <75 years); indeed the 

opposite effect was seen when fatal MIs were considered. The detrimental 

effects of ozone111 and of traffic exposure114 also appeared to increase for older 

subgroups. In contrast, Sullivan et al reported no modification by age of the 

effect of PM2.5 on MI risk.
112 

Other potential effect modifiers were less commonly investigated. One study 

considered the effects or PM2.5 by race, sex, and smoking status, and found no 

differences;112 this was in contrast with a  study suggesting that the effect of 

PM2.5 may be larger among never-smokers than current- or ex-smokers (OR 

per IQR increase = 1.20, 95% CI 1.04-1.39 for never-smokers compared with 

1.04, 0.90-1.21 for current smokers),110 and that increased risk associated with 

traffic exposure may be larger among women compared with men (OR per IQR 

increase = 4.51, 2.55-8.00 for women compared with 2.59, 1.90-3.53 for 

men).114 The detrimental effects of traffic exposure were also reported to be 

larger among those out of employment though confidence intervals were 
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overlapping (OR 4.20, 2.88-6.12 compared with 2.20, 1.47-3.28 for those 

currently employed).114 

3.3.2  Long-term effect of air pollution exposures on MI risk 

The studies reviewed in section 3.3.1 were designed to detect short term effects 

of air pollution, i.e. effects acting over a matter of a few hours or days. A few 

studies have looked at longer range effects (Table 3.4).  

One such study in Rome, Italy, looking specifically at the effects of NO2
 as a 

marker of traffic-related pollution, related the mean annual NO2 level to the 

incidence of MI, using Poisson regression.118 1061 fatal and 6513 non-fatal MIs 

were included, from regional cause of death and hospital discharge registers 

respectively. Though mean annual exposure to NO2
 appeared to be associated 

with MI risk in univariate analyses, there was no significant effect after adjusting 

for age, sex, and socioeconomic status. The authors separately analysed out-

of-hospital deaths, in which they included all ischaemic heart disease; when this 

outcome was used, NO2 did appear to be associated with incidence (RR = 1.04 

[1.02 to 1.12] per 10µg/m3 increase). 

The remaining studies of long term effects fall into two main categories – 

prospective cohort studies, and case-control studies. 

3.3.2.1 Prospective cohort studies 

Three papers reported on prospective cohort studies. In such studies, data are 

collected on “healthy” individuals (in terms of the outcome of interest) who are 

then followed up to see if they develop disease. This approach can avoid 

certain biases associated with identifying cases retrospectively. However, for 

anything other than very common conditions, the design may be inefficient: 

many people must be followed up, and even then only a small number of cases 

may be observed. This can lead to low power to detect small effects.
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Table 3.4: Studies of long-term effects of air pollution on MI outcomes 
First author & 
Year of 
publication 

Population/data source Location & Time 
period 

Number of 
MI events  

Air pollution exposure 
variable(s) 

MI ascertainment Result     

Cohort studies                 
Miller 200729 Cohort of 

postmenopausal 
women aged 50-79 
years 

36 cities, USA  
1994-1998 

584 
(cohort 
size 
=65893) 

Average annual exposure 
to PM2.5* 

From annual questionnaires 
and national death index; 
independently adjudicated by 
investigators. 

 
PM2.5: 

[Hazard ratio] 
1.06 (0.85, 1.34) 

 
Per 10µg/m3 increase 

Abbey 199330 Cohort of seventh-day 
Adventists 

California, USA  
1977-1982 

62 (cohort 
size 
=6303) 

Average and cumulative 
exposure to ambient NO2 
estimated for places of 
residence /work* 

From hospital records; 
reviewed by a cardiologist on 
the study staff 

NO2: “No association” 
(details not 
reported) 

  

Abbey 199131 Cohort of seventh-day 
Adventists 

California, USA  
1977-1982 

62 (cohort 
size 
=6303) 

Cumulative exposure to 
total suspended particles 
(TSP), and O3* over a 5 
year period prior to follow-
up 

From hospital records; 
reviewed by a cardiologist on 
the study staff 

 
TSP: 
 
 
O3: 

[Hazard ratio] 
0.93 (0.57, 1.51)  
 
 
1.06 (0.69, 1.61)  

 
≥1000 vs. <1000 hours 
exposure to 200µg/m3 
 
≥500 vs. <500 hours 
exposure to 10pphm 

Case-control studies                
Tonne 200732 Cases from 

community-based MI 
study; population 
controls  

Worcester, 
Massachusetts, 
USA 1995-2003 

5049 
(controls 
=10277) 

Cumulative traffic at place 
of residence (average 
daily traffic within 100m 
multiplied by total length of 
road) 

MI reviewed and 
independently validated 
according to diagnostic criteria 

Cum-
ulative 
traffic: 

[Odds ratio] 
1.04 (1.02-1.07)  

 
Per 794 vehicle-kms 

Rosenlund 
200633 

Cases (aged 45-70y) 
from coronary and 
intensive care unit 
discharge registers & 
death certificate data; 
population controls   

Stockholm, 
Sweden 1992-
1994 (exposure 
estimated over 30 
years prior to 
events) 

1397 
(controls 
=1870) 

30-year mean annual NO2, 
CO, SO2 modelled from 
source-specific emissions 
database. PM estimated in 
2000 and assumed 
constant. 

From coronary units, ICUs, 
hospital discharge register, 
death certificates using 
standard diagnostic criteria 

 
PM10: 
CO: 
NO2: 
SO2: 

[Odds ratios] 
1.0   (0.79, 1.27) 
1.04 (0.89, 1.21) 
0.99 (0.76, 1.30) 
1.03 (0.78, 1.36) 

 
Per 5µg/m3 increase 
Per 300µg/m3 increase 
Per 30µg/m3 increase 
Per 40µg/m3 increase 

Grazuleviciene 
200434 

Cases (aged 25-64y) 
from coronary and 
intensive care 
discharge registers; 
population controls 

Kaunas, Lithuania 
1997-2000 

448  
(controls 
=1777) 

NO2 exposure in district of 
residence (categorised 
into high/medium/low 
tertiles) 

Records with ICD10 codes of 
I21 and consistent symptoms, 
ECG, marker levels  

 
NO2: 

[Odds ratios]   
1.00 [ref] 
1.43 (1.04, 1.96) 
1.43 (1.07, 1.35) 

 
Low (mean 13.1µg/m3) 
Medium (mean 18.7µg/m3) 
High (mean 24.7µg/m3) 

Population based studies               
Rosenlund 
200835 

Hospital discharge 
registry and regional 
cause of death registry  

Rome, Italy 1998-
2000 

1056 
(fatal) + 
6513 (non-
fatal) 

Mean annual NO2 
exposure 

Records with ICD9 codes of 
410 

 
NO2: 

[Relative risk] 
fatal:  
1.05 (0.97, 1.15)   
non-fatal: 
1.01 (0.97, 1.05)   

 
 
Per 10µg/m3 increase 
 
Per 10µg/m3 increase 

*based on measured data from monitoring station
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One such study, described in two papers,119-120 followed a cohort of 6303 

seventh-day Adventists in California, USA, between 1977 and 1982. During this 

time 62 MIs occurred among study participants; cardiologists on the study staff 

reviewed enzymes and ECG readings to confirm these MIs. Cumulative 

exposure to total suspended particles and ozone over the five years prior to the 

study follow-up period were not found to be related to MI. However, with few 

events, confidence intervals were wide and did not rule out large effects in 

either direction, highlighting the potential difficulties of prospective cohort 

studies in this field. The later report,119 which looked at the effect of NO2 also 

reported no effect. In a more recent study121 among 65893 postmenopausal 

women aged 50-79 in 36 US cities, 584 MI events were observed between 

1994 and 1998; again MI events were independently verified by study staff. The 

authors concentrated on a particular pollutant, PM2.5. Average annual exposure 

to this particulate matter was obtained for each woman, by collecting data from 

the nearest monitoring station to her home. However these PM2.5 measures 

were not related to MI risk in multivariate Cox models. 

3.3.2.2 Case control studies 

Case-control studies have been used as an alternative design to prospective 

cohort studies for assessing long-term effects of air pollution. Since patients 

with MI are identified retrospectively, they have the advantage that many more 

cases can be included without the need for a vast study population. Such 

studies may therefore have greater power to detect effects. 

Grazuleviciene et al122 collected data on 448 cases of MI using coronary and 

intensive care unit registers in Kaunas, Lithuania. Cases were among 25-64 

year-olds, and 1777 controls were drawn from the local population. Annual 

mean NO2 levels, based on the participant’s place of residence, were used as a 

marker of exposure to vehicle exhaust. Those in the highest tertile of NO2 

exposure (exposed to mean NO2 concentrations of 24.7 µg/m
3) were at 

increased risk of MI (OR = 1.43 [1.07 to 1.35]) compared to those in the lowest 

tertile (with mean exposure 13.1µg/m3). The authors found a yet stronger effect 

in the older individuals (age 55-64: OR = 2.07 (1.28, 3.35) for 3rd vs 1st tertile). 
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The authors adjusted for age, smoking, blood pressure, body mass index, 

psychological stress, marital status, and education. Nevertheless the principal 

concern about the conclusions is that residual confounding may have been 

present because of the classification of NO2 exposure based on residential 

district, which may bring with it many other differences, e.g. in environmental 

factors, socioeconomic status, and occupation. 

Rosenlund et al123 looked at data on 1397 cases of MI, drawn from hospital-

based registers and death certificate data; controls (n=1870) had no history of 

MI and were randomly selected from the study base, stratified by age, sex and 

hospital catchment area. Air pollution exposure came from a spatial model 

based on Swedish emission databases. Annual mean levels of NOx, NO2, CO, 

SO2 were estimated at high spatial resolution, and mapped to the study 

population by their residential addresses to create an overall 30-year average 

exposure for each pollutant. PM10 and PM2.5 exposure was calculated for the 

year 2000 only and assumed to be constant throughout the study period due to 

a lack of historical data. The authors found no effect of long term exposure to 

any pollutant on MI incidence, though there was some suggestion of an 

increase in the risk for out of hospital MI deaths for NO2, CO, and PM10.  

Finally, Tonne et al124 report on a case-control study with 5049 confirmed cases 

of MI and 10277 controls (matched on age, sex and region). The exposure 

measure was a proxy for exposure to traffic, and was based on the product of 

the total road length within 100m of the subject’s home, and the average traffic 

levels in the same zone. It is difficult to judge how good this proxy is likely to be 

for personal exposure, and the measure does not account for possible 

behavioural differences for those near roads (e.g. staying indoors, closing 

windows), or for individuals moving in and out of the area. That said, the 

authors found a 4% (95% CI 2-7) increase in the odds of MI per IQR increase in 

this proxy for cumulative traffic. 

3.4 Discussion 

This review has identified a number of studies investigating both the short- and 

long-term associations between pollutant levels and the risk of MI, 
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concentrating principally on the effects of exposure to particulate matter and a 

range of common gaseous pollutants.  

From a total of 19 studies looking at short-term pollution effects, fairly 

persuasive evidence emerges of some short-term effects on MI risk. Among 

particle exposures, though no effect of PM10 was found in most studies, 

increasing daily PM2.5 levels were commonly associated with increasing MI risk 

between 0 and 2 days later. Increases in risk of 5-7% for a 10µg/m3 increase in 

PM2.5 levels were typically reported, though one study reported an effect over 

three times this size. The evidence concerning effects of gaseous pollutants 

was more mixed:  increases in CO, NO2, and SO2 were all associated with 

increases in MI risk in a substantial proportion of studies, yet just over half of 

the studies that investigated each of these exposures reported no effects. 

Surprisingly, higher levels of ozone were in a number of studies associated with 

a reduction in MI risk. However, ozone levels may be reduced close to sources 

of nitric oxide (such as vehicular traffic), where the two gases react to produce 

NO2. It has also been suggested that a negative correlation between ozone and 

methyl nitrate (a combustion product of some engine fuels) could be 

responsible for such paradoxical associations.125 Thus higher ozone levels may 

be acting as a marker of reductions in other pollutants. We noted that among a 

limited number of studies that addressed the question of effect modifiers, there 

was some suggestion that older individuals may be more vulnerable to the 

detrimental effects of pollution. 

Though the evidence concerning most commonly measured pollutants may 

appear to be varied and sometimes conflicting, it should be borne in mind that, 

as in the previous review of temperature effects (Chapter 2), the studies 

included here were conducted using varying methodologies, and in varying 

situations. Variation in estimated effects may have been caused by a number of 

factors: different locations may have had differing underlying pollutant levels, 

different populations may have had differing susceptibilities, and different 

methods of exposure measurement, event ascertainment, and statistical 

analysis may have led to differing results. 
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With the earliest study of short-term effects meeting our inclusion criteria 

published in 1997, the quality of methodology seen in these studies reflects 

recent standards, with widespread attempts to control for important potential 

confounders, such as season, trend, and ambient temperature, using statistical 

models. The majority of studies also included non-fatal MIs which may be less 

susceptible to misclassification than MI deaths; some further validated MI 

diagnoses by having ECG and enzyme data examined by study investigators. 

Nevertheless there are inherent limitations in observational studies of air 

pollution effects. A common concern is that pollution measured by outdoor 

monitors may not be a good measure of personal exposures,126 though median 

correlations as high as 0.92 have been reported between personal and central 

station PM2.5 in homes without environmental tobacco smoke.
127 In time series 

studies, by design, exposure must be averaged over the whole region being 

analysed. This is a potential weakness since in reality levels of pollutants may 

vary substantially over, say, a city. Although the case-crossover design allows 

for individualised exposure measures, in practice exposure must be 

approximated using the limited number of pollution monitors available, so the 

same problem arises. Only the study by Peters et al114 in which the exposure of 

interest was exposure to traffic, used a truly individualised exposure, based on 

diary data. Finally, since commonly measured air pollutants are likely to be 

highly correlated in any given situation, and unmeasured pollutants may also 

confound associations, studies such as those included here are unlikely to 

provide reliable evidence concerning the separate the effects of individual 

pollutants. 

A number of possible mechanisms have been suggested through which air 

pollution may affect cardiovascular function and trigger acute events. Increases 

in levels of C-reactive protein128 and other inflammatory markers129 at times of 

higher ambient pollution have been observed, suggesting a systemic 

inflammatory response associated with exposure. On the other hand, a number 

of experimental studies have reported no clear systemic inflammatory response 

on controlled exposure to SO2, pure carbon particles,
130 fine and ultrafine 

particles,131 dilute diesel exhaust,48 or concentrated ambient particles.132  
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A second proposed pathway is that air pollutant exposure may cause altered 

autonomic control of the heart rate or heart rate variability. Observational 

studies have indeed linked higher levels of exposure to particulate air pollution 

with increases in heart rate133 and decreases in heart rate variability;128 

furthermore, two studies in which incidence of arrhythmias could be measured 

using data from implanted cardioverter defibrillators found an increase in 

discharges of the defibrillators following increases in ambient exposure to fine 

particles, NO2, CO, and black carbon,
134-135 while SO2 has been found in a 

controlled study among healthy volunteers to reduce cardiac vagal control, 

which could increase susceptibility to arrhythmias.130  

A third hypothesis is that pollution induces changes in blood viscosity and 

factors that may increase the propensity to clot or impair the dissolution of 

thrombi. Plasma viscosity increased among individuals exposed to a severe 

episode of air pollution in Germany in 1985.136 Controlled exposure 

experimental studies have demonstrated concentrated environmental particles 

leading to an increase in plasma fibrinogen levels in healthy volunteers,137 and 

dilute diesel exhaust leading to an increase in thrombus formation and platelet 

activation,138 and an impairment of the acute release of tissue plasminogen 

activator, an enzyme involved in the breakdown of blood clots.48 On the other 

hand one controlled study found that 2 hours of ambient particulate exposure 

had no effect on fibrinolytic function among either healthy middle-aged 

volunteers or patients with prior coronary heart disease, despite delivery at 3 to 

5 times US EPA National Ambient Air Quality standards.132  

A fourth possible pathway is suggested by a study in rats in which exposure to 

urban particulate matter led to an increase in endothelins, which act as 

vasoconstrictors.139 Indeed, controlled exposure to a mixture of concentrated 

ambient particles and ozone in humans led to arterial vasoconstriction in one 

study.140 Correspondingly, increased vascular resistance was measured in 

rabbits following 4 hours exposure to ozone,141 and one  observational study in 

humans reported an increase in blood pressure associated with increased PM2.5 

levels in cardiac rehabilitation patients.142 
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Finally, a few individual studies have reported observations suggesting other 

possible mechanisms: air pollution exposure has been associated with 

accelerated progression of atherosclerosis and decreased plaque stability,143 

decreased oxygen saturation and hypoxaemia,144 and increased ischaemic 

burden.48 With observational and experimental evidence seemingly supporting a 

number of potential pathways, it seems plausible that exposure to air pollution 

may affect the risk of acute cardiac events through multiple mechanisms.  

The final part of this review considered studies looking at longer-term effects of 

air pollution. A small number of prospective cohort studies have observed only a 

small number of events and thus reported effect estimates with wide confidence 

intervals. Notably, two case-control studies which looked at long term exposure 

to traffic based on place of residence (one directly, and one using NO2 

exposure as a proxy) did show a detrimental effect, however these effects could 

be confounded by factors related to socioeconomic status and occupation. 

Thus, in contrast with short-term effects, the evidence base for long-term effects 

of air pollution exposures on MI risk is limited and few convincing conclusions 

can be drawn. 

This review, like that described in the previous chapter, has its limitations. 

These include the possibility that some studies may have been missed, though 

it is likely that the search strategy, employing various sources, will have picked 

up all major studies with MI as the primary outcome. Perhaps of more concern 

is the potential for publication bias to have coloured the review findings: as well 

as the classic publication bias mechanism (i.e. a lack of interest from authors 

and/or journals in publishing negative studies), the field of air pollution 

epidemiology may be susceptible to a more subtle form of publication bias due 

to the numerous exposures investigated in most analyses. Authors often 

appeared to analyse large combinations of pollutants and lag periods, 

sometimes reporting the strongest effects in quite a post-hoc way, which may 

have led to a selective emphasis on positive effects. Assessing the extent of 

such biases is difficult given the variations in methodology and reporting, but 

such concerns should be borne in mind as a caveat to the findings of this 

review.  
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In conclusion, though this review seems to reveal compelling evidence for some 

effect of air pollution on MI risk, there is much room for further research. 

Observed pollution effects were not consistent between studies and more large 

population-based studies may help to clarify the true nature of these effects and 

the reasons for discrepancies between studies. The exact role of individual 

pollutants is unclear, and perhaps only further experimental studies under 

controlled conditions can address this issue. A large number of potential 

mechanisms have been suggested and though some have the support of 

limited data, no single mechanism has emerged as the most likely, indeed 

multiple mechanisms may be at work; further work may reveal the relative 

importance of each. Finally, future studies may investigate more fully factors 

that might make some individuals or indeed populations more susceptible than 

others to the detrimental effects of air pollution. 

3.5 Update: studies published since this review 

A literature search update performed in July 2010 identified seven studies 

published since this review was undertaken and fulfilling the original inclusion 

criteria.  

Two new time series studies investigated the short-term effects of fine 

particulate matter (PM2.5) on MI mortality in 112 US
145 and 9 Japanese146 cities. 

The larger American study identified a significantly increased risk of MI 

associated with higher PM2.5 levels (estimated increase in risk = 1.2% [0.48-

1.89] per 10µg/m3 increase in PM2.5 over lag days 0-1); of note there was no 

effect of coarse particles (with diameter >2.5 and ≤10µm) in this study. In the 

Japanese study an effect of similar magnitude was estimated for PM2.5 but a 

wider confidence interval implied that the evidence for an effect from this study 

was weak, possibly due to lower power (estimated increase in risk 1.8% [-1.17-

4.77] per 10µg/m3 increase in PM2.5 over lag days 0-2). 

Two case-crossover studies were carried out in Taiwan, one including 9349 

hospital admissions for MI in the tropical city of Kaohsiung,147 and the other 

23420 admissions in the sub-tropical city of Taipei.148 In both cases the effects 

of PM10, ozone, CO, NO2 and SO2, averaged over lag days 0-2, were 
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investigated. In Taipei, all pollutants except SO2 were positively associated with 

MI risk with effect sizes similar on both warm and cool days. In Kaohsiung there 

was more variation by temperature: on cool days (<25°C) all pollutants except 

ozone were positively associated with MI risk, while on warm days (≥25°C), 

though an effect of ozone emerged, all other pollution effect estimates were 

smaller, and in the case of PM10 and SO2 the effects were no longer statistically 

significant. 

Three studies looked at longer-term effects of exposure to pollution. Following 

up on their earlier case control study124 (described in Section 3.3.2.2), which 

looked at the effects of residential proximity to traffic on MI risk in 

Massachusetts, USA, Tonne et al149 considered the effects of long-term 

exposure to traffic particles, modelled at participants’ place of residence based 

on measured PM2.5 and NO2 emissions. An IQR increase in estimated emission 

density was associated with an odds ratio for MI of 1.10 (95% CI 1.04-1.16). A 

second case control study in Sweden modelled 5-year average levels of the 

traffic-generated pollutants PM10, CO and NO2 at the home addresses of 24347 

individuals who had recorded MI in a Stockholm registry, and 276926 

controls.150 An increase from the 5th to 95th percentile of each pollutant was 

associated with a significant increase in the odds of fatal MI (ORs ranged from 

1.14 to 1.23 for the three pollutants investigated), but there was no effect on 

non-fatal MI (all ORs <1). Finally, a prospective cohort study in which 66250 

female nurses in the north east of the USA were followed up looked at the 

effects of chronic exposure to PM10 using various averaging strategies to 

estimate exposure.151 854 MI events were observed but there was no effect of 

PM10, regardless of the averaging strategy used.  

Overall, the studies identified since the systematic review were in keeping with 

the earlier literature: in the short-term, MI risk appeared to be associated with 

daily PM2.5 levels, while the evidence for an association with coarser particles 

and with gaseous pollutants was mixed. The studies of longer-term effects were 

suggestive of a link between chronic pollution exposure and MI risk but 

highlighted that observed associations may be dependent on how long-term 

pollution exposure is measured and defined.  
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3.6 Summary 

• A systematic review was undertaken focussing on the effects of common 

pollutants on MI risk. 26 studies were identified: 19 investigating effects on a 

daily or hourly timescale, and 7 investigating longer-term effects. 

• Fine particles (PM2.5) appeared to be associated with MI risk in a few studies 

while most studies investigating PM10 found no effect. 

• Just under half of the studies investigating short-term effects of CO, NO2, 

and SO2 reported positive associations with MI. Ozone levels were inversely 

associated with MI risk in a number of studies. 

• Few informative data were available regarding the effects of long-term 

exposure to air pollution. 

• Overall, there was some evidence that short-term fluctuations in air pollution 

affect the risk of MI, but further research is needed to clarify the relationship. 
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4 Data sources and study methods 

4.1 Introduction 

In this chapter, the main data sources and study methods are described. A brief 

outline of analytical methods is also given (detailed statistical methods are 

described in the relevant analysis chapters). 

4.2 Data sources 

4.2.1 The Myocardial Ischaemia National Audit Project (MINAP) 

MINAP is a national register of MI and other acute coronary syndromes (ACS), 

with participation from all hospitals in England and Wales that admit patients 

with these conditions.152 It was set up initially in 1998 to allow clinicians to 

assess the local management of myocardial infarction against national 

guidelines and targets. 

MINAP aims to include data on all hospital admissions with an ACS diagnosis. 

The identification of such admissions is managed at the individual hospital level 

and is not trivial: though ACS or suspected ACS may represent a large 

proportion of medical admissions, these admissions are likely to be through a 

number of individual wards and units within each hospital. A set of guidelines 

exists recommending identifying eligible admissions through a combination of 

avenues including biochemistry records (specifically troponin measurements), 

admission notes, and discharge slips. 

Each month MINAP accrues around 7000 MI events, recording 108 data fields 

covering basic demographic data, timing of onset of symptoms, ECG changes, 

markers of myocardial necrosis, final diagnosis and thrombolytic or other 

treatment received. Also recorded are pre-existing co-morbidities including 

hypertension, diabetes and previous cardiovascular events. 

Data from participating hospitals are then collated centrally and held at the 

National Institute for Clinical Outcomes Research at the Heart Hospital, London.  
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These data have recently become available for researchers, subject to approval 

by the MINAP Academic Group.  

The MINAP dataset in its raw form was delivered as a large SPSS file with a 

number of data items in string form, which was then transformed into a compact 

Stata dataset containing the key data items. Tabulations showing the 

distribution and missingness of a number of variables were examined. A 

descriptive analysis of the dataset is presented in Chapter 5. 

4.2.1.1 Included events 

MIs occurring among patients residing within one of 15 conurbations in England 

and Wales (Greater London, West Midlands, Greater Manchester, West 

Yorkshire, Tyneside, Liverpool, Nottingham, Sheffield, Bristol, Leicester, 

Potteries, Cardiff, Southampton, Kingston upon Hull, Norwich) during the period 

2003-2006 were included. These conurbations and their boundaries were 

defined for previous projects153 and were originally chosen as the largest 

fourteen conurbations in England and Wales in which regular pollution data 

were available, plus the largest conurbation in one otherwise unrepresented 

region (Norwich in the East). The total population of the 15 conurbations is 

estimated at just less than 18 million. 

The discharge diagnosis as recorded in MINAP was used as the basis for 

defining MI events for inclusion in analyses. Discharge diagnosis in MINAP is 

grouped into nine categories, and for analyses in this thesis, all events with a 

discharge diagnosis classified as ST elevation MI, non ST elevation MI, or 

troponin positive acute coronary syndrome were included. The included 

diagnoses were defined within MINAP as follows: 

ST elevation MI 

- Cardiographic changes of ST elevation consistent with infarction of 

≥2mm in contiguous chest leads and/or ST elevation of ≥1 mm in 2 or 

more standard leads, or left bundle branch block (LBBB). Typical 

changes may have been evident on the admission ECG or may have 

developed subsequently. 
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- Enzyme or troponin elevation. For CK, the peak value exceeds twice the 

upper limit of the reference range. For troponin, the locally accepted cut 

off value is used.  

- History consistent with the diagnosis 

non ST elevation MI 

- Cardiographic changes consistent with the diagnosis. These may include 

new ST or T wave changes (except ST elevation). 

- Cardiac enzyme or troponin elevation. For CK, the peak value exceeds 

twice the upper limit of the reference range. For troponin, locally 

accepted cut off value is used. 

- History consistent with the diagnosis 

- This group includes infarctions otherwise known as non Q wave, 

subendocardial and partial thickness infarction. 

acute coronary syndrome (troponin positive) 

- Symptoms consistent with cardiac ischaemia with release of troponin; the 

distinction between non ST elevation infarction and an acute coronary 

syndrome depends on locally applied definitions. The suggested use of 

this term is when troponin was elevated above the minimum detectable 

level but less than the locally accepted cut off for MI or when troponin 

was elevated with a CK value less than twice the upper limit of normal for 

the hospital.  

The decision to include acute coronary syndromes with troponin release was 

made in order to produce a more consistent definition. Any troponin release 

indicates muscle death, i.e. infarction, and it was felt that the use of arbitrary 

and locally variable cut offs for troponin to distinguish between non ST elevation 

MI and acute coronary syndromes would lead to an inconsistent outcome. 

Two versions of the discharge diagnosis were available in the MINAP dataset – 

the raw diagnosis as coded by the hospital, and an amended diagnosis that 

corrected inconsistencies with the recorded treatment-determining ECG 
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appearance as follows. Firstly, where an ECG appearance of ST elevation was 

recorded but the raw discharge diagnosis was not ST elevation MI, the 

discharge diagnosis was recoded to ST elevation MI in the amended version. 

Secondly, where a diagnosis of STEMI had been made but the ECG record did 

not show ST elevation or left bundle branch block, the diagnosis was recoded to 

non ST elevation MI in the amended version. After taking advice from the 

MINAP data management team, the decision was taken to use the amended 

version of the discharge diagnosis. In particular it was felt that the original 

coding may have been made by audit clerks with limited knowledge of 

cardiology, and that ECG appearances should be a major determinant of the 

final diagnosis. 

4.2.1.2 Excluded events 

In order to maximise the specificity of the outcome and minimise the possibility 

of finding spurious effects driven by misclassified outcome events, MINAP 

events with the following discharge diagnoses were excluded: threatened MI, 

acute coronary syndrome (troponin negative or troponin unspecified), chest pain 

of uncertain cause, myocardial infarction (unconfirmed), and other diagnosis. 

These excluded events were defined in MINAP as follows:  

threatened MI 

- Rapid resolution of existing ST elevation after early reperfusion treatment 

+ CK rise less than twice the upper limit of normal or a small troponin 

release. (If only troponin was measured and was elevated; a local 

decision was made between 'definite infarction' and 'threatened 

infarction'). 

acute coronary syndrome (troponin negative) 

- Symptoms consistent with cardiac ischaemia without troponin release + 

dynamic ECG changes consistent with fluctuating ischaemia.  
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acute coronary syndrome (troponin unspecified) 

- Dynamic ECG changes consistent with fluctuating ischaemia, but without 

a troponin value being available. 

chest pain of uncertain cause 

- Chest pain not accompanied by significant cardiographic change or 

enzyme / troponin release, and with no other clear diagnosis. It is likely 

that at admission there was a high index of clinical suspicion that the 

pain was cardiac, but this remained unconfirmed. 

myocardial infarction (unconfirmed) 

- Death before enzyme release could occur or samples be taken, but 

where clinical judgement, preferably with additional evidence of a history 

of chest pain or cardiographic changes, suggests myocardial infarction. 

This definition can only apply to patients who died in hospital.  

other diagnosis 

- Confirmed diagnosis other than cardiac ischaemia. 

4.2.1.3 Dating of MI events 

Timing data in MINAP may be recorded at a number of points during the course 

of an event. For the purpose of these analyses, MIs were dated using the 

earliest recorded time relating to the event: in most cases the date and time of 

initial symptom onset as recorded in MINAP. However, this field was not 100% 

complete; to obtain a complete date field each MI event was dated using the 

first non-missing date from the following sequence of date fields in MINAP: 

1. Symptom onset 

2. First call for help 

3. Arrival of first professional 

4. Arrival of emergency services 

5. Arrival at hospital 
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6. Reperfusion 

7. Cardiac arrest 

8. Referral for investigations 

9. Angiography 

10. First intervention 

11. Discharge 

4.2.1.4 Geographical data processing 

Each MINAP event is defined geographically by the number of metres east 

(easting) and north (northing) of the patient’s place of residence, relative to the 

origin of the British National Grid. For analysis, it was necessary to ascertain 

which events belong to one of the 15 conurbations specified, and to tie each 

event to its respective conurbation. The boundaries of the 15 conurbations have 

been defined for other work, and were available for import into the GIS software 

package ArcView. By importing the MINAP events themselves into the same 

software, it was possible to link events to conurbations using the easting and 

northing coordinates.  

4.2.2 Meteorological data 

MIDAS is the current climate database of the UK Met Office, and includes 

surface observations over land areas of the UK dating back to the late 19th 

century, and originating from monitoring stations of various types (including over 

600 in England and Wales).  

Climate stations are located at sites selected to be representative of the wider 

surrounding area, on level ground, and away from trees or large obstructions. 

Since the 1970s the majority of observations have been automatic. 

Daily climate monitoring stations make a single observation at 9am each day, 

recording the minimum and maximum temperatures reached over the preceding 

24 hours (as measured by electrical resistance thermometers), as well as other 

parameters. This was the primary source of temperature data for analyses in 

this thesis. In addition, a number of stations record climate observations hourly.  
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Raw weather data, in particular daily minimum and maximum temperature, and 

9am and 3pm temperature and dewpoint temperature, were downloaded from 

the British Atmospheric Data Centre (BADC), listed by weather monitoring 

station and measurement date. Maximum temperature as recorded effectively 

applies to the previous day (since recordings are made at 9am and refer to the 

maximum over the previous 24 hours); these data were therefore shifted back 

one day for analysis. Daily mean temperature was then generated, 

approximated as the mean of the daily minimum and maximum temperature.  

Relative humidity (RH) at 9am 3pm was derived from the 9am and 3pm 

measurements of dewpoint and temperature, and the mean of the 9am and 

3pm RH values was then used as the daily measure.  

The postcode of the weather monitoring station was included as part of the 

dataset. A list of the postcodes falling within each of the 15 conurbations of 

interest had been prepared for an earlier project and was obtained, allowing the 

weather stations located within each of the conurbations to be identified. In 

order to produce a final dataset for analysis, it was necessary to overcome the 

following issues: some conurbations contained no monitoring stations; some 

conurbations contained more than one monitoring station; and some 

conurbations contained monitoring stations with data missing on a percentage 

of days.  

4.2.2.1 Conurbations with >1 monitoring station 

Where data from >1 station were available in a conurbation, these were 

combined to one series using the AIRGENE algorithm.154 Briefly, on days where 

all stations have non-missing readings, the output series simply takes the value 

of the mean of these readings. If a particular monitor (say, monitor A) has a 

missing value on a particular day (day δ), this would first be replaced with the 

mean value of monitor A over all days, plus a value derived from the mean of 

the readings over all other monitors in the conurbation on day δ (the exact value 

added is the mean of the standardised (Normal deviate) values of all monitors 

on day δ, multiplied by the standard deviation of monitor A readings for all 
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days). Finally the output series, on day δ, then takes the value of the mean of 

readings from all stations on day δ, including the newly imputed reading.  

4.2.2.2 Conurbations with incomplete data, or with no monitoring stations  

After combining data in conurbations with multiple stations as described above, 

8 conurbations had some missing data or no data at all (see Section 5.3.1). 

10 complete meteorological series were available at a broader “regional” level, 

for the whole of England and Wales, based on the following regions: North East, 

North West, Yorkshire and the Humber, East Midlands, West Midlands, East, 

London, South East, South West, and Wales. These regional series draw from 

all available monitoring data in the region to produce a representative series for 

the whole region. We used these series as a basis for imputing data for days 

with missing temperature at the narrower conurbation level. 

Specifically, for each conurbation, a simple linear model was fitted over all days 

in the period 2003-2006, specified as follows: 

(conurbation temperature) = β 0 + β1(regional temperature) 

This model was estimated using days with non-missing conurbation 

temperature. The resulting model was then used to predict conurbation 

temperature on days when this was missing.  

Since no conurbation-level data at all were available in 2003-2006 for Leicester 

or Southampton, pre-2003 conurbation-level data were used to estimate the 

model for these two conurbations, and the 2003-2006 data were then imputed 

in the same way.  

A similar procedure was used for imputing relative humidity data that were 

missing at the conurbation level. Thus, a single and complete temperature and 

relative humidity series was produced for each of the conurbations under study. 

4.2.3 Air pollution data 

The UK Air Quality Data and Statistics Database contains tables of measured 

concentration data from monitoring networks operated on behalf of the 

Department for Environment, Food and Rural Affairs (DEFRA). Air quality is 
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monitored at over 1500 sites across the UK. Of interest for the present study is 

the Automatic Urban and Rural Netwok (AURN), which includes 103 automatic 

pollutant monitors in England and Wales, producing hourly pollutant 

concentrations. These monitors are located to measure either background 

pollution levels (n=85 monitors), or levels near particular sources (roads, 

airports, industries; n=18 monitors). The former were used for the present study. 

Among the 85 background pollution monitoring stations, 53 measure PM10, 68 

measure ozone, 30 measure CO, 70 measure oxides of nitrogen, and 48 

measure SO2. PM2.5 is not widely monitored: background PM2.5 levels are 

measured at sites in Birmingham, Harwell, London North Kensington, 

Manchester Piccadilly, and Port Talbot, with hourly PM2.5 data available in 

London Bloomsbury, Harwell, and Rochester. 

The monitoring network uses a variety of methods to measure pollutant levels 

with high temporal resolution, including spectroscopic methods such as infra-

red or ultra-violet absorption, ultra-violet fluorescence, and chemiluminescence. 

Particulates are typically measured using sophisticated filtration techniques. 

Raw data for PM10, ozone, CO, NO2 and SO2 were downloaded from the 

National Air Quality Archive, and processed in a similar way to the temperature 

data: raw data were linked to specific conurbations, and where a conurbation 

had multiple stations for a given pollutant, these data were combined into a 

single series using the AIRGENE algorithm (see section 4.2.2.1). No further 

imputation for missing values (e.g. using data from outside the conurbation) was 

performed since, due to the high spatial variation of pollutant levels, data 

originating from some distance away are likely to be poor markers of the levels 

of interest. 

4.2.4 Influenza and respiratory syncytial virus  

Circulating levels of infections, in particular influenza and respiratory syncytial 

virus (RSV, a virus that causes respiratory tract infections), may be associated 

with both weather and MI risk, and could thus act as confounders, particularly 

for temperature-MI associations. Levels of both infections tend to peak during 

the winter season, though not necessarily at the same time. To allow 
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adjustment for levels of these infections, daily counts of lab confirmed cases of 

influenza A and RSV were obtained from laboratory reports to the 

Communicable Diseases Surveillance Centre (CDSC) at the Health Protection 

Agency, UK. These data were available by UK region (London, South East, 

South West, West Midlands, East Midlands East, Yorkshire and Humber, North 

West, North East, Wales). To obtain conurbation-level data, data were simply 

drawn from the appropriate region. 

4.3 Overview of analytical methods  

Three main analyses were undertaken for this thesis, as reported in Chapters 6, 

7 and 8. The following is a brief overview of the analyses performed; detailed 

statistical methods are described in the relevant analysis chapters. 

Characterising the short-term effects of temperature on MI risk 

First, a daily time series regression analysis was undertaken linking daily 

numbers of hospital admissions for MI (as defined in Section 4.2.1.1) with daily 

mean ambient temperature, adjusting for seasonality and long-term trend, 

relative humidity, particulate and ozone pollution, circulating influenza and 

respiratory syncytial virus, public holidays, and day of the week. The time series 

study design was introduced in Chapter 2. Initially, separate analyses were 

conducted for each of the 15 conurbations individually, but subsequently a 

single stratified analysis was performed (as described in Chapter 6). 

Temperature effects lagged by up to 28 days were investigated using 

distributed lag models. Both non-linear and linear temperature-MI associations 

were considered in the modelling process. 

Characterising the short-term effects of daily air pollution levels on MI risk 

The final model from the analysis of temperature-MI associations was used as a 

base model for a second daily time series regression analysis focussing on air 

pollution effects. In place of short-lag terms for PM10 and ozone (used to control 

for pollution when temperature was the focus), single pollutants (PM10, ozone, 

CO, NO2, SO2) were introduced into the model in turn as linear terms. Pollution 
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effects lagged by up to 7 days were allowed for, and as well as single-pollutant 

models, multi-pollutant models were also investigated. 

Investigating air pollution effects at an hourly temporal resolution 

Finally, air pollution effects were investigated at a finer temporal resolution, 

making use of the hourly data available from both MINAP and the pollution data 

sources. To accommodate the hourly data, a time-stratified case-crossover 

design with calendar month strata was used, and the effects of PM10, ozone, 

CO, NO2, and SO2, lagged by 1-6, 7-12, 13-18., 19-24, and 25-72 hours were 

investigated in both single- and multi-pollutant models. The case-crossover 

design was introduced in Chapter 3. Models were again adjusted for ambient 

temperature, relative humidity, circulating influenza and RSV levels, day of the 

week, holidays, and residual seasonality within calendar months. 

 

4.4 Summary 

• Details of hospital admissions occurring in 2003-2006 among residents of 15 

conurbations in England and Wales and with a discharge diagnosis of MI 

were obtained from the Myocardial Ischaemia National Audit Project 

(MINAP) database.  

• Data on temperature and specific air pollutants (PM10, ozone, CO, NO2, 

SO2) from monitoring stations were obtained from the UK Met Office and the 

UK Air Quality and Statistics Database respectively. Data on potential 

confounding factors were also collected. 

• Daily time series regression analyses linking clinical and environmental data 

were used to characterise the short-term (day to day) effects of temperature 

and pollution on MI risk.  

• A case-crossover design was then used to investigate effects of air pollution 

at an hourly temporal resolution. 
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5 Results – Descriptive Analysis 

5.1 Introduction 

In this chapter, some basic descriptive analyses of the main data sources used 

in this thesis are presented. 

5.2 MINAP 

5.2.1 Inclusion and exclusion 

Between January 2003 and December 2006 a total of 352972 events had a 

discharge diagnosis recorded in MINAP, of which 284170 were MI (119696 ST 

elevation MI [STEMI] and 164474 non ST elevation MI). A total of 84010 events 

were attributed to patients living within one of the 15 conurbations of interest 

and a median of 57 IQR (50-64) events per day were recorded in the 15 

conurbations combined (Table 5.1).  

 
Table 5.1: Number of events by conurbation 
   

 Total Events (%) Events per day [Median (IQR)] 
   

Within 15 conurbations 84010 (29.6) 57 (50, 64) 

Bristol 2376 (0.8) 1 (0, 2) 

Cardiff 1471 (0.5) 1 (0, 2) 

G London 26607 (9.4) 18 (15, 21) 

G Manchester 12434 (4.4) 8 (6, 11) 

Kingston-upon-Hull 407 (0.1) 0 (0, 0) 

Leicester 1768 (0.6) 1 (0, 2) 

Liverpool 4358 (1.5) 3 (2, 4) 

Newcastle 8017 (2.8) 5 (4, 7) 

Norwich 874 (0.3) 0 (0, 1) 

Nottingham 1488 (0.5) 1 (0, 2) 

The Potteries 2205 (0.8) 1 (1, 2) 

Sheffield 4903 (1.7) 3 (2, 5) 

Southampton 1259 (0.4) 1 (0, 1) 

W Midlands 9265 (3.3) 6 (4, 8) 

W Yorks 6578 (2.3) 4 (3, 6) 

   

Outside 15 conurbations 176519 (62.1) 121 (109, 133) 

No geographical info 23641 (8.3) 11 (8, 23) 
   

Total 284170 (100.0) 194 (181, 208) 
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Greater London had the largest number of events (n = 26607, median [IQR] 18 

[15-21] per day), while Kingston-upon-Hull had the least with events recorded 

on only 23.5% of days (n = 407, median [IQR] 0 [0-0] per day). 

5.2.2 Description of included events 

5.2.2.1 Demographic characteristics 

The remainder of this section describes the main “study population”; i.e. the 

84010 events taking place within the 15 conurbations of interest. Both sex and 

age were well recorded (99.3% and 96.9% complete respectively, Table 5.2).  

 
Table 5.2: Demographic characteristics recorded for included events 

Total MIs

Bristol 2376 1519/2354 (64.5) 71 (60- 80)

Cardiff 1471 857/1464 (58.5) 75 (63- 83)

G London 26607 17863/26532 (67.3) 69 (57- 79)

G Manchester 12434 7722/12424 (62.2) 71 (59- 80)

Kingston-on-Hull 407 278/406 (68.5) 64 (56- 73)

Leicester 1768 1239/1768 (70.1) 68 (56- 77)

Liverpool 4358 2623/4355 (60.2) 72 (61- 80)

Norwich 874 605/874 (69.2) 70 (60- 77)

Nottingham 1488 974/1476 (66.0) 68 (57- 77)

Potteries 2205 1437/2205 (65.2) 72 (60- 80)

Sheffield 4903 2891/4878 (59.3) 72 (61- 81)

Southampton 1259 875/1259 (69.5) 69 (58- 78)

Tyneside 8017 4697/8010 (58.6) 72 (60- 81)

W Midlands 9265 6258/9245 (67.7) 68 (57- 77)

W Yorkshire 6578 3981/6174 (64.5) 69 (58- 77)

Overall 84010 53819/83424 (64.5) 70 (58- 79)

Male (%)
Median age 

(IQR)

 
Note: sex was missing for 586 (=84010 – 83424) events in total  
 

MI events were more commonly recorded among men (64.5% overall) though 

there was some variation across conurbations (Χ2 p-value <0.001) from 58% of 
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events being among men in Cardiff, to 70% in Leicester. The overall median 

age was 70 years (IQR 58-79) though again there was some variation across 

conurbations (Kruskall-Wallis p-value <0.001): the median age in Kingston-

upon-Hull was the lowest at 64 years while events recorded in Cardiff tended to 

be among older individuals (median age 75 years). 

 

5.2.2.2 MI diagnosis and supporting evidence 

Of 84010 MIs, 35664 (42.5%) were STEMI (Table 5.3). ST elevation (described 

in Section 1.2.1) was recorded as the ECG trace determining treatment for 93% 

of these STEMI events; for the remainder this ECG information was missing. 

Though there was some variation across conurbations, ST elevation was 

recorded for at least 86% of events in all individual conurbations. Non-STEMI 

diagnoses, by definition, could not have ST elevation recorded (see Section 

4.2.1.1); however ECG information was unavailable for 21% of non-STEMIs 

overall and for up to 46% in individual conurbations.  

For both STEMI and non-STEMI, elevated troponin or CK would be expected 

(see Section 1.2.1) and was indeed recorded for 76% and 82% of the 

respective diagnoses. 8% of both diagnoses were made despite “normal” 

markers being recorded, while data on markers were unavailable for 16% and 

10% of STEMIs and non-STEMIs respectively, with higher proportions of 

missing markers data in some conurbations.  

Finally there was evidence that reperfusion took place in 91% of STEMI events. 

Reperfusion is a treatment and thus cannot provide diagnostic information, 

however a recording of reperfusion does suggest that the event was genuinely 

believed to be STEMI by the treating clinician, and provides some evidence 

against recording or database errors for these diagnoses.
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Table 5.3: MI diagnosis and supporting evidence 

Total

N % N % N % N % N % N % N % N % N

Bristol

STEMI 910 (90) 22 (2) 0 (0) 75 (7) 862 (86) 55 (5) 90 (9) 925 (92) 1007
non-STEMI 0 (0) 61 (4) 727 (53) 581 (42) 1231 (90) 41 (3) 97 (7) 128 (9) 1369

Cardiff

STEMI 490 (97) 12 (2) 0 (0) 5 (1) 435 (86) 23 (5) 49 (10) 462 (91) 507
non-STEMI 0 (0) 90 (9) 855 (89) 19 (2) 940 (98) 10 (1) 14 (1) 59 (6) 964

Greater London

STEMI 11097 (92) 213 (2) 0 (0) 738 (6) 8755 (73) 1053 (9) 2240 (19) 11045 (92) 12048
non-STEMI 0 (0) 956 (7) 11389 (78) 2214 (15) 11852 (81) 1386 (10) 1321 (9) 1667 (11) 14559

Greater Manchester

STEMI 4439 (86) 125 (2) 0 (0) 575 (11) 3199 (62) 340 (7) 1600 (31) 4515 (88) 5139
non-STEMI 0 (0) 376 (5) 3538 (48) 3381 (46) 5646 (77) 302 (4) 1347 (18) 533 (7) 7295

Kingston

STEMI 359 (97) 7 (2) 0 (0) 3 (1) 292 (79) 19 (5) 58 (16) 366 (99) 369
non-STEMI 0 (0) 1 (3) 31 (82) 6 (16) 33 (87) 3 (8) 2 (5) 15 (39) 38

Leicester

STEMI 936 (97) 20 (2) 0 (0) 13 (1) 803 (83) 132 (14) 34 (4) 746 (77) 969

non-STEMI 0 (0) 77 (10) 698 (87) 24 (3) 725 (91) 64 (8) 10 (1) 86 (11) 799

Liverpool

STEMI 1605 (96) 60 (4) 0 (0) 9 (1) 1237 (74) 60 (4) 377 (23) 1591 (95) 1674
non-STEMI 0 (0) 209 (8) 2401 (89) 74 (3) 2106 (78) 7 (0) 571 (21) 84 (3) 2684

Norwich

STEMI 335 (99) 3 (1) 0 (0) 1 (0) 328 (97) 8 (2) 3 (1) 329 (97) 339
non-STEMI 0 (0) 17 (3) 509 (95) 9 (2) 525 (98) 9 (2) 1 (0) 9 (2) 535

Nottingham

STEMI 839 (93) 21 (2) 0 (0) 47 (5) 729 (80) 117 (13) 61 (7) 847 (93) 907
non-STEMI 0 (0) 34 (6) 401 (69) 146 (25) 476 (82) 80 (14) 25 (4) 97 (17) 581

Potteries

STEMI 822 (96) 13 (2) 0 (0) 19 (2) 579 (68) 109 (13) 166 (19) 808 (95) 854
non-STEMI 0 (0) 90 (7) 1195 (88) 66 (5) 868 (64) 210 (16) 273 (20) 146 (11) 1351

Missing reperfusion

ECG on which treatment was based CK/Troponin marker levels Evidence of

ST elevation LBBB Other/normal Missing Elevated Normal
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Total

N % N % N % N % N % N % N % N % N

Sheffield

STEMI 1359 (94) 25 (2) 0 (0) 59 (4) 1273 (88) 54 (4) 116 (8) 1322 (92) 1443
non-STEMI 0 (0) 213 (6) 1673 (48) 1574 (45) 3108 (90) 84 (2) 268 (8) 220 (6) 3460

Southampton

STEMI 497 (96) 8 (2) 0 (0) 12 (2) 485 (94) 14 (3) 18 (3) 487 (94) 517
non-STEMI 0 (0) 45 (6) 631 (85) 66 (9) 732 (99) 6 (1) 4 (1) 59 (8) 742

Tyneside

STEMI 2280 (95) 61 (3) 0 (0) 68 (3) 1924 (80) 151 (6) 334 (14) 2102 (87) 2409
non-STEMI 0 (0) 414 (7) 4848 (86) 346 (6) 4320 (77) 787 (14) 501 (9) 687 (12) 5608

West Midlands

STEMI 4508 (93) 82 (2) 0 (0) 237 (5) 4085 (85) 384 (8) 358 (7) 4566 (95) 4827
non-STEMI 0 (0) 224 (5) 2841 (64) 1373 (31) 3844 (87) 377 (8) 217 (5) 381 (9) 4438

West Yorkshire

STEMI 2553 (96) 90 (3) 0 (0) 12 (0) 2180 (82) 290 (11) 185 (7) 2430 (92) 2655
non-STEMI 0 (0) 274 (7) 3511 (89) 138 (4) 3095 (79) 676 (17) 152 (4) 656 (17) 3923

Total
STEMI 33029 (93) 762 (2) 0 (0) 1873 (5) 27166 (76) 2809 (8) 5689 (16) 32541 (91) 35664
non-STEMI 0 (0) 3081 (6) 35248 (73) 10017 (21) 39501 (82) 4042 (8) 4803 (10) 4827 (10) 48346

ECG on which treatment was based CK/Troponin marker levels Evidence of

ST elevation LBBB Other/normal Missing Elevated Normal Missing reperfusion

 
Note: LBBB = left bundle branch block (an ECG abnormality that can indicate acute MI)
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Considering these factors together, Table 5.4 shows that for the total of 35664 

STEMIs, 24176 (68%) had triple “supporting evidence”, 9059 (25%) had dual 

evidence, and 2090 (6%) had single evidence, with only 1% of STEMI 

diagnoses being unsupported by further data. For non-STEMIs, only elevated 

markers would be expected and this positively recorded in the case for 

39501/48346 diagnoses (82%; for the remainder there was simply an absence 

of evidence of raised markers rather than specific evidence of non-raised 

markers). For both diagnoses together, 75901/84010 (90%) events had at least 

one piece of supportive evidence recorded, or 74025/84010 (88%) excluding 

thrombolysis alone. 

 
Table 5.4: Level of supporting evidence for MI diagnoses 

STEMI non-STEMI Total

Evidence supporting diagnosis [n, (%)]

None 339 7770 8109

(1) (16) (10)

Single 2090 36824 38914

(6) (76) (46)

ECG showing ST elevation 793 0 793

Elevated markers 496 35749 36245

Thrombolysis given 801 1075 1876

Dual 9059 3752 12811

(25) (8) (15)

ECG & Markers 1495 0 1495

ECG & Thrombolysis 6565 0 6565

Markers & Thrombolysis 999 3752 4751

Triple 24176 0 24176

(68) (0) (29)

ECG & Markers & Thrombolysis 24176 0 24176

Total 35664 48346 84010

(100) (100) (100)
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5.2.2.3 Dating of MI events 

Date of symptom onset was available for 59369 events (71%, Table 5.5). An 

algorithm was used to complete the dating of events (see Section 4.2.1.3), with 

the majority of missing information being filled in using the date of first call for 

help (8%) or the date of arrival at hospital (18%). 

 
Table 5.5: Dating of MI events 

Completeness 

of specific 

date variable 

(%)

Number of 

times used in 

composite 

date variable

Cumulative 

completeness of 

composite date 

variable (%)

Date of …

1. Symptom onset 70.7 59369 70.7

2. First call for help 8.3 6986 79

3. Arrival of first professional 0.2 146 79.2

4. Arrival of emergency services 0.5 395 79.6

5. Arrival at hospital 17.9 15018 97.5

6. Reperfusion 0.1 73 97.6

7. Cardiac arrest 0.1 51 97.7

8. Referral for investigations 0.5 383 98.1

9. Angiography 0.2 157 98.3

10. First intervention 0 42 98.3

11. Discharge 1.7 1390 100

Total - 84010 100

 

5.2.2.4 Temporal patterns 

There appeared to be some temporal patterns in the data, with more events 

occurring on Mondays (median [IQR] 61 [54.5–70] events per day), and fewer 

on Saturdays (53 [48-60], Figure 5.1). By calendar month, event rates were at 

their lowest in July, August and September (median 55 events per day in each 

case). Finally, by calendar year, the median (IQR) events per day increased 

from 50 (45-55) in 2003 to 62 (56-69), 60 (54-60), and 57 (50-63) in 2004, 2005, 

and 2006 respectively. Data on temporal patterns in event rates, broken down 

by conurbation, are presented in Appendix I (Table 11.1, Table 11.2, Table 

11.3). It is worth noting that the two largest conurbations (Greater London and 

Greater Manchester) similarly saw a notable increase in the median events 
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recorded per day after 2003 (Appendix I Table 11.3). The lower numbers of 

events in 2003 likely reflect incomplete data collection in the early years of 

MINAP, which had only achieved full recruitment of hospitals a few months 

earlier in mid-2002.152 

Figure 5.1:Temporal patterns in MI diagnoses 

 

 

5.2.2.5 Event rates over time in individual conurbations 

Figure 5.2, showing raw and 7-day average daily counts of MI by conurbation, 

also indicates increases in rates of recorded MIs in a number of conurbations at 

various time points, most notably Leicester (2004), Liverpool (2005), Norwich 

(2004), and Sheffield (mid-2003). Smoother changes in MI diagnoses are seen 

elsewhere though no clear pattern emerges. 
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Figure 5.2: Raw daily counts and 7-day average of MI events over calendar time 
a) Bristol, Cardiff, Greater London, Greater Manchester 

 
 
b) Kingston-upon-Hull, Leicester, Liverpool, Norwich 
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c) Nottingham, Potteries, Sheffield, Southampton 

 
 
d) Tyneside, West Midlands, West Yorkshire   
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5.3 Meteorological and air pollution data 

5.3.1 Conurbations with incomplete data/ no monitoring stations  

The primary sources of temperature data were 8 monitoring stations within 

Greater London, 2 each within Cardiff, Greater Manchester, Nottingham, West 

Midlands, and West Yorkshire, and 1 station for each of the remaining 

conurbations with the exception of Southampton where no stations were 

available (Table 5.6)  Within conurbations where >1 station was available, 

pairwise correlations of daily mean temperature series between stations were 

extremely high (≥0.98 in all cases). After combining data in conurbations with 

multiple stations as described in Section 4.2.2.1, 7 of 15 conurbations had a 

100% complete daily temperature series for the period under study. The 

remaining 8 conurbations had some missing data or no data at all and these 

missing data were imputed using regional temperature data (see Section 

4.2.2.2) to produce the final analysis data. 

 

Table 5.6: Monitoring stations for temperature & relative humidity within the 15 conurbations 

         

Conurbation  Temperature (daily min/max)   Relative humidity 

  
Stations 
(n)  

% Days non-
missing  

Stations 
(n)  

% Days non-
missing 

Bristol   1  99%  1  92% 

Cardiff   2  100%  1  86% 

G London  8  100%  5  100% 

G Manchester  2  99%   2  100% 

Kingston on Hull  1  54%  0  0% 

Leicester   1  2%  0  0% 

Liverpool   1  100%  1  96% 

Norwich   1  54%  0  0% 

Nottingham   2  100%  1  95% 

The Potteries  1  98%  1  13% 

Sheffield   1  100%  1  77% 

Southampton   0  0%  1  92% 

Tyneside  1  69%  1  68% 

West Midlands   2  100%  3  100% 

West Yorkshire   2  100%  1  89% 
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For pollution data, multiple stations contributed to data for Greater London, 

Greater Manchester, Sheffield, West Midlands, and West Yorkshire (Table 5.7), 

while in the remaining conurbations, data for each pollutant came from a single 

monitoring station.  

 
Table 5.7:  Completeness of air pollutant data within the 15 conurbations 

Bristol 1 (65) 1 (64) 1 (63) 1 (65) 1 (64)

Cardiff 1 (83) 1 (84) 1 (85) 1 (85) 1 (85)

Greater London 6 (100) 13 (100) 9 (100) 13 (100) 10 (100)

Greater Manchester 3 (100) 3 (100) 4 (100) 5 (100) 4 (100)

Kingston-upon-Hull 1 (95) 1 (97) 1 (76) 1 (86) 1 (91)

Leicester 1 (95) 1 (98) 1 (90) 1 (94) 1 (97)

Liverpool 1 (84) 1 (86) 1 (85) 1 (85) 1 (83)

Norwich 1 (89) 1 (97) 1 (86) 1 (93) 1 (94)

Nottingham 1 (95) 1 (97) 1 (92) 1 (90) 1 (95)

The Potteries 1 (82) 1 (96) 1 (94) 1 (96) 1 (83)

Sheffield 1 (97) 2 (99) 1 (97) 2 (94) 2 (97)

Southampton 1 (92) 1 (92) 1 (80) 1 (94) 1 (89)

Tyneside 1 (96) 1 (94) 1 (90) 1 (85) 1 (94)

West Midlands 3 (100) 4 (100) 4 (100) 6 (100) 4 (100)

West Yorkshire 2 (99) 2 (100) 2 (98) 2 (99) 2 (99)

Number of stations (% days non-missing in final dataset)

PM10 Ozone CO SO2NO2

 
 
 

For conurbations with multiple stations, correlations of daily mean pollutant 

levels between stations for varied by pollutant (Figure 5.3 and Appendix I Table 

11.4-Table 11.7). Within London, the majority of correlations between pairs of 

individual monitoring stations were at least 0.8 for PM10, ozone, and NO2, while 

for CO and SO2 most pairwise correlations were lower, indicating a greater 

variability of the levels of these pollutants across the city. 

  



 

 

Figure 5.3:Correlations of daily pollutant levels between monitoring stations within London
a) PM10 

b) Ozone 

Note: station names abbreviated 
Eltham, Hckny = Hackney, Hllngdn = Hillingdon, Lwshm = Lewisham, N Knsngtn = North 
Kensington, Sthwrk = Southwark, Tddngtn = Teddington, Wndswrth = Wandsworth, Wstmnstr = 
Westminster, Wstlndn = West London
Font size proportional to magnitude of correlation 
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Kensington, Sthwrk = Southwark, Tddngtn = Teddington, Wndswrth = Wandsworth, Wstmnstr = 
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Font size proportional to magnitude of correlation  
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Correlations of daily pollutant levels between monitoring stations within London 
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c) CO 

d) NO2 

Note: station names abbreviated 
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Bxly = Bexley, Blmsbry = Bloomsbury, Brnt = Brent, Elthm = 
Hackney, Hllngdn = Hillingdon, Lwshm = Lewisham, N Knsngtn = North 

Kensington, Sthwrk = Southwark, Tddngtn = Teddington, Wndswrth = Wandsworth, Wstmnstr = 



 

 

e) SO2 

Note: station names abbreviated 
Eltham, Hckny = Hackney, Hllngdn = Hillingdon, Lwshm = Lewisham, N Knsngtn = North 
Kensington, Sthwrk = Southwark, Tddngtn = Teddington, Wndswrth = Wandsworth, Wstmnstr = 
Westminster, Wstlndn = West London
Font size proportional to magnitude of correlation 

 

Imputation of pollution data was not attempted, though in fact data 

completeness was relatively high: 7 conurbations had data for all pollutants on 

≥90% of days, and for all other conurbations, all pollutant data were over 75% 

complete with the exception of Bristol whe

65% of days (Table 5.

individual pollutants was broadly 

somewhat lower in Kingston

data were less complete in the Potteries.
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pollution data was not attempted, though in fact data 

completeness was relatively high: 7 conurbations had data for all pollutants on 

90% of days, and for all other conurbations, all pollutant data were over 75% 

complete with the exception of Bristol where data were available for only 63

.7 and Figure 5.4). Within conurbations, completeness of 

individual pollutants was broadly similar, though CO completeness was 

somewhat lower in Kingston-upon-Hull and Southampton, while PM

e less complete in the Potteries. 
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Figure 5.4: % days-non with missing pollution data 

 
 

5.3.2 Summary data for main exposure variables  

The daily mean temperature ranged from -3°C to 27°C across the 15 

conurbations, with individual conurbations having a median value of between 9 

and 12°C over the 2003-2006 calendar period of interest (Table 5.8). Pollution 

patterns varied by both conurbation and pollutant. Over all conurbations, the 

median levels of PM10, ozone, CO, NO2 and SO2 were 22µg/m
3, 39µg/m3, 

0.3mg/m3, 30µg/m3, and 5µg/m3 respectively and interquartile ranges in the 

same units were of width 12, 26, 0.2, 19 and 6 respectively.
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Table 5.8: Median and range of the mean daily values of each exposure variable, for 2003-2006 

Bristol 11 [-2, 26] 23 [5, 80] 42 [2, 101] 0.4 [0.1, 2.8] 33 [6, 93] 4 [0, 29]

Cardiff 12 [0, 25] 26 [9, 162] 42 [2, 124] 0.3 [0.1, 1.1] 31 [4, 80] 3 [0, 19]

G London 12 [-1, 27] 23 [6, 104] 36 [1, 119] 0.3 [0.2, 1.9] 42 [13, 107] 4 [1, 31]

G Manchester 11 [-3, 26] 20 [3, 67] 35 [-0, 106] 0.3 [0.1, 2.0] 31 [10, 88] 6 [0, 31]

Kingston-upon-Hull 11 [-2, 23] 22 [6, 81] 44 [2, 127] 0.2 [0.0, 1.5] 25 [3, 85] 5 [0, 28]

Leicester 10 [-2, 23] 21 [4, 126] 38 [0, 138] 0.3 [0.1, 1.5] 32 [7, 128] 3 [0, 31]

Liverpool 11 [-3, 24] 20 [3, 119] 48 [2, 129] 0.1 [0.0, 1.6] 21 [3, 91] 5 [0, 41]

Norwich 10 [-2, 25] 19 [4, 74] 43 [2, 126] 0.2 [0.1, 1.5] 21 [3, 82] 11 [0, 33]

Nottingham 10 [-2, 23] 21 [3, 84] 33 [2, 122] 0.3 [0.1, 2.1] 33 [9, 93] 12 [0, 47]

Potteries 10 [-3, 25] 22 [4, 78] 43 [5, 183] 0.4 [0.1, 2.1] 29 [6, 116] 8 [0, 41]

Sheffield 10 [-2, 24] 21 [4, 110] 33 [2, 96] 0.3 [0.1, 2.0] 34 [11, 120] 10 [1, 35]

Southampton 12 [0, 25] 24 [7, 93] 36 [2, 97] 0.3 [0.0, 2.1] 30 [7, 75] 4 [0, 41]

Tyneside 10 [-2, 23] 16 [3, 75] 43 [2, 112] 0.1 [0.0, 1.2] 27 [6, 79] 3 [0, 33]

W Midlands 10 [-3, 24] 21 [5, 77] 42 [1, 111] 0.3 [0.1, 1.8] 31 [7, 106] 3 [0, 29]

W Yorkshire 9 [-2, 22] 24 [4, 105] 36 [1, 96] 0.4 [0.1, 1.9] 32 [0, 100] 8 [0, 60]

Total 11 [-3, 27] 22 [3, 162] 39 [0, 183] 0.3 [0.0, 2.8] 30 [0, 128] 5 [0, 60]

Median [range]

Temperature (°C) Ozone (µg/m3)PM10 (µg/m
3) CO (mg/m3) NO2 (µg/m3)

Median [range]

SO2 (µg/m3)

Median [range] Median [range] Median [range] Median [range]
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There was an inverse relationship between ozone and other pollutants, 

highlighted by negative correlations between ozone and PM10, CO, NO2, and 

SO2, however, when examined by season, these negative correlations were 

reduced or reversed in the summer (Table 5.9). For other pairs of pollutants 

(excluding ozone), positive correlations were seen with little variation by 

season, the largest being between PM10 and NO2 (correlation coefficient (ρ) = 

0.48), and between NO2 and CO (ρ = 0.61). Daily mean temperature was 

positively associated with ozone (ρ = 0.38) and, outside of summer, negatively 

associated with CO and NO2 (ρ = -0.23 and -0.22 respectively); correlations of 

temperature with PM10 and SO2 were small in magnitude over the whole year, 

though there were moderate positive associations in the summer. 

 

Table 5.9: Correlations for pairs of exposure variables 

Key: overall

(summer/other seasons) *

Temp PM10 Ozone CO NO2 SO2

Temp 1.00

PM10  0.04 1.00

(0.37/ 0.02)

Ozone  0.38 -0.15 1.00

(0.56/ 0.31) (0.21/-0.26)

CO -0.24 0.40 -0.37 1.00

(0.13/-0.23) (0.23/ 0.44) (-0.06/-0.42)

NO2 -0.25 0.48 -0.58 0.61 1.00

(0.17/-0.22) (0.43/ 0.49) (-0.23/-0.66) (0.45/ 0.62)

SO2 -0.03  0.26 -0.14 0.30 0.31 1.00

(0.17/-0.04) (0.21/ 0.28) (0.02/-0.18) (0.23/ 0.31) (0.27/ 0.32)

Temp = temperature 
Note: Correlation coefficients were calculated based on the daily mean values of each exposure 
Within-conurbation correlation coefficients estimated from regression models adjusted for 
conurbation

155
 

*Summer defined as the months of June/July/August  
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5.3.3 Exposure levels over calendar time 

Considering 7-day moving averages for the daily mean values of exposure 

variables across calendar time, strong seasonality was observed, as expected, 

for temperature (Figure 5.5). Seasonality was also evident in most conurbations 

for ozone, with peaks in the summer and troughs in the winter. Such a pattern 

was not obvious for PM10. Of note, there were extended gaps in the pollutant 

data for Bristol (2005 onward), Cardiff (2005), Liverpool (2003) and the 

Potteries (2003-4). Similar plots for CO, SO2, and NO2 are presented in 

Appendix I Figure 11.1-Figure 11.4. 

 

Figure 5.5: 7-day average of mean daily temperature, PM10 and ozone over calendar time 
a) Bristol, Cardiff, Greater London, Greater Manchester 
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b) Kingston-upon-Hull, Leicester, Liverpool, Norwich 

 

 

 
c) Nottingham, Potteries, Sheffield, Southampton 

 
d) Tyneside, West Midlands, West Yorkshire   
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5.4 Summary 

• 84010 MI events were recorded in MINAP in the 15 conurbations of interest 

between 2003-6, a median of 57 per day over all. Most were among men 

and older individuals. 

• For 88% of MI events, there was a recorded ECG trace or laboratory marker 

levels consistent with the diagnosis. 

• The daily mean temperature ranged from -3 to 27°C across the 

conurbations. Patterns in pollutant levels varied by conurbation. 

• Ozone was negatively correlated with all other pollutants except in the 

summer season. Excluding ozone, other pollutant pairs had small to 

moderate positive correlations. 
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6 Characterising the short-term effects of temperature 

on MI risk 

6.1 Introduction 

This chapter describes a series of analyses aiming to assess and characterise 

the short-term effects of ambient temperature on the risk of MI. 

6.2 Statistical methods 

6.2.1 Pre-planned analysis 

Initially, a time series model was set up to capture the main effect of mean daily 

temperature, adjusting for season, trend, and potential time-varying 

confounders. For each conurbation, the daily number of MI events in MINAP 

from the years 2003–2006 inclusive was used as the outcome series in a 

generalised linear model with Poisson error structure and with scale parameter 

set to the Pearson chi-squared statistic divided by the residual degrees of 

freedom to model overdispersion.156-157 

To provide an initial description of the overall shape of the temperature and 

lagged temperature effects, a non-linear distributed lag model was used.158 This 

is a recently developed class of models in which both the exposure-outcome 

association and the lag structure of that association has a flexible shape. The 

overall relationship is therefore effectively modelled by a 3-dimensional surface. 

In line with the use of this model in the analysis of mortality data,158 a 5 degrees 

of freedom natural cubic spline was used for the temperature-MI relationship, 

and a 4 degrees of freedom natural cubic spline for the dependence of the 

effect on lag. Spline functions, defined by piecewise polynomials, have a flexible 

shape (the higher the number of “knots”, or degrees of freedom, the greater the 

flexibility) and are useful for modelling non-linear effects with unknown shape. A 

lag period of up to 28 days was considered since cold effects on mortality have 

been found to persist for over three weeks.19 
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Simplified models with more directly interpretable numerical coefficients were 

then considered. For each model a 28-day distributed lag structure was used for 

the temperature effect, meaning that separate terms were entered into the 

model to capture the temperature effect on each individual lag day from 0 to 28 

inclusive. Three specifications for the shape of the temperature effect were 

considered (Figure 6.1):  

1. A log-linear temperature model without threshold 

2. cold threshold model in which a log-linear temperature effect operates 

only below a certain threshold temperature 

3. A dual threshold model in which separate log-linear temperature effects 

operate both below a certain cold threshold (the “cold” effect) and above 

a certain heat threshold (the “heat effect”) 

 
 

Figure 6.1:  Illustration of linear and threshold models for temperature-MI relationship 

 
Note: in the threshold models, thresholds were constrained to be the same for all lag days 
 

All models included adjustment for: 

• A cubic spline function of calendar time with 7 degrees of freedom per 

calendar year to capture season and trend, in keeping with previous studies 

as a compromise between providing adequate control for unmeasured 

confounders and leaving sufficient information from which to estimate 

temperature effects.159-160  

• Day of the week (6 indicator variables). 

• Holidays (indicator variables). 

• Daily influenza and RSV levels (each in three categories representing 0, 1,  

or 2+ lab confirmed cases in the conurbation in question). 
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• Daily relative humidity (average of the current and previous 3 days), as a 4 

degrees of freedom cubic spline to allow for potential non-linearity. 

• PM10 and ozone (each modelled as linear effects at lag days 0 to 3 inclusive 

since there appears to be little evidence of pollution effects at longer lags, 

and little evidence of non-linearity (Chapter 3)). 

6.2.1.1 Model Selection 

Initially, the “best” model in each of categories 1 (log-linear temperature model), 

2 (cold threshold model), and 3 (dual, or cold and heat, threshold model) was 

chosen for each conurbation. For (1), the model chosen was simply the model 

estimated by maximum likelihood. For (2), the best cold threshold model was 

chosen by considering every possible threshold in 1°C steps from the minimum 

to maximum of temperature. At each possible threshold, the maximum 

likelihood estimates were found for all other parameters, and the log-likelihood 

was recorded, resulting in an evaluation of the profile likelihood for the threshold 

parameter. The threshold with the highest profile likelihood was selected. For 

(3), a similar procedure was followed, except that every possible combination of 

cold and heat thresholds (TC and TH respectively) was considered, and the 

combination maximising the profile likelihood for (TC, TH) was selected. 

Selection between the best log-linear, cold threshold, and dual threshold model 

was based on minimising the Akaike Information Criterion (AIC), defined as: 

AIC =  -2 x (model log likelihood – number of parameters in model) 

Since models (2) and (3) involve indirectly estimating one and two extra 

parameters respectively (namely, the thresholds themselves), the AIC was 

penalised accordingly. 

Finally, heterogeneity of the thresholds was assessed by comparing the 

combined log-likelihood across all conurbations from models with (a) 

individually optimised thresholds for each conurbation (as above); and (b) the 

best fitting single threshold fixed across all conurbations. The difference in (2 x 

combined log-likelihood) was formally compared to a chi-squared distribution. 
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6.2.2 Revised analysis strategy 

The above analysis was pre-planned and a similar approach has been used in 

studies of mortality data. However, it was found that with the MI data available 

for the present study (with lower event rates than large mortality studies), 

estimated effects in individual conurbations were imprecise and difficult to 

interpret, and the estimation of thresholds for the temperature effects rather 

unstable.  

A revised analysis strategy was therefore subsequently implemented, in which 

all conurbations were included in a single modelling framework (stratified by 

conurbation), and the lag structure for temperature in the models was simplified. 

This framework had the added advantage that heterogeneity of effects across 

conurbations could be tested directly by fitting interaction terms in the usual 

way. 

As before, a cubic spline function based on calendar date with 7 degrees of 

freedom per calendar year was used to control for seasonality and long term 

trends. However in order to include all 15 conurbations in one stratified model, 

15 copies of the spline basis variables were generated; the first set of spline 

bases was then multiplied by an indicator variable for the first conurbation 

(resulting in zero values elsewhere), the second by an indicator for the second 

conurbation, and so on, so that the basic model for seasonality and long term 

trend was as follows with a separate set of parameter estimates for each spline, 

and thus a separate smooth function of time for each conurbation: 

∑
=

++ ×++×+×=
15

1

,2,2,22,11 ))(...)()(())(log(
c

cdkckcdccdcd issplinebasiissplinebasiissplinebasiMIE βββ  

where E(MId) = expected number of MIs on day d, ic is an indicator variable for 

conurbation c and splinebasis1.. splinebasisk+2 is the basis for a k-knot spline for 

calendar date. 

A simplified lag structure was employed to capture temperature effects in the 

model. Instead of including every lagged temperature from day 0 to 28, 5 

temperature lags periods were used: the average of lag days 0-1, 2-7, 8-14, 15-

21, and 22-28. The 0-1-day short-lag period was chosen since mortality studies 

suggest that any heat impacts would likely operate with little delay.161-162 Effects 
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of cold have been reported with longer delays and hence the remaining terms 

covered up to 28 days delay, with weekly groupings chosen to allow more 

precise estimation of effects, and since at longer lags any temperature effects 

would be unlikely to vary sharply from day to day. All 5 lag periods were 

included simultaneously in all models, so that individual lag effects were always 

controlled for all other lags. 

As before, all models were adjusted for : 

• Day of week (6 indicator variables). 

• Holidays (indicator variables). 

• Daily influenza and RSV levels (each in three categories representing 0, 1,  

or 2+ lab confirmed cases in the conurbation in question.) 

• Daily relative humidity (average of the current and previous 3 days), as a 4 

degrees of freedom cubic spline. 

• PM10 and ozone (each modelled as linear effects at lag days 0-3 inclusive) 

6.2.2.1 Initial modelling of temperature effect 

The revised modelling framework allowed for an initial simplifying assumption 

that the effects of temperature and potential confounders would be the same for 

all conurbations, and this was the starting point of the revised modelling 

strategy. To obtain a visual estimate of the temperature effect, a natural 4-knot 

cubic spline (with interior knots equally spaced along the range of temperatures) 

was included for each of the 5 lagged temperature effects in a model adjusted 

for the above confounding factors, with each effect constrained to be common 

across conurbations. Since each spline basis was parameterised as a linear 

term plus a further 4 non-linear terms, it was possible to perform Wald tests to 

assess the statistical significance of both the overall temperature effect (testing 

all 5 terms), and its non-linearity (testing only the 4 non-linear terms). 

As in the original modelling process, simplified temperature effects with more 

directly interpretable numerical coefficients were then considered, namely log-

linear temperature models and log-linear models with threshold. For the latter 
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the model was fitted repeatedly with every possible threshold from the 5th to the 

95th percentile of mean daily temperature in 1°C steps, and then with thresholds 

specified as percentiles of temperature within the conurbation (assessing the 

5th, 10th, 15th, … , 95th percentiles). These models were compared and the final 

temperature effect specification was selected as the model with the lowest AIC. 

The cumulative effect of temperature was estimated by summing (on the log 

scale) the regression coefficients of the 5 individual lagged effects. For a given 

day, this cumulative effect can be interpreted as the total effect of a difference in 

daily temperature over the current and following 28 days.158 

6.2.2.2 Assessment of heterogeneity across conurbations 

Interaction terms were then added to allow all effects to vary across 

conurbations. Heterogeneity of effects was assessed by examining the 

statistical significance of these interaction terms using Wald tests. 

6.2.2.3 Effect modification by individual-level factors 

An exploratory analysis was conducted to assess effect modification by age, 

sex, previous coronary heart disease, previous hypertension, and current 

aspirin use. Each potential effect modifier was investigated separately: the daily 

number of events was broken down by the factor under consideration, which 

was itself included in the model as an interaction with the daily temperature. For 

the purposes of this exploratory analysis, only a single temperature term 

(average of lag days 0 – 28) was included to allow the models to fit given the 

small numbers of events in some subgroups. The temperature effect from such 

a model is broadly comparable to the estimate of the cumulative effect over all 

lag days, as obtained by summing the 5 lag terms in our main model. 

6.2.2.4 Diagnostics and sensitivity analyses 

The deviance residuals for the final model were calculated and plotted against 

calendar date in each conurbation. Partial autocorrelation plots of these 

deviance residuals were also generated by conurbation. 
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A number of sensitivity analyses were performed; for each sensitivity analysis 

the final model was modified in one particular way and the resulting temperature 

effect examined:  

1. The dataset was restricted to only MI events for which the validity of the 

diagnosis could be confirmed against ECG or laboratory marker data. 

2. Minimum and then maximum daily temperature were used in place of 

mean daily temperature.  

3. The analysis was repeated including only the 5 conurbations with the 

highest daily event rates (namely Greater London, Greater Manchester, 

West Midlands, Tyneside, West Yorkshire all of which had median daily 

events ≥4).  

4. In order to include information from the 9.5% of observations with 

missing pollution levels (PM10 and/or ozone), a multiple imputation 

procedure with 5 imputations was used to handle the missing data. A 

multivariate normal model for PM10 and ozone containing all variables 

from the final temperature model was used for the imputation.  

5. In case of residual autocorrelation in the final model, lagged deviance 

residuals were added to the model for each conurbation in which 

significant early residual autocorrelation was seen (as defined by 

absolute partial autocorrelations of the deviance residuals exceeding 

0.05 at lag days 0-3). 

6. Finally, to assess the impact of varying the level of seasonal control in 

the model, the number of degrees of freedom per year used to define the 

spline function of date was varied in single step increments from 1 to 14 

(compared with the original value of 7). 

6.3 Results 

6.3.1 Study population 

A total of 84010 MI events were recorded within the 15 conurbations of interest 

(see Chapter 5 Table 5.1). Due to a lack of data on MI before January 2004 in 
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Norwich, and extended spells with missing pollutant data in Kingston-upon-Hull 

up to April 2003, Liverpool up to June 2003 and Bristol from August 2005 

(Chapter 5 Figure 5.2 and Figure 5.5) these time-periods were excluded in 

these conurbations to allow models to be estimated.  

6.3.2 Original analysis strategy by conurbation 

The results of the pre-planned analysis, in which a separate model was 

estimated for each conurbation, are now presented.  

6.3.2.1 Non-linear distributed lag models for temperature effect 

Estimates from a non-linear distributed lag model showed quite varied patterns 

of observed effects between conurbations (Figure 6.2 and Appendix I Figure 

11.5). There were no clear same-day (lag 0) temperature effects: the 

confidence intervals for the relative risk of MI generally spanned 1 across the 

temperature range. In a number of conurbations there were suggestions of 

temperature effects acting with longer delays but the results were varied. In 

Greater London, the conurbation with the highest median daily event rates, 

there was an approximately linear cold effect operating at intermediate lag days 

which disappeared at lags of 14 days and more (Figure 6.2a); combined over all 

lag days there appeared to be a significant detrimental effect of lower 

temperatures. A similar pattern was seen in the West Midlands (Figure 6.2b), 

though the estimated temperature effects at individual lags appeared less 

“linear”. By contrast, Greater Manchester, which had the second highest median 

daily event rates, showed no temperature effect at any lag (Figure 6.2c), and 

nor did Kingston-upon-Hull (Figure 6.2d) though in the latter case the power to 

detect effects given very low event rates would likely have been inadequate. 

The remaining conurbations showed similarly mixed patterns (Appendix I Figure 

11.5) though it is worth noting that in no case was a significant effect of heat or 

temperature increases observed. 
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Figure 6.2: Estimated relative risk of MI by temperature on specific lag days and overall 
 (a) Greater London 

 

 

(b) West Midlands 

 
Estimates come from a non-linear distributed lag model adjusted for calendar time, relative 
humidity (av lags 0-3), day of week, holiday, influenza, RSV, pm10 (lags 0-3) and ozone (av 
lags 0-3) 
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(c)  Greater Manchester 

 

 
(d)  Kingston-upon-Hull 

 
Estimates come from a non-linear distributed lag model adjusted for calendar time, relative 
humidity (av lags 0-3), day of week, holiday, influenza, RSV, pm10 (lags 0-3) and ozone (av 
lags 0-3) 
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6.3.2.2 Effects of temperature in linear/threshold models 

Simplified models were then considered using a selection process taking as 

candidates log-linear based models with and without temperature thresholds. In 

five conurbations (Cardiff, Nottingham, Southampton, West Midlands, West 

Yorkshire), a log-linear model without threshold was selected (Table 6.1) but 

only in the case of the West Midlands was a clear temperature effect seen, the 

estimate suggesting a detrimental effect of lower temperature (increase in risk 

per 1°C drop in temperature = 5.3% (2.3, 8.3) combined over all lag days).  
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Table 6.1: Measures of model fit and threshold/effect estimates for linear vs threshold temperature models in each of the 15 conurbations 

Best model by AIC

Best linear 

model

Best cold 

threshold 

model

Best hot/cold 

threshold model

CT = cold 

threshold

LIN = linear
Bristol 2842 2840 2862 CT 17 [-, -] -0.7 [-8.3, 7.4]

Cardiff 2793 2794 2814 LIN N/A -1.8 [-11.0, 8.3]

G London 8563 8563 8588 CT 18 [17,-] 3.6 [1.8, 5.4]

G Manchester 7356 7337 7366 CT 3 [-, 10] -2.5 [-23.1, 23.6]

Kingston-upon-Hull 1787 1776 1800 CT 5 [5, 6] -5.0 [-45.1, 64.4]

Leicester 3599 3596 3617 CT 2 [-, 4] -24.3 [-68.2, 80.2]

Liverpool 4672 4661 4697 CT 9 [-, 11] 3.6 [-3.7, 11.6]

Norwich 2236 2227 2258 CT 13 [12,14] 4.7 [-5.8, 16.3]

Nottingham 3563 3565 3588 LIN N/A 1.5 [-5.5, 9.1]

Potteries 3600 3581 3601 CT 9 [9, 9] 3.8 [-5.8, 14.4]

Sheffield 5505 5499 5534 CT 13 [12,15] 3.6 [-1.8, 9.3]

Southampton 2981 2984 3010 LIN N/A 1.8 [-5.8, 10.1]

Tyneside 5875 5871 5891 CT 6 [4, 7] 5.7 [-3.8, 16.1]

W Midlands 6922 6926 6934 LIN N/A 5.3 [2.3, 8.3]

W Yorkshire 6234 6237 6248 LIN N/A -1.5 [-4.9, 2.0]

AIC

Change in risk per 1°C 

drop in temp below 

threshold

% change [95% CI]

Estimated cold 

threshold and 

95% CI*

(°C)

 
Note: Lower AIC indicates a better model, based on balancing model fit and parsimony 
Estimated temperature effects represent the total temperature effect combined over lag days 0-28 inclusive 
All models adjusted for season & trend, relative humidity (av lags 0-3), day of week, holiday, influenza, RSV, pm10 (lags 0-3) and ozone (av lags 0-3) 
*Incomplete 95% CIs indicated by a lower or upper limit of “-“ means the lower or upper CI limit extended beyond the range of temperatures in that conurbation
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In the remaining ten conurbations, the modelling process selected a cold 

threshold model. However, the thresholds appeared to be poorly estimated. For 

example, in Greater Manchester, Kingston-on-Hull, Leicester, and Tyneside, the 

cold threshold value maximising the profile likelihood was at or very close to the 

lower extreme of the temperature range, resulting in very imprecisely estimated 

cold effects acting over a very small temperature range. In Leicester, the 

estimated temperature effect suggested a 24.3% decrease in risk per 1°C drop 

below 2°C with a confidence interval including a 68.2% decrease and an 80.2% 

increase in risk. On the other hand, in the cold threshold model for Greater 

London, the only one in which the effect was statistically significant, the 

threshold was estimated at 18°C; this was close to the upper extreme of the 

mean daily temperature range resulting in something close to a log-linear 

temperature model without threshold. A 3.6% (1.8, 5.4) increase in MI risk per 

1°C reduction in temperature was estimated below this 18°C threshold. 

In no conurbations did the modelling process lead to the selection of separate 

heat and cold thresholds, which would have implied a U- or V-shaped 

temperature relationship. This further suggested a lack of heat effects. 

Finally, the heterogeneity of thresholds across conurbations was considered. 

Considering thresholds to be fixed across conurbations, the log-likelihood was 

maximised when a cold threshold at the 95th %-ile of local temperature was 

applied, though it should be noted that this was not a statistically significant 

improvement over a linear temperature model for all conurbations (difference in 

-2log-likelihood = 1.24, over 1 degree of freedom, p=0.27). However a model 

with variable thresholds across conurbations was a comfortable improvement 

over the best fixed threshold model (difference in -2log-likelihood = 114.92, over 

14 degrees of freedom, p < 0.001) suggesting significant heterogeneity across 

conurbations in the thresholds (Table 6.2). 
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Table 6.2: Model fit for fixed vs variable thresholds across conurbations 

Model
+ Combined log likelihood across all 

conurbations*

1.Best “fixed” threshold is at 18°C -32819.82

2.Best “fixed” threshold as a %ile at 

95th %ile
-32819.07

3.Linear effects only (no threshold) -32819. 69

4.Variable thresholds (i.e. optimal 

threshold for each conurbation)
-32761.61

 
Note: Higher (less negative) log likelihood indicates better fit 
+Models adjusted for separate effects of confounders in each conurbation: season and trend 
(27 knot spline for each conurbation), relative humidity (4 knot spline for lags 0-3), holiday, day 
of week, flu, RSV, pm10 (av of lag 0-3), ozone (av of lag 0-3) 
*sum of individual conurbation log likelihoods 
 

6.3.3 Revised analysis strategy combining conurbations 

Given the apparently poor estimation of individual conurbation effects in both 

flexible models and simpler threshold models (Figure 6.2a-d and Table 6.1), the 

modelling process was revised as described in Section 6.2.2. Firstly, all 

conurbations were combined in one model, stratified by conurbation, and 

secondly, the lag structure of the models was simplified by using only five lag 

periods for temperature (average of lag days 0-1, 2-7, 8-14, 15-21, and 22-28). 

6.3.3.1 Modelling temperature effects as flexible curves 

With both temperature effects and confounders initially fixed across 

conurbations, and each lagged temperature effect entered into the model as a 

natural cubic spline, 5 estimated temperature effect curves representing the 

combined effect of temperature across all 15 conurbations were estimated 

(Figure 6.3). These curves suggested a broadly linear effect of temperature at 

short lags (days 0-1 and 2-7) with the risk of MI increasing at lower 

temperatures, though the temperature effect was not statistically significant at 

days 0-1 (p = 0.62). At days 8-14 there was strong evidence of a temperature 

effect (p = 0.005); again an increase in the risk of MI was seen at lower 

temperatures, and though the curve suggested a levelling off of the effect at 

both the lower and upper extremes of the temperature range, confidence 

intervals in these regions were wide reflecting the limited number of days on 

which these extremes of temperature occurred, and a formal test suggested 



 

136 

 

little evidence of non-linearity (p = 0.13). At lag days 15-21 and 22-28 there was 

little evidence of any continuing temperature effect though the estimated curves 

were broadly in the direction of a detrimental cold effect in both cases.  

 
Figure 6.3: Estimated relative risk of myocardial infarction by temperature in the 15 conurbations 
combined 

 
Estimated curves come from a combined model including all 5 lag periods for temperature (0-1, 
2-7, 8-14, 15-21, 22-28 days), and adjusted for calendar time (stratified by conurbation), relative 
humidity (average of lags 0-3), day of week, holiday, influenza, RSV, pm10 (lags 0-3) and ozone 
(lags 0-3).  
The reference value for relative risk estimates is the mean value of daily mean temperature 
across all days included. 
 

6.3.3.2 Effects of temperature in linear/threshold models 

Within the same modelling framework, simplified specifications of the 

temperature effect were considered, namely log-linear models with or without 

cold threshold; given that there were no suggestions of heat effects from the 

previous analyses, dual (heat and cold) threshold models were not formally 

assessed. Table 6.3 shows that the AIC was minimised by the most 

parsimonious “all-linear” model; in the optimal threshold model the cold 

threshold was at the 90th percentile of local temperature – it is worth noting that 

this in any case represents close to a simple log-linear temperature effect. 
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Table 6.3: Model fit and effect estimates for linear vs cold threshold models, in order of increasing model AIC 

      RR (95% CI) per 1°C drop in temperature 

Cold threshold Log-likelihood AIC Lag 0-1 Lag 2-7 Lag 8-14 Lag 15-21 Lag 22-28 

LINEAR MODEL -33326.98 67591.96 1.002 (0.998, 1.005) 1.006 (1.002, 1.011) 1.007 (1.003, 1.011) 1.003 (0.999, 1.007) 1.002 (0.998, 1.006) 

90th %ile -33326.32 67592.63 1.002 (0.999, 1.006) 1.006 (1.002, 1.011) 1.008 (1.003, 1.013) 1.003 (0.998, 1.007) 1.003 (0.998, 1.007) 

95th %ile -33326.66 67593.32 1.002 (0.998, 1.006) 1.006 (1.002, 1.011) 1.007 (1.003, 1.012) 1.003 (0.998, 1.007) 1.002 (0.998, 1.007) 

85th %ile -33327.02 67594.04 1.002 (0.999, 1.006) 1.006 (1.002, 1.011) 1.008 (1.003, 1.013) 1.003 (0.998, 1.007) 1.003 (0.998, 1.008) 

19°C -33327.33 67594.66 1.002 (0.999, 1.006) 1.006 (1.001, 1.011) 1.007 (1.003, 1.012) 1.003 (0.998, 1.007) 1.002 (0.997, 1.006) 

18°C -33327.7 67595.4 1.002 (0.999, 1.006) 1.006 (1.001, 1.010) 1.008 (1.003, 1.012) 1.003 (0.998, 1.007) 1.002 (0.997, 1.006) 

17°C -33328.34 67596.68 1.002 (0.999, 1.006) 1.006 (1.001, 1.011) 1.008 (1.003, 1.013) 1.003 (0.998, 1.007) 1.002 (0.998, 1.007) 

80th %ile -33328.75 67597.51 1.003 (0.999, 1.007) 1.006 (1.001, 1.011) 1.008 (1.003, 1.012) 1.003 (0.998, 1.008) 1.003 (0.998, 1.008) 

16°C -33329.43 67598.85 1.002 (0.999, 1.006) 1.006 (1.001, 1.010) 1.008 (1.003, 1.013) 1.003 (0.998, 1.008) 1.003 (0.998, 1.007) 

75th %ile -33329.72 67599.44 1.003 (0.999, 1.007) 1.006 (1.001, 1.011) 1.007 (1.002, 1.012) 1.003 (0.999, 1.008) 1.003 (0.998, 1.008) 

Note: Higher (less negative) log likelihood indicates better model fit; lower AIC indicates better model based on balancing model fit and parsimony 
 All models adjusted for calendar time (stratified by conurbation), relative humidity (av lags 0-3), day of week, holiday, influenza, RSV, pm10 (lags 0-3) and ozone (av 
lags 0-3) 
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6.3.3.3 Description of effects in the final model 

Estimates from the final model (log-linear temperature effects without threshold) 

showed significant effects of temperature, day of the week, and PM10 levels 

(Table 6.4). A 1°C drop in temperature on a given day was associated with a 

cumulative increase in MI risk of 2.0% [1.1 to 2.9] over the current and following 

28 days, with the strongest effects being estimated at intermediate lags of 2-7 

and 8-14 days. 

As expected, there also appeared to be an increased risk of MIs being reported 

on weekdays compared with weekends: compared with Sunday, there was a 

14% [11-17] increased risk of an MI being recorded on a Monday and a 4 to 8% 

increase for Tuesday-Friday. There was a suggestion that increases in PM10 

levels by 10µg/m3 were associated with a small increase in MI risk on the same 

day (0.8% [-0.2 to 1.7]) though at longer lags the risk was reduced; no effect of 

ozone was observed (p = 0.18). 

Relative humidity did not appear to be associated with MI risk (p = 0.29) though 

there was a non-significant increase in risk at both low and high humidity values 

(RR = 1.03 [0.99-1.06] and 1.06 [0.99-1.13] at 55% and 95%, compared with 

75%).  

Finally, there was no evidence of an effect of holiday, influenza or RSV in the 

final model though effect estimates were in the direction expected in each case 

(i.e. a reduced risk of MIs being recorded on holidays, and an increased risk on 

days with lab confirmed influenza or RSV cases). 
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Table 6.4: Estimated effects of temperature and potential confounders in the final model 

Relative Risk  [95% CI] p-value

Temperature (per °C drop) <0.001

Lag 0-1 1.002 [0.998 to 1.005]

Lag 2-7 1.006 [1.002 to 1.011]

Lag 8-14 1.007 [1.003 to 1.011]

Lag 15-21 1.003 [0.999 to 1.007]

Lag 22-28 1.002 [0.998 to 1.006]

Cumulative effect over all lags 1.020 [1.011 to 1.029]

Relative humidity 0.29

55% 1.03 [0.99 to 1.06]

65% 1.01 [0.99 to 1.03]

75% 1.00 (ref)

85% 1.01 [0.98 to 1.04]

95% 1.06 [0.99 to 1.13]

Day of Week <0.001

Sunday 1.00 (ref)

Monday 1.14 [1.11 to 1.17]

Tuesday 1.05 [1.02 to 1.08]

Wednesday 1.07 [1.04 to 1.10]

Thursday 1.04 [1.01 to 1.07]

Friday 1.08 [1.05 to 1.11]

Saturday 0.99 [0.96 to 1.02]

Holiday 0.21

No 1.00 (ref)

Yes 0.97 [0.92 to 1.02]

Influenza A levels (lab confirmed cases) 0.58

0 1.00 (ref)

1 1.02 [0.99 to 1.05]

2+ 1.01 [0.97 to 1.05]

RSV levels (lab confirmed cases) 0.84

0 1.00 (ref)

1 0.99 [0.96 to 1.02]

2+ 1.01 [0.95 to 1.06]

PM10 (per 10 µg/m
3
) 0.02

Lag 0 1.008 [0.998,1.017]

Lag 1 0.992 [0.981,1.002]

Lag 2 0.989 [0.979,1.000]

Lag 3 1.003 [0.994,1.013]

Ozone (per 10 µg/m
3
) 0.19

Lag 0 1.000 [0.993,1.006]

Lag 1 0.995 [0.988,1.002]

Lag 2 1.001 [0.994,1.009]

Lag 3 0.995 [0.989,1.001]

Model adjusted for season and  trend using spline function of calendar date (7df/year) 
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6.3.3.4 Variation of effects across conurbations 

Temperature interactions 

The individual and combined effect estimates for temperature across 

conurbations are shown in Figure 6.4. There was no evidence of heterogeneity 

of the temperature effect across conurbations (p = 0.43). Of note at lag days 2-7 

and 8-14, at which significant combined cold effects were estimated, effect 

estimates were in a direction suggesting cold effects for 11/15 and 12/15 

individual conurbations respectively, however the only conurbation in which this 

effect was individually statistically significant was Greater London. Greater 

London had a median of 18 events per day compared with <8 in all other 

conurbations and therefore was much better powered to detect these effects.  

 

Figure 6.4:  Estimated relative risk of myocardial infarction per 1°C reduction in temperature - 
variation by conurbation 

 
Estimates from a combined model including all 5 temperature terms (lag days 0-1, 2-7, 8-14, 15-
21, 28), adjusted for calendar time (stratified by conurbation), and fixed effects across 
conurbations of relative humidity (average of lags 0-3), day of week, holiday, influenza, 
respiratory syncytial virus, pm10 (lags 0-3) and ozone (lags 0-3)  

  

W Mids

Bristol

Cardiff

K-on-Hull

Leicester

Liverpool

G London

G Manc

Tyneside

Norwich

Nottm

Potteries

Sheffield

Southamp

W Yorks

1.002 (0.998, 1.005)

.95 1 1.05 1.1
RR per deg C drop in temp, 95% CI

Lag days 0-1

W Mids

Bristol

Cardiff

K-on-Hull

Leicester

Liverpool

G London

G Manc

Tyneside

Norwich

Nottm

Potteries

Sheffield

Southamp

W Yorks

1.006 (1.002, 1.011)

.85 .9 .95 1 1.05
RR per deg C drop in temp, 95% CI

Lag days 2-7

W Mids

Bristol

Cardiff

K-on-Hull

Leicester

Liverpool

G London

G Manc

Tyneside

Norwich

Nottm

Potteries

Sheffield

Southamp

W Yorks

1.007 (1.003, 1.011)

.95 1 1.05 1.1 1.15
RR per deg C drop in temp, 95% CI

Lag days 8-14

W Mids

Bristol

Cardiff

K-on-Hull

Leicester

Liverpool

G London

G Manc

Tyneside

Norwich

Nottm

Potteries

Sheffield

Southamp

W Yorks

1.003 (0.999, 1.007)

.9 .95 1 1.05
RR per deg C drop in temp, 95% CI

Lag days 15-21

W Mids

Bristol

Cardiff

K-on-Hull

Leicester

Liverpool

G London

G Manc

Tyneside

Norwich

Nottm

Potteries

Sheffield

Southamp

W Yorks

1.002 (0.998, 1.006)

.9 .95 1 1.05
RR per deg C drop in temp, 95% CI

Lag days 22-28



 

141 

 

Other interactions  

There was no evidence of variation in the effects of day of week (p = 0.14), 

holiday (p = 0.15), influenza (p = 0.97), respiratory syncytial virus (p = 0.25), 

PM10 levels (p = 0.91) or ozone levels (p = 0.50) across conurbations.  

6.3.4 Effect modification by individual-level factors 

In a simplified model with a single temperature term (the average of lag days 0 

– 28), there was strong evidence of effect modification by age (p-

interaction<0.001); notably, those aged 75-84 years appeared more vulnerable 

to the effects of cold than other age groups including the eldest (relative risk per 

1°C reduction in temperature = 1.016 [1.007 to 1.025], 1.018 [1.009 to 1.027], 

1.027 [1.018 to 1.036],  and 1.019 [1.009 to 1.029] for those aged <65, 65-74, 

75-84, and 85+ years respectively, Figure 6.5).  

There was no evidence of a difference in the temperature effect between men 

and women (p=0.80). Data were available on previous coronary heart disease 

(MI or angina) for 82% of events, and those with previous disease appeared 

more vulnerable to the effects of temperature than those without (relative risks 

per 1°C reduction in temperature = 1.025 [1.015 to 1.034] and 1.019 [1.011 to 

1.029] respectively, p-interaction=0.001). However there was little evidence of 

any effect modification by previous hypertension (p-interaction=0.16). Finally, 

considering the 86% of events where current aspirin usage data were available, 

those on aspirin appeared less vulnerable to temperature effects (relative risk 

per 1°C reduction in temperature = 1.016 [1.006 to 1.026] compared with 1.022 

[1.012 to 1.031] for those not on aspirin, p-interaction=0.007).Effect modification 

by statin use was not assessed due to incomplete data. 

It is worth noting that despite heterogeneity in the sizes of the temperature 

effect, temperature reductions were associated with a significant increase in MI 

risk for all subgroups considered. 
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Figure 6.5: Estimated relative risk of myocardial infarction per 1°C reduction in temperature – 
effect modification by age, sex, history, and aspirin use 

 
Graph shows the estimated effect of temperature (average of lag days 0-28), adjusted for 
calendar time (stratified by conurbation), and fixed effects across conurbations of relative 
humidity (av lags 0-3), day of week, holiday, influenza, respiratory syncytial virus, pm10 (lags 0-
3) and ozone (lags 0-3) 
 
 

6.3.5 Diagnostics and sensitivity analyses for final model 

6.3.5.1 Regression diagnostics  

Plots of deviance residuals against calendar time were generated for each 

conurbation and no clear pattern was seen in the larger conurbations (Figure 

6.6 and Appendix Figure 11.6). In the conurbations which tended to record low 

daily event rates, residual plots did tend to follow the overall fitted long term 

trend; however this is unsurprising since in these conurbations there was little 

information and therefore little variation in the predicted daily numbers of 

events. Partial autocorrelation plots of model deviances in most conurbations 

suggested little evidence of autocorrelation with most partial autocorrelations 

falling within the confidence bands. (Figure 6.7 and Appendix Figure 11.7). 

Nevertheless, the effect of including additional terms in the model allow for any 

residual autocorrelation was checked in a sensitivity analysis (section 6.3.5.2). 
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Figure 6.6: Individual conurbation plots of deviance residual vs calendar time  

 
 
Figure 6.7: Partial autocorrelations of deviance residuals 
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6.3.5.2 Sensitivity analyses 

Several modifications were made to the final model in order to test the 

robustness of effect estimates. The estimated overall temperature effect did not 

appear to be sensitive to restricting to only validated myocardial infarction 

events; using minimum and maximum daily temperature in place of mean 

temperature; restricting analyses to the five conurbations with the highest event 

rates; imputing pollution data to enable all observed data to be used; or 

including additional terms to allow for residual autocorrelation in the final model 

(Table 6.5). For all of these sensitivity analyses, the estimated cumulative effect 

of a 1°C reduction in temperature was between a 1.7 and 2.2% increase in risk, 

comparable to our final model estimate of a 2.0% increase in risk. Considering 

the temperature effect at specific lag periods, the effects of temperature at lag 

days 2-7 and 8-14 were estimated at 0.4-0.8% per 1°C reduction in temperature 

in all models, with no evidence of non-linearity in these effects. At shorter (0-1 

day) and longer (15-21, 22-28 day) lag periods, the lack of evidence for a 

temperature effect was consistent across models. 

Varying the level of seasonal control had only a small effect on the size and not 

direction of the estimated cumulative temperature effect: estimated effect sizes 

were 1.2-1.4% for a 3-6 degrees of freedom/year spline; 1.8-2.0% for 7-9 

degrees of freedom/year, and 1.0-1.4 for 10-14 degrees of freedom/year (Table 

6.6). Confidence intervals included the original estimate of a 2.0% increase in 

risk per 1°C reduction in temperature for all levels of seasonal control above 3 

degrees of freedom/year. 
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Table 6.5: Sensitivity of estimated temperature effect to analysis strategies 

Temperature effect

Cell contents:

RR per 1 °C drop

[95% CI]

p-value

Lag 0-1 Lag 2-7 Lag 8-14 Lag 15-21 Lag 22-28
Combined effect 

over all  lag days

Overal l p 

for temp 

effect

Final model 1.002 1.006 1.007 1.003 1.002 1.020 <0.001

[0.998,1.005] [1.002,1.011] [1.003,1.011] [0.999,1.007] [0.998,1.006] [1.011,1.029]

0.30 0.01 0.00 0.20 0.36

Including only MI events 1.002 1.005 1.008 1.002 1.002 1.019 <0.001

validated by ECG/biomarkers [0.999,1.005] [1.001,1.009] [1.003,1.012] [0.998,1.006] [0.999,1.007] [1.011,1.028]

0.25 0.03 0.00 0.44 0.11

Minimum temperature 1.002 1.006 1.006 1.004 1.002 1.020 <0.001

instead of mean [0.999,1.005] [1.002,1.010] [1.002,1.010] [1.000,1.008] [0.998,1.006] [1.011,1.029]

0.25 0.01 0.00 0.04 0.31

Maximum temperature 1.002 1.006 1.007 1.001 1.002 1.017 <0.001

 instead of mean [0.999,1.005] [1.001,1.010] [1.003,1.011] [0.997,1.005] [0.998,1.005] [1.008,1.025]

0.31 0.01 0.00 0.52 0.43

Restrict analysis to 5 largest 1.002 1.006 1.008 1.003 1.002 1.022 <0.001

conurbations [0.998,1.006] [1.001,1.011] [1.003,1.012] [0.998,1.008] [0.997,1.007] [1.011,1.032]

0.26 0.01 0.00 0.21 0.37

Multiple imputation of missing 1.001 1.006 1.006 1.002 1.001 1.018 0.002

PM10 and ozone [0.998,1.005] [1.002,1.011] [1.002,1.011] [0.998,1.006] [0.998,1.006] [1.009,1.027]

0.44 0.00 0.00 0.27 0.41

Inclusion of autocorrelation 1.002 1.007 1.007 1.003 1.002 1.020 <0.001

terms [0.998,1.005] [1.002,1.011] [1.003,1.011] [0.999,1.007] [0.998,1.006] [1.011,1.030]

0.30 0.00 0.00 0.18 0.32
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Table 6.6: Sensitivity of estimated temperature effect to level of seasonal control 

Degrees of freedom per 

calendar year for 

seasonal control

1 1.005 (1.003, 1.007)

2 1.006 (1.004, 1.008)

3 1.012 (1.006, 1.018)

4 1.013 (1.005, 1.021)

5 1.014 (1.006, 1.022)

6 1.013 (1.005, 1.022)

7 1.020 (1.011, 1.029)

8 1.018 (1.009, 1.028)

9 1.018 (1.008, 1.028)

10 1.013 (1.001, 1.025)

11 1.010 (.997, 1.022)

12 1.014 (.999, 1.029)

13 1.007 (.992, 1.022)

14 1.012 (.997, 1.027)

Combined temperature effect 

over lag days 0-28 (RR per 1°C 

reduction and 95% CI)

 
Each estimate from a model identical to the final model except for the level of seasonal control 
 

6.4 Discussion 

Across the 15 conurbations in England and Wales included in these analyses, 

there was a broadly linear temperature-MI relationship which was well 

characterised by log-linear models without temperature threshold. Each 1°C 

reduction in temperature was associated with a cumulative 2.0% (95% 1.1 to 

2.9) increase in MI risk over the current and subsequent 28 days. Because MIs 

are common, and temperature changes are experienced by the whole 

population, even a small risk increase translates to substantial absolute 

numbers of extra MIs. For example, in the UK which sees an estimated 146000 

MIs per year,7 11600 events would be expected on average in a 29-day period; 

our results suggest that each 1°C drop in temperature nationwide on a single 

day would be associated with an extra 232 MI events. 

The temperature effect appeared to operate most strongly at 2 to 14 days after 

the reduction in temperature. The absence of a more immediate effect may be 

characteristic of the underlying mechanism at work, or might simply reflect 
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delays in MI patients being admitted to hospital. A similarly delayed cold effect 

has also been seen for overall mortality162 though more immediate effects have 

also observed9. There was no indication of any detrimental heat effect. 

In the systematic review of ambient temperature effects on MI risk (Chapter 2), 

8 out of 12 and 7 out of 13 relevant studies identified cold and heat effects on 

MI risk respectively. The present analysis adds to the weight of evidence for a 

detrimental effect of lower temperatures but is not in agreement with the 

hypothesis raised in Chapter 2 that countries at more northern latitudes may be 

more likely to experience heat rather than cold effects. Some methodological 

questions hung over virtually all of the studies included in the systematic review 

and the effects reported were therefore sometimes questionable. Nevertheless 

one could argue that the cold effect was the more convincing to emerge from 

the review: considering the 5 studies in which the MI outcome was 

independently validated, 3 reported adverse effects only of cold, whereas only 1 

based on data from a subarctic region found a detrimental effect of heat 

(Chapter 2 Table 2.2). This is in keeping with the present analysis which was 

based on an audit database in which 88% of MI events had an ECG trace, 

raised markers, or both to corroborate the MI diagnosis, and in which the 

findings were robust to exclusion of the remaining 12% of events. The analysis 

attempted to address the methodological weaknesses present in many previous 

studies; all models were adjusted for season and trend, relative humidity, air 

pollution, infectious disease levels, and day of the week, and both non-linear 

temperature-MI relationships, and delayed temperature effects were 

considered. The only study in the systematic review to address all of these 

issues was the study of MI mortality by Sharovsky et al61  which found both heat 

and cold effects, however as discussed in Chapter 2 there may be reason for 

caution about the specificity of outcomes which rely only on mortality data. 

There was evidence of effect modification by age, with those aged 75-84 years 

apparently more vulnerable to temperature effects than other age-groups. The 

age structure of patients recorded in MINAP allowed for those aged ≥65 years 

to be subdivided into three age groups and it was of interest that an increased 

vulnerability did not extend into the oldest group (≥85 years). Whilst this may 

reflect a lower number of events, and therefore lower power to detect an 
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increased temperature-associated risk in the oldest age group, another possible 

explanation is that individuals in this age group may spend less time outdoors, 

and may be more likely to live in residential or nursing homes with effective 

heating systems. An increased vulnerability to cold was also observed among 

those with previous CHD, though it should be noted that it was not possible to 

assess the three-way interaction between temperature, age group and previous 

CHD due to low numbers of daily events in the combined subgroups, therefore 

whether the vulnerabilities due to age and previous disease are independent 

remains an open question. Nevertheless, identifying subgroups that might be 

particularly vulnerable to cold effects is of interest since one potential 

application of these findings would be a to inform a targeted early warning 

system based on forecasted weather, as discussed in Section 2.4. The likely 

cost-effectiveness of any such scheme would need to be evaluated. It could be 

argued that since the results of this study imply an effect of temperature 

reductions across the temperature range, and even among individuals outside 

the most vulnerable groups, a more widespread health education message 

aimed at reducing the impact of lower temperatures may be of value. 

Various proposed mechanisms to explain an effect of cold on MI risk were 

discussed in Section 2.4. A number of small experimental studies combine to 

suggest that a pathway for cold-induced thrombogenesis might involve a 

combination of factors including haemoconcentration, an inflammatory 

response, and a tendency for an increased state of hypercoagulability. 

Furthermore, the observation in the present study that aspirin seemed to be 

partially protective suggests that part of the effect may be mediated by changes 

in platelet function. However, there has been little recent research into 

mechanisms in this area and these hypotheses need to be tested in larger 

studies examining a range of updated measures. 

There are a few possible explanations for the notable lack of an apparent effect 

of heat on MI risk in this study. First, temperature in the United Kingdom is 

rarely very high in global terms; although data from the unusually hot summer of 

2003 were included, even the warmest periods are quite brief, which may have 

limited the power to detect a heat effect. On the other hand, such heat effects 

have been established in studies of overall mortality even in a UK setting.161 A 
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second possibility is that any heat effects might have been too immediate to be 

detected by a daily time series study; this is further suggested by data at a finer 

temporal resolution which are examined as part of the analysis presented in 

Chapter 8 (Table 8.3 and Figure 8.7). Finally, these results might simply reflect 

a genuine absence of any heat effect on MI, indicating that other mechanisms 

are more important drivers of the heat-mortality relationship; this is also 

suggested by mortality data from London showing no increase in mortality from 

MI at higher temperatures despite clear heat-related increases in other 

cardiovascular deaths.163 

Methodological problems were encountered with the initial modeling strategy 

attempted for this analysis. In retrospect, it may have been ambitious to attempt 

to estimate temperature effects in individual conurbations, when median daily 

event rates in over half of the 15 conurbations were ≤1. The strategy of 

choosing between linear and threshold temperature models proved particularly 

sensitive in this context, and thresholds were estimated quite erratically, likely 

due to the limited power in a number of conurbations. It was also felt that fitting 

29 separate lag terms (lag days 0 to 28 inclusive) for temperature may have 

contributed to unstable models. Furthermore, delayed temperature effects 

would be unlikely to change in character from one day to the next, beyond the 

first few lag days, so including such a large number of terms was probably 

unnecessary. The revised model overcame these problems by utilizing all the 

information available from the 15 conurbations together in a single model to 

estimate the overall effect of temperature in each of the 5 lag periods; not 

surprisingly this model proved more stable and the analysis retained effective 

stratification by conurbation by including a separate spline function of calendar 

time for each conurbation to capture long term trends and seasonality.  

Nevertheless, the revised analyses still has some limitations, reflecting the 

nature of the data. First, the MINAP database is restricted to patients admitted 

to hospital; MIs leading to death before hospital admission would therefore not 

have been included. The likelihood of a person suffering MI surviving to be 

admitted to hospital could conceivably be related to temperature if, for example, 

bad weather led to ambulance delays. However if such a mechanism were 

operating, it seems likely that the number of MIs would then be underestimated 



 

150 

 

on particularly cold days leading to an underestimation of the estimated adverse 

effects of cold. A second limitation of MINAP is suggested by the wide and 

disproportionate variation in the number of MIs recorded between conurbations, 

which implies some regional inconsistency in the recording of events. Though 

this may have led to some missed events and a consequent loss of power, it is 

unlikely to be related to day to day changes in temperature, so confounding 

should not have resulted from these apparent recording inconsistencies. A final 

limitation is that there may have been residual confounding in the final model, 

due both to imperfect adjustment for suspected confounders such as influenza 

(the marker of influenza activity was based on low numbers of laboratory 

confirmed flu cases and may not have been sufficiently sensitive to fully capture 

flu effects), and to the always-present possibility of unknown confounding 

factors having been omitted. However, it was reassuring that partial 

autocorrelations of residuals were not suggestive of substantial residual 

confounding. 

Despite these limitations, this large study addresses many of the weaknesses of 

previous research in the area: MI diagnoses occurring in MINAP are likely to 

have high specificity and there is reason for confidence that the vast majority of 

outcome events included were indeed genuine MIs; indeed, most cases could 

be validated against ECG and/or laboratory marker data to confirm the 

diagnosis. Up to date methods based on smooth functions of time were used to 

control for seasonality and long term trends and models were adjusted for the 

most commonly suspected potential confounders relevant to analyses of 

temperature-MI relationships; non-linear and delayed temperature effects were 

also examined. A number of choices had to be made with regards to modeling 

strategies, however several sensitivity analyses suggested a robustness of the 

final estimated temperature effects to these decisions.  

In conclusion, there appears to be a convincing short-term increase in MI risk 

associated with reductions in ambient temperature, predominantly operating in 

the two weeks following exposure. International studies with consistent methods 

will be required to clarify the dependence of these effects on local climate, while 

individual-level studies collecting demographic, clinical, and behavioural data 

may shed light on the role of adaptive measures such as clothing and home 
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heating, and further clarify which subgroups are likely to be the most vulnerable. 

Finally, studies of specific public health interventions aimed at reducing the 

impact of temperature-related increases in MI risk are needed. 

 

6.5 Summary 

• A daily time series regression was carried out, examining the short-term 

associations between daily mean temperature and MI risk 

• Lower daily mean temperature was associated with increased risk of MI. The 

relationship was broadly linear, with each 1°C reduction in temperature 

associated with a cumulative 2% (95% 1.1 to 2.9) increase in MI risk over 

the current and subsequent 28 days 

• Elderly individuals up to age 85 years and those with previous coronary 

heart disease appeared most vulnerable to the effects of temperature 

reductions; those taking prophylactic aspirin were less vulnerable 

• No increase in the risk of MI at higher temperatures was detected   
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7 Characterising the short-term effects of daily air 

pollution levels on MI risk 

7.1 Introduction 

This chapter describes a series of analyses investigating and characterising the 

short-term effects of daily air pollution levels on the risk of MI. 

7.2 Statistical methods 

7.2.1 Main models for estimating the effects of pollutants on MI risk 

To investigate the role of the 5 pollutants (PM10, ozone, CO, NO2 and SO2) on 

MI risk, the final temperature model from Chapter 6 was modified. In place of 

the short-lag terms for PM10 and ozone used to control for pollution effects in 

the previous analysis, each of the 5 pollutants in turn was included as the main 

effect of interest. Based on the literature review (Chapter 3), which gave no 

suggestion of non-linear effects, or of any long-delayed effects, 8 linear terms 

(representing lag days 0 to 7 inclusive) were used for each pollutant in an 

unconstrained distributed lag model.  

The effects of the 5 pollutants were initially investigated in separate models. As 

before, each model was a Poisson time series regression model combining data 

from the 15 conurbations. Daily numbers of MI events in MINAP from the years 

2003–2006 inclusive formed the outcome series, and as well as adjusting for 

temperature using 5 terms (representing lag days 0-1, 2-7, 8-14, 15-21, 22-28) 

the models also included: 

 

• A cubic spline function of calendar time with 7 degrees of freedom per 

calendar year to capture season and trend, estimated separately for 

each conurbation.  

• Day of week (6 indicator variables). 

• Holidays (indicator variables). 
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• Daily influenza and RSV levels (each in three categories representing 0, 

1,  or 2+ lab confirmed cases in the conurbation in question. 

• Daily relative humidity (average of the current and previous 3 days), as a 

4 degrees of freedom cubic spline. 

• Scale parameter to account for overdispersion. 

 

As a summary of the overall effect of each pollutant, the cumulative effect over 

lag days 0 to 7 combined (obtained by summing the regression coefficients of 

the 8 individual lagged effects on the log scale) was chosen as the primary 

outcome of interest. For a given day, this cumulative effect can be interpreted 

as the total effect of a change in pollutant levels over the current and 

subsequent 7 days. It should be noted that this choice of outcome places 

emphasis on the net effect of a pollution increase, rather than any short-term 

displacement of events (a hypothesised phenomenon also known as 

“harvesting” in which very frail individuals who were destined to have an MI 

within a few days anyway simply have their MI “brought forward” by the pollution 

exposure). 

7.2.2 Heterogeneity of pollution effects across conurbations and by 

season 

To assess heterogeneity of pollution-MI associations across conurbations, 

interactions between conurbation and pollution terms were then added to the 

model; heterogeneity of effects was assessed by examining the statistical 

significance of these interaction terms using Wald tests. Interaction terms with 

conurbation were not included for other confounder variables since there was 

no evidence of heterogeneity in previous analyses (see Section 6.2.2.2). 

Since correlations between pollutants tended to differ in summer (Chapter 5 

Table 5.9), pollution effects in summer (defined as June-August) vs other 

seasons were compared by fitting interaction terms in the main model for each 

pollutant. Heterogeneity of effects by season was again examined using Wald 

tests. 
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7.2.3 Role of temperature as a confounder 

The majority of previous studies looking at pollution effects on MI either did not 

control for ambient temperature or included only very crude control for 

temperature effects (see Chapter 3). Understanding the impact of omitting 

temperature as a confounder would aid the interpretation of these previous 

studies. To this end, each pollution model was re-fitted both with and without 

control for temperature and the estimated pollution effects compared. 

7.2.4 Further exploratory analyses  

To explore the time course of pollution effects, i.e. the breakdown of the 

cumulative effect over the individual lag days 0-7, and any potential role of 

“harvesting”, the relative risks associated with pollution increases for each 

individual lag day were estimated. The base confounder model was unchanged 

and as before, each pollutant was considered in a separate model. Individual 

lag day effects were estimated in two ways, firstly by adding each lag day 

univariately into the base model, and secondly by adding all 8 lag terms into the 

model together (the unconstrained distributed lag model). These two 

approaches have their advantages and disadvantages: the former technique 

avoids collinearity between adjacent lag terms, and therefore can produce more 

precise estimates, but it also effectively places a strong constraint on the model 

by restricting effects to one day, so that confounding by effects on other days 

may impact on estimates; on the other hand the latter approach, while avoiding 

such confounding, tends to produce imprecise effect estimates for individual 

lags due to neighbouring lag terms in the model being highly collinear, though 

overall effects summed over all lags are estimated adequately. 

A more parsimonious distributed lag model was then fitted as a final descriptive 

model for each pollutant using 3 lag terms representing days 0, 1-2, and 3-7. 

This choice of lag day combinations was guided by the results of the initial 

explorations of individual lag effects. The model was intended to be a 

compromise avoiding both the residual confounding of the univariate lag 

models, and the imprecision of the unconstrained distributed lag model. Finally, 

using the same lag structure, all 5 pollutants were included in a single multi-

pollutant model to explore the independence of individual pollutant effects. 
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7.2.5 Regression diagnostics  

The deviance residuals for the final model for each pollutant were calculated 

and plotted against calendar date in each conurbation. Partial autocorrelation 

plots of these deviance residuals were also generated by conurbation. Finally, 

sensitivity of the main results to the level of seasonal control in the model was 

explored by varying the number of degrees of freedom per year defining the 

spline function used to control for seasonal confounding.  

7.3 Results 

7.3.1 Study population 

The clinical and confounder data were the same as described and used in the 

previous chapter; 84010 MI events occurring within the 15 conurbations were 

included. 

7.3.2 Cumulative effect of daily pollutant levels over 7 days 

The results of the pre-planned analysis are now presented, in which the effects 

of each pollutant in turn were investigated by fitting 8 lag terms (lag days 0-7 

days inclusive) in an unconstrained distributed lag model, with potential 

confounders modelled as in the final temperature model from Chapter 6. 

7.3.2.1 Pollutant effects in all conurbations combined 

Table 7.1 shows the cumulative effect of each pollutant on the risk of MI over 

lag days 0-7 inclusive. There was no evidence from this analysis of a 

detrimental effect of any of the five pollutants considered; indeed all estimated 

relative risks were in a direction implying a negative association with MI risk, 

although none were statistically significant. 
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Table 7.1: Cumulative effect of pollutants on the risk of MI over lag days 0-7 inclusive 

Pollutant 
Increase in pollutant 

to which RR refers

PM10 0.987 [0.974, 1.000] 10μg/m
3

Ozone 0.994 [0.983, 1.004] 10μg/m
3

CO 0.992 [0.982, 1.002] 0.1mg/m
3

NO2 0.990 [0.979, 1.001] 10μg/m
3

SO2 0.978 [0.935, 1.023] 10μg/m
3

RR (95% CI) 

 
Note: Separate model for each pollutant; all models adjusted for calendar time (stratified by 
conurbation), temperature (5 terms spanning lag days 0-28), relative humidity (av lags 0-3), day 
of week, holiday, influenza, RSV. 

7.3.2.2 Variation of pollutant effects across conurbations and by season 

When interaction terms were added allowing the pollution effects to vary by 

conurbation, there was no evidence for heterogeneity of the pollution effects 

across conurbations (p=.60, .37, .40, .51, .49 for PM10, ozone, CO, NO2, SO2 

respectively, Figure 7.1). For PM10 and ozone, relative risk estimates in 

individual conurbations were quite evenly spread above and below 1. For the 

remaining pollutants, estimates were in a direction implying negative 

associations with MI risk for the majority of conurbations. Tyneside was the only 

individual conurbation in which a number of statistically significant pollution 

effects were estimated, with protective effects of PM10, CO, NO2 and SO2 

observed.  

There was no evidence variation by season in the estimated pollution effects 

over lag days 0-7 combined (Figure 7.2, p-interaction>0.25 for all pollutants). 
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Figure 7.1: Effects of each pollutant by conurbation and combined across conurbations 

 
Note: RRs are cumulative effects over lag days 0-7 inclusive 
Separate model for each pollutant; all models adjusted for calendar time (stratified by conurbation), 
temperature (5 terms spanning lag days 0-28), relative humidity (av lags 0-3), day of week, holiday, 
influenza, RSV. 

 
Figure 7.2: Relative risk of MI associated with pollution increases - variation by season  

 
Note: RRs are cumulative effects over lag days 0-7 inclusive 
Separate model for each pollutant; all models adjusted for calendar time (stratified by conurbation), 
temperature (5 terms spanning lag days 0-28), relative humidity (av lags 0-3), day of week, holiday, 
influenza, RSV. 
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7.3.2.3 Role of daily temperature as a confounder 

Omitting temperature from models had some effect on estimated pollution 

effects, though the direction of the confounding varied across the five pollutants 

(Figure 7.3). Of note, omitting temperature from the ozone model led to a 

significant protective effect of ozone being estimated, as has been reported in 

the literature (see Chapter 3). A similar phenomenon was noted for PM10, while 

for the remaining pollutants, omitting temperature from the model tended to 

move effect estimates towards the null.  

 
Figure 7.3: Effect of omitting or including temperature on estimated pollution effects 

 
Note: RRs are cumulative effects over lag days 0-7 inclusive 
Separate model for each pollutant; all models adjusted for calendar time (stratified by 
conurbation), temperature (5 terms spanning lag days 0-28), relative humidity (av lags 0-3), day 
of week, holiday, influenza, RSV. 
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7.3.3.1 Effects of pollutants at individual lag days 

In single-lag models, i.e. with just one term to capture pollutant effects, the 

estimate for day 0 was in a direction associated with a detrimental effect of 

pollution for all pollutants except ozone, with the effect estimates on subsequent 

days mainly in the protective direction, a pattern consistent with a harvesting 

effect. However confidence intervals included the null in most cases. Estimates 

for individual lag days arising from distributed lag models (including all lag terms 

simultaneously) can suffer from imprecision due to the collinearity of 

neighbouring lag terms; nevertheless a similar pattern was observed in such 

models, and indeed the estimated detrimental effects of PM10, CO and NO2 at 

day 0 were larger (Table 7.2 and Figure 7.4). As before, with the exception of 

ozone, estimates suggested a positive pollution-MI association at day 0 

followed by a negative association 1 to 2 days later, though statistically 

significant effects were seen only for CO (estimated RR per mg/m3 CO increase 

1.068 [1.010 – 1.130] at day 0 and 0.908 [0.852 -0.968] at lag day 1). 
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Table 7.2: Estimated effects of pollutants on MI risk over individual lag days 0 to 7 

Pollutant and lag (days)

PM10 Lag 0 1.002 [0.995, 1.010] 1.006 [0.997, 1.016]

1 0.993 [0.986, 1.001] 0.993 [0.983, 1.004]

2 0.990 [0.983, 0.998] 0.990 [0.980, 1.000]

3 0.997 [0.990, 1.005] 1.003 [0.992, 1.013]

4 1.001 [0.993, 1.008] 1.006 [0.996, 1.017]

5 0.996 [0.988, 1.003] 0.994 [0.984, 1.005]

6 0.997 [0.989, 1.004] 1.003 [0.993, 1.014]

7 0.992 [0.985, 1.000] 0.991 [0.982, 1.000]

Ozone Lag 0 0.998 [0.992, 1.003] 1.000 [0.994, 1.006]

1 0.996 [0.990, 1.001] 0.996 [0.989, 1.003]

2 0.997 [0.992, 1.003] 1.002 [0.995, 1.009]

3 0.995 [0.990, 1.001] 0.992 [0.986, 0.999]

4 1.002 [0.996, 1.007] 1.006 [0.999, 1.013]

5 1.001 [0.996, 1.006] 1.000 [0.993, 1.007]

6 0.999 [0.994, 1.005] 1.000 [0.993, 1.007]

7 0.999 [0.993, 1.004] 0.998 [0.992, 1.004]

CO Lag 0 1.002 [0.997, 1.007] 1.007 [1.001, 1.012]

1 0.995 [0.990, 1.000] 0.990 [0.984, 0.997]

2 0.997 [0.992, 1.002] 1.001 [0.994, 1.007]

3 0.998 [0.994, 1.003] 1.000 [0.994, 1.006]

4 0.999 [0.994, 1.003] 0.999 [0.992, 1.005]

5 0.999 [0.994, 1.004] 1.001 [0.995, 1.008]

6 0.997 [0.992, 1.002] 0.998 [0.991, 1.004]

7 0.996 [0.991, 1.000] 0.997 [0.991, 1.002]

NO2 Lag 0 1.001 [0.995, 1.007] 1.005 [0.997, 1.012]

1 0.995 [0.989, 1.001] 0.994 [0.986, 1.002]

2 0.995 [0.989, 1.001] 0.996 [0.987, 1.004]

3 0.998 [0.992, 1.004] 1.005 [0.997, 1.014]

4 0.994 [0.988, 1.000] 0.992 [0.984, 1.000]

5 0.996 [0.990, 1.002] 1.001 [0.993, 1.009]

6 0.997 [0.991, 1.003] 1.000 [0.992, 1.008]

7 0.996 [0.990, 1.002] 0.997 [0.990, 1.005]

SO2 Lag 0 1.010 [0.988, 1.032] 1.009 [0.985, 1.034]

1 0.997 [0.975, 1.019] 0.992 [0.966, 1.019]

2 0.989 [0.968, 1.011] 0.988 [0.962, 1.015]

3 1.002 [0.980, 1.024] 1.013 [0.987, 1.040]

4 0.989 [0.968, 1.011] 0.989 [0.963, 1.016]

5 0.981 [0.959, 1.002] 0.988 [0.962, 1.015]

6 0.989 [0.968, 1.011] 0.991 [0.965, 1.018]

7 0.997 [0.975, 1.019] 1.007 [0.983, 1.032]

Single lag model Distributed lag model

RR and 95% CI per increase*

 
* RRs are per 10µg/m

3
 increase for all pollutants except CO, per 0.1mg/m

3 
increase 

Note: Separate model for each pollutant; all models adjusted for calendar time (stratified by 
conurbation), temperature (5 terms spanning lag days 0-28), relative humidity (av lags 0-3), day 
of week, holiday, influenza, RSV. 
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Figure 7.4: Estimated effects of pollutants on MI risk over individual lag days 0 to 7 from a 
distributed lag model 

 
* RRs are per 10µg/m

3
 increase for all pollutants except CO, per 0.1mg/m

3 
increase 

Note: Separate model for each pollutant; all models adjusted for calendar time (stratified by 
conurbation), temperature (5 terms spanning lag days 0-28), relative humidity (av lags 0-3), day 
of week, holiday, influenza, RSV. 

 

7.3.3.2 Selection of final descriptive models describing lag structure 

In order to estimate the lag structure of the apparent pollutant effects more 

precisely, a final set of descriptive models was fitted containing 3 lag terms: lag 

0 days, average of lag 1-2 days, and average of lag 3-7 days. This was chosen 

as a compromise between avoiding the collinearity present in the 8-term 

unconstrained distributed lag models while retaining the key lag structure of 

pollutant effects, with the specific breakdown chosen based on the patterns 

observed in the unconstrained distributed lag model results. Table 7.3 shows 

the estimates from these models which confirm the previously observed 

patterns. In single pollutant models, a 10µg/m3 increase in PM10 was associated 

with a 0.9% [0.0 to 1.7] increase in the risk of MI on the same day, and then a 

1.4% [0.4 to 2.5] reduction in MI risk on the following 2 days. Similar patterns 

were seen for the remaining pollutants except ozone, with effect estimates 
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suggesting that a rise in pollution levels was associated with an increased risk 

of MI on the same day, followed by a reduced risk of MI which was strongest at 

lag days 1-2. However it should be noted that, with the exception of PM10 

effects at lag days 0 and 1-2, and CO effects at lag days 1-2, 95% confidence 

intervals were wide enough to include no real effect. 

In a multi-pollutant model containing all 5 pollutants, patterns were broadly 

similar though confidence intervals were wider. The lagged protective effects of 

ozone and NO2 were larger after adjustment for other pollutants, while the 

apparent effects of CO were attenuated. 

Table 7.3: 3-term single and multi-pollutant models describing lag structure of pollutant effects 
on MI risk 

Pollutant and lag (days)

PM10 0 1.009 [1.000, 1.017] 1.007 [0.995, 1.018]

mean 1-2 0.986 [0.976, 0.996] 0.987 [0.973, 1.001]

mean 3-7 0.996 [0.985, 1.007] 1.005 [0.988, 1.023]

Ozone 0 0.999 [0.993, 1.005] 0.998 [0.984, 1.013]

mean 1-2 0.996 [0.989, 1.002] 0.979 [0.961, 0.998]

mean 3-7 0.999 [0.991, 1.007] 0.965 [0.940, 0.991]

CO 0 1.004 [0.999, 1.010] 1.003 [0.992, 1.014]

mean 1-2 0.993 [0.987, 1.000] 0.996 [0.986, 1.006]

mean 3-7 0.995 [0.988, 1.003] 0.999 [0.987, 1.012]

NO2 0 1.004 [0.997, 1.011] 1.000 [0.985, 1.016]

mean 1-2 0.992 [0.985, 1.000] 0.989 [0.973, 1.005]

mean 3-7 0.994 [0.985, 1.003] 0.980 [0.961, 1.000]

SO2 0 1.012 [0.988, 1.035] 1.007 [0.978, 1.035]

mean 1-2 0.988 [0.961, 1.017] 1.012 [0.977, 1.048]

mean 3-7 0.983 [0.949, 1.019] 1.011 [0.963, 1.060]

Single pollutant model Multi-pollutant model

RR and 95% CI per increase*

 
* RRs are per 10µg/m

3
 increase for all pollutants except CO, per 0.1mg/m

3 
increase 

Note: Separate model for each pollutant; all models adjusted for calendar time (stratified by 
conurbation), temperature (5 terms spanning lag days 0-28), relative humidity (av lags 0-3), day 
of week, holiday, influenza, RSV. 
 

7.3.4 Diagnostics for the final descriptive models 

7.3.4.1 Regression diagnostics 

Plots of deviance residuals against calendar time were generated for each 

conurbation and, as for the final temperature model (Chapter 6) there was no 
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clear pattern in the larger conurbations (Figure 7.5 and Appendix Figure 11.8-

Figure 11.12) In the conurbations which recorded low daily event rates, residual 

plots tended to follow the overall fitted long term trend as expected (see Section 

6.3.5.1). 

 

Figure 7.5: Individual conurbation plots of deviance residual vs. calendar time from the PM10 
model 

 

 

Partial autocorrelation plots of model deviances showed partial autocorrelations 

at almost all lags falling within the confidence bands suggesting little residual 

autocorrelation (Figure 7.6 and Appendix Figure 11.13-Figure 11.17). 
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Figure 7.6: Partial autocorrelations of deviance residuals from the PM10 model 

 

 

However a majority of partial autocorrelations were in the negative direction, 

which may indicate an overfitted model.  

To address this, a sensitivity analysis was carried out reducing the level of 

seasonal control (Table 7.4). With less seasonal control, the previously 

observed overall protective associations between pollutant levels and MI risk 

tended to be exaggerated; the exception was ozone, for which positive 

associations with MI risk emerged with low levels of seasonal control. The sum 

of the first 20 partial autocorrelation coefficients was balanced (i.e. equal to 

zero) with seasonal control of between 3 and 4 degrees of freedom per year. 
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Table 7.4: Sensitivity of pollutant effects to level of seasonal control 

Pollutant

Degrees of 

freedom/year 

for season 

control

Sum of first 20 partial 

autocorrelations of 

deviance residuals

PM10 1 0.973 [0.962, 0.985] 5.24

2 0.974 [0.963, 0.986] 2.29

3 0.981 [0.969, 0.993] 0.74

4 0.981 [0.968, 0.993] -0.95

5 0.982 [0.969, 0.995] -2.44

6 0.987 [0.974, 1.000] -4.54

7 0.987 [0.974, 1.000] -6.37

Ozone 1 1.014 [1.006, 1.022] 4.88

2 1.016 [1.008, 1.024] 1.65

3 1.006 [0.997, 1.016] 0.40

4 1.001 [0.992, 1.011] -1.28

5 1.000 [0.990, 1.010] -2.82

6 0.996 [0.986, 1.007] -4.72

7 0.994 [0.983, 1.004] -6.45

CO 1 0.984 [0.976, 0.992] 5.60

2 0.986 [0.978, 0.994] 2.66

3 0.990 [0.981, 0.998] 0.98

4 0.990 [0.981, 0.999] -0.94

5 0.987 [0.978, 0.996] -2.69

6 0.991 [0.982, 1.001] -4.56

7 0.992 [0.982, 1.002] -6.49

NO2 1 0.979 [0.970, 0.989] 5.36

2 0.980 [0.970, 0.990] 2.23

3 0.985 [0.975, 0.996] 0.57

4 0.985 [0.975, 0.995] -1.24

5 0.987 [0.976, 0.998] -2.72

6 0.989 [0.978, 1.000] -4.63

7 0.990 [0.979, 1.001] -6.35

SO2 1 0.969 [0.932, 1.006] 5.50

2 0.960 [0.922, 0.998] 2.56

3 0.968 [0.928, 1.008] 0.78

4 0.970 [0.930, 1.011] -1.00

5 0.965 [0.924, 1.007] -2.76

6 0.985 [0.943, 1.029] -4.56

7 0.978 [0.935, 1.023] -6.25

Relative risk per increase* 

(95% CI)

 
*RRs are per 10µg/m

3
 increase for all pollutants except CO, per 0.1mg/m

3 
increase 

Note: RRs are cumulative effects over lag days 0-7 inclusive 
Separate model for each pollutant; all models adjusted for calendar time (stratified by conurbation), 
temperature (5 terms spanning lag days 0-28), relative humidity (av lags 0-3), day of week, holiday, 
influenza, RSV. 
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7.4 Discussion 

In the main pre-planned analysis investigating the effects of mean daily levels of 

PM10, ozone, CO, NO2 and SO2, there was no evidence of any net effect on MI 

risk for any pollutant over days 0 to 7 inclusive following exposure. In fact, 

though not statistically significant, surprisingly all estimates were in the 

protective direction, with ‘standard’ pollution increases of 10μg/m3 (or 0.1mg/m3 

for CO) associated with estimated reductions in MI risk ranging from 0.6 to 

2.2%. Further exploration of individual lag day effects suggested that these 

apparently protective cumulative effects were made up of detrimental effects on 

lag day 0, followed by broadly protective effects at longer lags, in particular on 

lag days 1-2; this pattern was consistent across the pollutants considered with 

the exception of ozone (for which no detrimental day 0 effect was observed). In 

the final descriptive model, a 10μg/m3 increase in PM10 was estimated to be 

associated with a 0.9% [95% CI 0.0 to 1.7] increase in MI risk on the same day, 

followed by a 1.4% [0.4 to 2.5] reduction in MI risk over the following 2 days, 

with little effect evident at lag days 3-7. Similar patterns were seen for CO, NO2 

and SO2 though for these pollutants 95% confidence intervals included the null 

so the observed effects may have been due to chance. 

The apparent lack of any overall detrimental pollution effects observed in these 

analyses is not inconsistent with the literature to date on the five pollutants 

considered. In the systematic review presented in Chapter 3, a clear majority of 

studies of PM10 and ozone, as well as over half the studies of CO, NO2, and 

SO2 similarly reported no evidence of positive associations between the levels 

of these pollutants and MI risk. In contrast with the present analysis, many 

previous studies of pollution-MI associations have reported effects based only 

on models using a single pollution term, often representing one specific lag day. 

For example, both reports in the literature of significant positive associations 

between daily PM10 levels and MI risk were based on models with only same-

day (lag 0) pollution terms. The exploratory analysis presented in Section 7.3.3 

similarly showed a significantly increased risk of MI associated with same-day 

PM10 increases, but overall, reductions in MI risk 1-2 days after a pollution level 

increase appeared to cancel out immediate detrimental effects. This highlights 

the sensitivity of pollution-MI models to the choice of lag terms included, and the 
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need for caution in interpreting studies with models that include only limited lag 

terms.  

Only one other study103 has reported cumulative pollution effects over lag days 

0-7; no effects of PM10, CO or NO2 were found, though increases in SO2 and, 

interestingly, ozone were reported to be associated with increased MI risk. Of 

note, the authors reported that the overall cumulative effect estimate for NO2 

suggesting no effect masked a same-day increase in risk followed by a reduced 

risk at lag days 2-3, a similar pattern to that observed in this analysis for PM10, 

CO, NO2 and SO2. 

There appeared to be little association between ozone and MI risk, either at 

individual lag days or cumulatively, in contrast with a few previous studies which 

have reported significantly protective effects of ozone.38, 57, 110 However it is 

worth noting that such findings were based on models which included only 

limited control for temperature (only same-day temperature was controlled for in 

each case), while the analysis presented here included comprehensive control 

for temperature effects using five temperature terms covering lag days 0-28 

inclusive. Furthermore, removing temperature from the models altered pollution 

effect estimates, with ozone in particular appearing significantly protective in an 

unadjusted model. Although reliably delineating the effects of ozone and 

temperature is problematic given their collinearity, it seems reasonable to 

hypothesise that residual confounding by temperature may have played a role 

in studies where protective ozone-MI associations have been observed: 

temperature and ozone were positively correlated in our data (see Chapter 5 

Table 5.9) so in the model without adequate control for temperature, higher 

ozone levels may have been a acting as marker for higher temperatures, which, 

based on the analyses presented in Chapter 6, are in turn associated with 

decreased MI risk. 

The observation of pollution increases being associated with a raised and then 

subsequently reduced MI risk, is consistent with the theory of pollution 

increases having a “harvesting” effect at a population level.164 According to the 

theory, increased pollution levels are associated with the early triggering of MI 

events among individuals who would otherwise have had an MI one or more 

days later. In other words, this pollution-induced early triggering of MIs simply 
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causes a short-term temporal displacement of events that would have 

happened anyway, leading to an increased concentration of events on days of 

increased pollution, and a deficit of events on the days following pollution 

increases. One interesting observation was that lagged protective pollutant-MI 

associations appeared to more than cancel out the detrimental day 0 effects: 

cumulative effect estimates for lag days 0-7 were all in the direction of a 

protective overall association. This seems implausible and one possible 

explanation is that pollution effects on day 0 may have been too fast-acting to 

be adequately captured in an analysis using only daily mean pollution 

exposures. This is addressed in the next chapter in which pollution effects at an 

hourly timescale are investigated.  

The fact that there was no evidence over an 8-day period of a net increase in 

the risk of MI suggests that the established effects of pollution on overall and 

cardiovascular mortality42 are not due to increases in MI. Furthermore, since MI 

is a disease outcome with an unambiguously thrombotic pathogenesis, these 

findings indicate that thrombotic mechanisms may not be the real drivers of the 

observed effects on mortality.  

Some of the strengths of this study and analysis have already been outlined in 

Chapter 6, and include the high specificity of MI outcomes, the use of up to date 

and flexible methods to control for seasonality and long-term trend, and the 

inclusion of the most commonly suspected potential confounders such as 

infectious disease levels, day of the week, and holiday effects. A key further 

advantage of this analysis over most previous studies of pollution-MI 

associations is the comprehensive adjustment for temperature. Control for 

temperature was based on the previous thorough analysis of temperature 

effects, and included 5 lag terms spanning lag days 0-28, in contrast with other 

studies which have typically included more crude adjustment for temperature 

with one or two terms at short lags. 

Some limitations of the study must also be acknowledged. As with most 

population-based studies of air pollution health effects, background pollution 

levels as measured by outdoor monitors were used as the exposure of interest; 

in reality personal exposure may depend not only on ambient outdoor levels but 

also a number of factors including indoor exposure and time spent outdoors. 
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Furthermore since time series regression analysis methods use daily counts of 

events in each conurbation as the outcome, it was necessary to also summarise 

daily pollutant levels in each conurbation with one “aggregated” figure per day, 

even where several monitors were available. In reality pollution levels are likely 

to vary across a conurbation, as indicated by the variable correlations between 

pollutant levels measured by different monitors within the same conurbation 

(Chapter 4 Figure 5.3 and Appendix I Table 11.4-Table 11.7). The use of 

ambient pollution levels averaged over a conurbation, as a proxy for personal 

exposure, is therefore likely to have resulted in some degree of “measurement 

error.” As long as the true personal exposures, averaged across the population, 

can be assumed to fluctuate in step with measured ambient levels, no bias 

would have been introduced, though some precision would have been lost. In 

reality this assumption may not hold perfectly, and measurement errors may 

therefore have resulted in bias towards the null for single pollutant models, or in 

either direction for multi-pollutant models.165 Novel methods have been 

suggested to evaluate or remove the potential biases associated with 

measurement error using hierarchical models;166-168 their applicability in the 

present analysis is limited by a lack of validation data,166 and a relatively small 

number of individual locations with generally low event rates.167-168 

Nevertheless, exploration and development of these methods for use in the 

context of this work would be a potentially interesting area for future research.  

Another limitation was that no data were available on PM2.5 which may be a 

more important predictor of MI risk than larger particle exposures (Chapter 3). A 

final limitation is that the analysis was performed at a daily time resolution; the 

suggestion of positive same-day associations between pollution and MI risk 

raises the concern that pollutant effects may be too fast-acting to be adequately 

detected on this timescale. In the following chapter this limitation is addressed 

by the use of data at an hourly resolution. 
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7.5 Summary 

• The analysis from the previous chapter was extended to look at the effects 

of day-to-day changes in PM10, ozone, CO, NO2 and SO2 levels on MI risk. 

• No associations were observed between pollutant levels and the net MI risk 

over the full 0-7 day lag period considered. 

• For PM10, CO, NO2, and SO2, estimates at individual lags were suggestive of 

positive pollution-MI associations on the day of exposure, cancelled out by 

negative associations at longer lags. 

• There was little effect of ozone at any lag, though a significant negative 

association with MI risk emerged when control for temperature was omitted. 
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8 Investigating the role of same-day air pollution 

effects at an hourly temporal resolution 

8.1 Introduction 

Analyses presented in the previous chapter suggested that pollutant levels may 

have an effect on MI risk on the same day as exposure. Such an immediate 

effect would not necessarily be wholly captured by models based only on daily 

data. In this chapter a further analysis is presented which investigated air 

pollution effects on MI risk at a finer temporal resolution, using hourly data. 

8.2 Statistical methods 

8.2.1 Data on timing of MI events and pollutant exposure 

To investigate the role of air pollution on MI risk at an hourly temporal 

resolution, the analyses was restricted to individuals for which the time of day of 

the MI event was recorded. The MINAP database records both date and time 

for a number of key points in the run-up and aftermath of an event, including 

symptom onset, first call for help, and arrival at hospital. To assign an event 

time, time of symptom onset was used where possible, and other timing 

variables where this was not recorded, following the same algorithm as that 

used to define event date in previous analyses (Section 4.2.1.3); where 

recorded, time of symptom onset was used as the time of the event; where this 

was not available one of the following time fields was used (in order of 

preference): first call for help, arrival of first professional, arrival of emergency 

services, arrival at hospital, reperfusion, cardiac arrest. 

Hourly pollution data were available for all five pollutants under study (PM10, 

ozone, CO, NO2, SO2) in all of the 15 conurbations. For each pollutant, a single 

hourly series was generated for each conurbation. Where monitor data from 

more than 1 station was available, these data were combined using the 

AIRGENE algorithm that has been described previously (Section 4.2.2.1).  
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8.2.2 Case-crossover study design and model specifications 

The Poisson time series regression methods that were used in the previous 

analyses do not lend themselves well to an analysis of hourly data: if there were 

a natural circadian pattern in MI risk this could act as a confounder for any 

short-term pollution-MI association, yet it would be difficult to separate the two 

using the usual modelling techniques due to the overlapping time-scales of 

effects. The case-crossover design169 overcomes this problem since diurnal 

variations can be dealt with directly by matching. 

Like the time series design, the case-crossover design (introduced in Chapter 3) 

is based purely on data from individuals experiencing an event; for each such 

individual, the “case” day is taken as the day of the event, and a set of “control” 

days (days on which the individual did not experience an event) are selected 

using a specified strategy. For each individual, exposure is then obtained for 

both case and control days, resulting in a design that is analogous to a matched 

case-control study. 

There is some debate in the literature over the optimal strategy for selecting 

control days.170-172 For this analysis, a time-stratified approach was chosen, to 

ensure the validity of standard analytical methods (conditional logistic 

regression) and avoid the biases to which unidirectional control selection 

strategies are vulnerable.170 Calendar month time strata were used, so that for 

each case, the set of control days comprised all other days in the same 

calendar month and year (Figure 8.1). Since data were at an hourly resolution, 

case and control data were matched on hour of the day, so that if, for example, 

an individual had an MI at 1pm, then control data were taken from 1pm on every 

other day in the same calendar month, thus “matching out” time of day so that 

any confounding effects due to of natural circadian patterns in MI risk coinciding 

with natural diurnal variation in pollution levels would be removed. 

 



 

Figure 8.1: Illustration of case and control days in the case
design 

 

Analyses in the previous chapter suggested pollution effects with up to 2 days 

delay, so to ensure coverage of this period, distributed lag terms covering a 72

hour lag period for each pollutant were used, specifically 1

24, and 25-72 hours. These periods were chosen as a compromise between 

flexibility and model parsimony: four lag terms were chosen to cover the first 24

hour period since short

such a period; one further lag term 

capture any longer-delayed effects such as those observed for lag days 1

the previous chapter. The lagged pollutant terms were generated as the mean 

of pollutant levels at individual lags (e.g. 

the mean of the pollutant levels at lags 1, 2, 3, 4, 5 and 6 hours

pollutant data at individual hours was missing. Where at least 2/3 of individual 

hourly measurements were available (i.e. 4 measurements for lag terms 1

12, 13-18, 19-24 hours; 32 measurements for lag term 25

average lag term was generated as the mean of the remaining hours; where 

less than 2/3 of individual hourly measurements were available, the average lag 

term was set to missing and the 

involving that pollutant.

The cumulative effect (over 72 hours) of a change in pollution was calculated by 

summing parameter estimates. Both single pollutant models and multi

models including all 5 poll

each pairing of pollutants were also examined in a supplementary analysis.

 

As in previous analyses, all models were adjusted for 

Illustration of case and control days in the case-crossover calendar

Analyses in the previous chapter suggested pollution effects with up to 2 days 

delay, so to ensure coverage of this period, distributed lag terms covering a 72

hour lag period for each pollutant were used, specifically 1-6, 7-12, 13

urs. These periods were chosen as a compromise between 

flexibility and model parsimony: four lag terms were chosen to cover the first 24

hour period since short-lived pollution effects might feasibly change rapidly over 

such a period; one further lag term covering 25-72 hours was intended to 

delayed effects such as those observed for lag days 1

the previous chapter. The lagged pollutant terms were generated as the mean 

of pollutant levels at individual lags (e.g. the 1-6 hour term was generated as 

the mean of the pollutant levels at lags 1, 2, 3, 4, 5 and 6 hours). 

pollutant data at individual hours was missing. Where at least 2/3 of individual 

hourly measurements were available (i.e. 4 measurements for lag terms 1

24 hours; 32 measurements for lag term 25-72 hours), the 

average lag term was generated as the mean of the remaining hours; where 

less than 2/3 of individual hourly measurements were available, the average lag 

term was set to missing and the associated observation excluded from models 

involving that pollutant. 

The cumulative effect (over 72 hours) of a change in pollution was calculated by 

summing parameter estimates. Both single pollutant models and multi

models including all 5 pollutants were considered. Dual pollutant models for 

each pairing of pollutants were also examined in a supplementary analysis.

As in previous analyses, all models were adjusted for  
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ar-month stratified 

 

Analyses in the previous chapter suggested pollution effects with up to 2 days 

delay, so to ensure coverage of this period, distributed lag terms covering a 72-

12, 13-18, 19-

urs. These periods were chosen as a compromise between 

flexibility and model parsimony: four lag terms were chosen to cover the first 24-

lived pollution effects might feasibly change rapidly over 

72 hours was intended to 

delayed effects such as those observed for lag days 1-2 in 

the previous chapter. The lagged pollutant terms were generated as the mean 

s generated as 

). In some cases 

pollutant data at individual hours was missing. Where at least 2/3 of individual 

hourly measurements were available (i.e. 4 measurements for lag terms 1-6, 7-

72 hours), the 

average lag term was generated as the mean of the remaining hours; where 

less than 2/3 of individual hourly measurements were available, the average lag 

associated observation excluded from models 

The cumulative effect (over 72 hours) of a change in pollution was calculated by 

summing parameter estimates. Both single pollutant models and multi-pollutant 

utants were considered. Dual pollutant models for 

each pairing of pollutants were also examined in a supplementary analysis. 
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• Day of week (6 indicator variables). 

• Holidays (indicator variables). 

• Daily influenza and RSV levels (each in three categories representing 0, 

1,  or 2+ lab confirmed cases in the conurbation in question. 

• Daily relative humidity (average of the current and previous 3 days), as a 

4 degrees of freedom cubic spline 

 

By design, the case-crossover analysis assumes a constant background risk of 

MI within each time stratum (i.e. within each calendar month) which could lead 

to residual seasonal confounding.117 To  allow for any such residual seasonality, 

a single Fourier pair (a pair of cos/sin terms with annual periodicity) was 

included in the models. This choice was informed by a preliminary analysis in 

which the effect of daily temperature was modelled within the case-crossover 

framework (broadly reproducing the results of Chapter 6): with no additional 

control for residual seasonality, the temperature effect estimate did not match 

earlier analyses well and was highly sensitive to other model specifications such 

as the stratum length. Inclusion of a single Fourier pair resolved this (Appendix I 

Table 11.8). 

8.2.3 Pollution effects by age and prior CHD 

To explore how pollutant-MI associations might differ among subgroups within 

the population that might be more or less vulnerable to MI, terms were added to 

the multi-pollutant model to model interactions of first age group (categorised as 

before into <65, 65-74, 75-84, 85+ years), and then prior CHD, with each the 

five pollutant lag terms. Effects of pollutant level increases were then estimated 

in each subgroup by combining the estimated main and interaction effects. 

8.2.4 The role of season and hourly temperature 

Two further exploratory analyses were performed. First, since correlations 

between pollutants varied by season and followed a different pattern in summer 

(defined as July-September, Chapter 5 Table 5.9), interactions between season 

(summer vs. other seasons) and pollution effects were explored.  Second, the 
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effect of controlling for ambient temperature at an hourly rather than daily 

resolution was investigated, in an analysis restricted to the 9/15 conurbations in 

which hourly temperature data were available (Bristol, Cardiff, Greater London, 

Greater Manchester, Liverpool, Nottingham, Sheffield, West Midlands, West 

Yorkshire). Hourly temperature was incorporated in the main multi-pollutant 

model with a similar lag structure to hourly pollution variables, namely as initially 

linear effects across 5 lag periods (1-6, 7-12, 13-18, 19-24, 25-72 hours). Daily 

temperature effects at longer lags (2-28 days) were retained in the model. To 

check the linearity assumption, a 4-knot natural cubic spline was then used so 

that the shape of any hourly temperature effect could be examined graphically. 

8.2.5 Sensitivity analyses 

Three sensitivity analyses were performed to check the robustness of the main 

findings to key aspects of study design and model specification. First, due to the 

importance of an accurate event time to these analyses, the study population 

was restricted to those with a recorded time of symptom onset, thus excluding 

the 28% of events for which the event time was drawn from other variables such 

as time of arrival of emergency services and time of arrival at hospital. Second, 

since control selection strategies can affect the results of case-crossover 

analyses, the data were re-analysed using different time strata to define case 

and control days: calendar month strata were replaced with strata of 14 days’ 

length beginning at the start of the study period (1st January 2003), and for each 

case, 13 control days were selected by using all remaining days in the 14-day 

time stratum in which the case itself occurred. Third, returning to the calendar 

month-stratified design, an analysis was carried out using fewer control days 

and with case and control days matched on day of the week. For example if a 

case occurred on a particular Wednesday in February 2004, then the control 

days were defined as every other Wednesday in February 2004. This last 

sensitivity analysis effectively introduces a 7-day gap between case and control 

days addressing concerns that autocorrelation between exposure measures on 

the case day and immediately adjacent days might have an effect on results; 

the matching also provides an alternative way of controlling for day of the week 

rather than including this as a variable in the model. 
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8.3 Results 

8.3.1 Study population and timing of MI events 

Of the 84010 MI events recorded in MINAP within the 15 conurbations in 2003-

6, the time of day of the MI was available for 81042 (96%). This time was most 

commonly based on the time of symptom onset (59369 events, 72%), time of 

call for help (6986 events, 9%) or time of arrival at hospital (15018 events, 

18%).  

Figure 8.2: Distribution of time of day of MI events 

 
 

Figure 8.2 shows the distribution of MI events by time of day in each 

conurbation. In most conurbations, MIs appeared to peak at around 9-10am. On 

investigating the unusual feature of the distribution in Sheffield, namely the high 

peak of events reported to occur around midnight, it was noted that of 1754 

cases in this conurbation that were assigned an event time using the date of 

time at arrival at hospital, 888 (51%) had the time recorded as midnight exactly 

suggesting that the recording of time of arrival at hospital was incomplete in this 

conurbation. These 1754 events were therefore excluded from further analysis, 

leaving 3149 events in Sheffield and 79288 overall. 
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Missing pollution data, which was handled as described in Section 8.2.2, 

resulted in a further 2107 (2.7%), 1952 (2.5%), 2447 (3.1%), 2216 (2.8%), and 

2208 (2.8%) events being excluded from the single pollutant models for PM10, 

ozone, CO, NO2 and SO2 respectively, and 4931 (6.2%) events being excluded 

from the multi-pollutant model.  

8.3.2 Pollution effects modelled at an hourly resolution 

In single-pollutant models, there was evidence at the shortest lag term of 1-6 

hours of immediately raised risk of MI associated with higher PM10 and NO2 

levels, though longer lag term effect estimates were in the protective direction 

(Table 8.1). A similar pattern was observed for CO though confidence intervals 

in this case included no effect; there was little evidence of any effect of ozone or 

SO2 in these single pollutant models.  

The immediate effects of PM10 and NO2 persisted in a multi-pollutant model 

containing all five pollutants (Table 8.1 and Figure 8.3). A 10µg/m3 increase in 

PM10 was associated with a 1.0% (95% CI 0.0 to 2.0) increase in MI risk 1-6 

hours later, but in subsequent lag periods the risk was reduced so that over 1-

72 hours there was no overall risk increase (cumulative change in risk -0.2% [-

1.7 to +1.3]). Similarly for NO2, a 10µg/m
3 increase was associated with a 2.0% 

(0.8 to 3.3) increase in MI risk 1-6 hours later, but no net risk increase over 72 

hours (cumulative change in risk -0.2% [-1.8 to +1.4]). The multi-pollutant model 

also confirmed the lack of evidence for any effect of SO2 in any lag period. 

The apparent roles of ozone and CO were altered in the multi-pollutant model. 

A suggestion of a positive association was observed between ozone increases 

and MI onset at 1-6 hours lag, but over the longer-term (1-72 hours lag) there 

was a net protective association (-1.2% [-2.1 to -0.2] change in risk per 10µg/m3 

increase in ozone). For CO, both the shortest lag effect and the cumulative 

effect were in the protective direction (cumulative change in risk over 1-72 hours 

-1.3% [-2.3 to -0.2] per 0.1mg/m3 increase). Of note, in two-pollutant models, 

both the detrimental effect of ozone at lag 1-6 hours and the apparently 

protective effect of CO at lag 1-6 hours appeared to be driven by adjustment for 

NO2, with which both ozone and CO are strongly correlated in opposite 

directions (ρ = -0.58 and 0.61 respectively, Appendix Table 11.9). 
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Table 8.1: Pollution effects at 6-hourly temporal resolution, in single and multi-pollutant models 

Pollutant and lag (hrs)

PM10 Lag 1-6 1.012 [1.003, 1.021] 1.010 [1.000, 1.020]

7-12 0.993 [0.983, 1.003] 0.998 [0.986, 1.010]

13-18 0.997 [0.986, 1.007] 0.997 [0.985, 1.009]

19-24 0.998 [0.989, 1.007] 0.998 [0.987, 1.008]

25-72 0.992 [0.982, 1.002] 0.996 [0.982, 1.010]

Σ(1-72) 0.992 [0.982, 1.002] 0.998 [0.983, 1.013]

Ozone Lag 1-6 0.998 [0.992, 1.004] 1.007 [0.999, 1.016]

7-12 1.004 [0.997, 1.012] 0.995 [0.985, 1.006]

13-18 0.994 [0.987, 1.001] 0.993 [0.982, 1.004]

19-24 0.999 [0.993, 1.005] 0.998 [0.990, 1.007]

25-72 0.998 [0.991, 1.004] 0.994 [0.985, 1.003]

Σ(1-72) 0.994 [0.987, 1.001] 0.988 [0.979, 0.998]

CO Lag 1-6 1.002 [0.997, 1.007] 0.993 [0.986, 1.001]

7-12 1.001 [0.994, 1.007] 1.007 [0.998, 1.015]

13-18 0.997 [0.991, 1.003] 1.000 [0.991, 1.008]

19-24 0.998 [0.993, 1.004] 0.996 [0.989, 1.004]

25-72 0.994 [0.988, 1.001] 0.992 [0.982, 1.002]

Σ(1-72) 0.992 [0.986, 0.999] 0.987 [0.977, 0.998]

NO2 Lag 1-6 1.011 [1.003, 1.018] 1.020 [1.008, 1.033]

7-12 0.991 [0.982, 0.999] 0.983 [0.968, 0.998]

13-18 0.999 [0.990, 1.008] 0.994 [0.979, 1.009]

19-24 1.000 [0.993, 1.008] 1.002 [0.989, 1.015]

25-72 0.995 [0.987, 1.003] 0.999 [0.984, 1.014]

Σ(1-72) 0.996 [0.988, 1.004] 0.998 [0.982, 1.014]

SO2 Lag 1-6 1.000 [0.978, 1.023] 0.992 [0.968, 1.017]

7-12 1.002 [0.977, 1.028] 1.003 [0.975, 1.032]

13-18 0.985 [0.961, 1.010] 0.988 [0.961, 1.015]

19-24 1.016 [0.994, 1.039] 1.018 [0.993, 1.043]

25-72 0.992 [0.963, 1.023] 1.014 [0.977, 1.053]

Σ(1-72) 0.996 [0.964, 1.029] 1.014 [0.972, 1.058]

Single pollutant model Multi-pollutant model

OR and 95% CI per 10μg/m
3
 increase

 (except CO: per 0.1mg/m
3
 increase)

 
Note: Models included the presented pollutant effects, and were adjusted for temperature (5 lag 
terms covering days 0-28 inclusive), relative humidity (average of lags 0-3 days), day of week, 
influenza, RSV, and residual seasonality within calendar month strata (single sin/cos pair per 
conurbation)  
Σ(1-72) effect for each pollutant estimated by summing regression coefficients for the 5 lag 
terms  
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Figure 8.3: Lagged and cumulative pollutant effects on MI risk from a multi-pollutant model 

 
Note: Model with 5 lag terms for each of the 5 pollutants, and was adjusted for temperature (5 
lag terms covering days 0-28 inclusive), relative humidity (average of lags 0-3 days), day of 
week, influenza, RSV, and residual seasonality within calendar month strata (single sin/cos pair 
per conurbation)  
Σ(1-72) effect for each pollutant estimated by summing regression coefficients for the 5 lag 
terms  
 

The estimated effects of daily mean temperature, relative humidity, 

influenza/RSV levels, and day of week/holiday effects, were similar to those 

observed in previous analyses, with a significantly increased risk of MI observed 

on weekdays compared with weekends, and 2-14 days after a decrease in 

ambient temperatures (Table 8.2). As before, there was no evidence that 

relative humidity, influenza/RSV levels, or holidays were associated with MI risk. 
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Table 8.2: Other effect estimates in the multi-pollutant model for MI risk 

Odds Ratio  [95% CI]

Temperature (per °C drop)

Lag 0-1 (days) 1.002 [0.998,   1.005]

Lag 2-7 1.006 [1.001,   1.011]

Lag 8-14 1.006 [1.001,   1.011]

Lag 15-21 1.002 [0.997,   1.007]

Lag 22-28 1.000 [0.995,   1.005]

Relative humidity

55% 1.03 [1.00,1.07]

65% 1.01 [0.99,1.03]

75% 1.00 [1.00,1.00]

85% 1.01 [0.98,1.04]

95% 1.05 [0.98,1.12]

Day of Week

Sunday 1.00 (ref)

Monday 1.11 [1.07,1.14]

Tuesday 1.02 [0.99,1.05]

Wednesday 1.03 [1.00,1.06]

Thursday 1.01 [0.98,1.04]

Friday 1.04 [1.01,1.07]

Saturday 0.98 [0.95,1.01]

Holiday

No 1.00 (ref)

Yes 0.98 [0.93,1.03]

Influenza A levels (lab confirmed cases)

0 1.00 (ref)

1 1.01 [0.98,1.04]

2+ 1.00 [0.96,1.05]

RSV levels (lab confirmed cases)

0 1.00 (ref)

1 0.99 [0.96,1.02]

2+ 1.00 [0.95,1.06]

 
Note: From a model with 5 lag terms for each of the 5 pollutants, adjusted for residual 
seasonality within calendar month strata (single sin/cos pair per conurbation) 
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8.3.3 Pollution effects by age and prior CHD 

When examined by age group, the observed patterns of effects for ozone and 

NO2 (namely an increased odds of MI 1-6 hours after a pollution increase, 

followed by a reduced odds at longer lags) were more pronounced among those 

aged 65-74 and 75-84 years than those aged <65 years; for PM10, the pattern 

was similarly most prominent among those aged 75-84 years (Figure 8.4a). 

However, among those in the eldest age group (85+ years), there appeared to 

be little effect of PM10 or ozone, and only an attenuated effect of NO2.  

Patterns of effects also appeared to be stronger among those with prior CHD, 

with the exception of PM10, for which the shortest-lag association with MI was 

strongest among those with no prior disease (Figure 8.4b). 

8.3.4 Pollution effects by season 

On exploring interactions between pollution effects and season (summer vs. 

autumn/winter/spring) there was no statistical evidence of differing effects by 

season (p>0.26 for each pollutant). However, this analysis may have had limited 

power to formally detect such interactions and effect estimates did suggest 

some interesting patterns that may be worthy of future investigation (Figure 

8.5). For ozone, which has higher overall levels but weaker correlations with 

other pollutants in summer (Chapter 5 Figure 5.5 and Table 5.9), the overall 

effects described earlier interestingly appeared to be more pronounced in the 

autumn/winter/spring periods compared with summer. The effects of NO2 and 

CO also appeared to be largely restricted to autumn, winter and spring. For 

PM10, the opposite pattern was observed, with estimated effects for each lag 

period larger in summer. These observations should include the caveat that due 

to fewer events, confidence intervals for summer effect estimates were in all 

cases wide enough to include the corresponding autumn/winter/spring effect 

estimate; this is consistent with the lack of statistical evidence for a formal 

interaction. 
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Figure 8.4: Odds ratio of MI associated with pollutant level increases 
a) by age group 

 
 
b) by prior CHD 

 
*Effects are per 10µg/m

3
 increase for PM10, ozone, NO2 and SO2, and per 0.1mg/m

3
 for CO 

Note: within age groups, estimates are the OR for MI for the following lag periods in hours: 1-6 (left most), 7-12, 13-18, 
19-24, and 25-72 (right most) 
From multi-pollutant models adjusted for temperature (5 lag terms covering days 0-28 inclusive), relative humidity 
(average of lags 0-3 days), day of week, influenza, RSV, and residual seasonality within calendar month strata (single 
sin/cos pair per conurbation) 
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Figure 8.5: Pollutant effects by season in a multipollutant model 

 
Note: Model adjusted for temperature (5 lag terms covering days 0-28 inclusive), relative 
humidity (average of lags 0-3 days), day of week, influenza, RSV, and residual seasonality 
within calendar month strata (single sin/cos pair per conurbation)  

 

8.3.5 Role of hourly temperature 

Hourly temperature data were available for 9/15 conurbations (Bristol, Cardiff, 

Greater London, Greater Manchester, Liverpool, Nottingham, Sheffield, West 

Midlands, West Yorkshire). The following analyses were restricted to these 

conurbations.  

Patterns of pollution effects were broadly similar before and after adjusting for 

hourly temperature with up to 72 hours lag (five lag terms, matching the hourly 

lag breakdown for pollutant effects, Figure 8.6). However the estimated 

increase in risk of MI 1-6 hours after an increase in ozone was somewhat 

attenuated after adjusting for hourly temperature (RR = 1.010 [1.000 to 1.019] 

per 10µg/m3 before adjustment, and 1.005 [0.996 to 1.015] after adjustment).  
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Figure 8.6: The impact of adjusting for hourly temperature on pollution effect estimates in the 
multipollutant model 

 
Note: Adjustment for hourly temperature comprised 5 lag terms matching hourly pollution lags 
(1-6, 7-12, 13-18, 19-24, 25-72 hours). Model also adjusted for daily mean temperature (5 lag 
terms covering days 0-28 inclusive), relative humidity (average of lags 0-3 days), day of week, 
influenza, RSV, and residual seasonality within calendar month strata (single sin/cos pair per 
conurbation). Analysis was restricted to the 9 conurbations in which hourly temperature data 
were available 

 

 

The estimated effect of ambient temperature itself at an hourly temporal 

resolution suggested a statistically significant detrimental effect of higher 

temperature at very short (1-6 hours) lag, followed by a risk reduction at 7-12 

hours lag (Table 8.3). The cumulative effect estimate over 1-72 hours 

suggested no net temperature effect (OR = 0.999 [0.994 to 1.004]) at this 

timescale.  

When non-linearity was allowed for by modelling temperature as a 4-knot cubic 

spline, the resulting plot still (for lag 1-6 hours) revealed a broadly linear effect 

(p for non-linearity = 0.45, Figure 8.7).  
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Table 8.3: Effect of hourly temperature on MI risk in a multipollutant model 

Lag (hours) 1-6 1.011 [1.004, 1.018]

7-12 0.989 [0.979, 0.998]

13-18 1.002 [0.992, 1.011]

19-24 0.999 [0.992, 1.006]

25-72 0.999 [0.993, 1.005]

Σ(1-72) 0.999 [0.994, 1.004]

OR and 95% CI per 1°C 

increase in temperature

 
Note: Adjustment for hourly temperature comprised 5 lag terms matching hourly pollution lags 
(1-6, 7-12, 13-18, 19-24, 25-72 hours). From a multipollutant model with 5 lag terms for each of 
5 pollutants, also adjusted for daily mean temperature (5 lag terms covering days 0-28 
inclusive), relative humidity (average of lags 0-3 days), day of week, influenza, RSV, and 
residual seasonality within calendar month strata (single sin/cos pair per conurbation). Analysis 
restricted to the 9 conurbations in which hourly temperature data were available (excluding 
Kingston-upon-Hull, Leicester, Newcastle, Norwich, Potteries, Southampton) 

 
Figure 8.7: Estimated effect of temperature at lag 1-6h allowing for non-linear effects 

 
Note: From a multipollutant model with 5 lag terms for each of 5 pollutants, adjusted for 
temperature effects at lag 7-12, 13-18, 19-24, and 25-72 hours, and for daily mean temperature 
(5 lag terms covering days 0-28 inclusive), relative humidity (average of lags 0-3 days), day of 
week, influenza, RSV, and residual seasonality within calendar month strata (single sin/cos pair 
per conurbation) 
Analysis restricted to the 9 conurbations in which hourly temperature data were available 
(excluding Kingston-upon-Hull, Leicester, Newcastle, Norwich, Potteries, Southampton) 
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8.3.6 Sensitivity of pollutant effects to key model specifications 

Three sensitivity analyses were carried out in which (i) the study population was 

restricted to those with a recorded time of symptom onset, (ii) the calendar 

month strata for defining sets of case/control days were replaced with strata of 

14 days’ length , and (iii) control days were matched on day of the week. All 

suggested that the principal observations were robust to changes in these key 

analysis/modelling decisions (Table 8.4). For each sensitivity analysis, all 

confidence intervals comfortably included the original effect estimates. For 

some “statistically significant” effects from the original analysis, confidence 

intervals in one or more of the sensitivity analyses widened to span 1 indicating 

a loss of statistical significance, but this is not surprising; each of these 

analyses would have had reduced power compared to the original, due to fewer 

events being included (analysis i), and smaller case/control sets (analyses ii 

and iii). The estimated effect sizes were in all cases consistent with the original 

analysis. 
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Table 8.4: Sensitivity of pollutant effects to model specifications 

Pollutant

PM10 Lag 1-6 1.010 [0.998, 1.022] 1.007 [0.995, 1.018] 1.010 [0.998, 1.022]

7-12 1.000 [0.986, 1.014] 1.000 [0.987, 1.013] 1.001 [0.987, 1.014]

13-18 0.999 [0.986, 1.013] 0.997 [0.984, 1.010] 0.999 [0.985, 1.012]

19-24 0.997 [0.985, 1.009] 0.996 [0.985, 1.007] 0.997 [0.985, 1.009]

25-72 0.996 [0.980, 1.013] 0.992 [0.974, 1.009] 0.993 [0.978, 1.009]

Σ(1-72) 1.002 [0.985, 1.020] 0.991 [0.970, 1.013] 0.999 [0.983, 1.015]

Ozone Lag 1-6 1.007 [0.997, 1.017] 1.006 [0.996, 1.015] 1.010 [1.000, 1.019]

7-12 0.995 [0.983, 1.008] 0.996 [0.984, 1.007] 0.992 [0.980, 1.004]

13-18 0.990 [0.978, 1.003] 0.993 [0.981, 1.004] 0.996 [0.984, 1.008]

19-24 1.000 [0.990, 1.011] 0.998 [0.989, 1.008] 0.996 [0.986, 1.006]

25-72 0.995 [0.984, 1.005] 0.992 [0.981, 1.003] 0.995 [0.985, 1.005]

Σ(1-72) 0.988 [0.977, 0.999] 0.984 [0.971, 0.997] 0.989 [0.979, 0.999]

CO Lag 1-6 0.999 [0.991, 1.007] 0.996 [0.988, 1.004] 0.994 [0.985, 1.002]

7-12 1.004 [0.995, 1.014] 1.006 [0.997, 1.015] 1.006 [0.997, 1.016]

13-18 1.003 [0.993, 1.012] 1.000 [0.991, 1.009] 0.996 [0.987, 1.006]

19-24 0.996 [0.988, 1.005] 0.994 [0.986, 1.002] 0.994 [0.986, 1.003]

25-72 0.990 [0.979, 1.001] 0.997 [0.985, 1.009] 0.992 [0.981, 1.003]

Σ(1-72) 0.992 [0.980, 1.004] 0.993 [0.978, 1.007] 0.982 [0.971, 0.994]

NO2 Lag 1-6 1.013 [0.998, 1.028] 1.020 [1.006, 1.034] 1.019 [1.004, 1.034]

7-12 0.984 [0.967, 1.002] 0.980 [0.964, 0.996] 0.986 [0.969, 1.004]

13-18 0.991 [0.974, 1.009] 0.996 [0.980, 1.013] 1.000 [0.983, 1.018]

19-24 0.998 [0.983, 1.013] 1.003 [0.989, 1.017] 0.999 [0.984, 1.014]

25-72 1.007 [0.990, 1.024] 0.995 [0.978, 1.013] 0.998 [0.981, 1.014]

Σ(1-72) 0.993 [0.975, 1.010] 0.994 [0.973, 1.016] 1.001 [0.985, 1.018]

SO2 Lag 1-6 0.987 [0.958, 1.016] 0.993 [0.967, 1.020] 0.990 [0.963, 1.018]

7-12 1.012 [0.980, 1.045] 1.005 [0.975, 1.037] 0.996 [0.964, 1.028]

13-18 0.982 [0.951, 1.013] 0.984 [0.956, 1.014] 0.990 [0.960, 1.021]

19-24 1.036 [1.007, 1.066] 1.022 [0.996, 1.049] 1.010 [0.982, 1.038]

25-72 0.980 [0.939, 1.024] 1.026 [0.981, 1.073] 1.026 [0.984, 1.069]

Σ(1-72) 0.995 [0.948, 1.045] 1.030 [0.974, 1.089] 1.011 [0.967, 1.058]

Symptom onset 

only*

14 day stratum 

length*

Matched on day of 

week*

RR and 95% CI from sensitivity analysis model

 
* -Symptom onset only analysis included only cases of MI where the time of event was determined by the 
time of symptom onset; 14-day stratum length analysis replaced calendar month strata with a 14-day 
stratum length in the case-crossover setup; matched on day of week model selected control days for each 
case as the remaining days of the calendar month with the same day of the week (with day of the week 
removed from the confounder model) 
Note: Estimates for each analysis are from a multi-pollutant model adjusted for temperature (5 lag terms 
covering days 0-28 inclusive), relative humidity (average of lags 0-3 days), day of week, influenza, RSV, 
and residual seasonality within calendar month strata (single sin/cos pair per conurbation)  
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8.4 Discussion  

There were immediate increases in MI risk 1-6 hours after an increase in PM10 

and NO2 in both single- and multi-pollutant models (estimated increase in risk 

from the multi-pollutant model = 1.0% [0.0 to 2.0] and 2.0% [0.8 to 3.3] per 

10µg/m3 respectively), but these were followed by reductions in risk at longer 

lags. Over the full 72 hour period following exposure, there was no evidence of 

any net detrimental effects of any pollutant; interestingly for ozone and CO, net 

protective associations with MI risk were observed over 72 hours, despite in the 

case of ozone the suggestion of short-term detrimental effect in the first 1-6 

hours following exposure. No effect of SO2 in either direction was observed.  

Only a handful of studies have looked at the effects of pollution on MI risk at an 

hourly temporal resolution, with still less investigating the specific pollutants 

included in this study. A study in Greater Boston116 estimated an 11% (95% CI 

1.5 to 21.1) increase in MI risk 1-3 hours after a 10µg/m3 increase in PM10, a 

larger effect than estimated here and indeed by some way the largest effect 

estimate for PM10 identified in the review of the published literature (Chapter 3 

Table 3.3), though it should be noted that in this small (n=772) study the wide 

confidence interval would not rule out a more modest true effect. The authors 

found no convincing effects of ozone, CO, NO2 or SO2 at a similar 1-3 hour lag, 

though with the exception of SO2, effect estimates were in the direction of a 

detrimental effect and confidence intervals were relatively wide. A larger 

American study found no effects of PM2.5, CO or SO2 using various “averaged” 

lag periods ranging from 0-1 hours to 0-24 hours;112 PM10 and NO2, for which 

the most consistent short-lag effects were observed in the present analysis, 

were not included in this study. Other studies have looked at various particulate 

exposures with varied results: total suspended particulate levels (thought to be 

equivalent to PM13) have been associated with MI risk at lags up to 6 hours
107 

which would be consistent with the findings of the present analysis, but longer 

lags were not included and it is not possible to say whether a subsequent 

reduction in risk over the longer term would have been observed in this study as 

in ours. A study in Germany looking at short-lag effects of PM2.5 and “total 

number concentrate” (TNC) found no associations with MI risk at 1-hour lag.110 

On the other hand results from the same study did suggest a significantly 
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increased risk of MI associated with exposure to traffic 1 hour earlier;114 again 

longer lags were not included so it is not possible to say whether there would 

have been a subsequent reduction in risk at longer lags.  

The results observed here are consistent with the suggestion raised in the 

previous chapter that increasing pollution levels may be associated with short-

term displacement of events, a “harvesting” phenomenon, rather than any net 

increase in risk. For PM10 and NO2 in particular a clear pattern emerged in both 

single and multi-pollutant models of a positive association between pollutant 

level and immediate MI risk over 1-6 hours, but then an inverse association at 

longer lags, with no net association with MI risk over a 72-hour period. This 

short-term displacement pattern was generally more prominent among older 

individuals (up to age 85 years) and those with prior CHD, an observation that is 

consistent with harvesting since those with a higher baseline risk of MI would be 

expected to be more vulnerable to the phenomenon. This indicates that one of 

the pathways through which pollution affects cardiovascular diseases may 

involve the bringing forward (for example, by a few hours) of events that would 

have happened anyway. Since no net increase in MI risk was observed over a 

broader timescale, there may be limited potential for reducing the overall burden 

of MI through reductions in pollution alone, but this should not undermine calls 

for action on air pollution, which has well-established associations with broader 

health outcomes including overall, respiratory, and cardiovascular mortality.42, 

121, 173 Indeed, air pollution effects on mortality are unlikely to be explained 

purely by short-term displacement;164, 174 the present findings might therefore 

suggest that other, perhaps non-thrombotic, mechanisms are more important 

drivers of the net mortality increases associated with higher pollution levels. 

If pollution level increases are indeed associated with the bringing forward of MI 

events, this implies that some triggering mechanism may be at work, and 

observational and experimental studies suggest various possible mechanisms, 

discussed in more detail in Section 3.4. Immediate effects on ischaemic burden 

and fibrinolytic capacity during controlled exposure to diesel fumes have been 

observed among men with coronary heart disease.48 Pollution exposure has 

also been associated with a systemic inflammatory response,128 increased heart 

rate and/or decreased heart rate variability,128, 133 blood viscosity and plasma 
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fibrinogen changes,136-137 and increased blood pressure.142 However, it cannot 

be safely assumed that PM10 and NO2, which are particularly associated with 

traffic exhaust, are the real triggers. These pollutants and the others studied 

here are in most cases emitted as part of a complicated mixture (including for 

example hydrocarbons in the case of traffic emissions), and furthermore certain 

combinations of pollutants are likely to inter-react, so confounding by 

unmeasured pollutants is difficult to avoid, and individual causal pollutant effects 

difficult to infer outside of controlled exposure studies in a laboratory setting. 

This point may also be pertinent to the observation of net protective effects of 

both ozone and CO on MI risk over 72 hours, which seems implausible as a 

causal relationship. Protective ozone effects have been observed in other 

studies38, 57, 110 and one theory is that ozone is acting as a marker for some 

unmeasured pollutant with which it is inversely correlated and which has a 

positive association with MI risk. Since multi-pollutant models were used, 

confounding by the other pollutants is unlikely. But there were no data available 

on PM2.5 which may be associated with MI risk and may have inverse 

correlations, in particular with ozone. It has also been suggested that inverse 

correlations between ozone and methyl nitrites may explain protective ozone 

effects.125 Another possibility is that collinearities between the model covariates, 

perhaps complicated by measurement errors, have contributed to these 

unexpected effect estimates. It has been observed that in the presence of 

measurement error and highly correlated exposures, some of the effect of a 

more poorly measured variable can be transferred to a better measured 

variable.165 In the present analysis, comparing the single pollutant to the multi-

pollutant model, the detrimental effect of NO2 at lag 1-6 hours almost doubled in 

magnitude, while the effect estimate for CO became protective. Two-pollutant 

models further suggested that adjustment for NO2 was the main driver of 

observed protective CO effects at lag 1-6 hours. But importantly, the correlation 

between daily NO2 and CO was 0.61, one of the highest correlations between 

pollutant pairs (Chapter 5 Table 5.9), which suggests that a degree of caution 

should be applied in interpreting the independent effect estimates.  

Given that no heat effect was observed in the earlier analysis of temperature 

effects on a daily timescale (Chapter 6), it was of interest that a detrimental 
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effect of increased ambient temperature was observed at very short lags (1-6 

hours). However, when longer lags were taken into account there was no net 

heat effect over a 72-hour period, consistent with the previous analysis. These 

results suggest that the effects of higher temperatures observed in this section 

may be restricted to short-term displacement; the bringing forward of events by 

a matter of hours. This is in contrast with the effects of temperature reductions 

observed in Chapter 6 which operated over a longer timescale and did not 

appear to be explained by short-term “harvesting” alone. 

Some of the key limitations of the study have been set out in the previous 

chapter: there were no data on PM2.5; pollution measures from outdoor monitors 

were used, which may not represent personal exposure perfectly and could 

therefore have led to a loss of precision or the introduction of biases in the 

analysis; pollution measures were also aggregated across each conurbation 

which ignores the local variability in pollutant levels that appeared to be 

particularly marked for CO and SO2 (Chapter 5 Figure 5.3 and Appendix I Table 

11.4-Table 11.7). It should also be noted that, given the limited prior evidence 

available at an hourly temporal resolution, this study did not test specific prior 

hypotheses, but rather explored a number of possible pollution-MI associations 

on this timescale. This raises the possibility that multiple statistical comparisons 

may have led to spurious associations being observed by chance; further 

studies aimed at replicating the findings reported here will be needed to 

discount this possibility. The study strengths outlined previously also apply to 

this analysis: ascertainment of MI cases from MINAP would likely have had high 

specificity, and key confounders were adjusted for. The significant additional 

strength of the analyses in this chapter is the availability of hourly data; only a 

handful of studies have looked at air pollution effects on MI at an hourly 

temporal resolution, and the largest of these had data on less than 6,000 cases, 

compared with over 80,000 in these analyses. Hourly air pollution monitoring 

data were available in every conurbation in the study, and because of the 

nature of MINAP, which was set up as an audit database, and which is used to 

monitor targets for reducing treatment delays for suspected coronary events, 

detailed timing data were available for clinical events, with the time of onset of 

the first symptoms recorded for the majority of MI events.  
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To conclude, for some pollutants, most prominently PM10 and NO2, a transiently 

increased risk of MI was observed up to 6 hours after a pollution increase but 

reductions in risk at longer lags cancelled out the effect over a 72 hour period, 

consistent with a short-term displacement or harvesting effect. Thus, as in the 

previous chapter there was no evidence that higher levels of any of the 5 

pollutants considered were associated with a net increase in MI risk. Net 

protective effects of ozone and CO on MI risk over a 72 hour lag period require 

explanation and may indicate an important role for one or more pollutants that 

were not included in these analyses. 

 

8.5 Summary 

• A case-crossover analysis was carried out to assess associations between 

pollution levels and MI risk at an hourly temporal resolution 

• In a multi-pollutant model, higher PM10 and NO2 levels were associated with 

a transiently increase risk of MI 1-6 hours later. However these effects were 

cancelled out by risk reductions at longer lags, consistent with a short-term 

displacement, or “harvesting” effect. There was a suggestion of a similar 

pattern for ozone. 

• The harvesting pattern appeared to be more prominent in older individuals 

(up to age 85) and those with prior CHD 

• Over the full 72-hour lag period considered, higher pollution levels were not 

associated with any net increase in MI risk 
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9 Summary and Conclusions 

9.1 Introduction 

In this chapter, the main findings and key discussion points that have been 

outlined in detail in the body of the thesis are summarised and drawn together. 

First, the results of the analyses undertaken for the thesis are summarised and 

compared with previous research identified by the systematic reviews described 

in Chapters 2-3. Second, the overall strengths and limitations of the work are 

outlined. Third, key public health and policy implications are summarised, and 

finally, suggestions are made for future research. 

9.2 Summary of research undertaken 

i. Two systematic reviews were carried out, bringing together studies in 

which MI was a specific outcome, and which investigated the effects of 

ambient temperature or one of the commonly measured pollutants on MI 

risk. 

ii. A daily time series analysis using hospital admissions data from 15 

conurbations taken from the MINAP database was performed to 

characterise the short-term effects of daily mean temperature on MI risk, 

adjusting for key potential confounders. 

iii. Within the same framework, the analysis was then extended focussing 

on the effects of daily mean PM10, ozone, CO, NO2 and SO2 on MI risk, 

adjusting for temperature. 

iv. Finally, informed by the results of the daily analysis, and making use of 

data at an hourly resolution, a case-crossover analysis was carried out, 

and the effects of the same five pollutants were examined at shorter (<1 

day) time scales. 
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9.3 Summary of findings and comparison with literature 

9.3.1 Short-term effects of temperature on MI risk 

v. In a daily time series analysis, MI risk was increased at lower ambient 

temperatures. The effect was well characterised by log-linear models 

without temperature threshold, and over the 28 days following exposure, 

a cumulative 2% (95% CI 1.1 to 2.9) increase in MI risk per 1°C lower 

temperature was estimated, with the effect mainly operating with at a lag 

of 2 days to 2 weeks. . 

vi. In absolute terms, it was estimated that each 1°C reduction in 

temperature in the UK would be associated with an extra 232 MI events, 

based on the estimated overall incidence of 146000 MIs/year. 

vii. Older people (up to age 85 years) and those with prior coronary heart 

disease appeared to be most vulnerable to lower temperature, though 

the effects were not restricted to these groups. Those taking aspirin 

appeared to be less vulnerable. 

viii. The results did not suggest that the cold effect simply reflected short-

term displacement (or “harvesting”) of events within the 28-day lag period 

studied, since risk increases were not followed by subsequent risk 

reductions at longer lags, as is typically seen with harvesting effects. 

Nevertheless displacement of events by >28 days cannot be ruled out. 

ix. There was no observed increase in MI risk at higher temperatures in the 

main daily time series analysis of temperature effects: in analyses 

allowing for non-linear temperature effects, MI risk appeared to be 

inversely associated with temperature, even at the upper end of the 

temperature scale.  

x. Interestingly, analyses at an hourly resolution, in which pollutant effects 

were the main focus, did indicate some transient heat effect: higher 

temperatures appeared to be associated with increased MI risk 1-6 hours 

later, but at longer lags the effect was cancelled out, so that over 1-72 

hours there was no net increase in risk (Section 8.3.5).  
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9.3.2 Temperature effects in the context of previous research 

xi. There was generally very varied methodology among studies 

investigating the effects of ambient temperature on MI risk, as well as 

differences in local climate and the demographic characteristics of 

participants between studies. Comparisons between study results must 

therefore be made cautiously. 

xii. The observed effects of colder temperatures in the present study were in 

keeping with the detrimental cold effects identified by 8 of the 12 studies 

included in the systematic review which investigated cold effects on MI 

and indeed by 3 of the 5 studies included in the review that used a 

separately validated MI outcome. 

xiii. In the systematic review, most studies reported effects on the same day 

or up to 3 days after exposure, with no effects lagged by more than 1 

week, though few studies actually investigated effects beyond 7 days. In 

contrast, the present study investigated the effects of temperature with 

up to 4 weeks lag, and significant effects of lower temperature were 

observed at lags ranging from 2 days to 2 weeks.  

xiv. There was a suggestion from studies identified in the systematic review 

that countries at more northern latitudes may be more likely to 

experience heat, rather than cold effects. This is consistent with the idea 

that people living in colder countries or regions may adapt less well to 

higher temperatures. However, the findings of the present study, based 

on data from England and Wales, which has a relatively cool climate, did 

not support this theory. 

xv. A few small experimental studies combine to suggest that a pathway 

through which reduced temperatures might induce thrombogenesis could 

involve a combination of factors. Cold exposure has been associated 

with haemoconcentration, an inflammatory response, and a tendency for 

an increased state of hypercoagulability. The apparently protective effect 

of aspirin suggests that platelet function may also play a role. 

xvi. In the published literature, 13 studies were identified that included 

analyses investigating the short-term effects of heat or increases in 
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temperature. Of these, 7 reported a significant heat effect, in contrast to 

the results of the daily time series analyses presented here, though 3 of 

these considered only MI mortality, which may have included some 

misclassified deaths, and only one of the 5 studies with a separately 

validated MI outcome reported a heat effect.  

xvii. Temperatures in England and Wales are rarely very high in global terms 

and hot periods are typically short. This means that the heat effects 

observed in other settings may be difficult to detect in a UK setting, 

though heat effects on mortality outcomes have been observed in the 

UK.161 

xviii. It is possible that observed heat effects in studies using less reliable MI 

diagnoses may in reality, due to misclassification of outcomes, represent 

effects on more broad cardiovascular health outcomes.  

xix. No previous studies were identified that investigated the effects of 

temperature at an hourly, rather than daily, temporal resolution. 

9.3.3 Short-term effects of air pollution on MI risk 

xx. A daily time series analysis indicated no net detrimental effect on MI risk 

of PM10, ozone, CO, NO2, or SO2 over lag days 0 to 7 combined. 

However, estimated effects of pollution increases at individual lag days 

were suggestive of increases in risk at day 0 followed by decreases in 

risk at days 1-2, for all pollutants except ozone. 

xxi. Analyses using data at a finer (hourly) temporal resolution showed a 

transiently increased risk of MI 1-6 hours after increased levels of PM10 

and NO2 in a model including all five pollutants. A 10µg/m
3 increase was 

associated, 1-6 hours later, with a 1.0% (0.0 to 2.0) and 2.0% (0.8 to 3.3) 

increase in MI risk for PM10 and NO2 respectively. There was a 

suggestion of a similar effect of ozone (0.7% [-0.1 to 1.6] increase in risk, 

1-6 hours later). 

xxii. Reductions in risk at longer lags cancelled out the 1-6 hour effects of 

PM10, NO2 and ozone such that no net detrimental effects of any 

pollutant were observed over a 72-hour period following exposure. 
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xxiii. The observed pattern of a positive association between pollutant levels 

and MI risk at short lags, followed by negative associations at longer lags 

is consistent with a short-term displacement (“harvesting”) effect, where 

higher pollution levels are associated with events being brought forward 

in time by a few hours or days.  

xxiv. Patterns of effect estimates consistent with harvesting were generally 

more pronounced in older individuals (up to age 85 years) and those with 

prior CHD. 

xxv. Surprisingly, both CO and ozone appeared to have a net protective effect 

over 72 hours. This may indicate some confounding effect of 

unmeasured pollutants. However, high correlations of both pollutants 

with NO2 were also noted, suggesting that independent effect estimates 

should be interpreted with some caution.  

9.3.4 Pollution effects in the context of previous research 

xxvi. Most studies to date have been based on data at a daily temporal 

resolution. These studies suggest little convincing evidence of PM10, and 

mixed evidence on the effects of ozone, CO, NO2 and SO2. The lack of 

any net detrimental pollutant effects on MI risk in the present study is in 

this respect not inconsistent with the published literature. 

xxvii. Only a few studies, with relatively small numbers of events, have 

investigated the effects on MI risk of hourly differences in pollutant levels. 

Significant effects of particulate exposures and exposure to traffic at a 

few hours lag have been described, consistent with the findings of the 

present analyses, but other studies have found no effects. Of note, 

previous studies looking at hourly effects of pollution did not examine 

lagged effects beyond a few hours, so it is not possible to say whether 

reductions in risk at longer lags would have been observed as in the 

present study. 

xxviii. Observational and experimental studies suggest a few possible 

mechanisms through which pollution increases could trigger MI events: 

pollution exposure has been associated with a systemic inflammatory 

response, changes in heart rate and heart rate variability, changes in 
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blood viscosity, plasma fibrinogen, and fibrinolytic capacity, increased 

ischaemic burden, and changes in blood pressure. 

xxix. Previous studies have had varied methods and have been conducted in 

varied settings. In addition, a number of studies only reported pollutant 

effects using a single lag term so are difficult to compare with estimates 

from the present analysis which appeared to show a pattern of changing 

effects over time. 

xxx. Negative associations have previously been observed between ozone 

levels and MI risk. In both the daily and hourly analyses presented here, 

there was some suggestion that lack of adequate control for temperature 

can induce or exaggerate protective ozone-MI associations. This is likely 

due to the positive correlation between ozone and temperature, coupled 

with the increased risk of MI associated with lower temperatures. 

xxxi. A few previous studies have investigated the effects PM2.5, with the 

majority reporting significant positive associations with MI risk. For the 

present study, insufficient data on PM2.5 were available to investigate the 

effects of this pollutant. 

9.4 Strengths of the study 

xxxii. The study was among the largest to date to investigate temperature and 

pollution effects on the specific outcome of MI. 

xxxiii. Given the specialist nature of the database, MI events drawn from 

MINAP are likely to be highly specific, and furthermore could be validated 

against ECG and laboratory marker data which are also recorded in the 

database. 

xxxiv. The availability of accurate timing data for MIs was also a major strength 

of the study, and allowed analyses at an hourly, as well as daily, 

temporal resolution. 

xxxv. The study was able to make use of the UK’s well-established networks of 

monitoring stations recording both weather and pollution parameters. 

xxxvi. Air pollution analyses included comprehensive adjustment for 

temperature effects, and vice versa. Flexible spline-based methods were 
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used to model season and long-term trend effects (for daily time series 

analyses). In addition, all analyses were adjusted for other key 

confounders including day of the week and holidays, infectious disease 

levels, and relative humidity. 

xxxvii. A number of sensitivity analyses were performed following both the 

temperature- and pollution-focussed analyses, and the main conclusions 

were robust to changes in various aspects of the model specifications, 

and to restricting to the most reliable data. 

9.5 Limitations 

xxxviii. A principle limitation of the MINAP database is that only events resulting 

in hospital admission were included. MI events resulting in death before 

admission to hospital will have been missed. Furthermore, the probability 

of surviving an MI long enough to be admitted to hospital could 

conceivably be related to environmental exposures, especially 

temperature, if extreme weather were to result in, for example, 

ambulance delays. If operating, such a mechanism would likely lead to 

an underestimation of temperature effects. 

xxxix. MINAP theoretically records every hospital admission for MI, but 

disproportionate variations in the numbers of events recorded between 

conurbations suggest some regional inconsistency in the recording of 

events. However, this is unlikely to be related to exposure and is 

therefore likely to have led simply to a loss of study power rather than 

any confounding. 

xl. Outdoor pollution levels from monitoring stations, particularly when 

averaged over a large area, may not be an ideal proxy for personal 

exposure. Such summary measures ignore both local variation in 

pollutant levels, and individual behavioural factors, such as time spent 

outdoors, and the resulting measurement error may have resulted in a 

loss of precision or the introduction of biases in the estimated pollution MI 

associations. 
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xli. Given the high correlations between many environmental exposures, 

there is an unavoidable potential for unmeasured confounding in 

population-based studies such as that presented here. Furthermore, the 

separation of specific pollutant effects, even among measured pollutants, 

is problematic due to collinearities between the pollutants. 

xlii. Due to the limited previous evidence available, analyses of pollution-MI 

associations were exploratory in nature, rather than hypothesis testing. 

Multiple comparisons could have led to spurious associations being 

observed by chance; further studies aimed at testing the observed 

associations using different data sources will be needed to confirm the 

main findings. 

xliii. There was a lack of available data on PM2.5, which other studies have 

suggested may be an important predictor of MI risk.  

9.6 Implications for public health and policy 

xliv. Since lower ambient temperatures appeared to be associated with higher 

overall MI risk, and not simply the short-term displacement of events, 

there may be scope for reducing the overall public health burden of MI 

through cold avoidance and adaptive measures. 

xlv. The relative risk associated with temperature reductions was largest 

among older age groups (up to age 85 years), and those with prior 

coronary heart disease. Schemes to mitigate the effects of temperature 

might be targeted at such groups. For example, automated phone calls, 

delivered when lower temperatures are forecast, might remind individuals 

to stay indoors and wrap up in adequate clothing. Schemes of this nature 

have had some success among chronic obstructive pulmonary disorder 

sufferers in the UK. Their efficacy and cost-effectiveness in the context of 

protecting those at highest risk of MI would need to be evaluated. 

xlvi. Although the effects of lower temperatures were larger in certain 

subgroups, they were not restricted to these subgroups. Therefore, there 

may be a case for putting across a broader public health education 
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message promoting cold avoidance and/or the use of warmer clothing 

when lower temperatures are expected.  

xlvii. The absence of any net detrimental effects of air pollution suggests that 

other, perhaps non-thrombotic, mechanisms are more important drivers 

of the net mortality increases associated with higher pollution levels. 

Identifying the specific conditions responsible for these mortality 

increases with a view to eventually identifying interventions that could 

protect the most vulnerable will be a continuing priority for research in 

this area. 

xlviii. Although there appeared to be no net detrimental effects of air pollution 

over a 72-hour lag period, this should not undermine attempts to reduce 

pollution levels, since other health outcomes including overall, 

cardiovascular and respiratory mortality have established links to 

pollution levels that are unlikely to be explained purely by short-term 

displacement effects. 

9.7 Future research 

9.7.1 Temperature and MI 

xlix. Drivers of the differences in temperature effects observed in different 

studies remain unclear, and in any case the varied methodology and 

reporting within the published literature makes direct comparisons 

difficult. To confirm the findings presented in this thesis, and explore 

whether they carry over to other settings, more large studies are needed 

in a number of geographical locations with consistent adjustment for 

potential confounders such as season, long-term trend and air pollution; 

allowance for non-linear and delayed temperature effects; and consistent 

reporting standards. 

l. Few studies of temperature effects have investigated effect modifiers; 

more data are needed on the roles of age, sex, previous medical history 

and prophylactic drug use in modifying the effects of temperature on MI 

risk. 
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li. Future studies might investigate whether sudden temperature changes 

affect MI risk more than gradual changes in absolute temperature. 

lii. Since analyses presented here at an hourly level suggested that there 

may be some very short-term transient effect of higher temperatures on 

MI risk, further data at an hourly resolution would be of value. 

liii. Studies of temperature effects with individual-level data on factors such 

as clothing, home heating and air conditioning would be helpful in 

evaluating the role of adaptive measures. 

liv. Further studies looking at the effects of more complex weather indicators 

(such as air mass type) on MI risk, and how easily such indicators can be 

forecast, might clarify the usefulness of such measures in this context. 

lv. Mechanistic studies examining the effects of temperature on an up-to-

date range of clotting measures are needed. 

lvi. Potential interventions such as targeted warning systems, or more 

general public health education messages, aimed at changing behaviour 

to reduce the temperature-associated excess MI risk, could be evaluated 

in formal trials. 

9.7.2 Pollution and MI 

lvii. Outdoor pollution levels from monitoring stations, particularly when 

averaged over a large area, may not be an ideal proxy for personal 

exposure. Studies making use of personal exposure monitors might 

provide valuable data, though such studies would necessarily be smaller-

scale and require the use of non-clinical outcomes. Biomarkers of 

exposure might also be developed for use in epidemiological studies to 

give more reliable estimates of individual exposure to air pollutants.  

lviii. For larger, population-based studies, novel statistical methods aimed at 

quantifying or reducing biases due to measurement error might be 

utilized, and reliable spatial models allowing the interpolation of pollution 

levels between monitoring stations could enable personal exposures to 

be estimated more accurately without the need for individual-level 

measurements. 
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lix. Only controlled exposure studies in a laboratory setting are likely to 

delineate the effects of individual pollutants, since the collinearity of 

pollutants makes confounding outside of the laboratory impossible to 

avoid. Studies of this type might also be used to investigate the various 

mechanisms that have been suggested to explain air pollution effects on 

MI. 

9.8 Conclusions 

The work presented in this thesis has focussed on the short-term effects of two 

major classes of environmental exposure on MI risk: ambient temperature, and 

air pollution.  

A convincing effect of temperature was observed, with lower temperatures 

associated with a higher risk of MI for up to 2 weeks following exposure. There 

was no evidence for an overall effect of higher temperatures. The elderly and 

those with prior coronary heart disease were most vulnerable to temperature 

effects and might benefit from targeted warning systems, linked to weather 

forecasts, and advising, for example, cold avoidance, wearing adequate 

clothing, or other adaptive measures. Since the effects of temperature persisted 

in all subgroups that were examined, a more general public health education 

message might also help to reduce the extra burden of MI associated with lower 

temperatures.  

Higher levels of PM10 and NO2 were associated with transiently increase risk of 

MI 1-6 hours after exposure, and there was a suggestion of a similar effect for 

ozone. However, reductions in risk at longer lags meant that there was no 

overall increase in MI risk over a 72-hour period. These findings suggest that 

other, perhaps non-thrombotic, mechanisms are more important drivers of the 

net mortality increases associated with higher pollution levels; identifying the 

specific conditions and mechanisms responsible for such mortality increases is 

a continuing research priority. 

Many questions remain and there is a need for more research in a number of 

areas. Potential interventions aimed at reducing the burden of MIs associated 

with lower temperatures should be evaluated. Studies with individual-level data 

could also provide important information on the role of adaptive measures, and 
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there has been little recent work looking at potential mechanisms for 

temperature effects. The exact roles of individual pollutants may only be 

revealed by controlled exposure studies in a laboratory setting, which might also 

reveal potential mechanisms. However further large-scale population-based 

studies are also needed: the effects of fine and ultrafine particulate matter need 

to be clarified as monitoring data becomes available; and more data at a sub-

daily temporal resolution are needed, since the results presented here suggest 

that pollution effects may operate faster than has been previously assumed, 

and may therefore have been missed by much of the research to date.  

  



 

2
0
5
 

 

9.9 Summary 

Table 9.1: Summary of findings 
 

Key unanswered questions 

 
1. Through what mechanisms do 
temperatures affect MI risk? 
 
2. Can adaptive measures and public 
health interventions mitigate the effects? 
 
3. Why do only some studies find heat 
effects? Is local climate important? 

1. Is personal pollution exposure more 
predictive of MI risk than ambient levels? 
 
2. How might pollution exposure bring 
impending MI events forward in time? 
 
3. Can the roles of specific pollutants be 
delineated in a laboratory setting? 

What this study found 

 
1. Lower daily mean temperature was associated 
with increased risk of MI. 
 
2. Elderly individuals (≤85 years) and those with 
prior CHD were most vulnerable to the effects. 
 
3. No increase in MI risk was detected at higher 
temperatures. 

1. MI risk was transiently increased up to 6 hours 
after exposure to higher PM10, NO2. 
 
2. Pollution effects were consistent with short-term 
displacement of events ("harvesting"). 
 
3. Higher PM10, ozone, CO, NO2, or SO2 levels 
did not increase overall MI risk over 72 hours. 

What previous studies have shown 

 
1. Both hot and cold ambient temperatures 
increase overall mortality risk in the short-term. 
 
2. Most studies looking specifically at MI 
outcomes observed detrimental cold effects. 
 
3. About half of studies looking at MI outcomes 
have identified detrimental heat effects. 

1. Higher daily levels of some pollutants are 
associated with increased mortality. 
 
2. There is mixed evidence on the effects of 
pollution on MI risk specifically. 
 
3. A few studies with hourly data have found 
pollution effects just a few hours after exposure. 

 

Short-term 

effects of 

temperature 

 

Short-term 

effects of air 

pollution 
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11 Appendix I – Additional results tables and figures
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11.1 Further descriptive analysis 

Table 11.1: Median events per day, by conurbation and calendar month 

Bristol 2 [1, 3] 2 [1, 3] 2 [1, 3] 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2] 2 [1, 3] 1 [0, 3]

Cardiff 1 [0, 2] 1 [0, 2] 1 [0, 1] 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 1] 1 [0, 1] 1 [0, 1]

G London 18 [15, 21] 18 [15, 22] 18 [14, 20] 18 [14, 22] 19 [16, 22] 19 [16, 21] 18 [15, 21] 17 [14, 21] 17 [14, 20] 18 [15, 22] 18 [15, 21] 18 [16, 21]

G Manch 9 [6, 10] 9 [7, 11] 8 [6, 10] 9 [6, 12] 9 [7, 11] 9 [7, 11] 7 [5, 9] 8 [5, 11] 8 [6, 11] 8 [6, 10] 9 [6, 11] 8 [7, 11]

Hull 0 [0, 0] 0 [0, 1] 0 [0, 1] 0 [0, 1] 0 [0, 0] 0 [0, 0] 0 [0, 1] 0 [0, 1] 0 [0, 0] 0 [0, 0] 0 [0, 0] 0 [0, 0]

Leicester 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 1]

Liverpool 3 [2, 4] 3 [2, 5] 3 [2, 4] 3 [2, 5] 3 [2, 4] 3 [2, 5] 2 [1, 4] 2 [1, 3] 2 [1, 4] 2 [1, 4] 3 [2, 4] 3 [2, 5]

Norwich 0 [0, 1] 0 [0, 1] 0 [0, 1] 0 [0, 1] 0 [0, 1] 0 [0, 1] 0 [0, 1] 0 [0, 1] 0 [0, 1] 0 [0, 1] 0 [0, 1] 0 [0, 1]

Nottingham 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 1] 1 [0, 1] 1 [0, 2] 1 [0, 2] 1 [0, 1] 1 [0, 2] 1 [0, 1] 1 [0, 2] 1 [1, 2]

Potteries 1 [1, 2] 1 [1, 2] 1 [0, 2] 2 [1, 2] 1 [1, 2] 1 [1, 2] 1 [0, 2] 1 [0, 2] 1 [1, 2] 1 [1, 2] 1 [0, 2] 1 [1, 2]

Sheffield 3 [1, 5] 3 [2, 4] 3 [1, 4] 3 [2, 4] 4 [3, 5] 3 [2, 5] 3 [2, 5] 3 [2, 5] 3 [2, 5] 3 [2, 5] 4 [2, 5] 3 [2, 5]

Southamp 1 [0, 1] 1 [0, 1] 1 [0, 1] 1 [0, 1] 1 [0, 1] 1 [0, 2] 1 [0, 1] 1 [0, 1] 1 [0, 1] 1 [0, 1] 1 [0, 2] 1 [0, 2]

Tyneside 5 [4, 7] 5 [4, 7] 5 [4, 7] 6 [4, 8] 6 [4, 7] 5 [3, 7] 5 [4, 7] 5 [3, 7] 5 [3, 7] 5 [4, 7] 5 [3, 6] 5 [3, 6]

W Midlands 6 [5, 8] 6 [4, 8] 6 [4, 8] 6 [4, 8] 7 [5, 8] 6 [5, 8] 6 [4, 8] 6 [4, 8] 6 [4, 8] 6 [5, 9] 6 [5, 9] 7 [5, 9]

W Yorks 4 [3, 5] 4 [3, 6] 4 [3, 6] 4 [3, 6] 4 [3, 6] 5 [3, 7] 4 [3, 6] 4 [2, 6] 4 [3, 5] 4 [3, 6] 4 [3, 6] 4 [3, 6]

Jan Feb Mar Apr May Jun Jul

Median [IQR] number of events per day, by calendar month

Aug Sep Oct Nov Dec
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Table 11.2: Median events per day, by conurbation and day of week 

Bristol 1 [0, 3] 1 [0, 3] 1 [0, 2] 1 [1, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2]

Cardiff 1 [0, 2] 1 [0, 1] 1 [0, 1] 1 [0, 2] 1 [0, 2] 1 [0, 1] 1 [0, 1]

G London 20 [16, 23] 18 [15, 22] 18 [15, 21] 18 [14, 21] 18 [15, 22] 17 [14, 20] 17 [15, 20]

G Manch 9 [7, 12] 8 [7, 10] 8 [6, 11] 8 [6, 10] 8 [6, 11] 8 [6, 10] 8 [6, 10]

K-on-Hull 0 [0, 1] 0 [0, 1] 0 [0, 1] 0 [0, 0] 0 [0, 0] 0 [0, 1] 0 [0, 0]

Leicester 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2]

Liverpool 3 [2, 4] 3 [2, 4] 3 [2, 4] 3 [2, 4] 3 [2, 4] 3 [2, 4] 3 [1, 4]

Norwich 0 [0, 1] 0 [0, 1] 0 [0, 1] 0 [0, 1] 0 [0, 1] 0 [0, 1] 0 [0, 1]

Nottm 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 2]

Potteries 1 [1, 2] 1 [1, 2] 1 [1, 2] 1 [1, 2] 1 [1, 2] 1 [0, 2] 1 [1, 2]

Sheffield 4 [2, 5] 3 [2, 5] 3 [2, 5] 3 [2, 5] 4 [2, 5] 3 [2, 4] 3 [2, 4]

Southamp 1 [0, 1] 1 [0, 1] 1 [0, 1] 1 [0, 1] 1 [0, 1] 1 [0, 1] 1 [0, 1]

Tyneside 6 [4, 7] 5 [4, 7] 5 [4, 7] 5 [4, 7] 5 [4, 7] 5 [4, 6] 5 [3, 7]

W Mdlnds 6 [5, 9] 6 [4, 8] 6 [5, 9] 6 [5, 8] 7 [5, 8] 6 [4, 8] 6 [4, 7]

W Yorks 5 [3, 6] 4 [3, 6] 4 [3, 6] 4 [3, 6] 5 [3, 6] 4 [3, 5] 4 [3, 5]

SunMon Tue Wed Thu Fri Sat

Median [IQR] number of events per day, by day of week

 

 

Table 11.3: Median events per day, by conurbation and calendar year 

Bristol 1 [1, 3] 2 [1, 4] 1 [0, 2] 1 [0, 1]

Cardiff 0 [0, 1] 1 [1, 2] 1 [0, 2] 1 [0, 1]

G London 15 [13, 19] 19 [16, 23] 19 [16, 23] 18 [15, 21]

G Manchester6 [4, 8] 9 [7, 11] 10 [8, 12] 9 [6, 11]

Kingston-on-Hull0 [0, 1] 0 [0, 0] 0 [0, 1] 0 [0, 0]

Leicester 0 [0, 1] 1 [0, 2] 1 [1, 2] 1 [0, 2]

Liverpool 2 [1, 3] 2 [1, 4] 3 [2, 5] 3 [2, 5]

Norwich 0 [0, 0] 0 [0, 1] 1 [0, 1] 1 [0, 1]

Nottingham1 [0, 2] 1 [0, 2] 1 [0, 2] 1 [0, 1]

Potteries 1 [0, 2] 1 [1, 2] 1 [1, 2] 1 [1, 2]

Sheffield 2 [1, 4] 4 [2, 5] 3 [2, 5] 3 [2, 5]

Southampton0 [0, 1] 1 [0, 2] 1 [0, 2] 1 [0, 1]

Tyneside 6 [4, 9] 5 [4, 7] 5 [3, 6] 5 [3, 6]

W Midlands6 [4, 8] 6 [5, 8] 6 [5, 8] 6 [5, 8]

W Yorkshire4 [3, 6] 5 [4, 7] 4 [2, 5] 4 [3, 5]

Median [IQR] events per day, by calendar year

2003 2004 2005 2006
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Table 11.4: Correlations of daily pollutant levels between monitoring stations within Manchester 

 

a) PM10 

   

  Bolton 

Manchester 

Piccadilly 

Stockport Shaw 

Heath 

Bolton 1 

  Manchester 

Piccadilly 0.8831 1 

 Stockport 

Shaw Heath 0.7574 0.8006 1 

 
b) Ozone 

   

  Bolton 

Manchester 

Piccadilly 

Manchester 

Town Hall 

Bolton 1 

  Manchester 

Piccadilly 0.9058 1 

 Manchester 

Town Hall 0.8488 0.8666 1 

 
c) CO 

    

  Bolton 

Manchester 

Piccadilly 

Manchester 

Town Hall 

Stockport Shaw 

Heath 

Bolton 1 

   Manchester 

Piccadilly 0.6357 1 

  Manchester 

Town Hall 0.5243 0.603 1 

 Stockport 

Shaw Heath 0.5571 0.5883 0.5242 1 

 
d) NO2 

     

  Bolton 

Manchester 

Piccadilly 

Manchester 

South 

Manchester 

Town Hall 

Stockport 

Shaw 

Heath 

Bolton 1 

    Manchester 

Piccadilly 0.8212 1 

   Manchester 

South 0.7471 0.7009 1 

  Manchester 

Town Hall 0.8147 0.8162 0.8713 1 

 Stockport 

Shaw Heath 0.5779 0.5922 0.7606 0.7603 1 

 
  



 

219 

 

e) SO2 

    

  Bolton 

Manchester 

Piccadilly 

Manchester 

South 

Stockport Shaw 

Heath 

Bolton 1 

   Manchester 

Piccadilly 0.4575 1 

  Manchester 

South 0.4449 0.7495 1 

 
Stockport 

Shaw 

Heathport 

Shaw Heath 0.6109 0.4253 0.5256 1 

 

 

Table 11.5: Correlations of daily pollutant levels between monitoring stations within the West 
Midlands 

a) PM10 

   

  

Birmingham 

Centre 

Birmingham 

Tyburn 

Wolverhampton 

Centre 

Birmingham 

Centre 1 

  Birmingham 

Tyburn 0.8005 1 

 Wolverhampton 

Centre 0.8165 0.697 1 

 
b) Ozone 

    

  

Birmingham 

Centre 

Birmingham 

Tyburn 

Sandwell W 

Bromwich 

Wolverhampton 

Centre 

Birmingham 

Centre 1 

   Birmingham 

Tyburn 0.8677 1 

  Sandwell W 

Bromwich 0.9272 0.9378 1 

 Wolverhampton 

Centre 0.9324 0.8532 0.9087 1 
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c) CO 

    

  

Birmingham 

Centre 

Birmingham 

Tyburn 

Sandwell W 

Bromwich 

Wolverhampton 

Centre 

Birmingham 

Centre 1 

   Birmingham 

Tyburn 0.7001 1 

  Sandwell W 

Bromwich 0.6657 0.6748 1 

 Wolverhampton 

Centre 0.7108 0.7072 0.6025 1 

 
 
d) NO2 

     

  

Birmingham 

Centre 

Birmingham 

Tyburn 

Sandwell W 

Bromwich 

Walsall 

Alumwell 

Walsall 

Willen 

Hall 

Birmingham 

Centre 1 

    Birmingham 

Tyburn 0.7142 1 

   Sandwell W 

Bromwich 0.768 0.8454 1 

  Walsall 

Alumwell 0.5883 0.8714 0.7563 1 

 Walsall Willen 

Hall 0.8539 0.7187 0.8535 0.6261 1 

Wolverhampton 

Centre 0.8226 0.6973 0.8295 0.5841 0.8557 

 
e) SO2 

    

  

Birmingham 

Centre 

Birmingham 

Tyburn 

Sandwell W 

Bromwich 

Wolverhampton 

Centre 

Birmingham 

Centre 1 

   Birmingham 

Tyburn 0.6389 1 

  Sandwell W 

Bromwich 0.5366 0.23 1 

 Wolverhampton 

Centre 0.5197 0.4855 0.4712 1 
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Table 11.6: Correlations of daily pollutant levels between monitoring stations within Sheffield 

a) Ozone 

  

  

Rotherham 

Centre 

Sheffield 

Centre 

Rotherham 

Centre 1 

 Sheffield 

Centre 0.8943 1 

 
b) NO2 

  

  

Rotherham 

Centre 

Sheffield 

Centre 

Rotherham 

Centre 1 

 Sheffield 

Centre 0.6884 1 

 
c) SO2 

  

  

Rotherham 

Centre 

Sheffield 

Centre 

  

  Rotherham 

Centre 1 

 
 

 
Table 11.7: Correlations of daily pollutant levels between monitoring stations within West 
Yorkshire 

a) PM10 

  

  

Bradford 

Centre 

Leeds 

Centre 

Bradford 

Centre 1 

 Leeds Centre 0.6259 1 

 
b) Ozone 

  

  

Bradford 

Centre 

Leeds 

Centre 

Bradford 

Centre 1 

 Leeds Centre 0.9111 1 
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c) CO 

  

  

Bradford 

Centre 

Leeds 

Centre 

Bradford 

Centre 1 

 Leeds Centre 0.6572 1 

 
d) NO2 

  

  

Bradford 

Centre 

Leeds 

Centre 

Bradford 

Centre 1 

 Leeds Centre 0.7406 1 

 
e) SO2 

  

  

Bradford 

Centre 

Leeds 

Centre 

Bradford 

Centre 1 

 Leeds Centre 0.5393 1 

 

 
Figure 11.1: 7-day moving averages of CO, SO2, NO2 over calendar time, by conurbation 
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Figure 11.2: 7-day moving averages of CO, SO2, NO2 over calendar time, by conurbation 

 

 
Figure 11.3: 7-day moving averages of CO, SO2, NO2 over calendar time, by conurbation 
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Figure 11.4: 7-day moving averages of CO, SO2, NO2 over calendar time, by conurbation 

 

11.2 Short-term effects of temperature – additional output 

Figure 11.5: Temperature effects from non-linear distributed model 
a) Bristol 

 

  

0
.5

1
1
.5

C
O
 (
m
g
/m
³)

0
1
0

2
0
3
0

S
O
2
 (
µ
g
/m
³)

0
2
5
5
0
7
5

N
O
2
 (
µ
g
/m
³)

2003 2004 2005 2006 2007
Date

7-day moving average

W Midlands

0
.5

1
1
.5

C
O
 (
m
g
/m
³)

0
1
0

2
0
3
0

S
O
2
 (
µ
g
/m
³)

0
2
5
5
0
7
5

N
O
2
 (
µ
g
/m
³)

2003 2004 2005 2006 2007
Date

7-day moving average

Tyneside

0
.5

1
1
.5

C
O
 (
m
g
/m
³)

0
1
0
2
0

3
0

S
O
2
 (
µ
g
/m
³)

0
2
5
5
0
7
5

N
O
2
 (
µ
g
/m
³)

2003 2004 2005 2006 2007
Date

7-day moving average

W Yorkshire

0.9

1.0

1.1

R
R
 a
t 
la
g
 0

0.9

1.0

1.1

R
R
 a
t 
la
g
 3

0.9

1.0

1.1

R
R
 a
t 
la
g
 7

0.9

1.0

1.1

R
R
 a
t 
la
g
 1
4

0.9

1.0

1.1

R
R
 a
t 
la
g
 2
8

0
5

1
0

R
R
 o
v
e
r 
a
ll 
la
g
s

-5 0 5 10 15 20 25
Mean daily temp (deg C)



 

225 

 

b) Cardiff 

 

 
c) Leicester 
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d) Liverpool 

 

 
e) Norwich 
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f) Nottingham 

 

 
g) Potteries 
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h) Sheffield 

 

 
i) Southampton 

 

  

0.9

1.0

1.1

R
R
 a
t 
la
g
 0

0.9

1.0

1.1

R
R
 a
t 
la
g
 3

0.9

1.0

1.1

R
R
 a
t 
la
g
 7

0.9

1.0

1.1

R
R
 a
t 
la
g
 1
4

0.9

1.0

1.1

R
R
 a
t 
la
g
 2
8

0
2

4
R
R
 o
ve
r 
a
ll 
la
g
s

0 5 10 15 20 25
Mean daily temp (deg C)

0.9
1.0
1.1

R
R
 a
t 
la
g
 0

0.9

1.0

1.1

R
R
 a
t 
la
g
 3

0.9

1.0

1.1

R
R
 a
t 
la
g
 7

0.9

1.0

1.1

R
R
 a
t 
la
g
 1
4

0.9

1.0

1.1

R
R
 a
t 
la
g
 2
8

0
2

4
6

R
R
 o
v
e
r 
a
ll 
la
g
s

0 5 10 15 20 25
Mean daily temp (deg C)



 

229 

 

j) Tyneside 

 

 
k) West Yorkshire 
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Figure 11.6: Individual conurbation plots of deviance residual vs. calendar time 
a) West Midlands, Bristol, Cardiff, Kingston-upon-Hull 

 

 
b) Tyneside, Norwich, Nottingham, Potteries 
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c) Sheffield, Southampton, West Yorkshire 

 

 
Figure 11.7: Partial autocorrelations of deviance residuals in individual conurbations 
a) West Midlands, Bristol, Cardiff, Kingston-upon-Hull 
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b) Tyneside, Norwich, Nottingham, Potteries 

 

 
c) Sheffield, Southampton, West Yorkshire 
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11.3 Effects of daily air pollution levels – additional output 

Figure 11.8: Individual conurbation plots of deviance residual vs. calendar time from the PM10 
model 
a) West Midlands, Bristol, Cardiff, Kingston-upon-Hull 

 
 

 
b) Tyneside, Norwich, Nottingham, Potteries 
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c) Sheffield, Southampton, West Yorkshire 

 

 
Figure 11.9: Individual conurbation plots of deviance residual vs. calendar time from the Ozone 
model 
a) West Midlands, Bristol, Cardiff, Kingston-upon-Hull 
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b) Leicester, Liverpool, Greater London, Greater Manchester 

 

 
c) Tyneside, Norwich, Nottingham, Potteries 
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d) Sheffield, Southampton, West Yorkshire 

 
 

Figure 11.10: Individual conurbation plots of deviance residual vs. calendar time from the CO 
model 
a) West Midlands, Bristol, Cardiff, Kingston-upon-Hull 
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b) Leicester, Liverpool, Greater London, Greater Manchester 

 

 
c) Tyneside, Norwich, Nottingham, Potteries 
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d) Sheffield, Southampton, West Yorkshire 

 

 
Figure 11.11: Individual conurbation plots of deviance residual vs. calendar time from the NO2 
model 
a) West Midlands, Bristol, Cardiff, Kingston-upon-Hull 
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b) Leicester, Liverpool, Greater London, Greater Manchester 

 

 
c) Tyneside, Norwich, Nottingham, Potteries 
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d) Sheffield, Southampton, West Yorkshire 

 

 
Figure 11.12: Individual conurbation plots of deviance residual vs. calendar time from the SO2 
model 
a) West Midlands, Bristol, Cardiff, Kingston-upon-Hull 
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b) Leicester, Liverpool, Greater London, Greater Manchester 

 

 
c) Tyneside, Norwich, Nottingham, Potteries 
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d) Sheffield, Southampton, West Yorkshire 

 

 
Figure 11.13: Partial autocorrelations of deviance residuals for the PM10 model 
a) West Midlands, Bristol, Cardiff, Kingston-upon-Hull 
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b) Tyneside, Norwich, Nottingham, Potteries 

 

 
c) Sheffield, Southampton, West Yorkshire 
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Figure 11.14: Partial autocorrelations of deviance residuals for the Ozone model 
a) West Midlands, Bristol, Cardiff, Kingston-upon-Hull 

 
 
 
b) Leicester, Liverpool, Greater London, Greater Manchester 
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c) Tyneside, Norwich, Nottingham, Potteries 

 

 
d) Sheffield, Southampton, West Yorkshire 
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Figure 11.15: Partial autocorrelations of deviance residuals for the CO model 
a) West Midlands, Bristol, Cardiff, Kingston-upon-Hull

 
 
 
b) Leicester, Liverpool, Greater London, Greater Manchester 
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c) Tyneside, Norwich, Nottingham, Potteries 

 

 
d) Sheffield, Southampton, West Yorkshire 
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Figure 11.16: Partial autocorrelations of deviance residuals for the NO2 model 
a) West Midlands, Bristol, Cardiff, Kingston-upon-Hull 

 

 
b) Leicester, Liverpool, Greater London, Greater Manchester 

 

  

-0
.1
0
-0
.0
5

0
.0
0

0
.0
5

P
a
rt
ia
l a
u
to
co
rr
e
la
ti
o
n
s
 o
f 
d
e
v
ia
n
ce

0 10 20 30 40
Lag

95% Confidence bands [se = 1/sqrt(n)]

W Midlands

-0
.1
0
-0
.0
5
0
.0
0
0
.0
5
0
.1
0

P
a
rt
ia
l a
u
to
co
rr
e
la
ti
o
n
s
 o
f 
d
e
v
ia
n
ce

0 10 20 30 40
Lag

95% Confidence bands [se = 1/sqrt(n)]

Bristol

-0
.1
0
-0
.0
5
0
.0
0
0
.0
5
0
.1
0

P
a
rt
ia
l a
u
to
co
rr
e
la
ti
o
n
s
 o
f 
d
e
v
ia
n
ce

0 10 20 30 40
Lag

95% Confidence bands [se = 1/sqrt(n)]

Cardiff

-0
.1
0
-0
.0
5
0
.0
0

0
.0
5

P
a
rt
ia
l a
u
to
co
rr
e
la
ti
o
n
s
 o
f 
d
e
v
ia
n
ce

0 10 20 30 40
Lag

95% Confidence bands [se = 1/sqrt(n)]

Kingston-upon-Hull

-0
.1
0
-0
.0
5

0
.0
0

0
.0
5

P
a
rt
ia
l a
u
to
co
rr
e
la
ti
o
n
s
 o
f 
d
e
v
ia
n
ce

0 10 20 30 40
Lag

95% Confidence bands [se = 1/sqrt(n)]

Leicester

-0
.1
0
-0
.0
5

0
.0
0

0
.0
5

P
a
rt
ia
l a
u
to
co
rr
e
la
ti
o
n
s
 o
f 
d
e
v
ia
n
ce

0 10 20 30 40
Lag

95% Confidence bands [se = 1/sqrt(n)]

Liverpool

-0
.1
0
-0
.0
5

0
.0
0

0
.0
5

P
a
rt
ia
l a
u
to
co
rr
e
la
ti
o
n
s
 o
f 
d
e
v
ia
n
ce

0 10 20 30 40
Lag

95% Confidence bands [se = 1/sqrt(n)]

G London

-0
.1
0
-0
.0
5

0
.0
0

0
.0
5

P
a
rt
ia
l a
u
to
co
rr
e
la
ti
o
n
s
 o
f 
d
e
v
ia
n
ce

0 10 20 30 40
Lag

95% Confidence bands [se = 1/sqrt(n)]

G Manchester



 

249 

 

c) Tyneside, Norwich, Nottingham, Potteries 

 

 
d) Sheffield, Southampton, West Yorkshire 
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Figure 11.17: Partial autocorrelations of deviance residuals for the SO2 model 
a) West Midlands, Bristol, Cardiff, Kingston-upon-Hull 

 

 
b) Leicester, Liverpool, Greater London, Greater Manchester 
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c) Tyneside, Norwich, Nottingham, Potteries 

 

 
d) Sheffield, Southampton, West Yorkshire 
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11.4 Effects of hourly air pollution levels – additional output 

 
Table 11.8: Effect on the estimated temperature effect of introducing extra seasonal control in a 
case-crossover model design 

28 1.005 [0.997, 1.013] 1.022 [1.011, 1.034]

29 1.014 [1.006, 1.022] 1.021 [1.009, 1.032]

30 1.009 [1.002, 1.017] 1.017 [1.005, 1.028]

31 1.010 [1.003, 1.017] 1.019 [1.008, 1.030]

32 1.009 [1.002, 1.016] 1.021 [1.010, 1.032]

Without extra seasonal control With extra seasonal control*

OR and 95% CI per 1°C drop in temperature over lag days 0-28Stratum 

length

 
Note: stratum length refers to the length (in days) of calendar time strata used to define case 
and control days for each individual 
*Seasonal control included as one sin/cos Fourier pair with annual period 
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Table 11.9: Effects of pollutants on MI risk in 2-pollutant models 

PM10 Lag 1-6 - 1.013 [1.005, 1.022] 1.015 [1.005, 1.025] 1.009 [0.999, 1.019] 1.014 [1.005, 1.023]

7-12 - 0.993 [0.982, 1.003] 0.990 [0.979, 1.002] 0.996 [0.984, 1.007] 0.992 [0.982, 1.003]

13-18 - 0.995 [0.984, 1.005] 0.997 [0.985, 1.008] 0.997 [0.986, 1.008] 0.997 [0.987, 1.008]

19-24 - 0.997 [0.988, 1.006] 0.999 [0.989, 1.008] 0.997 [0.987, 1.007] 0.997 [0.988, 1.006]

25-72 - 0.991 [0.981, 1.001] 0.999 [0.987, 1.012] 0.994 [0.981, 1.006] 0.988 [0.977, 1.000]

Σ(1-72) - 0.989 [0.979, 0.999] 1.000 [0.987, 1.012] 0.992 [0.979, 1.006] 0.988 [0.977, 1.000]

Ozone Lag 1-6 1.000 [0.994, 1.006] - 1.000 [0.993, 1.006] 1.008 [1.000, 1.016] 0.998 [0.992, 1.004]

7-12 1.003 [0.995, 1.011] - 1.006 [0.998, 1.014] 0.998 [0.988, 1.008] 1.005 [0.998, 1.013]

13-18 0.993 [0.985, 1.000] - 0.992 [0.984, 1.000] 0.988 [0.978, 0.998] 0.993 [0.986, 1.001]

19-24 0.999 [0.993, 1.006] - 0.999 [0.992, 1.005] 1.000 [0.992, 1.008] 0.999 [0.993, 1.006]

25-72 0.997 [0.990, 1.004] - 0.994 [0.986, 1.001] 0.993 [0.985, 1.002] 0.997 [0.990, 1.004]

Σ(1-72) 0.992 [0.984, 1.000] - 0.989 [0.981, 0.998] 0.987 [0.978, 0.997] 0.993 [0.985, 1.001]

CO Lag 1-6 0.999 [0.993, 1.005] 1.003 [0.997, 1.009] - 0.996 [0.989, 1.002] 1.002 [0.997, 1.008]

7-12 1.003 [0.996, 1.009] 1.002 [0.996, 1.008] - 1.007 [0.999, 1.015] 1.000 [0.994, 1.006]

13-18 0.998 [0.992, 1.005] 0.995 [0.988, 1.001] - 0.998 [0.990, 1.005] 0.998 [0.992, 1.004]

19-24 0.999 [0.993, 1.005] 0.997 [0.991, 1.003] - 0.998 [0.991, 1.005] 0.998 [0.993, 1.004]

25-72 0.994 [0.986, 1.002] 0.992 [0.985, 0.999] - 0.993 [0.984, 1.002] 0.992 [0.986, 0.999]

Σ(1-72) 0.992 [0.984, 1.001] 0.988 [0.981, 0.996] - 0.991 [0.981, 1.001] 0.991 [0.983, 0.998]

NO2 Lag 1-6 1.009 [1.001, 1.017] 1.019 [1.009, 1.028] 1.016 [1.007, 1.026] - 1.013 [1.005, 1.020]

7-12 0.992 [0.983, 1.001] 0.991 [0.980, 1.003] 0.985 [0.974, 0.996] - 0.991 [0.982, 0.999]

13-18 0.999 [0.990, 1.009] 0.987 [0.975, 0.998] 0.999 [0.989, 1.010] - 0.999 [0.990, 1.008]

19-24 1.001 [0.993, 1.010] 1.000 [0.990, 1.010] 1.001 [0.992, 1.011] - 0.999 [0.991, 1.007]

25-72 0.998 [0.988, 1.008] 0.992 [0.983, 1.002] 1.003 [0.992, 1.015] - 0.994 [0.984, 1.003]

Σ(1-72) 1.000 [0.989, 1.011] 0.989 [0.979, 0.999] 1.005 [0.993, 1.017] - 0.995 [0.985, 1.004]

SO2 Lag 1-6 0.993 [0.970, 1.016] 0.999 [0.977, 1.021] 1.003 [0.980, 1.026] 0.991 [0.968, 1.014] -

7-12 1.006 [0.980, 1.033] 1.002 [0.977, 1.028] 0.997 [0.971, 1.024] 1.008 [0.982, 1.035] -

13-18 0.986 [0.961, 1.011] 0.976 [0.952, 1.000] 0.988 [0.963, 1.013] 0.982 [0.957, 1.008] -

19-24 1.016 [0.993, 1.039] 1.013 [0.991, 1.036] 1.013 [0.990, 1.036] 1.017 [0.994, 1.041] -

25-72 1.014 [0.980, 1.050] 0.992 [0.962, 1.023] 1.010 [0.978, 1.043] 1.008 [0.973, 1.043] -

Σ(1-72) 1.014 [0.976, 1.054] 0.982 [0.949, 1.016] 1.010 [0.975, 1.047] 1.006 [0.968, 1.046] -

OR and 95% CI per 10μg/m
3
 increase (except CO: per 0.1mg/m

3
 increase)

2 pollutant model adjusted for…Pollutant and lag 

(hrs) SO 2PM 10 Ozone CO NO 2
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ABSTRACT

Context: While the effects of weather and, in particular,
ambient temperature on overall mortality are well
documented, the strength of the evidence base for the
effects on acute myocardial infarction (MI) are less clear.
Objective: To systematically review studies specifically
focusing on the effects of temperature on MI.
Data sources: Medline, Embase, and GeoBase publica-
tion databases, as well as reference lists, and the
websites of a number of relevant public organisations.
Study selection: Studies of original data in which
ambient temperature was an exposure of interest and MI
a specific outcome were selected.
Data extraction: The reported effects of ambient
temperature on the risk of MI, including effect sizes and
confidence intervals, where possible, were recorded.
Methodological details were also extracted, including
study population, location and setting, ascertainment of
MI events, adjustment for potential confounders and
consideration of lagged effects.
Results: 19 studies were identified, of which 14
considered the short-term effects of temperature on a
daily timescale, the remainder looking at longer-term
effects. Overall, 8 of the 12 studies which included
relevant data from the winter season reported a
statistically significant short-term increased risk of MI at
lower temperatures, while increases in risk at higher
temperatures were reported in 7 of the 13 studies with
relevant data. A number of differences were identified
between studies in the population included demographics,
location, local climate, study design and statistical
methodology.
Conclusion: A number of studies, including some that
were large and relatively well controlled, suggested that
both hot and cold weather had detrimental effects on the
short-term risk of MI. However, further research with
consistent methodology is needed to clarify the magni-
tude of these effects and to show which populations and
individuals are vulnerable.

In the light of global climate change, there is
increasing interest in the effects of meteorological
factors on health outcomes. A number of studies
have found that ambient outdoor temperatures
have a short-term effect on overall mortality, with
many describing a U- or V-shaped relationship; for
example, a large study in 11 US cities described a
decreasing mortality risk as the temperature
increased from the coldest days to a certain
threshold temperature, above which mortality risk
increased with temperature.1 A similar pattern has
been seen in Europe,2–5 and in a number of lower-
and middle-income countries.6 Periods of extreme
cold or heat have also been associated with
mortality peaks.7

Evidence suggests that cardiovascular effects of
differences in ambient temperature may contribute
to the increased mortality risk. Ambient outdoor
temperature has been linked to mortality specifi-
cally from cardiovascular diseases (CVDs); similar
U-shaped relationships have been described,8 and
studies have shown increases in CVD mortality
associated both with cold9 10 and hot11 outdoor
temperatures.
The effects of temperature on morbidity and

mortality from myocardial infarction (MI) specifi-
cally have not been investigated as commonly as
the effects on broader outcomes. We aimed to
review the evidence for an effect of temperature on
the risk of MI, hypothesising that MI risk would
increase at both the upper and lower extremes of
temperature. The motivation for a focused review
on MI outcomes was twofold: first, mortality,
though investigated frequently as an outcome, is
likely to reflect only a small proportion of the total
health impact of environmental exposure since
many events do not directly result in death.
Second, since MI is a specific outcome with a
specific pathophysiology, a clearer description of
the effects of temperature on MI may lead to a
better understanding of the potential triggering
mechanisms at work among those at high risk of
an ischaemic event.

METHODS

Databases and sources
We searched two large databases covering health
and medical literature: Medline (1950 to the
present) and Embase. Since meteorological expo-
sures were being considered, we also included the
specialist database GeoBase to capture any relevant
studies that might have been published in the
geographical/meteorological rather than the med-
ical literature. Reference lists of all relevant studies
were scanned to identify any further studies, and if
these showed that search terms had been missed,
extra terms were added to the main database
searches. The searches were performed by a
statistician/epidemiologist (KB), initially in July
2008, with the main database searches updated in
May 2009.
In order to capture important ‘‘grey literature’’

we searched the websites of the following organi-
sations for relevant reports: World Health
Organization; European Union; Health Effects
Institute (USA); Environmental Protection
Agency (USA); National Institutes of Health
(USA); Department of Health (UK); and
Department for Environment, Food, and Rural
Affairs (UK). As well as searching for original
research, we examined the reference lists of any
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relevant reviews appearing in their reports. Conference abstracts
and unpublished studies were not included in this review.

Search keywords and terms
Medline (accessed via OvidSP) is indexed according to MeSH
terms. Our primary search used the following MeSH keywords:
(‘‘weather’’ or ‘‘climate’’) and ‘‘myocardial infarction’’ and
‘‘humans’’. All subterms were also included, and we limited the
search to studies of adult humans, published in English. We
performed equivalent searches in Embase (using equivalent
headings in the Embase indexing system) and GeoBase (using
keywords).
To identify studies in which a temperature effect on MI was

reported as a specific secondary outcome within a broader
study, we performed a secondary Medline search, as above but
using the broader MeSH term ‘‘cardiovascular diseases’’ in place
of ‘‘myocardial infarction’’; we then limited the results to
reports where ‘‘myocardial infarction’’ or an equivalent term
was present in the title, abstract, or keywords (equivalent terms
were defined as ‘‘myocardial infarct*’’, ‘‘coronary event’’, ‘‘heart
attack’’, ‘‘Q wave infarct*’’, ‘‘non-Q wave infarct*’’, ‘‘STEMI’’,
‘‘coronary infarct*’’, ‘‘heart infarct*’’, ‘‘myocardial thrombosis’’,
or ‘‘coronary thrombosis’’, where ‘‘*’’ indicates any word
ending).

Inclusion and exclusion criteria
In order to examine the hypothesis that temperature is
associated with MI risk, studies of any relevant design were
included provided that they presented original data, and
included at least one analysis where ambient temperature (or
a composite measure incorporating this) was an exposure of
interest, and MI was the specific outcome; we did not include
studies looking only at broader CVD outcomes and not
considering MI specifically. Studies were excluded if the authors
did not control for (or stratify by) any potential confounding
factors, or did not report measures of precision or p values for
the analysis of interest.

Procedure

Titles and abstracts were screened for relevance, and full-text
versions obtained where appropriate for assessment with
reference to the inclusion and exclusion criteria; we were able
to obtain full-text papers in all cases where required and it was
not necessary to contact specific authors. For each study
included, the following information was recorded based on
prior beliefs about key aspects of study methodology and in
order to summarise study quality: study population, event of
interest, number included, age range included, location and
setting, time period, exposure variables, ascertainment of MI,
spatial resolution, temporal resolution, adjustment for air
pollution and other potential confounders, lags considered. In
addition, main results were recorded, in particular the effects of
temperature on risk of MI, including effect sizes and confidence
intervals where possible. Where authors reported several
relevant results (eg, for different lag days or for different
subgroups), it was necessary to decide which result(s) to record;
where a main or final model could be identified, this was
chosen, otherwise we recorded results from the analysis on
which the authors focused or that which best represented the
overall conclusions of the study. Though this was a somewhat
subjective process, in all cases, we also noted any important
differences in the effect estimates between different analyses.
For context, the temperature range for the location studied was

recorded where given. Finally, effects of other meteorological
variables were also noted.
To explore the role of local climate, we considered the 10-year

average of the mean annual temperature and temperature range,
using data from the Goddard Institute for Space Studies (GISS)
surface temperature data.12 We obtained monthly mean
temperatures over the period 1991–2000 from the nearest
available monitoring station to each study location. The 10-
year mean was calculated as the mean of the monthly
temperatures, and we also calculated the 10-year mean of the
minimum and maximum monthly temperatures to give an
average annual temperature range. Multinational studies were
excluded from this exploratory analysis.

RESULTS

After running the search strategy and screening abstracts for
relevance, a total of 57 full text articles were obtained for
further inspection, and 42 met the primary inclusion criteria.
We then excluded 22 studies, four of which reported no direct
effect estimates, and 18 that did not control for any potential
confounding factors or did not report measures of precision or p
values for the results of interest (online supplementary table
A1); one further research paper was excluded because the same
data were reported in a later paper, leaving a total of 19 in the
review (fig 1). The majority looked at short-term effects of daily
temperature levels (n=14).13–26 A further two studies investi-
gated temperature effects over the longer term (ie, on a monthly
or yearly timescale),27 28 while three looked at more complex
weather parameters designed to capture the effects of overall
weather patterns not restricted to ambient temperature.29–31

Figure 1 Flow diagram of search strategy.
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Short-term effects of temperature

Thirteen studies used daily time-series data to investigate the
short-term effect of temperature on MI risk (tables 1–3). Only
one study used a different design: Hirasawa et al

13 looked at the
effectiveness of 10 meteorological parameters in discriminating
between days with and without MI events in Hokkaido, Japan;
however this small study identified no useful discriminating
factors. The 13 daily time-series studies are now considered in
more detail.

Methodological considerations
Variations in methodological aspects of the 13 daily time-series
studies occurred in three main areas: ascertainment and
validation of MI outcome events; adjustment for potential
confounding factors; and flexibility of the fitted temperature
effect in terms of allowance for non-linear and delayed (or
‘‘lagged’’) effects.
MI data came from a variety of sources, the primary sources

being hospital, clinic or medical care databases (n=6),
morbidity registries (n=3), ambulance data (n=1) and death
certificate/mortality data (n=3). Most studies, including all of
those concentrating purely on mortality data, generally took the
cause of death as coded in the source data. However, five
studies, with access to symptom, ECG, and biomarker records,
validated potential MI events using specific diagnostic criteria
(table 1).
Adjustment for regular seasonal patterns within years, and

for long-term trends over a number of years, was performed to
varying degrees in a number of studies and may, where
performed, lead to more reliable estimates of short-term
temperature effects. Without such adjustment, estimated
temperature effects are likely to include these seasonal and
long-term changes in temperature and outcome, and any other
factors which vary on these timescales could confound
associations. A few studies included more specific potential
confounders. Potential confounders for the relationship
between temperature and MI, since they must by definition
be associated with temperature, are usually other time-varying
external factors, such as other meteorological parameters,
pollution levels such as ambient particulate matter and ozone,
and levels of infectious diseases such as influenza. Of note, only
three studies21 25 26 made any adjustment for daily pollution
levels, which are likely to be associated with daily temperature,
and which a number of studies have suggested may affect short-
term risk of MI.
Finally, there was variation in the way temperature relation-

ships were investigated. Six of the 13 studies appeared to
investigate temperature only as a linear effect, meaning that U-
shaped relationships similar to those reported in some mortality
studies could not have been detected. In addition, only 7/13
studies investigated the possibility of the effects of temperature
on MI being delayed (‘‘lagged’’) by one or more days: this is a
potentially important consideration if the effects of tempera-
ture on MI incidence extend beyond same-day effects; for
example, an extremely cold day may lead to an increase in the
incidence of MI over the next several days. Even among studies
that considered this, the potential lagged effects investigated
varied widely, ranging from 1 to 30 days.

Effects of lower temperatures
Overall, eight of the 12 studies which included data from the
winter season reported a statistically significant increased risk of
MI at colder temperatures, either overall or for some subgroup

(tables 2–3), including three of the five studies in which MI
outcomes were validated against specified diagnostic criteria, as
well as the only multinational study included,18 which
estimated negative associations between temperature and MI
risk for the majority of the 24 populations in Europe, China, the
USA and Australia that were included (combined RR=1.008
(95% CI 1.004 to 1.012) per 1uC drop in the temperature
averaged over the current and previous 3 days). Estimated effect
sizes varied between studies, however; for example, one study
based in Sao Paulo, Brazil25 estimated a relative risk for MI
mortality of 1.31 (1.19 to 1.44) for temperature in the lowest
decile (11–15uC) compared with the nadir mortality at 22–23uC;
this was consistent with two other studies which reported large
effects on fatal MI outcomes.16 24

Effects of higher temperatures
Statistically significant increases in MI risk with higher
temperatures were reported in seven out of the 13 studies
(tables 2 and 3), including all three with MI mortality
outcomes, though of note, only one of the five studies in which
the MI outcomes were validated against diagnostic criteria
found a heat effect. Four studies reported separate effects of
both heat and cold, including the earlier-mentioned Brazilian
study by Sharovsky et al

25 (RR=1.11 (95% CI 1.06 to 1.16) for
2-day average temperature 24–27uC compared with 22–23uC).
As with cold effects, there were differences in the way in which
effects were reported, and in their sizes. Of interest, a study in
northern Sweden22 found no effect of absolute temperature, but
reported an increase in the risk of non-fatal MI when the
temperature was higher than the previous day (RR=1.015
(1.003 to 1.027) per 1uC increase). Morabito et al

19 found a 3%
increase in MI risk associated with an extra 2 hours of ‘‘heat
discomfort’’ in Florence, Italy (heat discomfort hours were
defined as those above the 90th centile on an apparent
temperature index incorporating temperature, humidity and
wind velocity). It should be noted that the largest study to find
no effect of heat18 was one of those investigating temperature
only as a linear effect; since the authors found a cold effect, by
design they could not have also reported a separate effect of
heat on the same lag days.

Role of local climate
Barnett et al

18 considered heterogeneity in the temperature
effect across the 24 populations (from 21 countries) included in
their study. There was some variation in the estimated size of
the risk increase associated with a drop in temperature (ranging
from a 0 to 1.8% increase in risk per 1uC). Interestingly, 28% of
this variation was explained by local mean temperature (rising
to 54% when two outliers were excluded); in general, locations
with higher mean temperatures were more vulnerable to cold
days.
We explored this further in the remaining single-location

studies by considering the 10-year mean temperature and the
average annual range of temperatures (table 2). Studies in the
six ‘‘warmest’’ regions all reported a detrimental effect of
cold15 16 19 20 24 25; of note, these warmer regions also tended to
have smaller average annual temperature ranges (,20uC in five
of six cases). In contrast, considering studies in the six ‘‘coolest’’
regions, which tended to experience a greater range of
temperatures across the year (average range .20uC in four of
six cases), only one of five investigating cold effects reported a
significant effect of cold14 17 22 23 26 (with one further study21

using data from the summer months only).
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Table 1 Daily time-series studies with temperature exposures and myocardial infarction (MI) outcomes: description of studies

First author and
year of publication

Population/data
source

Location and
time period

Number of MI
events included
(mean MIs/day)

Main temperature exposure
variable(s)

Potential
confounders
included MI ascertainment

Lags
considered
(days)

Studies of fatal and non-fatal events

Gerber 200614 County medical care
registers

Olmsted
County, USA
1979–2002

2676 (0.3) Maximum temperature Annual
population,
calendar year,
season, rain,
snowfall

Diagnoses compatible
with MI extracted and
validated using cardiac
pain, biomarker, and
ECG criteria

None

Wang 200615 Ambulance service
centre data

Hiroshima,
Japan 1993–
2002

3755 (1.0) Mean temperature, humidity-
adjusted temperature

Atmospheric
pressure

Diagnosis based on
anamnestic, clinical,
laboratory and ECG
criteria

None

Enquselassie 199316 MONICA morbidity
registry (covering
ages ,70 years)

Hunter region,
New South
Wales,
Australia
1985–90

3889 (1.9) Maximum temperature Calendar month,
rainfall

Non-fatal definite MI
and fatal MI/sudden
coronary death, based
on MONICA ECG,
symptom and enzyme
criteria42

None

Ohlson 199117 Single clinic
diagnosis register
(ages ,70)

Orebro,
Sweden
1985–7 (cold
seasons only)

357 (0.6) Windchill-adjusted temperature
(as measured at 7 pm)

Day of week,
snowfall,
atmospheric
pressure

Records with ICD8
code 410.10, 410.99,
or ICD9 code 410A/B/
W/X

None

Barnett 200518 24 MONICA
morbidity registries
(covering ages 35–64
years)

Europe, China,
USA, Australia
1980–95

87 410 (0.4–2.8
by location)

Mean temperature Season and trend,
day of week,
humidity

Non-fatal definite MI
and fatal definite/
possible MI/
unclassifiable event
based on MONICA
ECG, symptom and
enzyme criteria42

0–14 inclusive

Morabito 200519 Hospitalisations
database (Florentine
area)

Florence, Italy
1998–2002

2683 (1.5) Hours of severe discomfort
(based on extremes of apparent
and windchill temperature
indices)

Stratified by
season

Records with
ICD9=410–410.92

0–3 inclusive

Ebi 200420 Hospitalisations data
(covering all non-
federal hospitals)

Three counties
in California,
USA 1993–8

283 031 (4.5–
39.4 by location)

Minimum and maximum
temperature

Season and trend Records with ICD9
code 410

0, 7, 14, 30

Koken 200321 Hospital admissions
data (11 hospitals,
covering ages 65+
years)

Denver county,
USA 1993–7
(July and
August only)

Not reported Maximum temperature, dew
point temperature

Season and trend,
day of week, air
pollution variables

Primary discharge
diagnosis
(ICD9=410.XX)

0–4 inclusive

Messner 200222 Hospital and GP
records, and death
certificates data
(ages 25–64)

Northern
Sweden
1985–92

3322 (approx
0.9{)

Temperature, change in
temperature from previous day

Season, humidity,
air pressure,
change in
humidity and air
pressure from
previous day

Suspected cases
validated using
symptom, ECG, and
enzyme marker data

None

Danet 199923 Lille-WHO MONICA
morbidity registry
(covering ages 25–64
years)

Nord district,
France 1985–
94

3314 (approx
0.9{)

Mean temperature Annual
population, mean
atmospheric
pressure, calendar
year

Non-fatal definite MIs
and fatal definite/
possible MIs, based on
MONICA ECG,
symptom and enzyme
criteria42

None

Fatal events only

Dilaveris 200624 Death certificate data Athens
territory,
Greece 2001

3126 (8.6) Daily mean/minimum/maximum
temperature

Atmospheric
pressure, relative
humidity, season
(based on
calendar date)

Death certificates with
ICD10 codes of I20.0–
4, I21.9, I22.0, I22.1,
I22.8, I22.9

Mean of 0, 7

Continued
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No such pattern could be detected for heat effects; indeed, the
studies based in the regions with the coolest and warmest mean
temperatures (northern Sweden and Sao Paulo, Brazil, respec-
tively) both reported detrimental effects of heat.

Vulnerability among subgroups

A few studies investigated vulnerability to temperature effects
according to individual-level characteristics. Among those
considering the effects of temperature separately for different
age groups, there were inconsistent results; two studies, both of
which had found significant detrimental effects of cold,
reported that analyses restricted to the oldest age group gave
similar effect size estimates to those including all patients,16 23

though it should be noted that in the former study the oldest
age group accounted for over half of the events, while in the
latter the age structure of the study population was not
reported. Morabito et al,19 on the other hand, reported that
correlations between ‘‘cold discomfort hours’’ and MI rates in
winter were larger among those aged .65 years, while
correlations between ‘‘heat discomfort hours’’ and MI rates in
summer were larger among those aged ,65 years. Age appeared
to affect the magnitude of temperature effects in one study in
California though the direction of the association was not
consistent across the three regions studied.20 In the same study,
analyses were also presented stratified by sex: the estimated
increase in risk of MI for a 3uC decrease in maximum
temperature was greater among women in the Sacramento
region (15.7% (4.9% to 27.6%) compared with 10.9% (5.1% to
16.9%) for men, among those aged 55–69 years), whereas the
increase in MI risk following an equivalent temperature drop in
San Francisco was larger among men (6.6% compared with 2.2%
in women). Barnett et al

18 reported that the increase in event
rates in cold periods was greater among women than men
(OR=1.07 (1.03 to 1.11)), averaging over all 24 included
populations. The same study found no difference between those
with and without previous MI. Similarly, Enquselassie et al

16

reported that the effects of heat and cold among subjects with a
prior history of ischaemic heart disease were similar to the
effects among all study participants.

Long-term effects of temperature

Two studies considered the effect of temperature on MI risk over
timescales of .1 month. Results from a monthly time-series

study among 369 women aged 20–44 years, hospitalised for MI in
24 centres covering four continents, appeared to show an
detrimental effect of cold on a monthly timescale (RR=1.14
(1.03 to 1.25) per 5uC temperature decrease).27 A long-term effect
of cold was also reported by Gyllerup, who compared MI
mortality across 284 municipalities in Sweden, each of which
was assigned a cold index based on the number of times the
windchill-adjusted temperature in the municipality fell below
210uC in a 10-year period.28 Municipalities in the three coldest
deciles (based on this cold index) were reported to have
standardised mortality ratios (SMRs) of .1 (SMR=1.4 in the
coldest decile), while those in the seven least cold deciles all had
SMRs ,1 (SMR =0.9 for those in the least cold decile), with the
effect persisting after adjustment for socioeconomic factors.

Effects of composite weather parameters
Three studies considered the effects of composite weather
parameters: air mass type,29 arctic oscillation index30 and
weather fronts31 were all associated with short-term risk of
MI. Results of such analyses can be difficult to interpret and
compare; indeed two of these studies present two contrasting
effects: Morabito et al, using hospitalisation data from Italy,
found that an anticyclonic continental air mass, representing
cold and clear weather, significantly increased the risk of MI
compared with a mixed air mass representing mild, humid,
cloudy weather (RR=1.23, p,0.05, 1-day lagged effect), while
Messner et al, in a study based in northern Sweden, found that
MI risk increased with increasing arctic oscillation index, which
corresponds to higher levels of temperature, humidity, and
cloudiness (RR=1.038 (1.015 to 1.062) per unit increase in
arctic oscillation index, lagged by 3 days), though this apparent
contradiction could simply represent the broadly U-shaped
relationship between weather and MI that has been reported by
other studies investigating temperature effects directly.

DISCUSSION
To our knowledge, this study is the first systematic review to
specifically focus on the effects of ambient temperature on MI.
Our search strategy is likely to have identified the majority of
major studies focusing on this question, and we have also taken
steps to include studies in which our specific outcome of
interest was investigated as a subanalysis within a broader
study.

Table 1 Continued

First author and
year of publication

Population/data
source

Location and
time period

Number of MI
events included
(mean MIs/day)

Main temperature exposure
variable(s)

Potential
confounders
included MI ascertainment

Lags
considered
(days)

Sharovsky 200425 Death registry data Sao Paulo,
Brazil 1996–8

12 007 (16.4) Mean temperature Season and trend,
relative humidity,
atmospheric
pressure, day of
week, holidays,
influenza levels,
air pollution
variables

Death certificates with
MI (ICD10= I21) listed
as primary cause

0, and moving
average of up to
previous 7 days

Rossi 199926 Vital statistics
department mortality
data

Milan, Italy
1985–9

Approx 1600*
(0.9)

Mean temperature Season and trend,
relative humidity,
day of week,
holidays,
respiratory
infection
epidemics,
pollution variables

Deaths with ICD9
codes of 410

Different lags
considered,
exact strategy
unclear

*Derived from reported mean daily rate, and length of period under study; {derived from reported total number of events, and reported length of study.
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Table 3 Daily time-series studies with temperature exposures and myocardial infarction (MI) outcomes: study results

First author and year

Temperature
variable*, range
(if reported)
(uC)

Relative risk (RR) or
rate ratio for
temperature
(95% CI if reported)

(Change in temperature
variable to which RR
refers)

Subgroup to which RR
refers (if applicable)

Lag for temp
effect (days) Comment

Studies of fatal and non-fatal events

Gerber 200614 tmax 229 to 39 0.93 (0.73 to 1.14) .30uC 0 –

1.00 (reference) 18–30uC

0.97 (0.89 to 1.06) 0–17uC

1.03 (0.92 to 1.14) ,0uC

Wang 200615 tmean 20.9 to 32.7 1.00 (reference) .20uC 0 –

1.12 (0.99 to 1.27) 10–20uC

1.17 (1.01 to 1.35) ,10uC

Enquselassie 199316 tmax ,16 to .30 1.2 (0.9 to 1.5)* .30uC Fatal MIs 0 –

1.0 (reference) 23–27uC Fatal MIs

1.4 (1.1 to 1.8)* (16uC Fatal MIs

1.2 (0.9 to 1.4)* .30uC Non-fatal MIs

1.0 (reference) 23–27uC Non-fatal MIs

1.0 (0.8 to1.3)* (16uC Non-fatal MIs

Ohlson 199117 twind ,220 to .0 1.00 (reference) >0uC 0 –

1.09 (0.82 to 1.44) 210 to 21uC

1.10 (0.79 to 1.52) 220 to 211uC

1.12 (0.67 to 1.85) ,220uC

Barnett 200518 tmean 1.5 to 23.0 1.008 (1.004 to 1.012) Per 1uC decrease Average 0–3 Only a linear temperature effect
appears to have been considered

Morabito 200519 tmean, discomfort
hours

1.03 (p,0.01) Per extra two heat
discomfort hours

Summer, men,
,65 years

0 Only linear effects of the exposure
variables appear to have been
considered. However, discomfort
hours analysis was performed
separately for winter and summer

1.06 (p,0.01) Per extra two cold
discomfort hours

Winter, women,
,65 years

Ebi 200420 tmin, tmax
21 to 37 (tmin)

1.072 (1.057 to 1.086) Per 3uC decrease (tmin) Men, 55–69 years, LA 7 Only linear temperature effects
appears to have been considered.
Effects for age >70 years and for
women were all in the same
direction as those shown here

1.008 (1.004 to 1.012) Per 3uC increase (tmin) Men, 55–69 years, SF

1.223 (1.083 to 1.381) Per 3uC increase (tmin) Men, 55–69 years, Sa

1.025 (1.000 to 1.052) Per 3uC increase (tmax) Men, 55–69 years, LA

1.066 (1.023 to 1.111) Per 3uC decrease (tmax) Men, 55–69 years, SF

1.109 (1.051 to 1.169) Per 3uC decrease (tmax) Men, 55–69 years, Sa

Koken 200321 tmax 16.7 to 30.8 1.175 (1.029 to 1.343) Per 5.9uC increase >65 years 0 Analysis was for July/August only

Messner 200222 temp, tchange
238 to 30 (temp)

1.001 (0.993 to 1.008) Per 1uC decrease (temp) Fatal MIs 0 Only linear temperature effects
appears to have been considered

1.000 (0.997 to 1.003) Per 1uC increase (temp) Non-fatal MIs|

1.003 (0.979 to 1.028) Per 1uC increase (tchange) Fatal MIs

1.015 (1.003 to 1.027) Per 1uC increase (tchange) Non-fatal MIs

Danet 199923 tmean 215 to 28 1.05 (1.02 to 1.09) Per 5uC decrease 0 Only linear temperature effects
appears to have been considered

Fatal events only

Dilaveris 200624 tmean 1 to 39 1.13{

1.00 (reference)

30uC

23.3uC

Mean of last
7 days

Results are from the regression
line, which shows minimum event
rate at 23.3uC, with the event rate
increasing smoothly above and
below this temperature (levelling
off at mean temperatures below
10uC)

1.40{ (p,0.001) 10uC

Sharovsky 200425 tmean 11 to 27 1.11 (1.06 to 1.16){

1.00 (reference)

23.8–27.3uC

21.6–22.6uC

2-Day
average

–

1.16 (1.05 to 1.27){ 16.4–17.3uC

Continued
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We identified 19 relevant studies, with a total of 14
investigating short-term (day-to-day) effects of temperature
on MI risk. A number of large and relatively well-controlled
studies have reported a statistically significant effect of ambient
temperature on MI risk. The vast majority of studies reported
main effects on the same day or up to 3 days later, with no
study reporting substantial effects lagging by more than 1 week.
Over half of the time-series regression studies reported detri-
mental effects of cold and over half reported detrimental effects
of heat; indeed a few studies found a U-shaped relationship,
with MI risk increasing at both ends of the temperature scale.
The size of temperature effects varied. Three studies of MI
mortality outcomes were among those estimating the largest
temperature effects—as much as a 31–44% increase in risk at
the extremes of the local temperature scale compared with
intermediate local temperatures. The larger size of these
mortality effects might reflect an inherent lack of specificity
in studies with mortality outcomes; some deaths are likely to
have been coded as MI based on limited information, leading to
potential misclassification, and if such misclassified causes of
death were more strongly associated with temperature, results
may have been exaggerated. On the other hand, studies based
on hospital admissions may have underestimated the true
temperature effects if difficulties in getting to hospital during
temperature extremes led to more out-of-hospital MI deaths
occurring which would not have been included. Although
studies including non-fatal events generally estimated effects
that were smaller in magnitude, detrimental effects of both heat
and cold were still found in a number of these studies;
considering the five studies in which MI outcomes were
validated against diagnostic criteria, one and three studies
found significant effects of heat and cold, respectively.
Various mechanisms have been suggested through which cold

exposure might act as a trigger for MI, and it is possible that a
number of parallel processes contribute to the effect.
Experimental studies have found increased arterial pressure
and blood viscosity during cold exposure,32 as well as an
increased need for oxygen and consequently an increase in the
cardiac workload.33 Furthermore, red cell counts, plasma
cholesterol and fibrinogen concentrations, all of which may be
thrombogenic, appear to be raised on exposure to cold.32 34 Heat
exposure has also been shown under controlled conditions to
lead to increases in red blood cell counts, platelet counts, and
blood viscosity, as well as increases in heart rate.35 However,
there is a lack of more recent data about the effects of
temperature on an updated range of clotting measures and more
research is needed in this area.
The majority of studies included used data sources such as

hospital databases and registries, which would have had the

potential to capture events across the local population, thus
their findings should have good generalisability within the local
settings. There might be a number of reasons for the
heterogeneity in results between studies. One must consider
that the studies included here cover a wide range of populations
with differing demographic profiles, as well as a wide range of
geographical locations. In each location, it is likely that various
factors such as quality of housing, prevalence of air condition-
ing, central heating and insulation could have all influenced the
strength and direction of the observed association between
outdoor temperature and health outcomes at the population
level. There were also many methodological differences across
the studies included: MI events were identified from sources of
various types; modelling strategies varied; different definitions
of temperature were used as the main exposure (such as
minimum, maximum, mean, windchill-adjusted); different
allowances for non-linear temperature effects were made; and
different lag days considered. There was also variation in the
level of adjustment for potential confounding factors such as air
pollution (which was only controlled for in a handful of
studies).
In addition, local climate may have a role in the vulnerability

to temperature effects. One study which incorporated data
from 21 countries found that local mean temperature explained
much of the variation in the magnitude of the detrimental effect
of cold on MI risk,18 and we correspondingly found that, among
single-location studies, those conducted in areas with higher
long-term mean temperatures tended more frequently to report
detrimental effects of cold than those conducted in warmer
areas, and indeed tended to report effect estimates with larger
magnitude. We did not observe such a pattern for the effect of
heat, despite the differing effects of heat that have been
reported on overall mortality in different locations.2 These
findings must be interpreted with caution, since the studies
included in our review differed in so many ways. Nevertheless,
increases in systolic blood pressure in response to lower
temperatures have been found to be larger in warmer
countries,36 and studies of all-cause mortality have similarly
reported local climate to be a strong modifier of temperature
effects.1 9 Such effect modification may simply reflect better
established adaptive measures in colder countries; the
Eurowinter Group found that, at the same outdoor tempera-
tures, people in Finland were more likely to have bedroom
heating, keep their indoor temperatures higher, and were more
likely to wear hats, gloves, anoraks, and (among women)
trousers, than people in Athens, Greece37; the potential benefits
of such adaptive measures are suggested by the improvements
in blood pressure achieved on installing home heating in a UK
study.38 Others have suggested that there may be some

Table 3 Continued

First author and year

Temperature
variable*, range
(if reported)
(uC)

Relative risk (RR) or
rate ratio for
temperature
(95% CI if reported)

(Change in temperature
variable to which RR
refers)

Subgroup to which RR
refers (if applicable)

Lag for temp
effect (days) Comment

1.17 (1.07 to 1.28){ 15.2–16.4uC

1.31 (1.19 to 1.44){ 11.0–15.2uC

Rossi 199926 tmean 26 to 32 1.44 (1.10 to 1.90) .27uC 1 Effect of colder temperatures is not
described1.00 (reference) 14uC

Percentage changes were converted to relative risk by dividing by 100 and adding one.
*tmax, daily maximum temperature; tmin, daily minimum temperature; tmean, daily mean temperature; temp, temperature (unspecified); discomfort, number of discomfort hours per
day; tchange, temperature change from previous day; twind, windchill-adjusted temperature; {approximate RR, derived from graphical presentation of results.
LA, Los Angeles region; Sa, Sacramento region; SF, San Francisco region.
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biological adaptation to cold,39 and cold-adapted subjects have
been shown to have reduced activity of the sympathetic
nervous system in response to cold stress.40

Our review inevitably has some limitations. First, our search
strategy might have missed some studies. However, by
searching a number of different databases, with different
indexing systems, and, furthermore, checking reference lists
and the websites of major organisations, we believe that all
major studies with MI as the primary outcome should have
been picked up. We also took steps to include studies of CVDs
more broadly, where an analysis of MI was also performed
separately. Our decision to include only papers analysing
specific MI outcomes might also have led to some informative
studies of related outcomes being excluded, though we believe
that this is outweighed by the advantage in interpretability
from the very specific focus on MI. Second, as with any review
of the literature, there might have been publication bias: studies
finding effects may have been more likely to be published. The
extent of publication bias is difficult to assess in studies with
such varied methodology and reporting. Though such concerns
should always be borne in mind, our goal was not to produce a
definitive numerical estimate of the effects of temperature on
MI risk, but rather to give an overview of the evidence available.
Finally, we did not include non-English-language citations owing
to resource limitations, but we believe that this is unlikely to have
led to the omission of any major papers in the area.
There is some public health motivation for further clarifying

the effects of temperature. Weather forecasting is reasonably
accurate up to a few days in advance, and with a well-
understood relationship between temperature and MI, those
most vulnerable could be warned when the risk of MI was likely
to increase, and given advice to reduce their personal risk. The
UK Met Office recently set up a similar targeted warning
system for people with chronic obstructive pulmonary disease,
in which patients are alerted by an automated telephone call
when the risk of disease exacerbation is elevated based on the
ambient temperature; they are given advice on keeping warm,
avoiding low temperatures and watching for warning signs of
their condition worsening. It is claimed that a 20.5–48%
reduction in hospital admissions has been achieved among
practices signing up to the scheme.41 Health service providers
could also be warned in advance where rates of MI were likely
to increase, to aid the short-term allocation of resources.
A number of suggestions arise for future research. Though the

majority of the studies included were of similar basic design
(daily time-series studies), there was wide variation in the
methodology and reporting used. More consistent adjustment
for potential confounders such as season, long-term trend and
air pollution; allowance for non-linear and delayed temperature
effects; and more consistent reporting standards would make
future studies in this area easier to compare and interpret. More
large studies with this kind of consistent methodology and
reporting will be required in a number of geographical locations
to characterise the short-term effects of temperature on MI risk,
and the relationship of such effects to local climate. There is also
a need for more studies which take account of potential effect
modifiers: though a few studies have presented stratified or age-
restricted data, there is little direct evidence on how age, and
other individual-level factors such as previous disease, affect a
person’s vulnerability to temperature effects. In addition,
individual-level studies collecting detailed information on such
factors as clothing, air conditioning and home heating, though
expensive and difficult to design, would provide valuable data to
assess the role of adaptive measures. Finally, though the role of

more complex weather indicators, such as air mass type,
remains unclear and difficult to interpret, the effects of such
factors are worthy of further investigation, since weather effects
on human health may not be captured fully by investigating
only specific parameters such as temperature and humidity;
indeed interactions between the various aspects of weather
may, in part, help to explain some of the variation in results
across studies included in this review.
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ABSTRACT

Context: Short-term fluctuations in air pollution have
been associated with changes in both overall and
cardiovascular mortality.
Objective: To consider the effects of air pollution on
myocardial infarction (MI) risk by systematically reviewing
studies looking at this specific outcome.
Data sources: Medline, Embase and TOXNET publication
databases, as well as reference lists and the websites of
relevant public organisations.
Study selection: Studies presenting original data with
MI as a specific outcome and one or more of the following
as an exposure of interest were included: particulate
matter (PM), black carbon/black smoke, ozone, carbon
monoxide, nitrogen oxides, sulphur dioxide and traffic
exposure.
Data extraction: The effects of each pollutant on risk of
MI, including effect sizes and confidence intervals, were
recorded where possible. Methodological details were
also extracted including study population, location and
setting, ascertainment of MI events, adjustment for
potential confounders and consideration of lagged effects.
Results: 26 studies were identified: 19 looked at the short-
term effects of pollution on a daily timescale; the remaining
7 at longer-term effects. A proportion of studies reported
statistically significant detrimental effects of PM with
diameter ,2.5 mm (3/5 studies, risk increase estimates
ranging from 5 to 17% per 10 mg/m3 increase), PM
,10 mm (3/10, 0.7–11% per 10 mg/m3), CO (6/14, 2–4%
per ppm), SO2 (6/13, effect estimates on varied scales) and
NO2 (6/13, 1–9% per 10 ppb). Increasing ozone levels were
associated with a reduction in MI risk in 3/12 studies. A
number of differences in location, population and demo-
graphics and study methodology between studies were
identified that might have affected results.
Conclusion: There is some evidence that short-term
fluctuations in air pollution affect the risk of MI. However,
further studies are needed to clarify the nature of these
effects and identify vulnerable populations and individuals.

There has been considerable interest in recent years
in the health effects of exposure to both short-term
fluctuations and long-term levels of air pollution,
in particular common environmental pollutants
including particulate matter (PM), ozone (O3),
carbon monoxide (CO), nitrogen dioxide (NO2)
and sulphur dioxide (SO2). Early time-series studies
demonstrated an effect of short-term changes in
the levels of pollutants, in particular PM, on overall
mortality in both the USA1 and Europe.2 Two
noteworthy prospective cohort studies also
reported that mortality risk was increased by up
to 26% for people living in cities with the highest
mean pollution levels, after adjusting for individual
risk factors such as smoking.3 4

More specific outcomes have also been investi-
gated, and studies of cardiovascular mortality and
morbidities, including ischaemic heart disease, have
suggested that both day-to-day changes in pollu-
tant levels5 6 and longer-term exposure7 8 may
affect risk. A statement from the American Heart
Association concluded that short-term increases in
PM levels led to corresponding increases in
cardiovascular mortality, and in hospital admis-
sions for several cardiovascular diseases.9 A major
review of the epidemiological evidence on air
pollution and cardiovascular disease conducted
for the UK Department of Health went further,
stating in particular that ‘‘a large number of time-
series studies show very clearly that, with few
exceptions, all of the commonly measured pollu-
tants (particles, ozone, sulphur dioxide, nitrogen
dioxide and carbon monoxide) are positively
associated with increased mortality and hospital
admissions for cardiovascular disease’’.10 While an
effect of air pollution on cardiovascular mortality
and hospital admissions is to some extent estab-
lished, the association between exposure to air
pollution and risk of myocardial infarction (MI) is
less clear.
The aim of this study was to systematically

review the evidence concerning air pollution effects
on the risk of MI. We hypothesised that increases
in PM, O3, CO, NO2 and SO2 levels would be
associated with both short- and long-term
increases in MI risk. To our knowledge no
systematic review to date has focused on this
specific outcome. Clarifying the effects of air
pollution on MI is of particular interest, not only
to aid the assessment of the likely burden to acute
care facilities associated with changes in pollution
levels but also to clarify whether MI is a major
contributor to the increases in broader cardiovas-
cular outcomes that have been associated with
pollution, and thus to further our understanding of
pathways and pathological mechanisms by which
air pollution impacts on health.

METHODS

Databases and sources

We searched Medline (1950 to present) and
Embase, as well as TOXNET, a bibliographic
database specialising in toxicology literature.
Reference lists of all relevant studies were scanned
to identify any further studies, and if these
revealed that search terms had been missed, extra
terms were added to the main database searches.
The searches were performed by a statistician/
epidemiologist (KB), initially in July 2008, with the
main database searches updated in May 2009. We
also searched the websites of the following
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organisations for relevant reports and reviews: World Health
Organization; European Union; Health Effects Institute (USA);
Environmental Protection Agency (USA); National Institutes of
Health (USA); Department of Health (UK); Department for
Environment, Food and Rural Affairs (UK). Conference
abstracts and unpublished studies were not included in this
review.

Search keywords and terms

Our search of Medline (via OvidSP) and TOXNET used the
following MeSH keywords: (‘‘air pollution’’ or ‘‘air pollutants’’
or ‘‘ozone’’ or ‘‘carbon monoxide’’ or ‘‘sulfur dioxide’’ or
‘‘particulate matter’’ or ‘‘nitrogen oxides’’ or ‘‘environmental
exposure’’) and ‘‘myocardial infarction’’ and ‘‘humans’’ not
(‘‘tobacco smoke pollution’’). All subterms were also included
and we limited the search to studies of adult humans, published
in English. For Embase, which does not use the MeSH
classification system, we used the nearest equivalent search
terms from the Embase indexing system.
In order to identify studies in which air pollution effects on

MI were reported as specific secondary outcomes within a
broader study, we performed a secondary Medline search, as
above but using the broader MeSH term ‘‘cardiovascular
diseases’’ in place of ‘‘myocardial infarction’’; we then limited
the results to reports where ‘‘myocardial infarction’’ or an
equivalent term was present in the title, abstract, or keywords
(equivalent terms were defined as ‘‘myocardial infarct*’’,
‘‘coronary event’’, ‘‘heart attack’’, ‘‘Q wave infarct*’’, ‘‘Non-Q
wave infarct*’’, ‘‘STEMI’’, ‘‘coronary infarct*’’, ‘‘heart infarct*’’,
‘‘myocardial thrombosis’’, or ‘‘coronary thrombosis’’, where ‘‘*’’
indicates any word ending).

Inclusion and exclusion criteria
To examine the hypothesis that ambient air pollutant exposure
would be associated with MI risk, studies of any relevant design
were included if they presented original data, and included at
least one analysis where MI was the specific outcome, and one
or more of the following exposures were investigated: PM or
black carbon/black smoke, ozone, carbon monoxide, any oxide
of nitrogen, or sulphur dioxide. Studies using exposure to traffic
as a proxy were also included. We excluded studies in which the
authors did not control for (or stratify by) any potential
confounding factors, or did not report measures of precision or p
values for the analysis of interest

Procedure

Titles and abstracts were screened for relevance, and full-text
versions obtained where appropriate for assessment with
reference to the inclusion and exclusion criteria; we were able
to obtain full-text papers in all cases where required and it was
not necessary to contact specific authors. For each study
included, the following information was recorded based on
prior beliefs about key aspects of study methodology and in
order to summarise study quality: study population, event of
interest, number included, age range included, location and
setting, time period, exposure variables, ascertainment of MI,
spatial resolution, temporal resolution, adjustment for weather
variables and other potential confounders, lags considered. The
main results of each study were also recorded—in particular, the
effects of each pollutant of interest on risk of MI, including
effect sizes and confidence intervals where possible. Where
authors reported several relevant results (eg, for different lag
days, or for different subgroups), we chose results from the

main or final model if such a model could be identified, or else
from the analysis on which the authors focused or that which
best represented the overall conclusions of the study, noting any
important differences in the effect estimates between different
analyses. Finally, effect estimates and their confidence intervals
were standardised, where possible, to aid comparison; effect
estimates for PM10 and PM2.5 were converted to ‘‘per 10 mg/
m3’’, estimates for O3, NO2 and SO2 were converted to ‘‘per
10 ppb’’ or ‘‘per 10 mg/m3’’, and estimates for CO were
converted to ‘‘per ppm’’, or ‘‘per mg/m3’’

RESULTS
A total of 27 studies met the inclusion criteria; however, one
was excluded because only a basic analysis was performed with
no consideration of potential confounding factors, leaving 26 in
the final review (fig 1).
The majority of studies (n=19) were concerned with

identifying short-term associations between air pollution
exposures and MI risk (tables 1–3).5 11–28 A further seven studies
looked at the longer-term effects of air pollution on MI risk
(table 4).29–35

Short-term effects of air pollution
Among the 19 studies that we identified which looked at the
short-term effects of air pollution on MI risk, a number of
specific pollutants were investigated, the most common being
particles with diameter ,10 mm (PM10, 10 studies), particles
with diameter ,2.5 mm (PM2.5, 5 studies), O3 (12 studies), CO
(14 studies), NO2 (13 studies) and SO2 (10 studies). The number
of individual pollutants investigated by a single study ranged
from 1 to 8. The design of the studies fell into two categories: 10
were analyses of daily time-series data, while the remaining nine
used case-crossover designs.

Study designs and methodological considerations
Both time-series and case-crossover study designs are based
solely on data from subjects who have experienced the event of

Figure 1 Flow diagram of search strategy.
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Table 1 Daily time-series studies with air pollution exposures and myocardial infarction (MI) outcomes: description of studies

First author and year
of publication

Population/data
source

Location and
time period

Number of
events
included
(mean per
day for time-
series
studies)

Air pollution
exposure variable(s)

Potential
confounders
included MI ascertainment

Lags
considered
(days, except
where noted)

Daily time-series studies

Fatal and non-fatal events

Cendon 200611 Hospital admissions
data (112 hospitals:
infirmaries and ICUs);
age .64 only

Sao Paulo, Brazil
1998–9

19272* (26.4) PM10 (24 h average) Season and trend,
temperature (non-
linear, 2-day moving
average), humidity,
day of week

Events with ICD-10
codes suggesting MI in
the Public Health Data
Analysis System
Division

0–7 inclusive

Lanki 200612 AMI registers and
hospital discharge
registers

5 European cities
(Augsburg,
Barcelona,
Helsinki, Rome,
Stockholm) 1992–
2000 (3–7 year
period per city)

26 854
(between 0.9
and 8.4 per
city)

PM10, O3 (8 h average,
summer only), NO2,
CO, modelled particle
number conc. (proxy
for PM ,0.1 mg/m3)

Season and trend,
apparent temperature
(non-linear, same day
and average of lag
days 1–3),
barometric pressure,
weekday indicator,
holiday indicator

Records with ICD9
code 410 in hospital
registers (two cities);
or records meeting
MONICA definition of
MI in AMI registers
(three cities)58

0–3 inclusive

Koken 200313 Hospital admissions
data (11 hospitals,
covering ages 65+
years)

Denver county,
USA 1993–7 (July
and August only)

1576* (5.1) PM10, O3, NO2, SO2,
CO (all 24 h average)

Daily maximum
temperature (lag
days 0–4), dew point
temperature, day of
week, calendar year,
population size

Primary discharge
diagnosis
(ICD9=410.XX)

0–4 inclusive

Mann 20025 Records from a
health maintenance
organisation

Southern
California, USA
1988–95

19 690 (6.7*) PM10 (24 h average),
O3 (8 h average), NO2,
(24 h average) CO (8 h
average)

Season and trend,
temperature (non-
linear, same day),
relative humidity,
calendar year, day of
week, annual
population size

Records with ICD9
code 410

0–5 days
inclusive

Ye 200114 Hospital emergency
transports records
(four hospitals, ages
65+ years)

Tokyo, Japan
1980–95 (July
and August only)

3200* (3.28) PM10, O3, CO, NO2,
SO2, (all daily average)

Annual trends, daily
maximum
temperature (lag
days 0–4), population
size

As diagnosed by
emergency doctor,
based on presenting
symptoms

0 (adjusted for
1–4 inclusive)

Linn 200015 Hospital admissions
data

Los Angeles, USA
1992–5

Not reported PM10, O3, CO, NO2 (all
24 h average)

Season and trend,
day of week,
holidays, mean
temperature (same
day), barometric
pressure, indicators
for hot days, cold
days, rainy days

Records with an all-
patient-refined
diagnosis-related group
code of 111, 115, or
121

Different lags
considered,
exact strategy
unclear

Poloniecki 199716 Hospital episode
statistics

London, UK
1987–94

68 300*
(26.7)

O3 (8 h average); NO2,
SO2, CO, black smoke
(all 24 h average)

Season and trend,
temperature (lag day
1), humidity, day of
week, public
holidays, influenza
epidemic indicator

Records with ICD9
code 410

1

Fatal events only

Murakami 200617 Vital statistics of
Japan data (34
districts)

34 districts,
Japan 1990–4

14 430 (7.9*) Suspended particulate
matter (hourly
measurements)

Time of day,
temperature (non-
linear, same day),
region

Records with ICD9
code 410

Exposure
windows from 1
to 48 h

Sharovsky 200418 Death registry data Sao Paulo, Brazil
1996–8

12 007 (16.4) PM10, CO, SO2 (daily
average)

Season and trend,
mean temperature
(non-linear, up to lag
day 7), relative
humidity,
atmospheric
pressure, day of
week, holidays,
influenza levels

Death certificates with
MI (ICD10= I21) listed
as primary cause

0, and moving
average of up to
previous 7 days

Continued
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Table 1 Continued

First author and year
of publication

Population/data
source

Location and
time period

Number of
events
included
(mean per
day for time-
series
studies)

Air pollution
exposure variable(s)

Potential
confounders
included MI ascertainment

Lags
considered
(days, except
where noted)

Rossi 199919 Vital statistics
department mortality
data

Milan, Italy 1985–
9

1600* (0.9) Total suspended
particles

Season and trend,
temperature (non-
linear, lag days
unclear), relative
humidity, day of
week, holidays,
epidemics, pollution

Deaths with ICD9
codes of 410

Different lags
considered,
exact strategy
unclear

Case–crossover studies

Fatal and non-fatal events

Barnett 200620 Hospital admissions
data from seven
cities

Australia (five
cities) and New
Zealand (two
cities) 1998–2001

28 818* PM2.5 (24 h average),
PM10 (24 h average),
O3 (8 h average), CO
(8 h average), NO2
(24 h average)

Temperature (lag
days 0–1), change in
temperature from
previous day,
humidity, hot and
cold days, pressure,
day of week, holiday,
rainfall

Records with ICD9
code 410 or ICD10
code I21-22

Average of 0–1

Zanobetti 200621 Hospital admissions
data from the US
Medicare programme
(ages 65+ years)

Boston
metropolitan area,
USA 1995–9

15 578 PM2.5, PM non-traffic
(modelled), O3, CO,
NO2, black carbon

Apparent
temperature (non-
linear, lag day 1);
also matched for
same day
temperature), day of
week

Records with ICD9
code 410

0, 1, and mean
of 0 and 1

Peters 200522 Coronary event
registry (cases
surviving first 24 h
only)

Augsburg,
Germany 1999–
2001

851 PM2.5, total number
concentration (proxy
for ultrafine particles),
O3, SO2, CO, NO2 (all
24 h average; 1 h
average also
considered for PM)

Temperature (non-
linear, same day),
day of week

Patients meeting
MONICA definition of
MI58

0–5 (also 0–6 h
for hourly
analysis)

Ruidavets 200523 AMI registry Toulouse, France
1997–9

399 O3 (highest 8 h
average of the day),
SO2 (24 h average),
NO2 (24 h average)

Day of week
(matched), min and
max temperature
(same day), humidity,
influenza levels

Clinical, ECG and
enzyme data available
to support diagnosis

0–3 days
inclusive

Sullivan 200524 Community database
linking emergency
service and hospital
outcome data

Washington
State, USA 1988–
94

5793 Increase in short-term
average PM2.5 (derived
from fine PM), defined
as 10 mg/m3 increase
in 1, 2, 4, 24 h
averaged PM2.5).
Similar for SO2 and CO

Temperature (non-
linear, same day),
relative humidity

Discharge diagnosis of
AMI confirmed by
enzyme and ECG
changes

0–2 days
inclusive

Zanobetti 200525 Hospital admissions
data from the US
Medicare programme
(ages 65+ years)

21 Cities, USA
1986–99

302 453 PM10 (daily average) Day of week
(matched), apparent
temperature (non-
linear, lag days 0–1)

Medicare claims where
primary diagnosis had
ICD9 code 410

0–2 days
inclusive

Peters 200426 KORA MI registry Augsburg,
Germany 1999–
2001

691 Exposure to traffic as
measured by
retrospective diary for
the 4 days preceding
event

None specified Records meeting
MONICA definition of
MI58

0–6 days
inclusive

D’Ippoliti 200327 Regional hospital
admissions data

Rome, Italy 1995–
7

6531 Total suspended
particles, CO, SO2, NO2
(all 24 h average)

Day of week
(matched),
temperature (non-
linear, lag day 1),
humidity, air pressure

Records with ICD9
code of 410

0–4, and mean
of 0–2 days

Peters 200128 Coronary care unit
admissions records

Greater Boston,
USA 1995–6

772 PM2.5, PM10, ozone,
SO2, NO2, CO, black
carbon

Season, day of week,
minimum daily
temperature (non-
linear, same day),
relative humidity

Patients had all of: >1
CK above upper limit of
normal, positive MB
isoenzymes,
symptoms

0–5 inclusive
(also 0–5 h for
hourly analysis)

*Derived from reported mean daily rate, and length of period under study.
AMI, acute myocardial infarction; ICI, intensive care unit; PM, particulate matter.
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Table 3 Daily time-series studies with air pollution exposures and myocardial (MI) outcomes: study results details

First author and year
Exposure
variable

Relative risk or rate
ratio (95% CI if
reported)

Exposure increase
(or category) to
which rate ratio
refers

Lag for
estimated
effect (days
unless
specified) Comment

Daily time-series studies

Fatal and non-fatal events

Cendon 200611 (for ICU admissions) (units not given) NO2: cumulative effect estimate hides a significant effect at lag
0, but then reduced risk at lags 2–3
Other pollutants: effects appeared to be dominated by lag 0
effect
Effects overall similar when infirmary admissions were
considered (as opposed to ICU)
PM10: effect similar for infirmaries but reached significance

PM10 1.032 (0.978 to 1.086) 22.5 Sum of 0–7

O3 1.093 (1.011 to 1.174) 50.23

CO 0.998 (0.933 to 1.066) 1.42

NO2 1.038 (0.962 to 1.114) 54.67

SO2 1.129 (1.064 to 1.194) 10

Lanki 200612 PM10 1.003 (0.995 to 1.011) 10 mg/m3 0 No statistically significant effects at lags 1, 2, 3 days for any
pollutant
There was a suggestive effect of PNC, when restricting to the
three cities using hospital discharge register data, which had
higher power

O3 0.994 (0.986 to 1.002) 10 mg/m3

CO 1.025 (1 to 1.051) 1 mg/m3

NO2 0.995 (0.985 to 1.006) 10 mg/m3

PNC 1.005 (0.996 to 1.015) 10 000/cm3

Koken 200313 PM10 NS (detail not reported) 0 Only the lag value with the strongest effect was given; therefore
the effect of ozone at 1–4 days lag was not reportedO3 0.819 (0.726 to 0.923) 10 ppb

CO NS (detail not reported)

NO2 NS (detail not reported)

SO2 NS (detail not reported)

Mann 20025 PM10 0.999 (0.987 to 1.011) 10 mg/m3 Not reported –

O3 0.993 (0.985 to 0.997) 10 ppb

CO 1.035 (1.024 to 1.046) 1 ppm

NO2 1.02 (1.011 to 1.03) 10 ppb

Ye 200114 PM10 NS (detail not reported) – Not reported Model estimates do not directly indicate effect size. We can only
conclude that there was some positive effect of NO2 on MI
outcomes, and no significant effect of other pollutants

O3 NS (detail not reported) –

CO NS (detail not reported) –

NO2 0.006 (0.003, 0.010) Not reported

SO2 NS (detail not reported) –

Linn 200015 PM10 1.01 (1 to 1.01) 10 mg/m3 0 Part of a wider paper on CVD—the effects seen were not
specific to MI alone: CO and NO2 were also associated with
congestive heart failure, asthma and COPD, suggesting just one
manifestation of an effect on susceptible subjects

O3 0.965 (0.899 to 1.035) 10 ppb

CO 1.041 (1.023 to 1.059) 1 ppm

NO2 1.056 (1.005 to 1.11) 10 ppb

Poloniecki 199716 O3 0.993 (0.981 to 1.006) 10 ppb 1 Further breakdown indicated that the effects found were only
significant in the cool season (Oct–Mar)
SO2 was independently associated with MI in the cool season in
all two-pollutant model combinations
NO2, CO, black smoke were not associated in two-pollutant
models, except in combination with O3

CO 1.023 (1.007 to 1.04) 1 ppm

NO2 1.009 (1.003 to 1.016) 10 ppb

SO2 1.017 (1.007 to 1.027) 10 ppb

Black smoke 1.0303 (1.0092 to
1.0528)

15 mg/m3

Fatal events only

Murakami 200617 TSP (categorised) 1.00 (reference
category)

0–99 mg/m3 0–1 h The effects were similar when exposure windows of up to 6 h
were considered; but there was a less clear ‘‘dose–response’’
relationship when periods longer than 6 h were used1.13 (1.07 to 1.20) 100–149 mg/m3

1.18 (1.01 to 1.37) 200–249 mg/m3

1.40 (1.00 to 1.97) >300 mg/m3

Sharovsky 200418 PM10 1.01 (0.91 to 1.11) 10 mg/m3 Average of 0–3 –

CO 1.014 (0.995 to 1.03) 1 ppm

SO2 1.03 (1.005 to 1.07) 10 mg/m3

Rossi 199919 TSP 1.10 (1.13 to 1.18) 100 mg/m3 Average of 3–4 Average of 3–4 day lag best predictor; little effect of concurrent
day’s exposure

Continued

Systematic review

Heart 2009;95:1746–1759. doi:10.1136/hrt.2009.175018 1751

 on 17 October 2009 heart.bmj.comDownloaded from 



Table 3 Continued

First author and year
Exposure
variable

Relative risk or rate
ratio (95% CI if
reported)

Exposure increase
(or category) to
which rate ratio
refers

Lag for
estimated
effect (days
unless
specified) Comment

Case-crossover studies

Fatal and non-fatal events

Barnett 200620 (For ages >65 years) Effect estimates were in the same direction for those aged ,65
years, but none were statistically significantPM2.5 1.073 (1.035 to 1.114) 10 mg/m3 Average of 0–1

PM10 NS (detail not reported) –

O3 NS (detail not reported) –

CO 1.032 (1.009 to 1.055) 1 ppm

NO2 1.088 (1.02 to 1.163) 10 ppb

Zanobetti 200621 PM2.5 1.052 (1.007 to 1.092) 10 mg/m3 Av of 0–1 Results for same-day pollution levels only were in the same
direction and of similar magnitude
The effect of black carbon was non-significant on the same day
alone, whereas CO was significantly predictive of MI on the
same day (though not for days 0 and 1 averaged)

PM non-traffic 1.0439 (0.9688 to
1.1170)

10.28 mg/m3

O3 0.988 (0.957 to 1.017) 10 ppb

CO 1.124 (0.973 to 1.284) 1 ppm

NO2 1.074 (1.034 to 1.104) 10 ppb

Black carbon 1.0834 (1.0021 to
1.1582)

1.69 mg/m3

Peters 200522 PM2.5 1.105 (0.987 to 1.226) 10 mg/m3 2 days Strong effect of PM2.5 among the subgroup of never-smokers
(RR=1.20, 1.04 to 1.39 per 7.7 mg/m3)
Strongest pollution effects seen at 2 days’ lag as shown
There were no statistically significant effects of pollutants on any
other lag days
In an hourly analysis, there was no effect of PM2.5 or TNC at the
hourly level at up to 6 h lag

O3 0.94 (0.895 to 0.987) 10 mg/m3

CO 1.32 (0.968 to 1.801) 1 mg/m3

NO2 1.033 (0.966 to 1.104) 10 mg/m3

SO2 1.475 (1.069 to 2.005) 10 mg/m3

TNC 1.04 (0.90 to 1.20) 6400/cm3

Ruidavets 200523 O3 1.082 (0.98 to 1.166) 10 mg/m3 0 There was an effect for ozone at 1 day lag (p=0.02), but not
longer lags
The ozone effect only was statistically significant at 0 and 1-day
lag when possible coronary deaths, sudden deaths and deaths
with insufficient data added to the outcome

NO2 0.922 (0.81 to 1.04) 10 mg/m3

SO2 0.98 (0.723 to 1.323) 10 mg/m3

Sullivan 200524 PM2.5 1.01 (0.98 to 1.05) 10 mg/m3 Average of 0–
1 h

The authors also found no effects when increasing the averaging
time for the exposure variables from 1 to 24 h before the eventCO 1.04 (0.99 to 1.08) 1 ppm

SO2 0.97 (0.94 to 1.01) 10 ppb

Zanobetti 200525 PM10 1.007 (1.003 to 1.01) 10 mg/m3 0 Little effect at lag days 1 or 2
For same-day effect, a dose–response relationship was seen
with steeper slope at PM10 ,50 mg/m3

Peters 200426 Traffic exposure 2.73 (2.06 to 3.61) Odds ratio for traffic
exposure

Exposure 1 h
before the
event

–

D’Ippoliti 200327 TSP 1.028 (1.005 to 1.052) 10 mg/m3 Av of 0–2 For total suspended particulate and CO, the only effect was the
same day; for NO2, there was no same-day effect, but a
significant effect with 2 days’ lag
Effects of TSP and CO were stronger in the warm season, and
among those with heart conduction disorders

CO 1.044 (1 to 1.089) 1 mg/m3

NO2 1.293 (0.97 to 1.741) 10 mg/m3

SO2 NS (detail not reported) –

Peters 200128 PM2.5 1.17 (1.035 to 1.325) 10 mg/m3 2 h, hourly
analysis

There was also a significantly elevated risk of MI associated with
24 h average levels lagged by 1 day (ie, levels from 24 to 48 h
before the event), for PM2.5, PM10; and non-significant increased
risks for coarse mass, black carbon, and NO2

PM10 1.109 (1.015 to 1.211) 10 mg/m3

Coarse mass 1.16 (0.89 to 1.51) 15 mg/m3

O3 1.062 (0.965 to 1.17) 10 ppb

CO 1.22 (0.89 to 1.67) 1 ppm

NO2 1.019 (0.934 to 1.112) 10 ppb

SO2 0.98 (0.911 to 1.058) 10 ppb

Black carbon 1.27 (0.97 to 1.68) 3 mg/m3

Estimates converted where possible to: PM10: per 10 mg/m3; PM2.5: per 10 mg/m3; O3: per 10 ppb or 10 mg/m3; CO: per ppm or mg/m3; NO2: per 10 ppb or 10 mg/m3; SO2: per
10 ppb or 10 mg/m3.
COPD, chronic obstructive pulmonary disease; CVD, cardiovascular disease; PNC, particle number concentration; RR, relative risk; TNC, total number concentration; TSP, total
suspended particulate; SPM, suspended particulate matter.
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interest (in this case, MI). Briefly, time-series studies typically
take as their outcome the daily number of events in a defined
region, and a regression analysis is performed to relate these
daily counts to explanatory variables (in this case, daily
pollutant levels) and potential confounders. A case-crossover
study can be thought of as a kind of self-matched case–control
study. For each individual, exposure data are collected for the

‘‘hazard’’ period (usually the period immediately before the MI)
and for a ‘‘control’’ period which was not associated with the
event of interest.
Air pollutant data originated from monitoring stations and

were most commonly recorded as 24 h averages, though 8 h
averages were also frequently used (table 1). One study by
Peters et al used traffic exposure as the exposure of interest and

Table 4 Studies of long-term effects of air pollution on myocardial infarction (MI) outcomes

First author and
year of publication

Population/data
source

Location and time
period

Number of MI
events

Air pollution
exposure variable(s)

MI
ascertainment Result

Cohort studies

Miller 200729 Cohort of
postmenopausal
women aged 50–
79 years

36 cities, USA
1994–8

584 (cohort
size
= 65 893)

Average annual
exposure to PM2.5*

From annual
questionnaires
and national
death index;
independently
adjudicated by
investigator

PM2.5

(Hazard ratio)

1.06 (0.85 to
1.34)

Per 10 mg/m3

increase

Abbey 199330 Cohort of seventh-
day Adventists

California, USA
1977–82

62 (cohort
size = 6303)

Average and
cumulative exposure
to ambient NO2
estimated for places of
residence/work*

From hospital
records; reviewed
by a cardiologist
on the study staff

NO2 ‘‘No
association’’
(details not
reported)

Abbey 199131 Cohort of seventh-
day Adventists

California, USA
1977–82

62 (cohort
size = 6303)

Cumulative exposure
to total suspended
particles (TSP), and
O3* over a 5-year
period before follow-up

From hospital
records; reviewed
by a cardiologist
on the study staff

TSP

(Hazard ratio)

0.93 (0.57 to
1.51)

>1000 vs
,1000 h
exposure to
200 mg/m3

O3 1.06 (0.69 to
1.61)

>500 vs ,500 h
exposure to
10 pphm

Case–control
studies

Tonne 200732 Cases from
community-based
MI study;
population controls

Worcester,
Massachusetts,
USA 1995–2003

5049
(controls
= 10 277)

Cumulative traffic at
place of residence
(average daily traffic
within 100 m
multiplied by total
length of road)

AMI reviewed
and
independently
validated
according to
diagnostic criteria

Cumulative
traffic

(Odds ratio)

1.04 (1.02
to1.07)

Per 794 vehicle-
km

Rosenlund 200633 Cases (aged 45–70
years) from
coronary and
intensive care unit
discharge registers
and death
certificate data;
population controls

Stockholm,
Sweden 1992–4
(exposure
estimated over 30
years before
events)

1397
(controls
= 1870)

30-Year mean annual
NO2, CO, SO2 modelled
from source-specific
emissions database
PM estimated in 2000
and assumed constant

From coronary
units, ICUs,
hospital discharge
register, death
certificates using
standard
diagnostic criteria

PM10

CO

NO2

SO2

(Odds ratios)

1.0 (0.79 to
1.27)

1.04 (0.89 to
1.21)

0.99 (0.76 to
1.30)

1.03 (0.78 to
1.36)

Per 5 mg/m3

increase

Per 300 mg/m3

increase

Per 30 mg/m
3

increase

Per 40 mg/m
3

increase

Grazuleviciene
200434

Cases (aged 25–64
years) from
coronary and
intensive care
discharge registers;
population controls

Kaunas, Lithuania
1997–2000

448 (controls
= 1777)

NO2 exposure in
district of residence
(categorised into high/
medium/low tertiles)

Records with
ICD10 codes of
I21 and
consistent
symptoms, ECG,
marker levels

NO2

(Odds ratios)

1.00 (ref)

1.43 (1.04 to
1.96)

1.43 (1.07 to
1.35)

Low (mean
13.1 mg/m3)

Medium (mean
18.7 mg/m3)

High (mean
24.7 mg/m3)

Population-based
studies

Rosenlund 200835 Hospital discharge
registry and
regional cause of
death registry

Rome, Italy 1998–
2000

1056 (fatal) +
6513 (non-
fatal)

Mean annual NO2
exposure

Records with
ICD9 codes of
410

NO2

(Relative risk)
1.05 (0.97 to
1.15) fatal
1.01 (0.97 to
1.05) non-fatal

Per 10 mg/m3

increase
Per 10 mg/m3

increase

*Based on measured data from monitoring stations.
AMI, acute myocardial infarction; ICU, intensive care unit.
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this was ascertained from diary data.26 MI data came from more
varied sources. Three studies looked exclusively at MI deaths,
and used death registry and vital statistics data to identify cases.
The rest included data on both fatal and non-fatal MI events.
The majority identified MI cases through hospital admissions
records (eight studies), while the remainder used data from
other hospital records (three), MI registers (three) and other
databases (two). Six studies, with access to symptom, ECG and
biomarker records, validated potential MI events using specific
diagnostic criteria.
Key potential confounders and the possibility of delayed

effects were dealt with fairly consistently across studies. In case-
crossover studies, confounding by season, long-term trend, and
factors which do not vary over the short term, is dealt with by
design. The majority of time-series studies included also
adjusted for season and long-term trend, as well as temperature,
which is a potential confounder since temperature may be
associated with both pollution levels and MI risk. However, the
specific way in which authors adjusted for temperature varied;
while a few studies allowed for both non-linearity of the
temperature effect and for delayed (lagged) temperature effects
over a number of days, others performed only a more basic
adjustment (table 1). Lagged effects of air pollution itself were
included in all studies; in most cases both immediate (same day)
effects and a number of different lags were considered.

Effects of particulate pollutants
Of 10 studies investigating the effects of PM10 on MI risk, seven
found no effect at all (tables 2–3, fig 2). The authors of a US
study in a population aged >65 years estimated a 0.65%
increase in MI admissions on the same day as a 10 mg/m3

increase in PM10 (95% CI 0.3% to 1.0%).25 A second study
reported an effect of similar size for a study population with no
age restriction.15 However, the Onset Study, which used
admissions records from a Boston coronary care unit and
analysed data hourly, found a considerably larger effect: their
estimate implied an 11% increase in risk for a 10 mg/m3 increase
in PM10 1 h earlier.28 This larger effect was not only observed at
the hourly timescale; the same authors also found a large and
statistically significant effect at a daily resolution, in contrast
with the lack of effect found by most studies.
PM2.5 was included as an exposure of interest in five studies,

all of which were of a case-crossover design. Three of the five
studies reported that PM2.5 significantly increased the risk of
MI. Effect sizes of 5–7% per 10 mg/m3 increase were estimated
in two studies using a daily timescale for analysis,20 21 a third
found no effect overall.22 These effects were observed between 0
and 2 days after a change in PM2.5 levels. A few studies were
able to analyse data at an hourly resolution, with two finding
no effect of PM2.5 on this timescale.22 24 As with PM10, results
from the Onset Study were contrasting: the authors estimated a
17% increase in risk 2 h after a 10 mg/m3 increase in PM2.5.

28

Other particulate exposures were investigated in some
studies. Of note, two studies looking at proxies for ultrafine
particles found no effect on MI risk.12 22 On the other hand, total
suspended particulate was included as an exposure in three
studies, and all reported a significant association with MI, either
on the same day,17 27 or with some delay.19

Effects of gaseous pollutants
Ambient ozone was investigated as a risk factor for MI by 12
studies, only one of which reported a detrimental effect, with
MI admissions to intensive care units increasing on days with

higher ambient ozone.11 More common were studies reporting a
protective effect of ozone (tables 2–3, fig 3). Surprisingly, of 10
studies reporting a numerical estimated odds ratio or relative
risk for MI associated with an increase in ozone levels, the
estimate was ,1 in seven studies, and this protective effect was
statistically significant in three studies. However, effect sizes
varied from as little as a 0.7% reduction13 to as much as an 18%
reduction in MI risk for a 10 parts per billion (ppb) increase in
ozone.5 It is worth recording that the relationship between
ozone levels and the levels of other pollutants appeared to vary
between studies. For example, considering the four studies
reporting a significant effect of ozone in either direction,
Cendon et al

11 (the only study finding a detrimental effect of
ozone) recorded positive correlations between ozone and other
measured pollutants, whereas the remaining studies reported
correlations that were either negative13 22 or both negative and
positive.5

Evidence for an effect of ambient CO, NO2, or SO2 levels on
MI risk was mixed. However, for each of these pollutants, a
proportion of studies (6/14, 6/13 and 4/10, respectively) found a
significant detrimental effect, whereas no study found an effect
in the opposite direction. Only four studies looking at multiple
pollutants found no effect of any of these gases13 23 24 28; one did
not report the number of cases included while the other three

Figure 2 Estimate effects of particulate pollution on myocardial
infarction risk. PM, particulate matter; RR, relative risk.
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were relatively small studies (n=5793, 772 and 399) which may
have had limited power. Among studies which measured CO
levels in parts per million (ppm, as used more commonly than
mg/m3 or mg/m3), the four studies finding a significant effect
presented effect sizes that were fairly consistent, each estimat-
ing a 2–4% increase in MI risk per 1 ppm increase in CO.5 15 16 20

For NO2, effect sizes ranged from a 1% to a 9% increase in risk
per 10 ppb increase in NO2 levels, though the largest effects
appeared in study populations restricted to those aged .65
years.20 21 Comparison of effect sizes among the four studies
reporting an SO2 effect is more difficult since different pollutant
measures were used between the studies. Finally, it is worth
noting that the effects of these gases, where reported, appeared
to operate relatively quickly: in most cases either on the same or
next day.

Vulnerability among subgroups
A number of the studies described in this review included
analyses stratified by various factors to assess the vulnerability
of particular subgroups to any effects of air pollution on MI risk.
In general, study reports did not state whether such subgroup
analyses were preplanned and their results should thus be

interpreted cautiously. Most commonly investigated was the
role of age.
Barnett et al,20 who found detrimental effects of PM2.5, CO

and NO2 among those aged >65 years (table 3), reported that
effects for those aged ,65 years, though in the same direction,
were smaller and non-significant, though it should be noted
that event rates were lower among this age group so that lack of
power might have been responsible for the lack of a statistically
significant effect. Lanki et al12 correspondingly reported that the
effects of CO and particle number concentration were larger
among those aged >75 years, though only for non-fatal
outcomes (for CO: relative risk (RR) per 0.2 mg/m3 =1.015,
95% CI 1.004 to 1.026 compared with 1.001, 0.995 to 1.008 for
those aged ,75 years); indeed the opposite effect was seen
when fatal MIs were considered. The detrimental effects of
ozone23 and of traffic exposure26 also appeared to increase for
older subgroups. In contrast, Sullivan reported no modification
by age of the effect of PM2.5 on MI risk.24

Other potential effect modifiers were less commonly inves-
tigated. One study considered the effects or PM2.5 by race, sex
and smoking status, and found no differences24; this was in
contrast with a study suggesting that the effect of PM2.5 may be

Figure 3 Estimated effects of gaseous pollutants on myocardial infarction risk. RR, relative risk.
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larger among never-smokers than current- or ex-smokers (OR
per IQR increase =1.20, 95% CI 1.04 to 1.39 for never-smokers
compared with 1.04, 0.90 to 1.21 for current smokers),22 and
that increased risk associated with traffic exposure may be
larger among women than among men (OR per IQR increase
=4.51, 2.55 to 8.00 for women compared with 2.59, 1.90 to 3.53
for men).26 The detrimental effects of traffic exposure were also
reported to be larger among those out of employment, though
confidence intervals were overlapping (OR=4.20, 95% CI 2.88
to 6.12 compared with 2.20, 1.47 to 3.28 for those currently
employed).26

Long-term effects of air pollution

Seven studies attempted to look at the long-term effects of
cumulative exposure to air pollution on MI risk (table 4).
Among these were three cohort studies in which ‘‘healthy’’
subjects were followed up for a number of years, and MI events
accrued prospectively. Naturally, this approach can lead to
relatively few events being included; indeed in the seventh-day
Adventists cohort of 6303 subjects, only 62 MIs were
observed30 31 and, though no effects of NO2, ozone or total
suspended particles were found, large confidence intervals
meant that important effects in either direction could not be
ruled out. A more recent study included 584 MIs in a very large
cohort of postmenopausal women (n=65 893); no significant
effect of PM2.5 was found (HR=1.06 per 10 mg/m3 increase,
95% CI 0.85 to 1.34).
Two case–control studies found detrimental effects of long-

term exposure to traffic, both for a directly estimated traffic
exposure based on (road length 6 traffic density) as measured
near the place of residence (OR=1.04, 1.02 to 1.07 per 794
vehicle-km),32 and for NO2 exposure classified by residential
district (OR=1.43, 1.07 to 1.35 for regions with ‘‘high’’ versus
‘‘low’’ NO2 levels).34 The latter effect was reported to be
stronger in older people (OR=2.07, 1.28 to 3.35 for those aged
55–64 years). However, two further studies reported no effect of
long-term exposure to NO2,

33 35 or to PM10, CO, or SO2.
33

DISCUSSION

This review has concentrated principally on the effects of
specific pollutants on the risk of MI. To our knowledge this is
the first time the evidence base for pollution effects on this
specific outcome has been systematically reviewed. Our search
strategy is likely to have identified the majority of major studies
focusing on this question, and we have taken steps to include
studies where our specific outcome of interest was investigated
as a subanalysis within a broader study.
From a total of 19 studies looking at short-term pollution

effects, fairly persuasive evidence emerges of some short-term
effect on MI risk. Among particle exposures, though no effect of
PM10 was found in most studies, increasing daily PM2.5 levels
were commonly associated with increasing MI risk between 0
and 2 days later. Increases in risk of 5–7% for a 10 mg/m3

increase in PM2.5 levels were typically reported, though one
study reported an effect over three times this size. The evidence
concerning effects of gaseous pollutants was more mixed:
increases in CO, NO2, and SO2 were all associated with
increases in MI risk in a substantial proportion of studies, yet
just over half of the studies that investigated each of these
exposures reported no effects. Surprisingly, higher levels of
ozone were in a number of studies associated with a reduction
in MI risk. However, ozone levels may be reduced close to
sources of nitric oxide (such as vehicular traffic), where the two

gases react to produce NO2. It has also been suggested that a
negative correlation between ozone and methyl nitrate (a
combustion product of some engine fuels) might be responsible
for such paradoxical associations.36 Thus higher ozone levels
may be acting as a marker of reductions in other pollutants. Of
note, none of the studies finding significant protective effects of
ozone looked at the effect in multipollutant models. An
alternative explanation for the inconsistent effects observed for
ozone is that since this gas may react with indoor surfaces,
exposure measures based on outdoor monitors may be an
inadequate marker of personal exposure among people spend-
ing a substantial proportion of their time indoors. We noted that
among a limited number of studies that examined the question of
effect modifiers, there was some suggestion that older
people might be more vulnerable to the detrimental effects of
pollution.
Though the evidence concerning most commonly measured

pollutants may appear to be varied and sometimes conflicting, it
should be borne in mind that the studies included were
conducted using varying methodologies, and in varying situa-
tions. Variation in estimated effects may have been caused by a
number of factors: different locations may have had differing
underlying pollutant levels, different populations may have had
differing susceptibilities, and different methods of exposure
measurement, event ascertainment and statistical analysis may
have led to differing results. With the earliest study of short-
term effects meeting our inclusion criteria published in 1997, the
quality of methodology seen in these studies reflects recent
standards, with widespread attempts to control for important
potential confounders, such as season, trend and ambient
temperature, using statistical models. The majority of studies
also included non-fatal MIs, which may be less susceptible to
misclassification than MI deaths; some further validated MI
diagnoses by having ECG and enzyme data examined by study
investigators. Nevertheless, two important possibilities are that
residual confounding by ambient temperature among studies
performing only basic adjustments for temperature, and
inclusion of misclassified events, may both have led to spurious
results. The number of variations in study methodology,
populations and settings make the extent of this problem
difficult to ascertain. We did note that among the studies
finding a relatively low proportion of significant pollutant
effects were the few which had adjusted for lagged effects of
temperature beyond the previous day,12–14 18 and a number of the
studies in which MIs were separately validated against
diagnostic criteria.12 22–24 However, this is at best suggestive
and such differences in results might have a number of other
explanations.
More generally, there are some inherent limitations in

observational studies of air pollution effects. A common concern
is that pollution measured by outdoor monitors may not be a
good measure of overall personal exposure37 since indoor
pollution sources are ignored, although median correlations as
high as 0.92 have been reported between personal PM2.5

exposure in homes without environmental tobacco smoke38

and levels as measured by a central outdoor monitoring station.
Correlations may nevertheless be substantially lower depending
on indoor pollution sources in individual homes (notably from
smoking, heating and cooking). For example, it has been
suggested that personal exposure to ozone39 and nitrogen
dioxide may be inadequately captured by ambient outdoor
levels; indeed for the latter, indoor exposure, particularly for
those with gas cookers, is likely to exceed exposure outside the
home.40 More generally, ambient PM may be a better proxy
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than ambient gases for corresponding personal exposures.41 In
time-series studies, by design, exposure must be averaged over
the whole region being analysed. This leads to a second
potential weakness since in reality levels of pollutants may
vary substantially over, say, a city. Although the case-crossover
design allows for individualised exposure measures, in practice
exposure must be approximated using the limited number of
pollution monitors available, so the same problem arises. Only
the study by Peters et al,26 in which the exposure of interest
was exposure to traffic, used a truly individualised exposure,
based on diary data. Finally, since commonly measured air
pollutants are likely to be highly correlated in any given
situation, and unmeasured pollutants may also confound
associations, studies such as those included here are unlikely
to provide reliable evidence about the separate effects of
individual pollutants.
A number of possible mechanisms have been suggested

through which air pollution may affect cardiovascular function
and trigger acute events. First, increases in levels of inflamma-
tory markers such as C-reactive protein42 at times of higher
ambient pollution have been observed, suggesting a systemic
inflammatory response associated with exposure, though a
number of experimental studies have reported no clear systemic
inflammatory response to pollutants.43 44 Second, observational
studies have linked higher levels of exposure to particulate air
pollution with increases in heart rate45 and decreases in heart
rate variability42; furthermore, an increase in discharges of
implanted cardioverter-defibrillators has been reported follow-
ing increases in ambient exposure to fine particles, NO2, CO and
black carbon.46 Third, air pollution may induce changes in blood
viscosity and factors that may increase the propensity to clot or
impair the dissolution of thrombi: plasma viscosity increased
among people exposed to a severe episode of air pollution in
Germany in 1985.47 Controlled exposure experimental studies
have demonstrated concentrated environmental particles lead-
ing to an increase in plasma fibrinogen levels in healthy
volunteers,48 and dilute diesel exhaust leading to an increase in
thrombus formation (measured using an ex vivo perfusion
chamber) and platelet activation,49 and an impairment of the
acute release of tissue plasminogen activator, an enzyme
involved in the breakdown of blood clots.44 A fourth possible
pathway is suggested by a study in rats in which exposure to
urban particulate matter led to an increase in endothelins,
which act as vasoconstrictors.50 Indeed, controlled exposure to a
mixture of concentrated ambient particles and ozone in humans
led to arterial vasoconstriction in one study,51 whereas an
observational study reported an increase in blood pressure
associated with increased PM2.5 levels in patients undergoing
cardiac rehabilitation.52

Finally, a few individual studies have reported observations
suggesting other possible mechanisms: air pollution exposure
has been associated with accelerated progression of athero-
sclerosis and decreased plaque stability,53 decreased oxygen
saturation and hypoxaemia,54 and increased ischaemic burden.44

With observational and experimental evidence seemingly
supporting a number of potential pathways, it seems plausible
that exposure to air pollution may affect the risk of acute
cardiac events through multiple mechanisms. The exact
compounds responsible are difficult to disentangle on current
levels of evidence: in observational studies, ambient levels of any
given pollutant are likely to be highly correlated with other
pollutants, and experimental studies to date have tended to
deliver composite exposures comparable with ‘‘real-world’’
exposures.

The final part of this review considered studies looking at
longer-term effects of air pollution. A small number of
prospective cohort studies have observed only a small number
of events and thus reported effect estimates with wide
confidence intervals. Notably, two case–control which
looked at long-term exposure to traffic based on place of
residence (one directly, and one using NO2 exposure as a proxy)
did show a detrimental effect; however, these effects might be
confounded by factors related to socioeconomic status and
occupation. Thus, in contrast with short-term effects, the
evidence base for long-term effects of air pollution exposures
on MI risk is limited and few convincing conclusions can be
drawn.
Air pollution guidelines55 and legal limits56 57 have generally

not been based on cardiovascular outcomes. For example WHO
recommend that average levels of PM10 (24 h average), ozone
(8 h average), SO2 (24 h average) and NO2 (1 h average) should
not exceed 50, 100, 20 and 200 mg/m3, respectively, but these
limits were derived principally from data on mortality (for PM10

and ozone) and respiratory outcomes among vulnerable
individuals (for SO2 and NO2).

55 However, a notable implication
of the linear pollution effects on MI risk estimated by most
studies in this review is that if real, these effects would have an
impact even below any threshold pollutant levels set by
governments.
Our review has its limitations. First, our search strategy

might have missed some studies. However, by searching a
number of different databases, with different indexing systems,
and furthermore, checking reference lists and the websites of
major organisations, we believe that all major studies with MI
as the primary outcome should have been picked up. We also
took steps to include studies of cardiovascular diseases more
broadly, where an analysis of MI was also performed separately.
Our decision to include only papers analysing specific MI
outcomes may also have led to some informative studies of
related outcomes being excluded, though we believe that this is
outweighed by the advantage in interpretability from the very
specific focus on MI. Second, as with any review of the
literature, there may have been publication bias: studies finding
effects may have been more likely to be published. The extent of
publication bias is difficult to assess in studies with such varied
methodology and reporting. Though such concerns should
always be borne in mind, our goal was not to produce a
definitive numerical estimate of the effects of pollution effects
on MI risk, but rather to give an overview of the evidence
available. Finally, we did not include non-English-language
citations owing to resource limitations, but we believe that this
is unlikely to have led to the omission of any major papers in the
area.
In conclusion, although the available literature is variable and

sometimes conflicting, our review does seem to reveal compel-
ling evidence for some effect of air pollution on MI risk based on
studies in a variety of settings. There is much room for further
research. The exact role of individual pollutants is unclear, and
perhaps only further experimental studies under controlled
conditions can deal with this topic. A large number of potential
mechanisms have been suggested and though some have the
support of limited data, no single mechanism has emerged as
the most likely; indeed, multiple mechanisms may be at work,
and further work may disclose the relative importance of each.
There is also a need for biomarkers of exposure which can be
used in epidemiological studies to give more reliable estimates of
individual exposure to air pollutants. Finally, future studies may
investigate factors that may make some people or indeed
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populations more susceptible than others to the detrimental
effects of air pollution.
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ABSTRACT

Objective To examine the short term relation between

ambient temperature and risk of myocardial infarction.

Design Daily time series regression analysis.

Setting 15 conurbations in England and Wales.

Participants 84010 hospital admissions for myocardial

infarction recorded in the Myocardial Ischaemia National

Audit Project during 2003-6 (median 57 events a day).

Main outcome measures Change in risk of myocardial

infarction associated with a 1°C difference in

temperature, including effects delayed by up to 28 days.

Results Smoothed graphs revealed a broadly linear

relation between temperature and myocardial infarction,

which was well characterised by log-linear models

without a temperature threshold: each 1°C reduction in

dailymean temperaturewasassociatedwith a 2.0% (95%

confidence interval 1.1% to 2.9%) cumulative increase in

risk of myocardial infarction over the current and

following 28 days, the strongest effects being estimated

at intermediate lags of 2-7 and 8-14 days: increase per

1°C reduction 0.6% (95% confidence interval 0.2% to

1.1%) and 0.7% (0.3% to 1.1%), respectively. Heat had

no detrimental effect. Adults aged 75-84 and those with

previous coronary heart disease seemedmore vulnerable

to the effects of cold than other age groups (P for

interaction 0.001 or less in each case), whereas those

taking aspirin were less vulnerable (P for interaction

0.007).

Conclusions Increases in risk of myocardial infarction at

colder ambient temperatures may be one driver of cold

related increases in overall mortality, but an increased

risk of myocardial infarction at higher temperatures was

not detected. The risk of myocardial infarction in

vulnerable people might be reduced by the provision of

targeted advice or other interventions, triggered by

forecasts of lower temperature.

INTRODUCTION

In the light of global climate change the relations
between weather and health are of increasing interest.

In several studies ambient outdoor temperature was
shown to affect mortality rates in the short term. A
study in 11 US cities found a U-shaped relation
between temperature and all cause mortality, with
mortality decreasing as temperatures increased from
the coldest days up to a certain threshold temperature,
above which mortality increased with temperature.1 A
similar pattern has been observed in Europe2 and in
several lower and middle income countries.3 Detri-
mental effects of both hot and cold days have also
been associated with cardiovascular mortality.4-6

Less commonly investigated has been the short term
effect of ambient temperature on risk of myocardial
infarction. A recent systematic review suggested com-
pelling evidence of some temperature effect but was
inconclusive on the size or direction of the effect:
eight of the 12 studies with data from the winter season
found a statistically significant increased risk of myo-
cardial infarction at colder temperatures, whereas
seven of 13 studies found a statistically significant det-
rimental effect of heat, with effect estimates ranging
from a 7% to 40% increase in rates of myocardial
infarction on days with the most extreme
temperatures.7 Only a few studies have controlled for
potentially important confounding variables such as
air pollution and circulating influenza levels, which
could be associated with both temperature and risk of
myocardial infarction. Furthermore, concerns were
expressed about the specificity of the outcome in
some studies owing to the lack of separate validation,
with the potential for inclusion of events not related to
myocardial infarction.

We examined the short term effects of temperature
in 15 conurbations in England and Wales, controlling
for important confounders and making use of a large
audit database of myocardial infarction events within
which the validity of events could be confirmed against
marker data from electrocardiographs and labora-
tories.
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METHODS

The Myocardial Ischaemia National Audit Project
(MINAP) is a national register of all hospital admis-
sions for myocardial infarction and other acute coron-
ary syndromes, with participation of all hospitals in
England andWales that admit patients with these con-
ditions. The identification of admissions is managed at
individual hospital level; guidelines recommend a
combination of approaches to identify eligible admis-
sions, including biochemistry records (specifically
measurements of troponin), admission notes, and dis-
charge slips. The database includes 123 fields covering
basic demographic data, timing of onset of symptoms,
changes on electrocardiographs, markers of myo-
cardial necrosis, final diagnosis, thrombolytic or
other treatment received, and the geographical coordi-
nates of the super output area (an area with a mean
population of 1500) containing the patient’s place of
residence. Also recorded are pre-existing comorbid-
ities, including hypertension, diabetes, and previous
cardiovascular events. We included all events with a
discharge diagnosis classified as ST elevation myo-
cardial infarction, non-ST elevationmyocardial infarc-
tion, or troponin positive acute coronary syndrome,
occurring among patients residing within one of 15
conurbations in England andWales (Greater London,
West Midlands, Greater Manchester, West Yorkshire,
Tyneside, Liverpool, Nottingham, Sheffield, Bristol,
Leicester, Potteries, Cardiff, Southampton, Kingston
upon Hull, Norwich) during 2003-6. Conurbation
boundaries were predefined to match earlier work.8

In a separate sensitivity analysis we reran our final
model including only those events that could be vali-
datedwithin theMyocardial IschaemiaNationalAudit
Project database against the presence of recorded
raisedmarkers (troponin or creatine kinase) or an elec-
trocardiograph trace showing ST elevation or left bun-
dle branch block.

Meteorological data

We downloaded data on weather, in particular daily
minimum and maximum temperature, temperature
at 9 am and 3 pm, and dewpoint temperature, from
theBritishAtmosphericDataCentre, listed byweather
monitoring station and date of measurement. Daily
mean temperature was then generated, approximated
as the mean of the daily minimum andmaximum tem-
perature. We derived daily relative humidity from the
measurements of dewpoint and temperature at 9 am
and 3 pm. When data from more than one station
were available in a conurbation, we combined these
to one series using the AIRGENE (air pollution and
inflammatory response in myocardial infarction survi-
vors: gene-environment interaction in a high risk
group) algorithm.9 After combining data in conurba-
tions with multiple stations, eight conurbations had
missing data. However, 10 complete temperature ser-
ies were available at a broader level, based on the fol-
lowing regions: North East, North West, Yorkshire
and the Humber, East Midlands, West Midlands,

East, London, South East, South West, and Wales.
All available monitoring data are drawn from the
area to produce a representative series for the whole
region. We used these series as a basis for imputing
data for days withmissing temperature at the narrower
level of conurbation. Specifically, for each conurbation
we fitted a simple linear regressionmodel over all days
in 2003-6, relating daily conurbation temperature to
daily regional temperature; this model was estimated
using days with no missing data on conurbation tem-
perature and then used to predict conurbation tem-
perature on days with missing data.

Data on pollution and infectious disease levels

We downloaded data on daily mean levels of particu-
latematterwith diameters less than 10μm(abbreviated
to PM10 andmeasured as mass in μg perm3 of air) and
ozone, from the UK air quality data and statistics data-
base. To generate a pollution series for each conurba-
tion for inclusion in our models, we used data from
background pollution monitors only, located within
one of the 15 conurbations (one to 13 monitors per
conurbation). Againwe used theAIRGENEalgorithm
to combine data frommultiple stations within a conur-
bation.
As a measure of level of circulating viral infections,

we obtaineddaily counts of laboratory confirmed cases
of influenza A and respiratory syncytial virus for each
of 10 UK regions, from the UK Communicable Dis-
eases Surveillance Centre at the Health Protection
Agency.

Statistical analysis

We carried out an ecological time series regression
analysis: the daily number of myocardial infarction
events was the outcome in a generalised linear model
with Poisson error structure, and with scale variables
set to the Pearson χ

2 statistic divided by the residual
degrees of freedom to model overdispersion.10 11 The
main exposure of interest was dailymean temperature.
To control for seasonality and long term trend we also
included in the model a smooth function of calendar
date based on splines, estimated separately for each
conurbation. A spline function, defined by piecewise
polynomials, has a flexible shape that is useful formod-
elling unknown and potentially variable seasonal and
long term patterns. The smoothness of a spline is a
function of the number of degrees of freedom; we
chose seven degrees of freedom per calendar year in
keeping with previous studies, as a compromise
between providing adequate control for unmeasured
confounders and leaving sufficient information from
which to estimate temperature effects.12 13 We adjusted
the model for day of the week and public holidays,
levels of influenza and respiratory syncytial viruses
(three categories representing 0, 1, or ≥2 laboratory
confirmed cases in the particular conurbation), and
PM10 and ozone levels (each modelled at lag days 0-
3 inclusive as there seems to be little evidence of pollu-
tion effects at longer lags14). We also controlled for
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daily relative humidity (average of the current and pre-
vious three days) using a four knot natural cubic spline
to allow for non-linearity.
To model the effects of mean temperature we used

five lag periods: the average of lag days 0-1, 2-7, 8-14,
15-21, and 22-28. We chose the 0-1 day short lag per-
iod because mortality studies suggest that any effects
from heat would probably operate with little
delay.15 16 Effects of cold have been reported with
longer delays and hence the remaining terms covered
delays of up to 28 days, with weekly groupings chosen
to allowmoreprecise estimationof effects, andbecause
at longer lags any temperature effects would be unli-
kely to vary sharply from day to day. To obtain an
initial visual estimate of the temperature effect, we
included a natural four knot cubic spline for each of
the five lagged temperature effects and we used Wald
tests to assess the statistical significance of the overall
temperature effect (testing all five spline terms) and its
non-linearity (testing only the four non-linear terms).
We then considered simplified temperature effects
with more directly interpretable numerical coeffi-
cients—namely, linear and linear threshold tempera-
ture models. In the linear threshold temperature
models a linear temperature effect only operates
below a certain “threshold” temperature, and we fitted
the model repeatedly with every possible threshold
from the fifth to the 95th centile ofmean daily tempera-
ture in 1°C steps. We also allowed the thresholds to be
specified centiles of temperature within the conurba-
tion, assessing the fifth, 10th, 15th . . . 95th centiles.
These models were compared and we selected the
final temperature effect specification by choosing the
model with the lowest Akaike information criterion.
We estimated the cumulative effect of temperature

by summing (on the log scale) the regression coeffi-
cients of the five individual lagged effects. For a given
day, this cumulative effect can be interpreted as the
total effect of a difference in daily temperature over
the current and following 28 days.17 We assessed the
heterogeneity of the estimated effects of temperature
and potential confounders by including interaction
terms and usingWald tests to assess their statistical sig-
nificance.
Finally, we did an exploratory analysis to assess

effect modification by age, sex, previous coronary
heart disease, previous hypertension, and current
aspirin use.We investigated eachpotential effectmodi-
fier separately: the daily number of events was broken
down by the factor under consideration, which was
itself included in the model as an interaction with the
daily temperature. For the purposes of this exploratory
analysis, we included only a single temperature term
(average of lag days 0-28) to allow the models to fit,
given the small numbers of events in some subgroups.
The temperature effect from such a model is compar-
able to the estimate of the cumulative effect over all lag
days, as obtained by summing the five lag terms in our
main model.
As well as rerunning our final model including only

validated myocardial infarction events, we carried out

several other sensitivity analyses, modifying the final
model. Firstly, we used minimum and then maximum
daily temperature in place of mean daily temperature.
Secondly, we varied the number of degrees of freedom
per year used to define the spline function of date, used
to adjust for season and long term trends. Thirdly, we
excluded all but the five conurbations with the highest
daily event rates—Greater London, Greater Manche-
ster, West Midlands, Tyneside, and West Yorkshire,
all of which had median daily events of at least four).
Fourthly, to include information from the 9.5% of
observations with missing pollution levels (PM10 or
ozone, or both), we used a multiple imputation proce-
dure with five imputations to handle the missing data.
For the imputation we used a multivariate normal
model for PM10 and ozone levels containing all vari-
ables from the final temperaturemodel. Finally, in case
of residual autocorrelation in the finalmodel,we added
lagged deviance residuals to the model for each
conurbation in which significant early residual auto-
correlation was seen (as defined by absolute partial
autocorrelations of the deviance residuals exceeding
0.05 at lag days 0-3).18 For each sensitivity analysis we
estimated the temperature effect at each lag, as well as
the cumulative temperature effect.

RESULTS

Between January 2003 and December 2006, 84 010
events (median 57 per day, interquartile range 50-64
per day) were recorded within the 15 conurbations of
interest (table 1). Greater London had the largest num-
ber of events (26 607, median 18, interquartile range
15-21, range 5-36 per day) and Kingston upon Hull
the least, with events recorded on only 23.5% of days
(407, median 0, interquartile range 0-0, range 0-3 per
day). Overall, 35 664/84 010 (42%) of myocardial
infarction diagnoses were ST elevation myocardial
infarction and 74 185 (88%) were confirmed by at
least one recorded corroborative electrocardiograph
trace (for ST elevationmyocardial infarction) or raised
troponin or creatine kinase levels, or both.
Myocardial infarction eventswere recorded at amed-

ian age of 70 years (interquartile range 58-79 years) and
64.5% (53 819/83424) of patients whose sex was
recorded were men. The daily mean temperature ran-
ged from−3°C to27°Cacross the 15 conurbations,with
individual conurbations having a median value of
between 9°C and 12°C during 2003-6 (table 1).

Modelling temperature effects as flexible curves

Flexible curves representing the combined effect of
temperature across all 15 conurbations, adjusted for
potential confounders, were compatiblewith a broadly
linear effect of temperature at short lags (days 0-1 and
2-7), with the risk ofmyocardial infarction increasing at
lower temperatures, although the temperature effect
was not significant at days 0-1 (P=0.62, fig 1). At days
8-14 evidence of a temperature effect was strong
(P=0.006); again an increase in the risk of myocardial
infarction was seen at lower temperatures, and
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although the curve suggested a levelling off of the effect
at both the lower and the upper extremes of the tem-
perature range, confidence intervals in these regions
were wide, reflecting the limited number of days on
which these extremes of temperature occurred. At lag
days 15-21 and 22-28 we found little evidence of any
continuing temperature effect, although in both cases
the estimated curves were broadly in the direction of a
detrimental effect of cold.

Selection of linear or threshold temperature models

Simplified specifications of the temperature effect
using linear and cold threshold models were consid-
ered within the same modelling framework. The
Akaike information criterion was minimised by the
most parsimonious “all-linear”model (that is, without
threshold, Akaike information criterion 67 414.1); in
the optimal threshold model the cold threshold was at
the 90th centile of temperature (Akaike information
criterion 67 414.9). This in any case represents close
to a linear temperature effect.

Description of effects in final model

It was estimated that a 1°Creduction in temperature on
a given day would cumulatively increase the risk of
myocardial infarction by 2.0% (95% confidence inter-
val 1.1% to 2.9%) over the current and following
28 days, with the strongest effects being estimated at
intermediate lags of 2-7 and 8-14 days (relative risk
1.006 (95% confidence interval 1.002 to 1.011) and
1.007 (1.003 to 1.011), respectively, table 2).
Estimates from the final model also showed evi-

dence of effects of day of the week and PM10 levels.
As expected, the risk of myocardial infarctions being
reported on weekdays compared with weekends was

estimated to increase: compared with Sunday, the
risk of a myocardial infarction being recorded on a
Monday was increased by 14%11-17 and on Tuesday to
Friday by 4-8%. Increases in PM10 levels were
associated with a small increase in risk of myocardial
infarction on the same day (relative risk 1.001, 95%
confidence interval 1.000 to 1.002), although no effect
of ozone level was observed (P=0.19).
Relative humidity did not seem to be associatedwith

risk of myocardial infarction (P=0.29), although there
was a non-significant increase in risk at both low and
high humidity values: relative risk 1.03 (95% confi-
dence interval 0.99 to 1.06) and 1.06 (0.99 to 1.13) at
55% and 95% compared with 75%).
Finally no evidence was found of effects of public

holiday or of influenza or respiratory syncytial virus
in the final model although effect estimates were in
the direction expected in each case—that is, a reduced
risk ofmyocardial infarctions being recordedonpublic
holidays and an increased risk on days with several
laboratory confirmed cases of influenza or respiratory
syncytial virus infection.

Variation across conurbations

The temperature effect across conurbations was not
heterogeneous (P for interaction 0.43). At lag days 2-7
and 8-14, at which significant combined cold effects
were estimated, effect estimateswere in a direction sug-
gesting cold effects for 11 and 12 conurbations, respec-
tively; however, the only conurbation in which these
effects were individually statistically significant was
Greater London (fig 2). Greater London had a median
of 18 events a day comparedwith fewer than eight in all
other conurbations and therefore was much better
powered to detect these effects.

Table 1 | Temperature and characteristics of myocardial infarction events in 15 conurbations and overall

Conurbation
Median (range) of daily
mean temperature (°C)

Total
No of MIs

STEMI
(%)

Median (interquartile
range) MIs per day

Men
(%)

Median (interquartile
range) age*

Evidence supporting
diagnosis† (%)

Bristol 11 (−2-26) 2376 1007 (42) 1 (0-2) 1519/2354 (64.5) 71 (60-80) 2224 (94)

Cardiff 12 (0-25) 1471 507 (34) 1 (0-2) 857/1464 (58.5) 75 (63-83) 1446 (98)

Greater London 12 (−1-27) 26 607 12 048 (45) 18 (15-21) 17 863/26 532 (67.3) 69 (57-79) 23 319 (88)

Greater Manchester 11 (−3-26) 12 434 5139 (41) 8 (6-11) 7722/12 424 (62.2) 71 (59-80) 10 492 (84)

Kingston upon Hull 11 (−2-23) 407 369 (91) 0 (0-0) 278/406 (68.5) 64 (56-73) 400 (98)

Leicester 10 (−2-23) 1768 969 (55) 1 (0-2) 1239/1768 (70.1) 68 (56-77) 1685 (95)

Liverpool 11 (−3-24) 4358 1674 (38) 3 (2-4) 2623/4355 (60.2) 72 (61-80) 3775 (87)

Norwich 10 (−2-25) 874 339 (39) 0 (0-1) 605/874 (69.2) 70 (60-77) 863 (99)

Nottingham 10 (−2-23) 1488 907 (61) 1 (0-2) 974/1476 (66.0) 68 (57-77) 1374 (92)

Potteries 10 (−3-25) 2205 854 (39) 1 (1-2) 1437/2205 (65.2) 72 (60-80) 1713 (78)

Sheffield 10 (−2-24) 4903 1443 (29) 3 (2-5) 2891/4878 (59.3) 72 (61-81) 4536 (93)

Southampton 12 (0-25) 1259 517 (41) 1 (0-1) 875/1259 (69.5) 69 (58-78) 1248 (99)

Tyneside 10 (−2-23) 8017 2409 (30) 5 (4-7) 4697/8010 (58.6) 72 (60-81) 6717 (84)

West Midlands 10 (−3-24) 9265 4827 (52) 6 (4-8) 6258/9245 (67.7) 68 (57-77) 8646 (93)

West Yorkshire 9 (−2-22) 6578 2655 (40) 4 (3-6) 3981/6174 (64.5) 69 (58-77) 5747 (87)

Overall 11 (−3-27) 84 010 35 664 (42) 57 (50-64) 53 819/83 424 (64.5) 70 (58-79) 74 185 (88)

MIs=myocardial infarctions; STEMI=ST elevation myocardial infarction.

*Data on age available for 81 441/84 010 (97%) of diagnoses, and sex for 83 424/84 010 (99%) of diagnoses.

†Evidence for STEMI diagnoses was defined as either an electrocardiograph trace indicating ST elevation or left bundle branch block, or raised markers (troponin or creatine kinase);

evidence on diagnoses for non-ST elevation myocardial infarction was defined as raised markers (troponin or creatine kinase) only.
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The effects of day of week (P=0.13), holiday
(P=0.16), influenza (P=0.96), respiratory syncytial
virus (P=0.23), PM10 levels (P=0.91), and ozone levels
(P=0.56) did not vary across conurbations.

Effect modification by individual level factors

In a simplified model with a single temperature term
(the average of lag days 0-28) evidence of effect mod-
ification by age was strong (P for interaction <0.001);
notably, adults aged 75-84 seemed more vulnerable to
the effects of cold than other age groups including the
eldest (≥85): relative risk per 1°Creduction in tempera-
turewas 1.016 (95%confidence interval 1.007 to 1.025)
for those aged less than 65, 1.018 (1.009 to 1.027) for
those aged 65-74, 1.027 (1.018 to 1.036) for those aged
75-84, and 1.019 (1.009 to 1.029) for those aged 85 or
more (fig 3). The temperature effect did not differ
between men and women (P=0.80). Data were avail-
able on previous coronary heart disease (myocardial
infarction or angina) for 82% of events, and those
patients with previous disease seemed more vulner-
able to the effects of temperature than those with no
history of disease: relative risks per 1°C reduction in
temperature 1.025 (1.015 to 1.034) and 1.019 (1.011 to
1.029); P for interaction 0.001. However, there was lit-
tle evidence of any effect modification by previous
hypertension (P for interaction 0.16). Finally, consider-
ing the 86% of events when data on current use of
aspirin were available, those taking aspirin seemed
less vulnerable to the effects of temperature than
those not taking aspirin: relative risk per 1°Creduction

in temperature 1.016 (1.006 to 1.026) compared with
1.022 (1.012 to 1.031); P for interaction 0.007. Effect
modification by statin use was not assessed because of
incomplete data.

Sensitivity analyses

To test the robustness of the effect estimates several
modifications were made to the final model. The esti-
mated overall temperature effect did not seem to be
sensitive to restricting to only validated myocardial
infarction events, using minimum and maximum
daily temperature in place of mean temperature,
restricting analyses to the five conurbations with the
highest event rates, imputing pollution data to enable
all observed data to be used, or including additional
terms to allow for residual autocorrelation in the final
model. For all of these sensitivity analyses the esti-
mated cumulative effect of a 1°Creduction in tempera-
ture was between a 1.7% and 2.2% increase in risk of
myocardial infarction, comparable to our final model
estimate of a 2.0% increase in risk. Considering the
temperature effect at specific lag periods, the effects
of temperature at lag days 2-7 and 8-14 were estimated
at 0.4-0.8% per 1°C reduction in temperature in all
models, with no evidence of non-linearity in these
effects. At shorter (0-1 day) and longer (15-21,
22-28 day) lag periods, the lack of evidence for a tem-
perature effect was consistent across models.
Varying the level of seasonal control had only a

small effect on the size and not direction of the esti-
mated cumulative temperature effect: estimated effect
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Fig 1 | Estimated relative risk of myocardial infarction by temperature in 15 conurbations combined, from a model including all five lag periods for temperature

(0-1, 2-7, 8-14, 15-21, and 22-28 days) and adjusted for calendar time (stratified by conurbation), relative humidity (average of lags 0-3), day of week, public

holiday, influenza, respiratory syncytial virus, PM10 level (lags 0-3), and ozone level (lags 0-3). Reference value for relative risk estimates is mean value of

daily mean temperature across all days included
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sizes were 1.2-1.4% for a 3-6 degrees of freedom per
year spline; 1.8-2.0% for 7-9 degrees of freedom per
year, and 1.0-1.4 for 10-14 degrees of freedom per
year. Confidence intervals included our original esti-
mate of a 2.0% increase in risk per 1°C reduction in
temperature for all levels of seasonal control above 3
degrees of freedom per year.

DISCUSSION

Across the 15 conurbations in England and Wales
included in our analyses we found a broadly linear
association between daily mean ambient temperature
and risk of myocardial infarction, with a 1°C reduction
in temperature associated with a cumulative 2% (95%
confidence interval 1.1% to 2.9%) increase in risk of
myocardial infarction over the current and subsequent
28 days. Because myocardial infarctions are common,
and ambient temperature is experienced by the whole
population, even a small increase in risk translates to
substantial absolute numbers of extra myocardial
infarctions. For example, in the United Kingdom,
which has an estimated 146 000myocardial infarctions
per year,19 11 600 events would be expected on aver-
age in a 29 dayperiod; our results suggest that each 1°C
reduction in temperature nationwide on a single day
would be associated with around 200 extramyocardial
infarction events. We found no evidence of any detri-
mental heat effect.

Comparison with other studies

The effects of lower temperatures seemed to operate
most strongly at two to 14 days after the reduction in
temperature. The absence of a more immediate effect
may be characteristic of the underlying mechanism at
work, or might simply reflect delays in patients with
myocardial infarction being admitted to hospital. A
similarly delayed cold effect has also been seen for
overall mortality16 although more immediate effects
have also observed.1

In a recent systematic review of ambient tempera-
ture effects in studies with myocardial infarction out-
comes, increases in risk of myocardial infarction at
both higher and lower temperatures were reported by
different studies, with four studies reporting both
effects.1 However, a key finding of the review was the
highly variable methodology among studies in this
area to date; only a few controlled for air pollution
and levels of infectious diseases such as influenza, or
investigated lagged temperature effects beyond a few
days; control for season and long term trend has also
been inconsistent. Two studies that did address all of
these methodological concerns were those of data on
myocardial infarction relatedmortality, which found a
detrimental effect of heat20 or of both heat and cold.21

Suchdatamay, however, have poor specificity because
in a proportion of cases themyocardial infarction diag-
nosis is likely to be assumed; therefore these findings in
reality may reflect temperature effects on more broad
health outcomes. In contrast, of five studies that ana-
lysed validated myocardial infarction outcomes sepa-
rately, only one based in a subarctic area reported a
detrimental heat effect,22 most reporting an adverse
effect only of cold.23-25 This is in keeping with the pre-
sent analysis, which was based on an audit database in
which 88%ofmyocardial infarction events were corro-
borated by an electrocardiograph trace, raised mar-
kers, or both, and in which our findings were robust
to exclusion of the remaining 12% of events.

Table 2 | Estimated effects of temperature and potential

confounders in final model

Potential confounders Relative risk (95% CI) Pvalue

Temperature (per °C drop):

Lag 0-1 1.002 (0.998 to 1.005)

<0.001

Lag 2-7 1.006 (1.002 to 1.011)

Lag 8-14 1.007 (1.003 to 1.011)

Lag 15-21 1.003 (0.999 to 1.007)

Lag 22-28 1.002 (0.998 to 1.006)

Cumulative effect over all lags 1.020 (1.011 to 1.029)

Relative humidity (%):

55 1.03 (0.99 to 1.06)

0.29

65 1.01 (0.99 to 1.03)

75 1.00 (reference)

85 1.01 (0.98 to 1.04)

95 1.06 (0.99 to 1.13)

Day of week:

Sunday 1.00 (reference)

<0.001

Monday 1.14 (1.11 to 1.17)

Tuesday 1.05 (1.02 to 1.08)

Wednesday 1.07 (1.04 to 1.10)

Thursday 1.04 (1.01 to 1.07)

Friday 1.08 (1.05 to 1.11)

Saturday 0.99 (0.96 to 1.02)

Public holiday:

No 1.00 (reference)
0.21

Yes 0.97 (0.92 to 1.02)

Confirmed cases of influenza A*:

0 1.00 (reference)

0.581 1.02 (0.99 to 1.05)

≥2 1.01 (0.97 to 1.05)

Confirmed cases of respiratory
syncytial virus*:

0 1.00 (reference)

0.841 0.99 (0.96 to 1.02)

≥2 1.01 (0.95 to 1.06)

PM10 (per μg/m3)†:

Lag 0 1.001 (1.000 to 1.002)

0.02
Lag 1 0.999 (0.998 to 1.000)

Lag 2 0.999 (0.998 to 1.000)

Lag 3 1.000 (0.999 to 1.001)

Ozone (per μg/m3)

Lag 0 1.000 (0.999 to 1.001)

0.19
Lag 1 0.999 (0.999 to 1.000)

Lag 2 1.000 (0.999 to 1.001)

Lag 3 1.000 (0.999 to 1.000)

Model adjusted for season and trend using spline function of calendar

date, with 7 knots per calendar year.

*Laboratory confirmed cases.

†Particulate matter with diameters less than 10 μm.
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Weobserved evidence of effectmodification by age,
with those aged 75-84 apparently more vulnerable to
temperature effects than other age groups. Only a few
studies have investigated the effects of temperature on
risk of myocardial infarction by age group; one report-
ing an increased cold effect among those aged more
than 6526 and a further two found no difference in
effects when restricting their analyses only to older age
groups.23 24 The age structure of patients recorded in
MINAP allowed us to subdivide those aged 65 or
more into three age groups and it was of interest that
an increased vulnerability did not extend into the old-
est group (85 or more). A possible explanation is that

people in this age group may spend less time outdoors
andmay bemore likely to live in residential or nursing
homes with effective heating systems. We also
observed an increased vulnerability to cold among
those with previous coronary heart disease, although
we were not able to assess the three way interaction
between temperature, age group, and previous coron-
ary heart disease owing to low numbers of daily events
in the combined subgroups; therefore whether the vul-
nerabilities owing to age and previous disease are inde-
pendent remains an open question. People not taking
aspirin also seemed to be more vulnerable to tempera-
ture effects.
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Fig 2 | Estimated relative risk of myocardial infarction per 1°C reduction in temperature by conurbation. Estimates from a

combined model including five temperature terms (lag days 0-1, 2-7, 8-14, 15-21, and 28), adjusted for calendar time

(stratified by conurbation), and fixed effects across conurbations of relative humidity (average of lags 0-3), day of week, public

holiday, influenza, respiratory syncytial virus, PM10 level (lags 0-3), and ozone level (lags 0-3)
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Policy implications and possible mechanisms

Identifying subgroups that might be particularly vul-
nerable to cold effects is of interest since one potential
application of our findings would be to inform a tar-
geted early warning system based on forecasted
weather, similar to that recently set up by the UK
MeteorologicalOffice for peoplewith chronic obstruc-
tive pulmonary disease: when the risk of exacerbation
of this disorder is increased because of low ambient
temperature, people who are at risk are given advice
through automated telephone calls, such as to keep
warm, stay indoors, and watch for warning signs of
their condition worsening; reductions in hospital
admissions of between 15% and 76% have been
reported among practices in the scheme.27 Our results
suggest that for risk of myocardial infarction at colder
temperatures, older people, those with coronary heart
disease, and people who do not take aspirin could ben-
efit from a similar targeted approach. However, since
our findings imply an effect of temperature across the
temperature range, and even among people outside
the most vulnerable groups, a more widespread health
education message aimed at reducing the impact of
lower temperatures may be of value; such approaches
should be evaluated.
Several mechanisms have been proposed to explain

an effect of temperature reductions on risk of myo-
cardial infarction. Exposure to cold under controlled
conditions has been associated with increases in arter-
ial pressure, blood viscosity, and cardiac workload.28 29

A mobilisation of granulocytes has been observed,30

and red cell counts and plasma cholesterol and fibrino-
gen concentrations, all of whichmay be thrombogenic,
seem to be raised after exposure to cold.28 31 Finally,
one study has suggested that the density distribution
of blood platelet subpopulations may be affected,
with an observed increase in less dense platelets that
were more sensitive towards agents that induce
aggregation.32 These small experimental studies com-
bine to suggest that a pathway for cold induced throm-
bogenesis might involve a combination of factors,
including haemoconcentration, an inflammatory
response, and a tendency for an increased state of
hypercoagulability. Furthermore, our observation
that aspirin seemed to be partially protective suggests
that part of the effect may be mediated by changes in
platelet function. However, more recent data have
been lacking and these hypothesised mechanisms
need to be tested in larger studies examining a range
of updated measures. Finally, it is possible that the
observed effect of temperature reductions is not
explained purely by direct biological pathways, but
wholly or partly by other behaviour associated with
lower temperatures—for example, increased snow
shovelling activity might explain increases in risk of
myocardial infarction at the lower extremes of
temperature,33 although this would not explain the
observed effect across the temperature range.
Interestingly, we did not detect any detrimental

effect of temperature increases on risk of myocardial
infarction. There are a few possible explanations for
this. Firstly, temperature in the United Kingdom is
rarely very high in global terms; although we included
data from the unusually hot summer of 2003, even the
warmest periods are brief, whichmay have limited our
ability to detect a heat effect. Such heat effects, how-
ever, have been established in studies of overall mor-
tality even in aUK setting.15Asecond possibility is that
any heat effects might have been too immediate to be
detected by a daily time series study; data at a finer
temporal resolution would be of interest. Finally, our
results might simply reflect a genuine absence of any
heat effect on myocardial infarction, indicating that
other mechanisms are more important drivers of the
heat-mortality relation; this is also indicated bymortal-
ity data from London that showed no increase in mor-
tality from myocardial infarction at higher
temperatures despite clear heat related increases in
other cardiovascular deaths.34

Strengths and limitations of the study

Our study has some limitations. Firstly, the MINAP
database is restricted to patients admitted to hospital;
we therefore would not have included myocardial
infarctions leading to death before hospital admission.
The likelihood of a patient with myocardial infarction
surviving to be admitted to hospital could conceivably
be related to temperature if, for example, bad weather
led to a delay in the ambulance. If such a mechanism
were operating, however, it seems likely that the num-
ber of myocardial infarctions would then be

Age

  <65

  65-74

  75-84

  ≥85

Females

Males

No previous coronary heart disease

Previous coronary heart disease

No previous hypertension

Previous hypertension

Receiving aspirin

Not receiving aspirin

<0.001

0.802

0.001

0.164

0.007

P for
interaction

1 1.01 1.02 1.03 1.04

Relative risk per 1˚C drop
in temperature (95% CI)

Fig 3 | Estimated relative risk of myocardial infarction per 1°C

reduction in temperature: effect modification by age, sex,

history, and aspirin use. Graph shows estimated effect of

temperature (average of lag days 0-28), adjusted for calendar

time (stratified by conurbation), and fixed effects across

conurbations of relative humidity (average lags 0-3), day of

week, public holiday, influenza, respiratory syncytial virus,

PM10 levels (lags 0-3), and ozone levels (lags 0-3)
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underestimated onparticularly cold days, leading to an
underestimation of the estimated adverse effects of
cold. Secondly, owing to low numbers of events in
some conurbations, the power to detect geographical
heterogeneity of temperature effects was limited, and
furthermore since our data were restricted to England
andWales wewere unable to assess the hypothesis that
temperature effects may vary with latitude and local
climate.7 Finally, data were not widely available on
levels of particulates with a diameter less than 2.5 μm
(PM2.5), which may be a more important predictor of
risk of myocardial infarction than PM10,14 therefore
we cannot exclude residual confounding, although in
the one monitoring station where both measures were
recorded the correlation was high (0.92), so we believe
that including PM10 in our models should have
accounted for any major confounding effects of finer
particulates.
Despite these limitations, to our knowledge this is

the first large study to investigate the short term effects
of ambient temperature on risk of myocardial infarc-
tion in which key potential confounders (air pollution,
influenza activity, seasonality, and long term trend)
were controlled for, non-linear effects were investi-
gated, and in which most cases of myocardial infarc-
tion could be validated against electrocardiographic
ormarker criteria to confirm the diagnosis. In addition
a range of sensitivity analyses confirmed that our main
conclusions were robust to changes in aspects of the
model specification, and to restricting to only the
most “reliable” data.

Conclusions

In conclusion, our study shows a convincing short term
increase in risk of myocardial infarction associated
with lower ambient temperature, predominantly oper-
ating in the two weeks after exposure. International
studies with consistent methods will be required to
clarify the dependence of these effects on local climate,
whereas individual level studies collecting demo-
graphic, clinical, and behavioural data may shed light
on the role of adaptive measures such as clothing and
home heating, and further clarify which subgroups are

likely to be themost vulnerable. Finally, studies of spe-
cific public health interventions aimed at reducing the
impact of temperature related increases in risk of myo-
cardial infarction are needed.
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